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1 Introduction

The remarkable success of the conformal bootstrap [1–4] suggests that algebraic structures

present in conformal field theory (CFT) can profitably be exploited to extract highly non-

trivial information about the CFT. In the papers [5, 6] a systematic approach towards

manifesting and exploiting some of these algebraic structures was outlined. The key result

is that the algebraic structure of CFT defines a two dimensional topological field theory

(TFT2) with SO(4, 2) invariance. Crossing symmetry is expressed as associativity of the al-

gebra of local CFT operators. A basic observation which is at the heart of this result, is that

the free four dimensional CFT of a scalar field can be formulated as an infinite dimensional

associative algebra. This algebra admits a decomposition into linear representations of

SO(4, 2), and is equipped with a non-degenerate bilinear product. A concrete application of

these ideas has enabled a systematic study of primaries in bosonic free field theories in four

dimensions, for scalar, vector and matrix models [7, 8]. For closely related ideas see [9, 10].

We know from the AdS/CFT correspondence [11–13] that strongly coupled CFTs

have a dual holographic gravitational description. The combinatorics of the matrix model

Feynman diagrams plays an important role in this holography. In this setting the TFT2
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structure also appears as a powerful organizing structure, explicating algebraic structures

that were not previously appreciated [14–17]. Thus, it seems that the TFT2 idea is rich

enough to incorporate the algebraic structure emerging both from the conformal symmetry,

and from the color combinatorics.

In this paper we extend the study of [7, 8] by carrying out a systematic study of

primaries in free fermion field theories in four dimensions. In section 2 we obtain formulae

for the counting of primary fields constructed from n copies of a left handed Weyl fermion,

using the characters of representations of so(4, 2). For a beautiful discussion of these

characters, see [18]. The basic quantity that we are interested in is the generating function

Gn(s, x, y) =
∑

∆,j1,j2

N[∆,j1,j2]s
∆xj1yj2 , (1.1)

which counts the number of conformal multiplets (denoted N[∆,j1,j2]) labeled by the quan-

tum numbers ∆, j1, j2 of their highest weight state. These quantum numbers are charges of

the Cartan of SO(4, 2), namely the scaling dimension ∆ and the two spins j1 and j2 asso-

ciated to the SO(4) = SU(2)×SU(2) subgroup of SO(4, 2). Although we obtain a concrete

expression for Gn(s, x, y), it is not very useful. By specializing to particular classes of pri-

maries, we can make the counting formulae very explicit. These special classes of primaries

obey extremality conditions stated using relations between the charges under the Cartan of

SO(4, 2). The first class of primaries that we consider are the leading twist primaries. Recall

that the twist τ is given by τ = ∆− (j1 + j2). As we explain below, the primary operators

constructed using n fields that maximize the twist τ have quantum numbers given by

[∆, j1, j2] =

[

n(n+ 2)

2
+ q,

n(n+ 1)

4
+

q

2
,
n(n− 1)

4
+

q

2

]

. (1.2)

These quantum numbers are not at all obvious. To get some insight into the above list, write

the scaling dimension as ∆ = n(n−1)
2 +q+3

2n. The terms q+3
2n are the expected contribution

to the dimension from q derivatives and n fermion fields. Recall that for scalar fields we’d

simply have ∆ = q+n for the leading twist primaries. Fermi statistics requires that we anti-

symmetrize the fermion fields. Since each field has two components, to get a non-zero an-

swer extra derivatives are needed and this leads to the additional contribution of n(n−1)
2 . We

denote the generating function counting this class of primaries by Gmax
n (s, x, y) and we find

Gmax
n (s, x, y) = (s

√
xy)

n(n−1)
2 (s

3
2
√
x)n

n
∏

k=2

1

1− (s
√
xy)k

. (1.3)

Following [7, 8], we consider a second larger class of primaries, called the extremal primary

operators in [7, 8]. This class is the set of operators with maximal j1 spin at given ∆

[∆, j1] =

[

3n

2
+ q,

n

2
+

q

2

]

. (1.4)

We denote the corresponding generating function by Gext
n (s, x, y). Although we do not have

a closed formula for Gext
n (s, x, y) valid for any n, we explain how it can be computed for
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low values of n, by specializing the general counting formula. As an example we evaluate

Gext
3 (s, x, y) =

s
13
2 x

5
2 (1 + s

√
xy

3
2 )

(1− s4x2)(1− s2xy)(1− s3x
3
2 y

3
2 )

= s
13
2 x

5
2 + s

15
2 x3y

3
2 + s

17
2 x

7
2 y + s

19
2 x4y

3
2 + s

19
2 x4y

5
2 + s

21
2 x

9
2

+s
21
2 x

9
2 y2 + s

21
2 x

9
2 y3 + · · · . (1.5)

After developing these results for the counting of primary operators, we consider the

problem of constructing the primaries that were counted. The construction of primary fields

is mapped to a problem of determining multi-variable polynomials subject to a system of

algebraic and differential constraints. Each primary operator corresponds to a specific

polynomial. This relies on a function space realization of the conformal algebra, which is

explained in section 3. The special classes of primary operators that we count above have a

natural interpretation in this polynomial construction. Leading twist primaries correspond

to holomorphic polynomials in a single complex variable z, while extremal primaries cor-

respond to holomorphic polynomials in two complex variables, z and w. We give concrete

examples of polynomials obeying the constraints and the associated primary operators.

Finally, in the last section we verify that the Hilbert series for the counting of extremal

primaries are palindromic. The palindromy property of Hilbert series is indicative that the

ring being enumerated is Calabi-Yau. It it interesting that palindromic Hilbert series also

arise for moduli spaces of supersymmetric vacua of gauge theories, as found in [19, 20].

2 Counting primaries

This section considers the problem of enumerating the SO(4, 2) irreducible representations

appearing among the composite fields made out of n = 2, 3, · · · copies of a free chiral

fermion field. The chiral fermion is a lowest weight representation with ∆ = 3
2 , j1 =

1
2 and

j2 = 0. The fermions are Grassman fields, so there is a sign change when two fields are

swapped. Consequently, we should be taking the antisymmetric product of the SO(4, 2)

representations. We will denote the lowest weight representation corresponding to local op-

erators built by taking derivatives of the fermion field by W+. Enumerating the primaries

entails decomposing the antisymmetrized tensor product Asymn(W+) into irreducible rep-

resentations. We start by deriving a formula for the character of the antisymmetrized tensor

product of n copies of the free Weyl fermion representation. We then explain how to express

this character as a sum of characters of irreducible representations, achieving the required

decomposition. After obtaining a general formula in terms of an infinite product, we spe-

cialize to primaries that obey extremality conditions relating their dimension to their spin.

For these primaries using results from [21], we find simple explicit formulas for the counting.

2.1 Generalities

The basic formula we use in this section states

det(1 + tM) =
∞
∑

n=0

tnχ(1n)(M) , (2.1)
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where χ(1n)(M) is the trace over the antisymmetrized product of n copies of M . Below we

will use this formula to obtain the character of the antisymmetrized tensor products of n

copies of the free Weyl fermion representation. We will reserve the letter χ for characters.

The character for the free fermion representation is denoted by D[ 3
2
, 1
2
]+ in [18]. From

formula (3.44) of [18] we know the character of a left handed Weyl fermion is

χW+(s, x, y) = s
3
2 (χ 1

2
(x)− sχ 1

2
(y))P (s, x, y)

= s
3
2

∞
∑

q=0

sqχ q+1
2
(x)χ q

2
(y)

= TrW+(M) , (2.2)

with M = sDxJ
3
1 yJ

3
2 and

P (s, x, y) =
1

(

1− s
√
xy
)

(

1− s
√

x
y

)(

1− s
√

y
x

)(

1− s√
xy

) . (2.3)

Here J3
1 is the third component of the ~J1 spin. It is straightforward to verify that for

M = sDxJ
3
1 yJ

3
2 we have

det(1 + tM) =
∞
∏

q=0

q+1
2
∏

a=− q+1
2

q

2
∏

b=− q

2

(1 + ts
3
2
+qxayb) . (2.4)

Applying (2.1) we find the generating function of the characters of the antisymmetrized

tensor products of the free Weyl fermion representation

Z(t, s, x, y) =
∞
∏

q=0

q+1
2
∏

a=− q+1
2

q

2
∏

b=− q

2

(1 + ts
3
2
+qxayb) =

∞
∑

n=0

tnχ(1n)(s, x, y) . (2.5)

By expanding Z(t, s, x, y) as a series in t we can easily read off χ(1n)(s, x, y) as the coefficient

of tn. To be clear, χ(1n)(s, x, y) is the character of M in the representation given by the

antisymmetrized tensor product Asymn(W+). The next step is to decompose this into a

sum of SO(4, 2) characters, for irreps of dimension ∆ and spins j1, j2

χ(1n)(s, x, y) =
∑

[∆,j1,j2]

N[∆,j1,j2]χ[∆,j1,j2](s, x, y) . (2.6)

The coefficients N[∆,j1,j2] count how many times the irreducible representation with lowest

weight labeled by [∆, j1, j2] appears in Asymn(W+). Hence, N[∆,j1,j2] are non-negative

integers. The case that n = 2 is complicated by the fact that some of the irreducible

representations appearing in the above decomposition are short. We will consider n = 2

separately in detail below. For n ≥ 3 the character for the irreducible representation with

lowest weight [∆, j1, j2] is given by [18]

χ[∆,j1,j2](s, x, y) =
s∆χj1(x)χj2(y)

(

1− s
√
xy
)

(

1− s
√

x
y

)(

1− s
√

y
x

)(

1− s√
xy

) . (2.7)
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It is useful to define

Zn(s, x, y) ≡
∑

∆,j1,j2

N[∆,j1,j2]s
∆χj1(x)χj2(y) , (2.8)

so that

Zn(s, x, y) = (1− s
√
xy)

(

1− s

√

x

y

)(

1− s

√

y

x

)(

1− s√
xy

)

χ(1n)(s, x, y) . (2.9)

The right hand side of (2.8) is a sum of (products of) SU(2) characters. Following [22],

it can be simplified by using the orthogonality of SU(2) characters. Towards this end, we

introduce the generating function

Gn(s, x, y) ≡
∑

∆,j1,j2

N[∆,j1,j2]s
∆xj1yj2

=

[(

1− 1

x

)(

1− 1

y

)

Zn(s, x, y)

]

≥
. (2.10)

The subscript ≥ is an instruction to keep only non negative powers of x and y.

It is easy to check that this agrees with standard character computations. For example,

the expansion

G3(s, x, y) = s
11
2 x

√
y + s

13
2 x

5
2 + s

13
2 x

3
2 y + s

15
2 y

3
2 + s

15
2 x3y

3
2 + s

15
2 x2y

3
2 + s

17
2 x

7
2 y (2.11)

+s
17
2 x

3
2 y2 + s

17
2 x

5
2 y2 + s

19
2 x4y

3
2 + s

19
2 xy

5
2 + 2s

19
2 x3y

5
2 + s

19
2 x4y

5
2 + . . . ,

can be reproduced using characters, as we will now demonstrate. The relevant Schur

polynomial for this case is calculated as follows

χ(13)(s, x, y) =
1

6

[

(χL(s, x, y))
3 − 3χL(s

2, x2, y2)χL(s, x, y) + 2χL(s
3, x3, y3)

]

. (2.12)

Using Mathematica, we find the following terms

χ(13)(s, x, y) = χ[ 11
2
,1, 1

2
](s, x, y) + χ[ 13

2
, 5
2
,0](s, x, y) + χ[ 13

2
, 3
2
,1](s, x, y)

+χ[ 15
2
,0, 3

2
](s, x, y) + χ[ 15

2
,2, 3

2
](s, x, y) + χ[ 15

2
,3, 3

2
](s, x, y)

+χ[ 17
2
, 7
2
,1](s, x, y) + χ[ 17

2
, 3
2
,2](s, x, y) + χ[ 17

2
, 5
2
,2](s, x, y)

+χ[ 19
2
,4, 3

2
](s, x, y) + χ[ 19

2
,1, 5

2
](s, x, y) + 2χ[ 19

2
,3, 5

2
](s, x, y) + χ[ 19

2
,4, 5

2
](s, x, y)

+χ[ 21
2
, 9
2
,0](s, x, y) + χ[ 21

2
, 9
2
,2](s, x, y) + χ[ 21

2
, 3
2
,3](s, x, y) + χ[ 21

2
, 5
2
,3](s, x, y)

+χ[ 21
2
, 7
2
,3](s, x, y) + χ[ 21

2
, 9
2
,3](s, x, y) + . . . , (2.13)

in complete agreement with (2.11).

To end this subsection, we will now discuss the case that n = 2. For this case we must

account for the fact that representations that include null states appear in the decomposi-

tion. A lowest weight multiplet [∆, j1, j2] will be short if [23] ∆ = f(j1)+f(j2) with f(j) = 0

if j = 0 or f(j) = j+1 if j > 0. This does not cover the case of the scalar field (j1 = j2 = 0),

which is short for ∆ = 1. For n = 2 the decomposition includes a primary with ∆ = 3

– 5 –
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and j1 = j2 = 0 which is not short, as well as primaries with ∆ = 2j j1 = (2j − 1)/2

and j2 = (2j − 3)/2 which are short representations and hence have null states. For the

correct counting, these null states (and their descendants) must be removed. These short

representations arise because their primary operators are conserved higher spin currents

∂µ J
µµ2···µ2j−2

αβ̇
= 0 . (2.14)

The subtraction of null states is achieved by removing the ∆ = 3 primary that does not

need to be subtracted, dividing by 1−s/
√
xy which removes the null descendents and then

putting the original primary back in. The final result

G2(s, x, y) =

[

(

1− 1

x

)(

1− 1

y

)

(

Z2(s, x, y)− s3
) 1

1− s√
xy

]

≥

+ s3

=
∞
∑

j=0

s3+2jx
3
2
+jy

1
2
+j , (2.15)

agrees with [24].

2.2 Leading twist primaries

By restricting to well defined classes of primaries, we can significantly simplify the counting

formulas of the previous section. The biggest simplification comes from focusing on the

leading twist primaries, which have quantum numbers [∆, j1, j2] = [n(n+2)
2 + q, n(n+1)

4 +
q
2 ,

n(n−1)
4 + q

2 ]. These quantum numbers are not obvious but will be evident in the final

answer of this section. In the introduction we motivated these quantum numbers, in the

discussion appearing after equation (1.2). Each such leading twist primary operator comes

in a complete spin multiplet of (n(n+1)
2 + q + 1)(n(n−1)

2 + q + 1) operators. Choosing the

operator with highest spin corresponds to studying primaries constructed using a single

component Pz of the momentum four vector operator. To count the leading twist primaries

we will count this highest spin operator in each multiplet. The corresponding generating

function is Gmax
n (s, x, y). This generating function is obtained after a simple modification

of the results of the previous section. First, we replace χ(1n)(s, x, y) with a new function

χmax
n (s, x, y), by keeping only the highest spin state from each multiplet in the product

∞
∏

q=0

(1 + ts
3
2
+qx

q

2
+ 1

2 y
q

2 ) =
∞
∑

n=0

tnχmax
n (s, x, y) . (2.16)

The leading twist primaries are constructed using the single component of the momentum

that raises left and right spin maximally. Consequently in (2.9) we replace

(1− s
√
xy)

(

1− s

√

x

y

)(

1− s

√

y

x

)(

1− s√
xy

)

→ (1− s
√
xy) . (2.17)

Finally, for each spin multiplet we keep only 1 state so there is no longer any need to

replace the multiplet of spin states by a single state when we count. The final result is

Gmax
n (s, x, y) ≡

∑

∆,j1,j2

Nmax
[∆,j1,j2]

s∆xj1yj2

= (1− s
√
xy)χmax

n (s, x, y) , (2.18)

– 6 –
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where Nmax
[∆,j1,j2]

is the number of leading twist primaries of dimension ∆ and spin (j1, j2).

For the leading twist primaries, once n and the dimension of the operator is specified, the

spin of the primary is fixed. Consequently, we need not track the x and y dependence,

although we choose to keep this dependence explicit. This leads to the formula

F (t, s, x, y) ≡ 1

(1− s
√
xy)

∞
∑

n=0

tnGmax
n (s, x, y)

=
∞
∏

q=0

(1 + ts
3
2
+qx

q

2
+ 1

2 y
q

2 ) . (2.19)

We can obtain explicit expressions for Gmax
n (s, x, y) by developing F (t, s, x, y) in a Taylor

series. Define

fk(t, s, x, y) =
∂k

∂tk
logF (t, s, x, y) . (2.20)

A straight forward computation gives

fk(t, s, x, y) =

∞
∑

q=0

(−1)k+1(k − 1)!s
3k
2
+kqx

kq

2
+ k

2 y
kq

2

(1 + ts
3
2
+qx

q

2
+ 1

2 y
q

2 )k
, (2.21)

so that we have

fk(0, s, x, y) = (k − 1)!(−1)k−1 s
3k
2 x

k
2

1− skx
k
2 y

k
2

. (2.22)

Explicit expressions for Gmax
n are now easily obtained. For example

Gmax
3 (s, x, y) =

1

3!
(1− s

√
xy)

∂3F

∂t3

∣

∣

∣

t=0

=
1

3!
(1− s

√
xy)(f3 + 3f1f2 + f3

1 )

=
s

15
2 x3y

3
2

(1− s2xy)(1− s3x
3
2 y

3
2 )

. (2.23)

Similarly

Gmax
4 (s, x, y) =

s12x5y3

(1− s2xy)(1− s3x
3
2 y

3
2 )(1− s4x2y2)

. (2.24)

It is possible to obtain a general closed formula for Gmax
n (s). To make the argument as

transparent as possible, set x = 1 = y. Evaluate the derivative

∂nF

∂tn
=

∑

n1,··· ,nq

∑

k1,··· ,kq

(n1k1 + · · ·+ nqkq)!

n1! · · ·nq!(k1!)n1 · · · (kq!)nq
fn1
k1

· · · fnq

kq
δn,n1k1+···nqkq F , (2.25)

and use the formulas for the fk’s to find

∂nF

∂tn

∣

∣

∣

t=0
=

∑

n1,··· ,nq

∑

k1,··· ,kq

(−1)n−
∑

i nin!s
3n
2

n1! · · ·nq! k
n1
1 · · · knq

q

(

s
3k1
2

1− sk1

)n1

· · ·
(

s
3kq
2

1− skq

)nq

δn,n1k1+···nqkq .

(2.26)
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The sum appearing above can be interpreted as a sum over conjugacy classes of Sn. Recall

that a conjugacy class of Sn collects all permutations with nq kq-cycles, that is, all permu-

tations with the same cycle structure. This identification of the sum is a consequence of

the fact that the coefficient
n!

n1! · · ·nq! k
n1
1 · · · knq

q

(2.27)

is the order of the conjugacy class. Each conjugacy class is weighted by the factor

(−1)n−
∑

i ni which is the signature of the permutation with nq kq-cycles. There is a factor

of s
3k
2

1−sk
for each k-cycle in the permutation. The lowest weight discrete series irreducible

representation of SL(2), built on a ground state with dimension 3
2 has character

χ1(s) = TrV1(s
L0) =

s
3
2

1− s
. (2.28)

Denote this irreducible representation by W1. It then follows that (P[1n] projects onto the

antisymmetric irrep i.e. a single column of n boxes)

1

n!

∂nF

∂tn

∣

∣

∣

t=0
= TrW1(P[1n]s

L0) =
s

n
2
(n+2)

(1− s)(1− s2)(1− s3) · · · (1− sn)
. (2.29)

In writing the last equality above, we have used equation (49) of [21] which studies the SL(2)

sector primaries using the language of oscillators. Our final result, for general x and y, is

Gmax
n (s, x, y) = (s

√
xy)

n(n−1)
2 (s

3
2
√
x)n

n
∏

k=2

1

1− (s
√
xy)k

. (2.30)

2.3 Extremal primaries

In this section we will consider the class of primaries with charges

∆ =
3n

2
+ q ; J3

1 =
n

2
+

q

2
. (2.31)

This class of primaries generalizes the higher twist primaries because the charge J3
2 , which

is part of SU(2)R, is not constrained. The extremal primaries fill out complete multiplets

of SU(2)R and are constructed using two components of the momentum four vector oper-

ator which are complex linear combinations of the (hermitian) Pµ. The specific complex

linear combinations are determined by the requirement that J3
1 is maximal. Following the

treatment of the last section, we introduce a generating function Gext
n (s, x, y), given by

Gext
n (s, x, y) =

[(

1− 1

y

)

Zext
n (s, x, y)

]

≥
(2.32)

where Zext
n (s, x, y) is defined by

Zext
n (s, x, y) = (1− s

√
xy)(1− s

√

x/y)χext
n (s, x, y) (2.33)
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with

F (2)(t, s, x, y) ≡
∞
∑

n=0

tnχext
n (s, x, y)

=
∞
∏

q=0

q

2
∏

b=− q

2

(1 + ts
3
2
+qx

q+1
2 yb) . (2.34)

It is again possible to derive closed expressions for the generating function Gext
n (s, x, y).

Introduce the functions

fk(t, s, x, y) ≡ ∂k−1

∂tk−1
logF (2)

= (−1)k−1(k − 1)!
∞
∑

q=0

q

2
∑

m=− q

2

skq+
3k
2 x

(q+1)k
2 ykm

(1 + tsq+
3
2x

q+1
2 ym)k

. (2.35)

It is simple to establish that

fk(0, s, x, y) = (−1)k−1(k − 1)!
s

3k
2 x

k
2

(1− skx
k
2 y

k
2 )(1− skx

k
2 y−

k
2 )

. (2.36)

Exactly as above we have

∂nF (2)

∂tn

∣

∣

∣

t=0
=

∑

n1,··· ,nq

∑

k1,··· ,kq

(n1k1 + · · ·+ nqkq)!

n1! · · ·nq!(k1!)n1 · · · (kq!)nq
fn1
k1

· · · fnq

kq
δn,n1k1+···nqkq . (2.37)

Inserting the formulas for the fk’s, expressions for the Zext
n (s, x, y) now follow from (2.33).

To extract spin multiplets, we need to compute

Gext
n (z, w) =

[

Zn(s, x, y)

(

1− 1

y

)]

≥
=

1

2πi

∮

C

dz

(

1− 1
z2

)

Zn(s, x, z
2)

z −√
y

. (2.38)

As an example, the generating functions counting the extremal primaries constructed from

3 fields are given by

Zext
3 (s, x, y) = s

13
2 x

5
2 y−

3
2

(y
3
2 + s2xy

3
2 + s

√
x(1 + y)(1 + y2))

(1− s2xy)(1− s3x
3
2 y

3
2 )(1− s2x

y
)(1− s3x

3
2

y
3
2
)

(2.39)

Gext
3 (s, x, y) =

s
13
2 x

5
2 (1 + s

√
xy

3
2 )

(1− s4x2)(1− s2xy)(1− s3x
3
2 y

3
2 )

= s
13
2 x

5
2 + s

15
2 x3y

3
2 + s

17
2 x

7
2 y + s

19
2 x4y

3
2 + s

19
2 x4y

5
2 + s

21
2 x

9
2

+s
21
2 x

9
2 y2 + s

21
2 x

9
2 y3 + · · · . (2.40)
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3 Construction

In this section we will explain how the counting of the previous section can be used to derive

concrete formulas for the construction of the primary operators in the free fermion CFT. For

the leading twist counting this is manifest. For the counting of extremal primaries, we will

argue that our formulas can naturally be phrased as counting the multiplicities of symmetric

group representations. The quantities being counted are then easily constructed using pro-

jectors onto these representations. In this analysis, a polynomial representation of SO(4, 2)

will play an important role. This representation is described in the next subsection, after

which we describe the construction of leading twist primaries and then extremal primaries.

3.1 Polynomial rep

We use the following representation of SO(4, 2)

Kµ =
∂

∂xµ
, (3.1)

D =

(

x · ∂

∂x
− 3

2

)

, (3.2)

Mµν = xµ
∂

∂xν
− xν

∂

∂xµ
+Mµν , (3.3)

Pµ =

(

x2
∂

∂xµ
− 2xµx · ∂

∂x
+ 3xµ − 2xνMµν

)

. (3.4)

In the formula above we should replace Mµν by the relevant matrix representing the

spin part of the conformal group. In Minkowski spacetime we have (the two possibilities

correspond to taking either a left handed (12 , 0) or a right handed (0, 12) spinor)

Mµν = σµν , or σ̄µν , (3.5)

where

(σµν)α
β =

1

4
(σµσ̄ν − σν σ̄µ)α

β , (3.6)

(σ̄µν)α̇
β̇
=

1

4
(σ̄µσν − σ̄νσµ)α̇

β̇
, (3.7)

and

σµ
αβ̇

= (1, ~σ) , σ̄µβ̇α = (1,−~σ) . (3.8)

In Euclidean space we have

Mµν = σµν ≡ 1

4
(σµσ̄ν − σν σ̄µ) , (3.9)

or

Mµν = σ̄µν ≡ 1

4
(σ̄µσν − σ̄νσµ) , (3.10)

where now

σµ = (−i~σ,1) , σ̄µ = (i~σ,1) . (3.11)
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The generators in Minkowski space close the algebra

[Mρσ,Mφθ] = ηθσMφρ + ηφρMθσ − ηθρMφσ − ηφσMθρ ,

[Pµ, Pν ] = 0 = [Kµ,Kν ] , [Pβ ,Kα] = 2ηαβD − 2Mαβ ,

[Mβρ,Kα] = ηαρKβ − ηαβKρ , [Mβρ, Pα] = ηαρPβ − ηαβPρ ,

[D,Pµ] = Pµ , [D,Kµ] = −Kµ , [D,Mµν ] = 0 . (3.12)

The Euclidean generators obey the same algebra with ηµν replaced with δµν .

States in this representation correspond to polynomials in the spacetime coordinates

xµ times a spinor ζα, which is independent of xµ and transforms in the (12 , 0) if we study

the theory of a left handed fermion, or in the (0, 12) if we study a right handed fermion. The

2×2 matrix Mµν acts on this spinor. Further, ζα is Grassman valued to account for the

fact that the fermions are anticommuting fields. Concretely, each operator corresponds to

a state (by the state operator correspondence) and each state corresponds to a polynomial

times the spinor (thanks to the representation we have just described)

xµ1 · · ·xµkζα . (3.13)

To deal with operators constructed from a product of n copies of the basic fermion field,

we consider a “multiparticle system”. When we move to the multiparticle system, we have

polynomials on the n particle coordinates xIµ, times the n particle spinor, obtained by

taking the tensor product of n copies of ζα

(ζ ⊗ ζ ⊗ · · · ⊗ ζ)α1α2···αn . (3.14)

To write the generator of the conformal group, for the multiparticle system, we need the

matrices

M(I)
µν = 1⊗ · · · ⊗ 1⊗Mµν ⊗ 1⊗ · · · ⊗ 1 (3.15)

where the matrix Mµν on the right hand side is the 2×2 matrix we introduced above and

it appears as the Ith factor. In total M(I)
µν has n factors. The n-particle representation of

SO(4, 2) includes

Kµ =
n
∑

I=1

∂

∂xIµ
, (3.16)

and

Pµ =

n
∑

I=1

(

xIρxIρ
∂

∂xIµ
− 2xIµx

I · ∂

∂xI
+ 3xIµ − 2xI νM(I)

µν

)

. (3.17)

The representations introduced above all have null states. This is to be expected, since

the dimension of the free fermion field saturates the unitarity bound. For the (12 , 0) field

in Minkowski spacetime for example, the null state is exhibited by verifying that

σ̄µPµζ = 0 (3.18)

for any choice of ζ.
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Let us now spell out the conditions that the polynomial PO corresponding to an op-

erator O must obey if the operator O is a primary operator. The general polynomial PO
will have spinor indices (it is constructed from a tensor product of copies of ζ) as well as

four vector indices inherited from the spacetime coordinates. There are three conditions

that must be imposed: primaries are annihilated by the special conformal generator Kµ

[Kµ,O] = 0 . (3.19)

This implies that the corresponding polynomial is translation invariant

n
∑

I=1

∂

∂xIµ
PO = 0 . (3.20)

Secondly, the equation of motion must be obeyed by each fermionic field. Finally, we

require that the polynomials are in the antisymmetric representation of Sn. Since the ζs

are Grassman variables, we must impose this condition if we are to get a non-zero primary

upon translating back to the language of the fermion field theory.

We do not know how to obtain the complete set of polynomial solutions to the above

constraints, corresponding to determing the complete set of primaries. We can however

find a class of solutions and these correspond precisely to the leading twist and extremal

primaries that we counted above. The fact that these polynomials are to be identified with

the leading twist and extremal primaries will be evident in the detailed match between the

counting of these solutions (performed in the following subsections) and the counting of the

leading twist and extremal primaries. We will now explain how to find a large class of poly-

nomials that solve the equation of motion constraint, leaving the discussion of the remaining

two constraints for the subsections which follows. In the remainder of this subsection, we

will work in Euclidean space. We use x4 = ix0 for the Euclidean time coordinate.

Our first observation is simply that any polynomial in the momenta P (Pµ), acting

on the spinor ζ, solves the equation of motion constraint. Indeed, since the different

components of momentum commute, we know that

σ̄µPµ P (Pα)ζ = P (Pα) σ̄
µPµζ = 0 , (3.21)

with the last equality following from (3.18). Introduce the complex variables

z = x2 + ix1, w = x3 + ix4, (3.22)

and momenta

Pz = P2 + iP1, Pw = P3 + iP4 . (3.23)

Our second observation is that if we specialize to a ζ with maximal J3
1 eigenvalue, then any

polynomial holomorphic in z and w can be translated into a polynomial in Pz and Pw. It

is easy to see from a few examples, that (Pz)
kζ ∝ zkζ. When performing this computation

use the identity

(P2 + iP1)ζ = Pzζ = zζ , (3.24)
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which holds for the spinor with maximal J3
1 eigenvalue. For our choices above, this spinor

is given by

ζ =

[

0

1

]

. (3.25)

Define the number ak by the relation

(Pz)
kζ = akz

kζ . (3.26)

Then

(Pz)
k+1ζ = Pzakz

kζ

= −2(k + 1)akz
k+1ζ

= ak+1z
k+1ζ . (3.27)

Thus, we have ak+1 = −2(k+ 1)ak. This recursion together with the intial value a1 = −2,

implies that

ak = (−2)kk! (3.28)

Thus we obtain the following translation between polynomials and momenta

(Pz)
kζ = (−1)k2kk! zkζ . (3.29)

When peforming this computation note that the first term in (3.4) does not contribute

because the complex combination we consider assembles the derivative ∂z̄ from this first

term. The last two terms give −2z for the spinor ζ we are using. Using a very similar

argument, we find

(Pz)
k(Pw)

lζ = (−2)k+l(k + l)! zk wl ζ (3.30)

We can now argue that any polynomial in z and w multiplying the spinor ζ with maximal

J3
1 eigenvalue, obeys the equation of motion constraint. It is enough to argue for a single

monomial, since any polynomial is a sum of monomials. We argue as follows

σ̄µPµ(z
kwlζ) =

1

(−2)k+l(k + l)!
σ̄µPµ(P

k
z P

l
wζ)

=
1

(−2)k+l(k + l)!
P k
z P

l
w(σ̄

µPµζ)

= 0 (3.31)

which demonstrates the claim.

3.2 Leading twist

Using a counting argument, we will confirm that the leading twist primaries are given by

polynomials in a single complex variable zI , I = 1, 2, . . . , n. Any such polynomial obeys

the equation of motion constraint. To solve the translation invariance condition, we work

with the hook variables Za, a = 1, 2, . . . , n− 1 defined by

Za =
1

√

a(a+ 1)
(z(1) + z(2) + · · ·+ z(a) − az(a+1)) . (3.32)
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These variables fill out the hook representation of Sn, which is labeled by a Young diagram

whose first row has n − 1 boxes and second row has 1 box. We denote the corresponding

vector space by VH , with the subscript H for “hook”. Our problem is now reduced to

constructing antisymmetric polynomials from the hook variables. By construction, it is

clear that the degree k polynomials belong to a subspace of V ⊗k
H of Sn. We can characterize

the antisymmetric subspace, that we want to extract, using representation theory. Towards

this end, consider the following decomposition in terms of Sn × Sk irreps

V ⊗k
H =

⊕

Λ1⊢n, Λ2⊢k
V

(Sn)
Λ1

⊗ V
(Sk)
Λ2

⊗ V
Com(Sn×Sk)
Λ1,Λ2

. (3.33)

In the above expression, Com(Sn × Sk) is the algebra of linear operators on V ⊗k
H that

commute with Sn ×Sk, V
(Sn)
Λ1

carries the irreducible representation Λ1 of Sn, V
(Sk)
Λ2

carries

the irreducible representation Λ2 of Sk and V
Com(Sn×Sk)
Λ1,Λ2

carries the representation (Λ1,Λ2)

of Com(Sn×Sk). This decomposition has been studied in detail in [21]. The Z variables are

commuting so that we need to consider the case that Λ2 = [k], the symmetric representation

given by a Young diagram with a single row of k boxes. The resulting multiplicity is given

by the coefficient of qk in

ZSH(q; Λ1) = (1− q) q
∑

i ci(ci−1)

2

∏

b

1

(1− qhb)

=
∑

k

qkZk
SH(Λ1) . (3.34)

The subscript SH denotes “symmetrized hook” and it refers to the fact that we have taken

the symmetrized (Λ2 = [k]) tensor product of k copies of the hook representation VH .

Here ci is the length of the i’th column in Λ1, b runs over boxes in the Young diagram

Λ1 and hb is the hook length of the box b. Evaluating this formula for the antisymmetric

representations, for which Λ1 is a single column, gives [21]

qn(n−1)

(1− q2) · · · (1− qn)
. (3.35)

After accounting for the dimension of n elementary fermion fields and reinstating x and

y, (3.35) is in complete agreement with (2.30) confirming that the number of polynomials

in the complex variables zI matches the number of leading twist primary operators.

Now that we have verified that the number of translation invariant, holomorphic poly-

nomials in the antisymmetric representation of Sn agrees with the counting of leading

twist primaries, we can move on to construction formulas for these primaries. Indeed, the

relevant polynomials are given by acting with a projector onto the antisymmetric represen-

tation, on the hook variables. This polynomial multiplies an anticommuting tensor product

of Grassman valued constant spinors. The projector from the tensor product of k copies

of the hook onto the antisymmetric representation of Sn is

P(1n) =
1

n!

∑

σ∈Sn

sgn(σ)Γk(σ) , (3.36)
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where sgn(σ) is the signature of permutation σ. When acting on a product of variables,

say Za1Za2 · · ·Zak we have

Γk(σ) = ΓH(σ)⊗ · · · ⊗ ΓH(σ) , (3.37)

where on the right hand side we take a tensor product (the usual Kronecker product) of k

copies of the matrices of the hook representation of Sn. Our construction formula is

1

n!

∑

σ∈Sn

sgn(σ)Γk(σ)a1a2···ak,b1b2···bkZ
b1Zb2 · · ·Zbk(ζ1 ⊗ ζ2 · · · ⊗ ζn)α1···αn . (3.38)

The above formula produces an expression of the form
∑

i n̂iPi(Z) where n̂i are unit vectors

inside the carrier space of V ⊗k
H and Pi(Z) are the polynomials that correspond to primary

operators. To translate polynomials into momenta, the formula [7]

zk ↔ (−1)kP k

2kk!
, (3.39)

that we derived above, is very useful. We will now give some examples of polynomials ob-

tained from formula (3.38). We will also translate these polynomials into primary operators.

If we consider n = 2 fields, there is a single hook variable given by Z = z1 − z2. To

find a polynomial that is antisymmetric under swapping 1 ↔ 2, we must raise Z to an odd

power. Thus, we find that primaries for the fermion fields correspond to the polynomials

(z1 − z2)
2s+1 =

2s+1
∑

k=0

(2s+ 1)!

k!(2s− k + 1)!
(−1)kz2s−k+1

1 zk2 . (3.40)

Translating the polynomial variables into momenta we find the following primary

|ψ〉 =
2s+1
∑

k=0

(−1)k

((2s− k + 1)!k!)2
P k|3

2
,
1

2
, 0〉 ⊗ P 2s−k+1|3

2
,
1

2
, 0〉 , (3.41)

where, because our fields are fermions, we have

|3
2
,
1

2
, 0〉1 ⊗ |3

2
,
1

2
, 0〉2 = −|3

2
,
1

2
, 0〉2 ⊗ |3

2
,
1

2
, 0〉1 . (3.42)

Thus, our expression for the fermionic primaries built from two fields are

2s+1
∑

k=0

(−1)k

((2s− k + 1)!k!)2
(∂1 + i∂2)

kψ(x)(∂1 + i∂2)
2s−k+1ψ(x) , (3.43)

which exactly matches the form of the higher spin currents [25, 26].

For n = 3 fields it is easy to see that

(z1 − z2)(z1 − z3)(z2 − z3) , (3.44)

is holomorphic, translation invariant and in the antisymmetric representation of S3. The

corresponding primary operator can be simplified to

ψ(x)(∂1 + i∂2)ψ(x)(∂1 + i∂2)
2ψ(x) . (3.45)

It is not difficult to see that this operator is indeed annihilated by Kµ, as discussed in

appendix A.
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3.3 Extremal primaries

In this section we will consider the construction of extremal primaries, which correspond to

polynomials in two holomorphic coordinates, z and w. The identification of these polynomi-

als with the extremal primaries is again established by showing agreement of the counting

of these polynomials with the counting of extremal primaries. We will characterize these

polynomials by two degrees, one for Z and one for W . Polynomials of degree k in Z and

of degree l in W belong to a subspace of V ⊗k
H ⊗ V ⊗l

H of Sn. The relevant decompositions

in terms of Sn × Sk irreducible representations are

V ⊗k
H =

⊕

Λ1⊢n,Λ2⊢k
V

(Sn)
Λ1

⊗ V
(Sk)
Λ2

⊗ V
Com(Sn×Sk)
Λ1,Λ2

V ⊗l
H =

⊕

Λ3⊢n,Λ4⊢l
V

(Sn)
Λ3

⊗ V
(Sl)
Λ4

⊗ V
Com(Sn×Sl)
Λ3,Λ4

. (3.46)

The tensor product V ⊗k
H ⊗ V ⊗l

H is a representation of

C(Sn)⊗ C(Sk)⊗ C(Sn)⊗ C(Sl) . (3.47)

The Z andW variables are commuting so that Λ2⊗Λ4 = [k]⊗[l] is the trivial representation

of Sk × Sl. The multiplicity with which a given Sn × Sk irrep (Λ1,Λ2) appears is given by

the dimension of the irreducible representation of the commutants Com(Sn × Sl) in V ⊗k
H .

Recall that since our polynomials multiply a product of anticommuting Grassman spinors,

we want to project to states in V ⊗k
H ⊗V ⊗l

H which are in the totally antisymmetric irreducible

representation of the diagonal C(Sn) in the algebra (3.47). This constrains Λ3 = ΛT
1 . Thus

we find that the number of Sk × Sl invariants and Sn antisymmetric representations is
∑

Λ1⊢n
Mult(ΛT

1 , [k];Sn × Sk) Mult(Λ1, [l];Sn × Sl) . (3.48)

Thus, for the number of primaries constructed using the variables zi, wi we get
∑

Λ1⊢n
Zk
SH(Λ1)Z

l
SH(ΛT

1 ) . (3.49)

The above integer gives the number of primaries in the free fermion CFT, of weight 3n
2 +k+l,

with spin (J3
1 , J

3
2 ) = (k+l+n

2 , k−l
2 ). The generating function Zext

n (s, x, y) which encodes all

k, l is given by

Zext
n (s, x, y) = s

3n
2 x

n
2

∑

Λ⊢n
ZSH(s

√
xy,Λ)ZSH

(

s

√

x

y
,ΛT

)

, (3.50)

where Λ is a partition of n and we can use the formula (3.34). It is straight forwards to

check, for example, that

Zext
n (s,x,y) = s

9
2x

3
2

(

ZSH(s
√
xy, )ZSH

(

s

√

x

y
,

)

+ZSH

(

s
√
xy,

)

ZSH

(

s

√

x

y
,

)

+ZSH

(

s
√
xy,

)

ZSH

(

s

√

x

y
,

))

(3.51)
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reproduces (2.39).

For n = 3 fields, it is easy to see that the polynomials

w3(z2 − z1) + w2(z1 − z3) + w1(z3 − z2) (3.52)

and

2w1w2z
2
1−w2

2z
2
1−2w1w3z

2
1+w2

3z
2
1−2w2

1z1z2+2w2
2z1z2+4w1w3z1z2−4w2w3z1z2

+w2
1z

2
2−2w1w2z

2
2+2w2w3z

2
2−w2

3z
2
2+2w2

1z1z3−4w1w2z1z3+4w2w3z1z3−2w2
3z1z3

+4w1w2z2z3−2w2
2z2z3−4w1w3z2z3+2w2

3z2z3−w2
1z

2
3+w2

2z
2
3+2w1w3z

2
3−2w2w3z

2
3 (3.53)

are holomorphic, translation invariant and in the antisymmetric representation of S3. To

translate these polynomials into primary operators, we use the dictionary

zkwl ↔ (−1)k+lP k
z P

l
w

2k+l(k + l)!
. (3.54)

After a little work we finally obtain the following two primary operators

ψ1 = ψ(0)Pzψ(0)Pwψ(0) (3.55)

and

ψ2 =
1

3
PwP

2
z ψ(0)Pwψ(0)ψ(0) +

1

3
Pzψ(0)P

2
wPzψ(0)ψ(0)

+
1

4
P 2
wψ(0)P

2
z ψ(0)ψ(0) + 2PwPzψ(0)Pzψ(0)Pwψ(0) . (3.56)

In the appendix we verify that these operators are annihilated by the special conformal

transformations.

4 Geometry

In this section we comment on the permutation orbifolds relevant for the combinatorics

of the fermion primaries. The leading twist primaries are holomorphic polynomials in n

complex variables. We mod out by translations and restrict to the antisymmetric repre-

sentation of Sn, so that the leading twist primaries correspond to holomorphic polynomial

functions on

(C)n/(C× Sn) . (4.1)

A very similar argument shows that extremal primaries correspond to holomorphic poly-

nomial functions on

(C)2n/(C2 × Sn) . (4.2)

We will now argue that the Hilbert series of the fermionic primaries are counted by palin-

dromic Hilbert series, suggesting that they are Calabi-Yau. We leave a more detailed study

of these issues for the future. A palindromic Hilbert series obeys

Zext
n (q−1

1 , q−1
2 ) = (q1q2)

n−1Zext
n (q1, q2) . (4.3)
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Our Hilbert series Zext
n (q1, q2) enjoy this transformation property. To demonstrate this,

our starting point is the formula

Zext
n (q1, q2) = s

3n
2 x

n
2

∑

Λ⊢n
ZSH(q1,Λ)ZSH(q2,Λ

T ) , (4.4)

where we have introduced the variables q1 = s
√
xy, q2 = s

√

x/y. This has the property

Zext
n (q1, q2) = Zext

n (q2, q1). This follows because exchange of q1, q2 amounts to the inversion

of y, and by using the identity [7]

ZSH(q−1,Λ) = (−q)n−1ZSH(q,ΛT ) . (4.5)

Using this result we find

Zext
n (q−1

1 , q−1
2 ) = sn(q1q2)

n−1
∑

Λ⊢n
ZSH(q1,Λ

T )ZSH(q2,Λ)

= sn(q1q2)
n−1

∑

Λ⊢n
ZSH(q1,Λ)ZSH(q2,Λ

T )

= (q1q2)
n−1Zz,w

n (q1, q2) . (4.6)

The results of section (4.3) of [7] now imply that the Hilbert series Gext
n (s, x, y) also exhibit

the palindromy property.

5 Summary and outlook

Previous studies [7] have explained how to map the algebraic problem of constructing

primary fields in the quantum field theory of a free scalar field φ in four dimensions to one

of finding polynomial functions on (R4)n that are harmonic, translation invariant and which

are in the trivial representation of Sn. In this article, we have extended this construction to

describe primary fields in the free quantum field theory of a single Weyl fermion. Concrete

results achieved with this new point of view include a counting formula for the complete

set primary fields, explicit counting formulas (Hilbert series) for counting special classes of

primaries, as well as detailed construction formulas for these primary operators. We have

also established the palindromy of the Hilbert series

One weak point in our analysis, that warrants further study, is the treatment of the

constraint coming from the equation of motion. We have simply demonstrated that poly-

nomials holomorphic in the complex variable z and w, times the spinor ζ with maximal J3
1

eigenvalue, solve the equation of motion constraint. Our results have been further verified

by checking that the numbers of polynomials constructed from a singe complex variable

match the numbers of leading twist primaries, that the number of polynomials constructed

from two complex variables match the number of extremal primaries and further that when

the polynomials are translated back into the operator language, that we do indeed obtain

operators annihilated by Kµ. It would however be nice to perform a detailed analysis of

the equation of motion constraint, which has to be carried out before the complete class of

primaries can be constructed.
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There is an immediate generalization of our study which should be tackled. CPT

invariance implies we need both right handed and left handed fermions. As a concrete

example, the Hilbert space for a single Weyl fermion is

H =
∞
⊕

n=0

Asymn(W+ ⊕W−) (5.1)

Can the methods developed in this article be used to study the above Hilbert space? In

this situation M = sDxJ
3
1 yJ

3
2 = M+ ⊕M−, with M+ associated to W+ and M− associated

to W−. The basic identity we are using becomes

det(1 + t+M+ ⊕ t−M−) =
∞
∑

n+,n
−
=0

t
n+
+ t

n
−

− χn+,n
−

(M) (5.2)

=

∞
∏

q+,q
−
=0

q+1
2
∏

a=− q+1
2

q

2
∏

b=− q

2

(1 + t+s
3
2
+qxayb)(1 + t−s

3
2
+qxbya)

where χn+,n
−

(M) is the antisymmetrized product of n+ copies of M+ and n− copies of

M−. By expressing χn+,n
−

(M) as a sum of characters of irreducible representations of the

conformal group, we learn what primaries can be constructed from a product of n+ left

handed and n− right handed Weyl fermions. To achieve this decomposition, the methods

of section 2 can be employed. To obtain simple and explicit results, one can again consider

restricting the resulting counting formulas to special classes of primaries. For a given pair

of integers (n+, n−), we can define both the leading twist (we maximize both J3
1 and J3

2

at a given dimension) and the extremal (we maximize J3
1 or J3

2 at a given dimension)

classes of primaries. For these classes, it would be very interesting to see if a symmetric

group interpretation of the counting can be developed, along the lines of sections 3.2 and

3.3. We are currently exploring this promising possibility and hope to return to it in the

near future. A symmetric group interpretation of the counting would immediately suggest

detailed construction formulas for the associated primaries.

Given that the counting for a Weyl fermion and a scalar field have been carried out, it

is natural to ask if one can assemble this counting to give the counting of superconformal

primaries. The simplest starting point would be a free boson plus fermion theory, where

the counting of this paper for the fermion and of [7] for the boson, would be directly

applicable. Other generalizations of the current work would include studies of CFTs which

include gauge fields. Note that early constructions of primary fields in the SL(2) sector

(leading twist primaries) were performed in the context of deep inelastic scattering in QCD

(see for example [27]), suggesting that the free limit of QCD maybe a good starting point.

Another natural question is the explicit enumeration and construction of superconformal

primary fields in N = 4 SYM, which will give a better understanding of the dual AdS5×S5

background. Finally, our results maybe useful when considering correlators involving the

extremal primary fields at the fixed point of the Gross-Neveu model in 2 + ǫ dimensions.

In particular, one could attempt to determinae the anomalous dimensions of these fields,

using the techniques of [28–32].
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A Primaries examples

In this appendix we will collect a few details on the translation from polynomials to pri-

mary operators and then test, for a few examples, that the primaries obtained are indeed

annihilated by Kµ.

A.1 Dictionary

We first show that the appropriate way to translate between polynomials and operators is

given by (3.54). We again make use of the (Euclidean) representation

Pµ = x2∂µ − 2xµx · ∂ + 3xµ − 2xνMµν . (A.1)

We consider a polynomial in Pz = P2 + iP1 = ǫz · P and Pw = P3 − iP4 = ǫw · P acting on

the constant spinor ζ. The ǫ’s obey the following identities

ǫz · ǫz = 0 = ǫw · ǫw = ǫz · ǫw
ǫz · x = x2 + ix1 = z , ǫw · x = x3 + ix4 = w . (A.2)

The analysis of this appendix is for the leading twist and extremal primaries. In this case

we have fixed the left spin to a maximal value, corresponding to choosing the spinor ζ with

spin up. Useful formulas to bear in mind are

(ǫz)µ(3xµ − 2xνMµν)ζ = 2zζ ,

(ǫw)µ(3xµ − 2xνMµν)ζ = 2wζ . (A.3)

Finally, we will also make use of the fact that

P k
wP

l
zψ(0) ↔ (−2)k+l(k + l)!wkzlζ . (A.4)

A.2 n = 2 example

Consider the operators given by (3.41). Introduce Kz = K2 − iK1. It is straightforward to

verify that [Kz̄, Pz] = 0 = [Pz̄,Kz] and

[D,Pz] = Pz ,

[D,Kz] = −Kz ,

[Kz, Pz] = −4D + 4iM21 (A.5)

[M21,Kz] = −iKz

[M21, Pz] = iPz . (A.6)
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We will now argue that Kz̄ annihilates (3.41). Using the above algebra we easily find

KzP
m
z |3

2
,
1

2
, 0〉 = −4Pm−1

z (m2 −m(1−D + iM21))|
3

2
,
1

2
, 0〉 (A.7)

Consequently the action of Kz on the state (3.41) yields

Kz|ψ〉 = −4
2s+1
∑

k=1

(−1)kk2

((2s− k + 1)!k!)2
P k−1|3

2
,
1

2
, 0〉 ⊗ P 2s−k+1|3

2
,
1

2
, 0〉

−4
2s
∑

k=0

(−1)k(2s− k + 1)2

((2s− k + 1)!k!)2
P k|3

2
,
1

2
, 0〉 ⊗ P 2s−k|3

2
,
1

2
, 0〉

= 0 (A.8)

Next, it is straight forward to verify that

K3P
m
z |0〉 = imPm−1

z (M31 − iM32)|0〉
K4P

m
z |0〉 = imPm−1

z (M41 − iM42)|0〉. (A.9)

The operators M31 − iM32 and M41 − iM42 are raising operators for the right spin. Since

the state |32 , 12 , 0〉 has vanishing right spin, we have

iM21 |3
2
,
1

2
, 0〉 = iM34 |3

2
,
1

2
, 0〉 = 1

2
|3
2
,
1

2
, 0〉

(M31 − iM32) |
3

2
,
1

2
, 0〉 = 0 = (M41 − iM42) |

3

2
,
1

2
, 0〉. (A.10)

It now follows that K3 and K4 annihilate (3.41), completing the demonstration that (3.41)

is indeed a primary operator.

A.3 n = 3 examples

We will show that the operators (3.55) and (3.56) are annihilated by the special conformal

generators. Define Kw = K3 + iK4. It is straightforwards to evaluate

[Kw, Pz] = 2 (M32 + iM31 − (M41 − iM42)) ≡ 4iMwz

[Mwz, Pw] = iPz

[Mwz, Pz] = 0 (A.11)

and

[Kz, Pw] = 2(M41 + iM42 − (M32 − iM31)) ≡ 4iMzw

[Mzw, Pz] = iPw

[Mzw, Pw] = 0 (A.12)

To interpret these commutators, note that Pz has spin (12 ,
1
2) and Pw has spin (12 ,−1

2).

Thus, Mwz and Mzw are raising/lowering operators of the right spin. Since our fermion

field has vanishing right spin it is clear that

Mzw|
3

2
,
1

2
, 0〉 = Mwz|

3

2
,
1

2
, 0〉 = 0 (A.13)
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which implies the identities

KzP
n
wP

m
z |3

2
,
1

2
, 0〉 = −4(nm+m2)Pn

wP
m−1
z |3

2
,
1

2
, 0〉

KwP
n
wP

m
z |3

2
,
1

2
, 0〉 = −4(nm+ n2)Pn−1

w Pm
z |3

2
,
1

2
, 0〉 (A.14)

It now follows that

Kzψ1 = −4ψ(0)ψ(0)Pwψ(0) = 0

Kwψ1 = −4ψ(0)Pzψ(0)ψ(0) = 0 (A.15)

where we used the Grassman statistics of the field. For the action on ψ2 we find

−1

4
Kzψ2 =

1

3
(6)PwPzψ(0)Pwψ(0)ψ(0) +

1

3
(3)Pzψ(0)P

2
wψ(0)ψ(0)

+
1

4
(4)P 2

wψ(0)Pzψ(0)ψ(0) + 2PwPzψ(0)ψ(0)Pwψ(0) = 0

−1

4
Kwψ2 =

1

3
(3)P 2

z ψ(0)Pwψ(0)ψ(0) +
1

3
(6)Pzψ(0)PwPzψ(0)ψ(0)

+
1

4
(4)Pwψ(0)P

2
z ψ(0)ψ(0) + 2PwPzψ(0)Pzψ(0)ψ(0) = 0 (A.16)

again after using the Grassman nature of the field. This completes the demonstration that

ψ1 and ψ2 are primary operators.
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