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1 Introduction

Since its debut [1, 2], Nekrasov’s instanton partition function, based on the works [3–6], has

played a prominent role in subsequent development of supersymmetric gauge theories with 8

supercharges in 4, 5 and 6 dimensions, as it concisely captures the non-perturbative physics

of the gauge theories. As more studies are conducted, a handful of different representations

are discovered in the contexts of supersymmetric gauge theories, topological vertex [7–9],

two dimensional Liouville/Toda conformal field theories [10, 11], and more. In this paper,

we focus on the 5d Ω-background and propose new expansions in terms of codimension 2

and 4 partition functions, but most of our analysis can be extended to 4d and 6d as well.

The deep relations between 5d and 3d partition functions have been studied in a num-

ber of works, mainly in the context of codimension 2 BPS defects and the Higgsing proce-

dure [12–17] and large N geometric transition or open/closed duality in refined topological
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strings [18–21]. At the practical level, the common denominator of the various approaches

is that, upon appropriate limit of the parameters, instanton partition functions reduce to

vortex partition functions [22–30]. In this paper, we adopt a somewhat different perspec-

tive compared to the existing literature and observe a deeper connection between partition

functions on C2
q,t−1 × S1 and on Cq × S1 and/or Ct−1 × S1, even without taking any limit.

1.1 Summary of the results and motivations

To give a brief summary of our results, we start by recalling one of the most frequently

used representation of the instanton partition function of 5d N = 1 U(N) pure Yang-Mills

theory on C2
q,t−1 × S1, written as a sum over arbitrary Young diagrams ~Y = {YA|A =

1, . . . , N} labelling the fixed points of the instanton moduli space under the torus action

U(1)ε1 ×U(1)ε2 ×U(1)N~X
. We have

Zinst(~x,Qg; q, t) =
∑
~Y

Z
~Y
inst(~x,Qg; q, t) , (1.1)

where1

Z
~Y
inst(~x,Qg; q, t) = Q|

~Y |
g

N∏
A,B=1

1

NYAYB (xA/xB; q, t)
,

NYAYB (x; q, t) =
∏

(i,j)∈YA

(1− xqYAi−jtY ∨Bj−i+1)
∏

(i,j)∈YB

(1− xq−YBi+j−1t−Y
∨
Aj+i) , (1.2)

and we have parametrized the Coulomb branch parameters with xA = e2πiXA , the Ω-

background deformation parameters with q = e2πiε1 , t = e−2πiε2 and the instanton counting

parameter with Qg. As usual, YAi denotes the length of the ith row of YA, |YA| denotes the

number of boxes in YA with |~Y | ≡∑A |YA|, while Y ∨A denotes the transpose diagram.

We now observe that the instanton sum can be reorganized in several ways. An obvious

organization, also frequently used, is as a sum over the instanton number k = |~Y |, namely

Zinst(~x,Qg; q, t) =
∑
k≥0

Zkinst(~x,Qg; q, t) , Zkinst(~x,Qg; q, t) =
∑
~Y

|~Y |=k

Z
~Y
inst(~x,Qg; q, t) . (1.3)

This is indeed the natural expansion arising from equivariant localization, and the sum-

mands can be nicely represented by a matrix model/contour integral computing the equiv-

ariant Â-genus on the instanton moduli space [3–6]. A less obvious expansion, which is our

starting point, organizes the instanton partition function as a sum over the number of rows

of the Young diagrams. If we denote by ~r = {rA|A = 1, . . . , N} the sequence of non-negative

integers representing the number of non-empty rows in each diagram in ~Y , we can write

Zinst(~x,Qg; q, t) =
∑
~r∈ZN≥0

Z~rinst(~x,Qg, t; q) , (1.4)

1We refer to [31] for more details and useful properties of Nekrasov’s functions.
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Y R
A

rA

cA

YA

Y R
A

Y L
A

Figure 1. The first figure shows a particular diagram YA ∈ ~Y with exactly rA rows, which can be

decomposed into the first column and a leftover Y R
A with at most rA rows. The second figure shows

a diagram YA containing a maximal rectangle (in white) of size rA × cA (such that rA − cA = −2)

in the upper-left corner, and two sub-diagrams Y L
A and Y R

A having at most cA columns and rA rows

respectively. The transposed diagram (Y L
A )∨ has at most cA rows. When ~n = ~0, we return to the

simpler case with maximal squares of shapes rA = cA = dA.

where Z~rinst(~x,Qg; q, t) captures all the contributions from the Young diagrams ~Y with

exactly ~r rows (figure 1). As the notation suggests, this expansion breaks the q ↔ t−1

symmetry explicitly. This symmetry can be restored by considering a yet another different

expansion. In fact, for any Young diagram YA ∈ ~Y one can identify a maximal square in its

upper-left corner of size dA×dA (figure 1). If we denote by Y[~d, ~d] the set of Young diagrams
~Y having maximal squares of size {dA×dA|A = 1, . . . , N}, then clearly Y[~d, ~d]∩Y[~d′, ~d′] = ∅
whenever ~d 6= ~d′. Therefore, the sequence ~d characterizing the sizes of the maximal squares

serves as a good organizing parameter, and we can organize the instanton sum as

Zinst(~x,Qg; q, t) =
∑
~d∈ZN≥0

Z
~d,~d
inst(~x,Qg; q, t) . (1.5)

We can readily generalize the above expansion by considering maximal rectangles of shape

rA × cA instead. We first fix a difference vector ~n ∈ ZN . We denote by Y[~r,~c] the

set of Young diagrams having their maximal rectangles of shape {rA × cA|A = 1 . . . N}
such that ~r − ~c = ~n (figure 1), which are frequently called hook diagrams. Clearly,

Y[~r1,~c1] ∩ Y[~r2,~c2] = ∅ if {~r1,~c2} 6= {~r2,~c2} and ~r1 − ~c1 = ~r2 − ~c2 = ~n. On the other

hand, the union ∪~r,~c|~r−~c=~nY[~r,~c] exhausts all Young diagrams ~Y . Therefore, we can also

organize the instanton partition function for any fixed ~n as

Zinst(~x,Qg; q, t) =
∑

(~r,~c)∈ZN≥0×Z
N
≥0

~r−~c=~n

Z
(~r,~c)
inst (~x,Qg; q, t) . (1.6)

The main goal of this note is to sharpen the above observations and to study the phys-

ical and mathematical meaning of the different expansions. Our results include concrete

expressions for the various summands, their gauge theory interpretation as partition func-

tions of codimension 2 and 4 interacting theories on subspaces of C2
q,t−1 × S1, and their

BPS/CFT interpretation as the most general Wq,t correlators. As we have mentioned, for
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the sake of clarity we will be mostly interested in pure Yang-Mills theory, but our analysis

can be generalized to include matter and quiver theories.

1.2 Outline of the paper

In section 2.1, we study the concrete expression of Nekrasov’s summands 1/
∏
A,B NYAYB

and show that they factorize w.r.t. the decomposition of ~Y into left (~Y L) and right (~Y R)

diagrams, see figure 1 for an illustration.

In section 2.3, we show that Z~r,~cinst(~x,Qg; q, t) admits a simple matrix model description,

written as a contour integral (up to some explicit “weight” factor)

Z~r,~cinst(~x,Qg; q, t) ∼
∮

drzLdczRZ
Cq×S1
U(r),N (zL)ZS1

chiral(z
L, zR)Z

Ct−1×S1
U(c),N (zR) , (1.7)

where r =
∑

A rA, c =
∑

A cA. This can be seen as generalized 3d holomorphic block

integral [32], where the integrand includes the classical and 1-loop contributions from a

pair of 3d N = 2 U(r) and U(c) gauge theories each coupled to one adjoint and 2N

fundamental chiral multiplets on Cq × S1 and Ct−1 × S1 respectively, together with the

1-loop determinant of additional 1d N = 2 chiral multiplets on S1 which transforms in

the bifundamental representation of U(r) × U(c). The mass and FI parameters are also

identified explicitly with the Coulomb branch and instanton parameters respectively.

In section 2.3, we argue that the above matrix model admits elegant interpretation as

the partition function of a gauge theory living on the space (Cq×S1)∪(Ct−1×S1) seen as a

subspace of C2
q,t−1×S1. See figure 2. Unlike the component spaces Cq×S1 and Ct−1×S1, this

space is not a smooth manifold. A gauge theory on such a space is given by three interacting

ingredients: a 3d N = 2 U(r) gauge theory on Cq × S1, another similar U(c) gauge theory

on Ct−1 × S1, and an additional 1d N = 2 theory living along the intersection S1. These

three ingredients interact along the intersection S1 by coupling supersymmetrically via 1d

N = 2 superpotential and/or gauging, preserving the two supercharges of the 1d N = 2

supersymmetry [15, 33]. See also [34, 35] for higher dimensional systems.

In section 3, we show that our new expansions are very natural from the viewpoint of

the BPS/CFT correspondence [36–38]. In fact, we can match our results with a generating

series of q-Virasoro correlators involving an arbitrary number of screening charges of two

kinds. This correspondence generalize and interpolates between the constructions of [39]

and [27, 40]. In the former case, the C2
q,t−1 × S1 instanton partition function is reproduced

by considering an infinite number of screening charges of only one kind. In the latter

case, the Cq × S1 vortex partition function is reproduced by considering a finite number

of screening charges of only one kind, giving rise to the Dotsenko-Fateev matrix model

representation, and the agreement between the approaches requires either fine tuning of

the 5d Coulomb branch parameters or sending to infinity the rank of the 3d gauge group.

The paper is supplemented with several appendices where we collect useful definitions

and technical computations.
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C2
q,t−1

Cq
Ct−1

O

S1

S1

intersection S1

S1

Figure 2. A cartoon of (Cq × S1)∪ (Ct−1 × S1) as a subspace of C2
q,t−1 × S1. We note that the two

complex planes Cq, Ct−1 ⊂ C2
q,t−1 actually intersect at the origin O. The bulk space C2

q,t−1 × S1

can be represented by the toric diagram of the T3 action shown on the right. The T3 action reduces

to T2 on the two edges corresponding to the subspaces Cq × S1 and Ct−1 × S1, while it reduces to

the rotation of the S1 at the vertex corresponding to the intersection S1.

2 The three dimensional expansions

2.1 New expansions

As we recalled in the introduction, the instanton partition function of 5d N = 1 U(N) pure

Yang-Mills theory on C2
q,t−1 × S1 can be written as a sum over arbitrary Young diagrams

Zinst(~x,Qg; q, t) =
∑
~Y

Q|
~Y |
g

N∏
A,B=1

1

NYAYB (xAB; q, t)
, (2.1)

where we have used the shorthand notation xAB ≡ xA/xB. The Nekrasov function NYAYB

has a well-known representation in terms of q-Pochhammer symbols

NYAYB (x; q, t) =
∞∏

i,j=1

(xtj−i; q)YAi−YBj
(t xtj−i; q)YAi−YBj

. (2.2)

If in ~Y each Young diagram YA has at most rA rows, the above product of NYAYB can be

written as
N∏

A,B=1

1

NYAYB (xAB; q, t)
=

∆t(xY ; q)

∆t(x∅; q)

N∏
B=1

Vt(xY , xBt
−rB ; q)

Vt(x∅, xBt−rB ; q)
, (2.3)

where the functions ∆t(z; q) and Vt(z, u; q, t) are defined in (A.6), (A.7), with the collection

of variables xY , x∅ given by

xY ≡ {xAqYAit1−i |A = 1, . . . , N, i = 1, . . . , rA} , (2.4)

x∅ ≡ {xAt1−i |A = 1, . . . , N, i = 1, . . . , rA} . (2.5)

The upshot of this rewriting is that the resulting expression has the interpretation of the

1-loop determinant of a 3d N = 2 U(r =
∑

A rA) Yang-Mills theory coupled to one ad-

joint chiral multiplet with Neumann boundary conditions, N fundamental chiral multiplets

– 5 –
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with Neumannt boundary conditions and N fundamental chiral multiplets with Dirichlet

boundary conditions, as one would derive from localization on Cq × S1 [41]. Notice that

the adjoint content is that of a 3d N = 2∗ theory. This motivates the definition of the

partial sum over Young diagrams ~Y with all YA having at most rA rows, namely

Z≤~rinst(~x,Qg, t; q) =
∑
~Y

`(~Y )≤~r

Q|
~Y |
g

∆t(xY ; q)

∆t(~x∅; q)

N∏
B=1

Vt(xY , xBt
−rB ; q)

Vt(~x∅, xBt−rB ; q)
, (2.6)

representing a vortex partition function for the theory we have just described, with the

identification of the instanton counting parameter with the FI parameter. Then, the com-

plete instanton partition function can be recovered by sending the rank of the 3d gauge

group to infinity as

Zinst(~x,Qg; q, t) = lim
rA→+∞

Z≤~rinst(~x,Qg, t; q) . (2.7)

Alternatively, we can define a closely related partial sum over only Young diagrams ~Y with

each YA having exactly rA rows

Z~rinst(~x,Qg, t; q) =
∑
~Y

`(~Y )=~r

Q|
~Y |
g

∆t(xY ; q)

∆t(x∅; q)

N∏
B=1

Vt(xY , xBt
−rB ; q)

Vt(x∅, xBt−rB ; q)
. (2.8)

Then, the full instanton partition function can be recovered by summing over all ~r

Zinst(~x,Qg; q, t) =
∑
~r

Z~rinst(~x,Qg, t; q) . (2.9)

The above two approaches of reorganizing the instanton sum, though simple to implement,

breaks the q ↔ t−1 symmetry explicitly. In other words, the rows and columns are clearly

not on the equal footing. From the geometry point of view, the original theory lives on

Cq×Ct−1×S1, while the above rewritings are related to vortex counting in three dimensional

gauge theories living only on the submanifold Cq × S1.

We thus task ourselves with finding some q ↔ t−1 invariant expansions of the instanton

partition function, in terms of 3d partition functions on both submanifolds Cq × S1 and

Ct−1 × S1. It is crucial to point out that the two spaces actually intersect along a circle

over the origin of both Cq and Ct−1 . To implement this decomposition, we need to treat

the rows and columns of the Young diagrams ~Y on equal footing. This suggests us to study

the hook diagrams of type (~r,~c) in more detail.

We begin by fixing a collection of integers ~n = {nA|A = 1, . . . , N}. For any diagram

YA ∈ ~Y , we can always identify a unique maximal rectangle of shape rA × cA such that

rA − cA = nA, which simultaneously satisfies2

YAi ≥ cA, i = 1, . . . , rA, and YAi ≤ cA, i = rA + 1, . . . . (2.10)

2Note that these additional conditions are not always met by the maximal rectangle if the condition on

rA, cA is modified to arA − bcA = nA for other integers a, b ∈ Z.
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nA = −2

rA = 0, cA = 2

Y L
A = (4, 2)

Y L
A = ∅

rA = 1, cA = 3

Y L
A = (4, 3, 1)

Y R
A = (1)

rA

cA

rA = 2, cA = 4

Y L
A = (4, 3)

Y L
A = (4, 2)

Figure 3. Examples of hook diagrams of various types with their maximal rectangles in white of

shape rA×cA, such that nA ≡ rA−cA = −2. In the first example, the maximal rectangle is invisible

due to the vanishing number of rows. The subdiagrams Y L
A and Y R

A are illustrated by colors.

Once the maximal rectangle is identified, we define the subdiagrams ~Y L and ~Y R of Y by

Y R
Ai ≡ YAi − cA , i = 1, . . . , rA , Y L

Ai ≡ YA(rA+i), i = 1, . . . ,+∞ . (2.11)

Let us call the diagrams ~Y with the maximal rectangles (~r,~c) hook diagrams of type

(~r,~c), the set of which denoted as Y[~r,~c]. It is also convenient to rename Y L → Y L∨

such that the “new” Y L
A has at most cA rows instead of columns. See figure 3 for simple

examples, where the transposition Y L
Ai has been performed. Clearly, Y[~r1,~c1]∩Y[~r2,~c2] = ∅

if {~r1,~c2} 6= {~r2,~c2} and ~r1 −~c1 = ~r2 −~c2 = ~n, so that the union ∪~r,~c|~r−~c=~nY[~r,~c] exhausts

all Young diagrams ~Y . We can now expand the instanton partition function as

Zinst(~x,Qg; q, t) =
∑
(~r,~c)
~r−~c=~n

Z~r,~cinst(~x,Qg; q, t) ,

Z~r,~cinst(~x,Qg; q, t) ≡
∑

~Y ∈Y[~r,~c]

Q|
~Y |
g

∏
A,B

1

NYAYB (xAB; q, t)
, (2.12)

and the only remaining problem is whether the product of Nekrasov functions behaves

well under such new expansion. Without further ado, we claim that (see appendix B for a

derivation)3

1∏
A,B NYAYB (xAB; q, t)

=
1

N�(~r,~c)(~x)
× Vint(zY L , zY R ; p)

Vint(z∅L , z∅R ; p)
×

×
[

∆t(zY R ; q)

∆t(z∅R ; q)

N∏
B=1

Vt(zY R , ηRxBt
−rBqcB ; q)

Vt(z∅R , η
RxBt−rBqcB ; q)

][
(R, ~r,~c, q, t)↔ (L,~c, ~r, t−1, q−1)

]
, (2.13)

where we have defined:

• the collections of variables

zY R ≡ {zY R
Ai

= ηRxAq
cAqY

R
Ait1−i|A = 1, . . . , N, i = 1, . . . , rA} , (2.14)

zY L ≡ {zY L
Ai

= ηLxAt
−rAt−Y

L
Aiqi−1|A = 1, . . . , N, i = 1, . . . , cA} , (2.15)

3See also [15] for similar factorization properties.
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and the parameters ηR, ηL, p such that

ηL/ηR ≡ (qt)1/2 , p ≡ qt−1 ; (2.16)

• the intersection factor Vint and the rectangle factor N�

Vint(zY L , zY R ; p) ≡
∏
A,B

rA∏
i=1

cB∏
j=1

1

(1− p−1/2zY L
Bj
/zY R

Ai
)(1− p−1/2zY R

Ai
/zY L

Bj
)
, (2.17)

N�(~r,~c)(~x) ≡
∏
A,B

rA∏
i=1

(xABt
1−i; q)cA−cB

(xABt1+rB−i; q)cA−cB

(xABt
rB+1−i; q)cA

(x−1
ABt

−rB+i; q)−cA
. (2.18)

The prefactor N� captures the contribution from the maximal rectangle and, although it

does not appear so, it is actually symmetric under (~r, q, t) ↔ (~c, t−1, q−1). In the next

subsection, we give a matrix model description of this new expression which will help us

to highlight its physical interpretation.

2.2 The matrix model description

In the previous subsection, we have seen that the 5d N = 1 U(N) pure Yang-Mills theory

can be expanded in a novel ways depending on a collection of integers ~n4

Zinst =
∑
(~r,~c)
~r−~c=~n

Z~r,~cinst . (2.19)

More importantly, we have shown that the product of NYAYB factorizes neatly into ratios

of functions ∆t, Vt (and their q ↔ t−1 exchanged) which are very familiar in the context

of vortex counting, along with some simple prefactor and intersection factor.

Two observations are in order. First of all, for fixed ~r,~c, the above inner sum
∑

~Y ∈Y[~r,~c]

factorizes into a double sum, each of which is a sum over Young diagrams with at most ~r

or ~c rows, namely ∑
~Y ∈Y[~r,~c]

=
∑
~Y R

`(~Y R)≤~r

∑
~Y L

`(~Y L)≤~c

. (2.20)

Second, the factorized combinations of ∆t, Vt (and their q ↔ t−1 exchanged) appearing

in (2.13), together with the sums over Young diagrams with at most ~r (~c) rows, can be

recast into an elegant matrix model.

Combining these two observations, we conclude that the contributions to the instanton

partition function from all hook Young diagrams of type (~r,~c) are captured by the matrix

model

Z~r,~cinst ≡
Q~r·~cg

B(~r,~c)N�(~r,~c)

∮
~r,~c

drzL

(2πi)r
dczR

(2πi)c
Υq−1(zL; t−1)Vint(z

L, zR; p)Υt(z
R; q) , (2.21)

where the ranks are defined by r ≡∑N
A=1 rA, c ≡∑N

A=1 cA, ~r · ~c ≡∑N
A=1 rAcA, and:

4From now on, when it is not necessary, the arguments of many functions will be omitted to avoid

cluttering.
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• we have introduced two collections of variables

zR ≡ {zR
a |a = 1, . . . , r} , zL ≡ {zL

a |a = 1, . . . , c} ; (2.22)

• the Υ functions are defined as

Υt(z
R; q) ≡

(
r∏

a=1

(zR
a )ζ

R−1

)
∆t(z

R; q)

N∏
B=1

Vt(z
R, ηRxBt

−rBqcB ; q) , (2.23)

where ζR and ζL are such that qζ
R

= t−ζ
L

= Qg, and the function Υq−1(zL, ; t−1) is

defined similarly;

• the intersection factor Vint is defined as

Vint(z
L, zR; p) ≡

r∏
a=1

c∏
b=1

1

(1− p−1/2zR
a /z

L
b )(1− p−1/2zL

b /z
R
a )

; (2.24)

• the integration contour is specified by selecting the poles given in (2.15) and (2.14).5 In

particular, we recall that for k ∈ Z≥0, we have

Res
z=xqk

1

z(x/z; q)∞
=

1

(q−k; q)k(q; q)∞
= (1; q)−k Res

z=1

1

z(z−1; q)∞
. (2.25)

Finally, the coefficient B(~r,~c) is given by the residue

B(~r,~c)(~x, ζ
L, ζR) = Res

zR→z∅R
zL→z∅L

Υq−1(zL, ζL; t−1)Vint(z
L, zR; p)Υt(z

R, ζR; q) , (2.26)

where z∅L,R is given by setting Y L,R to empty diagrams in zY L,R . One can work out 1/BN�

explicitly, which reduces to

1

B(~r,~c)N�(~r,~c)
=

[
N∏

A,B=1

rA−rB−1∏
i=0

(t x−1
ABt

+i; q)∞
(xABt−i; q)∞

][
q ↔ t−1, ~r ↔ ~c

]
×

×
N∏

A,B=1

∏rA−rB
i=1

∏cA−cB
j=1 (1− xABt1−iqj−1)(1− x−1

ABt
iq−j)∏rB−rA−1

i=0

∏cA−cB−1
j=0 (1− xABti+1qj)(1− x−1

ABt
−iq−j−1)

×

×
[

N∏
A=1

rA∏
i=1

(ηRxAt
1−iqcA)−ζ

R

][
N∏
A=1

cA∏
j=1

(ηLxAq
j−1t−rA)−ζ

L

]
×

×
[

1

(t; q)∞
Res
z=1

1

z(z−1; q)∞

]r[
1

(q−1; t−1)∞
Res
z=1

1

z(z−1; t−1)∞

]c
. (2.27)

In the next subsection, we will interpret our matrix model from the gauge perspective.

5These arise when integrating all the variables one after the other starting from the poles carried by the

V functions.
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2.3 Identification with (Cq × S1) ∪ (Ct−1 × S1) partition functions

Now we are ready to interpret the matrix model (2.21) in terms of 3d/1d gauge theory

partition functions on the space (Cq × S1) ∪ (Ct−1 × S1) and to identify the physical pa-

rameters in these gauge theories. The union is specified as the setwise fixed points of the

T3 action on C2×S1. We stress that it is a not a smooth manifold, as the two components

Cq × S1 and Ct−1 × S1, taken as two smooth submanifolds of C2
q,t−1 × S1, actually intersect

along a circle S1 = O × S1, where O ∈ Cq ∩ Ct−1 denotes the origin of Cq,t−1 . See also the

left of figure 4 for an illustration.

As far as the individual component spaces are concerned, partition functions of super-

symmetric gauge theories on D2
q × S1 ' Cq × S1 can be studied by standard localization

techniques [41]. Such analysis presents the partition functions as the “Coulomb branch”

matrix models, a.k.a. 3d holomorphic block integrals [32, 42]. It is straightforward to com-

pare the integrand of the matrix model (2.21) against the one-loop determinants in [41],

which we collect in appendix C. Indeed, the matrix model (2.21) can be identified as

Z~r,~cinst =
Q~r·~cg

B(~r,~c)N�(~r,~c)

∮
~r,~c

dcσLdrσRZ
Ct−1×S1
U(c),N (σL,mL)ZS1

chiral(σ
L, σR)Z

Cq×S1
U(r),N (σR,mR) ,

(2.28)

where Z
Cq×S1
U(r),N is the 1-loop determinant of the 3d N = 2 U(r) gauge theory on D2

q × S1 '
Cq × S1 coupled to one Neumann adjoint (ad) chiral multiplet, N Neumann (N) and N

Dirichlet (D) fundamental chiral multiplets labeled by A = 1, . . . , N .6 Notice that the

adjoint content is that of a 3d N = 2∗ vector multiplet. Similarly for Z
Ct−1×S1
U(c),N , while

ZS1
chiral(σ

L, σR) ≡
r∏

a=1

c∏
b=1

∏
±

p1/2

2 sinhπi
(
± (σL

b − σR
a ) + 1

2(ε1 + ε2)
) (2.29)

is the 1-loop determinant of a pair of native 1d N = 2 chiral multiplets living on the in-

tersection circle O×S1 and transforming in the bifundamental representation of the gauge

group U(r)×U(c). Here, we have identified zL,R = e2πiσL,R
. Introducing the parametriza-

tion ηL,R ≡ e2πiη̂L,R
, and recalling the definitions q ≡ e2πiε1 , t ≡ e−2πiε2 , xA ≡ e2πiXA , the

mass parameters (m) of the 3d theories are

mR,N
A = XA + cAε1 + (rA − 1)ε2 + η̂R , mR,D

A = XA + (cA + 1)ε1 + rAε2 + η̂R , (2.30)

mL,N
A = XA + rAε2 + (cA − 1)ε1 + η̂L , mL,D

A = XA + (rA + 1)ε2 + cAε1 + η̂L , (2.31)

mR
ad = −ε2, mL

ad = −ε1 , (2.32)

and both theories have non-trivial FI parameters given by

ξR
FI = ζR , ξL

FI = ζL . (2.33)

The analysis of the normalization of the matrix model is rather involved and we refer

interested readers to appendix D. Essentially, it corresponds to a free sector.

6Alternatively, one can work with fundamental chirals satisfying the same boundary conditions but then

“boundary” interactions or Chern-Simons units are needed, see appendix C and [41] for more explanations.
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C2
q,t−1

Cq
Ct−1

O

S1

S1

intersection S1

S1 c r

N

N

N

D

N

D

N

N

Cq × S1Ct−1 × S1

S1

Figure 4. On the left is a cartoon and the toric diagram of the bulk space C2
q,t−1 × S1 and its

subspace (Ct−1 ×S1)∪ (Cq×S1) ⊂ C2
q,t−1 ×S1, with the intersection given by O×S1 ⊂ C2

q,t−1 ×S1.

Both Cq × S1 and Ct−1 × S1 harbor respectively a 3d U(r) and U(c) gauge theory. The two gauge

theories interact through a pair of 1d bifundamental chiral multiplets living at the intersection S1.

On the right is the quiver diagram describing the intersecting gauge theories that enter into the

expansion. The boundary conditions for various chiral multiplets are labeled explicitly, and the 1d

chiral multiplets are denoted by the pair of purple dotted arrows in the middle.

In the beginning of this subsection, we have anticipated that the matrix integral (2.28)

admits an interpretation as the partition function of certain 3d gauge theory on the space

(Cq × S1) ∪ (Ct−1 × S1). Defining supersymmetric gauge theories on intersecting spaces,

(Cq × S1) ∪ (Ct−1 × S1) in our example, is straightforward and was explored in great detail

in [15, 33–35]. Here we summarize relevant aspects. On both Ct−1 × S1 and Cq × S1, we

define respectively 3d N = 2 U(c) and U(r) gauge theories referred to as T L and T R in the

usual manner: away from the intersection S1, both quantum field theories separately behave

just normally. The two gauge theories should, however, interact along the intersection S1.

To capture this interaction, we place an additional 1d N = 2 theory T 1d of a collection of

1d N = 2 supermultiplets. Along the S1, we decompose all the 3d N = 2 supermultiplets

in both T L and T R in terms of 1d N = 2 supermultiplets. In particular, we have the

pattern of decomposition summarized in the following table:

3d N = 2 multiplet ΦL,R 1d N = 2 multiplets φL,R after decomposition

vector vector and Fermi

chiral chiral and Fermi

.

Once the supermultiplets in T L,R are decomposed along the intersection S1, the resulting

1d N = 2 components can couple to the supermultiplets in T 1d in supersymmetric fashion

preserving the 1d N = 2 supersymmetry on S1: the 1d N = 2 vector multiplets from T L,R

can gauge the global symmetry of T 1d, while the 1d N = 2 chiral and Fermi multiplets

from T L,R can couple to those in T 1d via superpotentials W 3d/1d. Note that, although

being Q-exact and therefore do not actually enter into the localization computation, su-

perpotentials will impose relations between masses and U(1)R charges across theories in

different dimensions. The final product is then an action S3d/1d describing the 3d/1d
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coupled system

S3d/1d[ΦL,R, φ1d] = S
Ct−1×S1

T L [ΦL] + S
Cq×S1
T R [ΦR]+

+ SS1
T 1d [vmL,R, φ1d] +

∫
S1
W 3d/1d(ΦL,R|S1 , φ1d) . (2.34)

Here, we have explicitly introduced 1d vector multiplets vmL,R from T L,R to indicate the

gauging of the global symmetry of T 1d. The partition function of the overall gauge theory

on (Cq × S1) ∪ (Ct−1 × S1) is defined by the path integral

Z(Cq×S1)∪(Ct−1×S1) =

∫ [
DΦL,R

][
Dφ1d

]
e−S

3d/1d[ΦL,R,φ1d] . (2.35)

Supersymmetric localization can be performed by first localizing the 1d theory, then the

3d theories, allowing one to use standard techniques in this setup too.

From the matrix model (2.28), we can recognize T R to be the U(r) gauge theory

coupled to the aforementioned collection of chiral multiplets, together with a collection of

free chiral multiplets, and similarly for T L. On the intersection S1, the 1d N = 2 theory

T 1d consists of a pair of chiral multiplets transforming in the bifundamental representation

of U(r)× U(c),7 together with a collection of free 1d chiral and Fermi multiplets. See the

right of figure 4 for the quiver structure of the interacting sector. From (2.30) and (2.31), we

notice ε1+mR,N−mR,D = −ε2 and ε2+mL,N−mL,D = −ε1. We also recall ηL/ηR = (qt)1/2.

We are then immediately lead to the left/right mass relations,

mR,N
A −mL,N

A = +
1

2
(ε1− ε2), mR,D

A −mL,D
A = +

1

2
(ε1− ε2), mR

ad−mL
ad = ε1− ε2 . (2.36)

Note that the masses denoted by m are the complex combinations of the real masses and

the U(1)R charges. We are thus naturally led to combine the matrix integral and the free

theory contributions inside 1/BN�, and denote the whole object as Z
(Cq×S1)∪(Ct−1×S1)

U(r),U(c),N .8

Finally, the instanton partition function of 5d N = 1 U(N) pure Yang-Mills theory can be

expanded in terms of Z
(Cq×S1)∪(Ct−1×S1)

U(r),U(c),N as

Zinst =
∑
(~r,~c)
~r−~c=~n

W~r,~c Z
(Cq×S1)∪(Ct−1×S1)

U(r),U(c),N , (2.37)

where Wr,c is a (sufficiently simple) “weight” factor given in appendix D.

Remark. The expansion (1.4), where one sums only over the rows of the Young diagrams,

corresponds to the particular (degenerate) case where one fixes cA = 1 and picks up only

the poles labeled by z∅L . In the notation of footnote 2, this corresponds to a = 0, b =

1, nA = −1. In this case, the dynamics on the Ct−1 × S1 subspace is trivial, and the

C2
q,t−1 × S1 instanton partition function can entirely be described by the U(r) theory on

Cq × S1. With no interactions between the two orthogonal subspaces, also the free sector

is much simpler, and in the prefactor (2.27) only the terms with cA = 1 survive, with the

second line disappearing completely.

7In other words, a U(r)×U(c) subgroup of the global symmetry of r× c free 1d N = 2 chiral multiplets

is gauged by the vector multiplets in T L,R.
8When evaluating the integral, the contour depends on ~r,~c.
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3 q-Virasoro correlators

In this section, we show that our new expansions are natural from the viewpoint of the

BPS/CFT correspondence too. As a byproduct, we will establish a precise connection

between two slightly different approaches in existing literature. This observation is closely

related to [43]. On the one hand, the C2
q,t−1 × S1 instanton partition function of 5d N = 1

U(N) Yang-Mills theory (possibly coupled to (anti-) fundamental matter) can be given as

a free boson correlator involving infinitely-many screening charges Q(+) (possibly together

with vertex operators) of the q-Virasoro algebra [39]. On the other hand, the Cq×S1 vortex

partition function of the 3d N = 2 U(r) Yang-Mills theory coupled to one adjoint chiral

(and possibly to (anti-) fundamental chiral matter) can be given as a free boson correlator

involving finitely-many r screening charges Q(+), possibly with vertex operators [27]. It

is known that, in the presence of enough amount of fundamental hyper multiplets, the

two descriptions agree upon taking the 5d equivariant parameter xA to special values x∗A
which depends on the hyper multiplet masses. Such a limit is closely related to Higgsing

as described in [12]. This is usually seen as an equivalence, in the sense that, when the

setup is embedded in String/M-theory, one can safely switch from one phase to the other

by large r open/closed string duality or geometric transition. Below, we are going to

show that a similar relation continues to hold without taking any specialization/limit and

even when the 5d theory cannot be Higgsed, and simultaneously preserve the q ↔ t−1

symmetry which would have been broken by a choice of a preferred C plane in C2×S1. For

the sake of completeness and to fix our conventions, we first briefly review the free boson

representation of the q-Virasoro algebra and then compute correlators with finitely-many

screening charges. The comparison with the (less standard) approach involving infinitely-

many screening charges is presented in appendix E.

3.1 Screening currents and vertex operators

Consider the Heisenberg algebra generated by oscillators {am,m ∈ Z\{0}} and zero modes

P,Q, with the non-trivial commutation relations[
am,an

]
= − 1

m
(qm/2 − q−m/2)(t−m/2 − tm/2)C [m](p)δm+n,0 ,

[
P,Q

]
= 2 , (3.1)

where C [m](p) = (pm/2 + p−m/2) is the deformed Cartan matrix of the A1 algebra. Here,

q, t ∈ C and p = qt−1. The q-Virasoro current T(z) =
∑

m∈Z Tmz
−m can be realized as

T(z) = Y(p−1/2z) + Y(p1/2z)−1, Y(z) = : exp

[∑
m 6=0

am z−m

C [m](p)

]
q
√
βP/2p1/2 : , (3.2)

where β ∈ C is such that t ≡ qβ and the normal ordering : : pushes the positive oscillators

and P to the right. The screening currents of the q-Virasoro algebra have the following

free boson representation

S(±)(z) ≡ : exp

[
−
∑
m 6=0

am z−m

q
m/2
± − q

−m/2
±

±
√
β±1Q±

√
β±1P ln z

]
: , (3.3)
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where q+ ≡ q, q− ≡ t−1. Their defining property is[
Tm,S

(±)(z)
]

=
T̂q± − 1

z
Om(z) , (3.4)

where we have defined a shift operator acting as T̂q±f(z) = f(q±z). For a given γ ∈ C and

u ≡ q
√
βγ , we define the vertex operators

V(x) ≡ : exp

[
−
∑
m 6=0

1

(qm/2 − q−m/2)(tm/2 − t−m/2)

am x−m

C [m](p)

]
: , (3.5)

Hu(x) ≡ : exp

[
−
∑
m 6=0

(u−m − um)

(qm/2 − q−m/2)(tm/2 − t−m/2)

am x−m

C [m](p)
+
γ

2
Q +

γ

2
P lnx

]
: . (3.6)

The interesting “OPE” of screening currents and vertex operators are as follows

S(±)(z)S(±)(w) = : S(+)(z)S(+)(w) : ∆q−1
∓

(z, w; q±) (zw)β
±1
cβ±1(z, w; q±) , (3.7)

S(−)(z)S(+)(w) = : S(−)(z)S(+)(w) :
(−p1/2zw)−1

(1− p−1/2z/w)(1− p−1/2w/z)
, (3.8)

S(±)(z)V(x) = : S(±)(z)V(x) : (q
1/2
± x/z; q±)∞ , (3.9)

V(x)S(±)(z) = : S(±)(z)V(x) :
1

(q
1/2
± z/x; q±)∞

, (3.10)

Hu(x)S(±)(z) = : Hu(x)S(±)(z) :
(q

1/2
± zu/x; q±)∞

(q
1/2
± z/xu; q±)∞

x±γ
√
β±1

, (3.11)

where we defined the functions

∆q−1
∓

(z, w; q±) ≡ (z/w; q±)∞(w/z; q±)∞

(q−1
∓ z/w; q±)∞(q−1

∓ w/z; q±)∞
,

cβ±1(z, w; q±) ≡ Θ(qβ
±1

± z/w; q±)

Θ(z/w; q±)

( z
w

)β±1

. (3.12)

Finally, for any given α ∈ C, we consider the left and right Fock modules over the charged

Fock vacua |α〉 = eαQ/2|0〉 and 〈α| = 〈0|e−αQ/2 respectively, namely

P|α〉 = α|α〉 , am|α〉 = 0 , 〈α|a−m = 0 , m ∈ Z>0 , (3.13)

with 〈0|0〉 = 1. We are now ready to compute various q-Virasoro collelators.

3.2 Finitely-many screening currents

Recall that the commutator between Tm and S(z) is a total difference z−1(O(qz)−O(z))

for some fixed operator O(z). Therefore, for contours9 of zi invariant under q-shifts, the

integrated product of screening currents[
Q(±)

]r
≡
∮
dz1 . . . dzrS

(±)(z1) . . .S(±)(zr) (3.14)

9For instance, one can take the contour to circle the poles in the meromorphic factors arising from

normal-ordering the product of S.
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will be annihilated by Tm in commutator, thanks to dz/z = d(qz)/(qz).

Let us now consider this operator and perform the normal ordering for the screening

currents,

Zr ≡
[
Q(+)

]r
=

∮ [ r∏
i=1

dzi
2πizi

z
√
β(
√
βr−Q)

i

]
cβ(z; q) ∆t(z; q) :

r∏
i=1

S(+)(zi) : , (3.15)

where Q ≡ √β − 1/
√
β. Notice that we have explicitly broken the q ↔ t−1 symmetry by

considering only one kind of screening charge, and we have considered finitely-many inser-

tions in order to have a conventional finite rank matrix model, with potential parametrized

by the coefficients {a−m,m > 0}. We can now compute the normalized correlator

〈α∞|
∏Nf
f=1 Huf (xf )Zr|α0〉

〈∑f γf |
∏Nf
f=1 Huf (xf )|0〉

=

=

∮ [ r∏
i=1

dzi
2πizi

z
√
β(α0+

√
βr−Q)

i

]
cβ(z; q) ∆t(z; q)

∏
i,f

(q1/2ufzi/xf ; q)∞

(q1/2zi/ufxf ; q)∞
, (3.16)

where α∞ = α0 + 2
√
βr+

∑
f γf for charge conservation. This has the form of a Dotsenko-

Fateev matrix model. As follows from the BPS/CFT correspondence, in the expression

above we can easily recognize the block integral for the vortex partition function of the

3d N = 2 U(r) Yang-Mills theory coupled to one adjoint and Nf fundamental and anti-

fundamental chirals, with FI parameter
√
β(α0 +

√
βr−Q) [27].10 This matrix model also

corresponds to the Nekrasov instanton partition function of 5d N = 1 U(N) Yang-Mills

theory coupled to N fundamental and N anti-fundamental matter at specific points in the

Coulomb branch (see appendix E).

3.3 Generating series of correlators

In this subsection, we generalize the above computation to include both types of screening

charges, and we establish the correspondence with the new Nekrasov expansions studied

in the previous section. Let us start by considering the most general operator constructed

with a finite number of q-Virasoro screening charges

Z(r−,r+) ≡
[
Q(−)

]r−[
Q(+)

]r+
=

∮ ∏
±

r±∏
i=1

dz±,i
2πiz±,i

z
±
√
β±1α(r−,r+)

±,i × (3.17)

×
∏
± cβ±1(z±; q±) ∆q−1

∓
(z±; q±)∏r+

i=1

∏r−
j=1(−p1/2)(1− p−1/2z−,j/z+,i)(1− p−1/2z+,i/z−,j)

∏
±

:

r±∏
i=1

S(±)(z±,i) : ,

10One should observe that the cβ function reduces to an overall constant on the chosen integration

contour.
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where we set α(r−,r+) ≡ r+
√
β − r−/

√
β −Q. Then, we let Z(r−,r+) act on external states

and compute the normalized correlator

〈α∞|
∏
A V(yA)Z(r−,r+)

∏
A V(yA/p)|α0〉

〈0|∏A V(yA)
∏
A V(yA/p)|0〉

= (3.18)

= (−p−1/2)r+r−
∮ ∏
±

r±∏
i=1

dz±,i
2πiz±,i

z
±
√
β±1(α(r−,r+)+α0)

±,i ×

×
∏
± cβ±1(z±; q±) ∆q−1

∓
(z±; q±)∏r+

i=1

∏r−
j=1(1− p−1/2z−,j/z+,i)(1− p−1/2z+,i/z−,j)

∏
±

∏
i,A

(q
1/2
± yA/p z±,i; q±)∞

(q
1/2
± z±,i/yA; q±)∞

,

where α∞ = α0 +α(2r−,2r+) +Q. If we set α0 ≡ γ0−α(r−,r+), after suitable identifications,

including

rA = r+A , cA = r−A , r = r+ =
∑
A

r+A , c = r− =
∑
A

r−A ,

z R,L = z−1
± , y−1

A = p−1η±q
1/2
± xAt

−rAqcA , ηR,L = η± , ζR,L = −
√
β±1γ0 , (3.19)

we can match, up to normalization factors (see also footnote 10), the correlator (3.18)

with the partition function (2.21). Here, the decomposition r± =
∑

A r±,A encodes a

choice of integration contour, namely how the screening currents are distributed among

the vertex operators. We refer to [27] and appendix E for more details. Finally, since we

are considering an arbitrary number of screening charges, one can try to package all the

correlators into a formal generating series

Z =
∑
~r±

K(~r+,~r−)(~y, γ0)×

×
〈γ0 +Q|e−α(r−,r+)Q/2

∏
A V(yA)Z(r−,r+)

∏
A V(yA/p) e

−α(r−,r+)Q/2|γ0〉
〈0|∏A V(yA)

∏
A V(yA/p)|0〉

, (3.20)

where K(~r+,~r−) are suitable coefficients, which can be fixed so that Z = Zinst. This example

of BPS/CFT correspondence interpolates between the q-Virasoro/Vortex duality reviewed

in this section and the q-Virasoro/Instanton duality reviewed in appendix E.

4 Discussion

In this note, we have proposed a set of new expansions of the instanton partition function of

5d N = 1 U(N) pure Yang-Mills theory, labeled by a choice of integers n ∈ ZN . The sum-

mands of these expansions admit an elegant interpretation in terms of 3d N = 2 partition

functions of unitary gauge theories on (Cq × S1) ∪ (Ct−1 × S1) seen as a self-intersecting

subspace of C2
q,t−1 ×S1. Following and generalizing the work in [27, 39], we have also given

the q-Virasoro free boson realization of these new expansions, in terms of the two types of

screening charges. As mentioned in the introduction, similar results can be obtained for the

4d reduction and the 6d lift on the torus, in which case the lower dimensional theories live

on (Cq)∪ (Ct−1) and (Cq ×T2)∪ (Ct−1 ×T2) respectively. From the algebraic perspective,

the q-Virasoro algebra is replaced by its additive [44] or elliptic counterparts [45, 46].
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It is straightforward to include fundamental hyper multiplets into the instanton parti-

tion function and derive the corresponding new expansions, as the building blocks are pre-

cisely NYA∅ and N∅YA which also admit fairly simple factorization similar to (2.13). The

resulting 3d partition functions will then have additional fundamental/anti-fundamental

chiral multiplets. One can also generalize the analysis to other 5d unitary quiver gauge

theories/Wq,t algebras and to other systems coupled to codimension 2 and 4 BPS de-

fects. For example, starting from a 5d linear quiver gauge theory one has a sum over

Young diagrams for each gauge node, and therefore the Nekrasov partition function is of

the form
∑

~Y1

∑
~Y2
. . . with some intricate summand enjoying factorization properties sim-

ilar to (2.13). One can then iteratively expand each sum
∑

~Yk
one after another, where

each step removes one 5d gauge node, but add one 3d gauge node to the resulting 3d

left/right theories. As intermediate stages one gets the new expansions in terms of indices

of 5d/3d/1d coupled systems. Ultimately one ends up with an expansion in terms of in-

dices of 3d/1d coupled systems, where the left/right 3d theories are linear unitary quivers

coupled through a collection of 1d chiral and Fermi multiplets. The detail for these cases

is however beyond the scope of this paper. There are also conjectures [47] of instanton

partition functions for non-Lagrangian TN theories obtained by the method of topological

vertex, and it would be very interesting to explore if they also admit similar 3d expansions

and free boson realizations.

As discussed in [48], multiple copies of 5d Nekrasov partition functions can be glued into

5d partition functions on compact toric Sasaki-Einstein manifolds. Therefore, we expect

the expansions discussed in this note will have natural extensions to compact spaces. The

S5 case is currently under investigation [49], and the relevant algebraic setting provided by

the q-Virasoro modular triple has recently been constructed in [50] (see also [14] for earlier

work in the context of 5d AGT).

So far, the new expansions that we propose lack a physical explanation or a first

principle derivation. At the moment, we can only speculate that they correspond to some

novel localization scheme. One might want to associate our results to switching off one

non-commutative deformation [37] in regularizing the instanton counting computation, as

a consequence leading to 3d gauge theories on one C × S1. However, the fact that our

expansions involve 3d gauge theories on the union (Cq × S1) ∪ (Ct−1 × S1) suggests that

the physical origin is not of this nature. Another candidate derivation is the so-called

“Higgs branch localization” scheme [51–58], which localizes the path integral using certain

well-chosen Q-exact deformation term. Indeed, our result (2.37) looks rather similar to

those of the Higgs branch localization computation, where the matrix models are rewritten

as sum of residues which can be organized into (products of) partition functions of infinitely

many different theories, such as vortex/SW-partition functions. Moreover, the associated

BPS configurations in 4d N = 2 SQCD are shown to concentrate along intersecting S2
L ∪

S2
R in S4

b [58], which also leads to factorization of instanton partition functions similar

to (2.13) in certain limit of the parameters xA [15]. However, the Higgs branch localization

requires the presence of fundamental matters, while the expansions we propose are valid

without this limitation. Nevertheless, it is not unconceivable that some cleverly designed

Q-exact deformation term could lead to what we propose. Mathematically, these partial
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and alternative localization procedures might be related to equivariant localization on sub-

strata [59]. If this is correct, then one should be able to identify the 3d gauge theory

partition functions with some interesting equivariant cohomological quantity. Related to

this possibility, it would be interesting to explore the relation (if any) between the subject

addressed in this note and the categorification of complex Chern-Simons from 5d gauge

theories as recently put forward in [60, 61].
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A Special functions

q-Pochhammer symbols. In this note we use the q-Pochhammer symbols (x; q)∞ and

(x; q)k extensively. They are defined by (when |q| < 1)

(x; q)∞ =

+∞∏
i=0

(1− xqi)∞, (x; q)k =
(x; q)∞

(xqk; q)∞
, for k ∈ Z . (A.1)

More explicitly,

(x; q)k =

k−1∏
i=0

(1−xqi), when k ≥ 0, (x; q)k =
1∏−k

i=1(1− xq−i)
, when k < 0 . (A.2)

The q-Pochhammer symbol (x; q)∞ also admits a useful representation

(x; q)∞ = exp

[
−
∑
m>0

xm

m(1− qm)

]
. (A.3)

The symbol (x; q)k satisfies useful identities, among others

(x; q)n+k = (x; q)n(xqn; q)k . (A.4)

∆t(z; q) and Vt(z, u; q). In reorganizing the summands of the instanton partition func-

tions, we define certain useful combinations of q-Pochhammer symbols which have gauge-

theoretic as well as algebraic meaning.

The function ∆t(z; q) is defined for a collection of z = {za} variables as the product

∆t(z; q) ≡
∏
a 6=b

(za/zb; q)∞
(tza/zb; q)∞

. (A.5)
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This is the Macdonald measure. In concrete situations, the collection z can be as simple as

z = {za|a = 1, . . . , r}, or more involved ones like z = {zAi|A = 1, . . . , N, and i = 1, . . . , rA}
and so forth. In the latter situation, we define

∆t(z; q) =

N∏
A,B=1

rA∏
i=1

rB∏
j=1

∣∣∣∣∣
(A,i) 6=(B,j)

(zAi/zBj ; q)∞
(tzAi/zBj ; q)∞

≡
∏

(A,i) 6=(B,j)

(zAi/zBj ; q)∞
(tzAi/zBj ; q)∞

. (A.6)

The function Vt(z, u; q) is defined in a similar spirit, namely

Vt(z, u; q) ≡
∏
a

(za/u; q)∞
(tu/za; q)∞

. (A.7)

B Derivations

In this appendix, we collect the detailed derivation of the claim (2.13) in main text. The

summands of the pure 5d U(N) Yang-Mills instanton partition function can be written in

terms of the Nekrasov function NYW , which has the convenient product representation11

NYAYB (x; q, t) =
+∞∏
i,j=1

(xtj−i; q)YAi−YBj
(xtj−i+1; q)YAi−YBj

. (B.1)

To proceed, we follow the prescription in section 2.1 and fix a difference vector ~n. We

extract for each Young diagram YA its maximal rectangle, and denote the number of rows

and columns of the rectangle to be rA, cA respectively. Note that we have the inequities

YAi ≥ cA, i = 1, . . . , rA, and YAi ≤ cA, i = rA + 1, . . . . (B.2)

We can decompose the Young diagrams YA into Y L
A and Y R

A as detailed in section 2.1

YAi ≡ Y R
Ai + cA , i = 1, . . . , rA , YAi ≡ Y L

A,rA+i , i = 1, . . . ,+∞ . (B.3)

Now we are ready to factorize NYAYB . By straightforward computation using (B.1)

and (A.4) and the definition of Y L, Y R, we have

NYAYB (x; q, t) =
NY L

AY
L
B

(xtrB−rA ; t−1, q−1)

NY L
A ∅

(xtrB−rAq−cB ; t−1, q−1)N∅Y L
B

(xtrB−rAqcA ; t−1, q−1)
×

×
NY R

A Y
R
B

(xqcA−cB ; q, t)

NY R
A ∅

(xqcA−cB trB ; q, t)N∅Y R
B

(xqcA−cB t−rA ; q, t)
×

×
rA∏
i=1

rB∏
j=1

(xtj−i; q)cA−cB
(t xtj−i; q)cA−cB

rA∏
i=1

∞∏
j=1

(xtrB tj−i; q)cA
(t xtrB tj−i; q)cA

rB∏
j=1

∞∏
i=1

(xt−rAtj−i; q)−cB
(t xt−rAtj−i; q)−cB

×

×NY R
A Y

L∨
B

(xtrBqcA ; q, t)NY L∨
A Y R

B
(xt−rAq−cB ; q, t) . (B.4)

11We refer to [31] for more details and useful properties.
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In the above, we renamed Y L → Y L∨ so that the new Y L
A has at most cA rows (instead

of cA columns). We also applied the symmetry NY ∨W∨(x; q, t) = NYW (x; t−1, q−1) to the

first line.

We notice that for Young diagrams YA with at most rA rows, we can simplify the ratio

NYAYB (x; q, t)

NYA∅(xt
rB ; q, t)N∅YB (xt−rA ; q, t)

=

rA∏
i=1

rB∏
j=1

(t xqyAi−yBj tj−i; q)∞
(xqyAi−yBj tj−i; q)∞

(xtj−i; q)∞
(t xtj−i; q)∞

. (B.5)

This simplification can be applied to the factors in the first and second row involving Y L,

Y R having at most cA and rA respectively. Therefore, NYAYB is reorganized into ratios of

q-Pochhammer symbols, namely

NYAYB (x; q, t) =

rA∏
i=1

rB∏
j=1

(t xqcA−cBqY
R
Ai−Y

R
Bj tj−i; q)∞

(xqcA−cBqY
R
Ai−Y

R
Bj tj−i; q)∞

(xqcA−cB tj−i; q)∞
(t xqcA−cB tj−i; q)∞

×

×
cA∏
i=1

cB∏
j=1

(q−1 xt−(rA−rB)t−(Y L
Ai−Y

L
Bj)q−(j−i); t−1)∞

(xt−(rA−rB)t−(Y L
Ai−Y

L
Bj)q−(j−i); t−1)∞

(xt−(rA−rB)q−(j−i); t−1)∞

(q−1 xt−(rA−rB)q−(j−i); t−1)∞
×

×
rA∏
i=1

rB∏
j=1

(xtj−i; q)cA−cB
(xt1+j−i; q)cA−cB

rA∏
i=1

∞∏
j=1

(xtrB tj−i; q)cA
(xt1+rB tj−i; q)cA

rB∏
j=1

∞∏
i=1

(xt−rAtj−i; q)−cB
(xt1−rAtj−i; q)−cB

×

×NY R
A Y

L∨
B

(xtrBqcA ; q, t)NY L∨
A Y R

B
(xt−rAq−cB ; q, t) . (B.6)

We can now use another representation of NYW , that is

NYW (x; q, t) =
∞∏

i,j=1

1− xqYi−jtW∨j −i+1

1− xq−jt−i+1
, (B.7)

to reorganize the factors in the last line by unpacking the product over i, j = 1, . . . ,+∞
to i, j = 1, . . . , rA(cA) and rA + 1(cA + 1), . . . ,+∞, namely

NY L∨
A Y R

B
(xt−rAq−cB ; q, t) = NY L

AY
R∨
B

(xt−rAq−cB ; t−1, q−1) = (B.8)

=

cA∏
i=1

rB∏
j=1

1− q−1xt−rA+jq−cB+it−Y
L
Aiq−Y

R
Bj

1− q−1xt−rA+jq−cB+i
×

×
cA∏
i=1

(q−1xtrB−rAq−cB+i; t−1)

(q−1xtrB−rAq−cB+it−Y
L
Ai ; t−1)

rB∏
j=1

(xt−rA+jqcA−cBq−Y
R
Bj ; q)

(xt−rA+jqcA−cB ; q)
,

and

NY R
A Y

L∨
B

(xtrBqcA ; q, t) =

rA∏
i=1

cB∏
j=1

1− txtrB−iqcA−jqY R
AitY

L
Bj

1− txtrB−iqcA−j (B.9)

×
rA∏
i=1

(txtrB−iqcA−cB ; q)∞

(txtrB−iqcA−cBqY
R
Ai ; q)∞

cB∏
j=1

(xtrB−rAqcA−jtY
L
Bj ; t−1)∞

(xtrB−rAqcA−j ; t−1)∞
.
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Now we set x = xAB = xA/xB, and define wY R
Ai
≡ xAqcAqY

R
Ait1−i, zY L

Ai
≡ xAt−rAt−Y

L
Aiqi−1.

Similarly, we define w∅RAi
≡ xAq

cAt1−i, z∅LAi
≡ xAt

−rAqi−1. With these new variables, we

observe that various combinations of x, q, t in NYAYB organize into ratios

wY R
Ai

wY R
Bj

= xABq
cA−cBqY

R
Ai−Y

R
Bj tj−i,

zY L
Ai

zY L
Bj

= xABt
−(rA−rB)t−(Y L

Ai−Y
L
Bj)q−(j−i) , (B.10)

and their Y → ∅ counterparts. Now we can take the product over A,B = 1, . . . , N , and

rename some of the (A, i), (B, j) indices. We end up with∏
A,B

NYAYB (xAB; q, t) =

=
∆t(~w∅R ; q)

∆t(~w~Y R ; q)

N∏
A,B=1

rA∏
j=1

(t(wY R
Aj

)−1xBt
−rBqcB ; q)∞

(t(w∅RAj
)−1xBt−rBqcB ; q)∞

(w∅RAj
x−1
B trBq−cB ; q)∞

(wY R
Aj
x−1
B trBq−cB ; q)∞

×

× ∆q−1(~z∅L ; t−1)

∆q−1(~z~Y L ; t−1)

∏
A,B

cA∏
j=1

(q−1(zY R
Aj

)−1xbt
−rBqcB ; t−1)∞

(q−1(z∅RAj
)−1xBt−rBqcB ; t−1)∞

(z∅LAj
x−1
B trBq−cB ; t−1)∞

(zY L
Aj
x−1
B trBq−cB ; t−1)∞

×

×
∏
A,B

rA∏
i=1

cB∏
j=1

1− tzY L
Bj

(wY R
Ai

)−1

1− tz∅LBj (w∅RAi)
−1

1− q−1wY R
Ai

(zY L
Bj

)−1

1− q−1w∅RAi
(z∅LBj

)−1
×

×
∏
A,B

rA∏
i=1

(xABt
1−i; q)cA−cB

(xABt1+rB−i; q)cA−cB

(xABt
rB+1−i; q)cA

(x−1
ABt

−rB+i; q)−cA
, (B.11)

where the last line come from∏
A,B

rA∏
i=1

rB∏
j=1

(xABt
j−i; q)cA−cB

(t xABtj−i; q)cA−cB

rA∏
i=1

∞∏
j=1

(xABt
rB tj−i; q)cA

(t xABtrB tj−i; q)cA

rB∏
j=1

∞∏
i=1

(xABt
−rAtj−i; q)−cB

(t xABt−rAtj−i; q)−cB
=

=
∏
A,B

rA∏
i=1

(xABt
1−i; q)cA−cB

(xABt1+rB−i; q)cA−cB

(xABt
rB+1−i; q)cA

(x−1
ABt

−rB+i; q)−cA
. (B.12)

Finally, we rescale all w → w/ηR, z → z/ηL with ηL/ηR = (qt)1/2, so that we have

wY R
Ai

= ηRxAq
cAqY

R
Ait1−i , zY L

Ai
= ηLxAt

−rAt−Y
L
Aiqi−1 . (B.13)

We then arrive at the final expression for the product
∏
A,B NYAYB , that is∏

A,B

NYAYB (xAB; q, t) =
∆t(~w∅R ; q)

∆t(~w~Y R ; q)

∆q−1(~z∅L ; t−1)

∆q−1(~z~Y L ; t−1)
×

×
N∏
B=1

V (~w~∅R , η
−1xBt

−rBqcB ; q, t)

V (~w~Y R , η−1xBt−rBqcB ; q, t)

N∏
B=1

V (~z~∅L , ξ
−1xBt

−rBqcB ; t−1, q−1)

V (~z~Y L , ξ−1xBt−rBqcB ; t−1, q−1)
×

×
Vint(~w~∅R , ~z~∅L ; p)

Vint(~w~Y R , ~z~Y L ; p)

N∏
A,B=1

rA∏
i=1

(xABt
1−i; q)cA−cB

(xABt1+rB−i; q)cA−cB

(xABt
rB+1−i; q)cA

(x−1
ABt

−rB+i; q)−cA
, (B.14)

where the functions ∆ and V are defined in (A.6), (A.7). We point out that the last factor

dependents only the shape of the maximal rectangle, but not on the subdiagrams Y L,R
A .

This concludes the derivation of the claim (2.13).
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C Index on Cq × S1

In this appendix we collect some relevant results from [41]. The index of an N = 2

U(n) gauge theory with a collection of chiral multiplets with either Neumann or Dirichlet

boundary conditions on the bulk D2 × S1 ' Cq × S1, coupled with some 2d N = (0, 2)

multiplets on the boundary T2
q ' S1 × S1, is given by12

ZCq×S1 =

∫
dnσ Zcl(σ)Z3d

1-loop(σ)Z2d
1-loop(σ) . (C.1)

The classical action receives contributions from mixed Chern-Simons terms. The 3d 1-

loop determinant receives contributions from U(n) vector multiplets and chiral multiplets

transforming in different representations of U(n) with Neumann or Dirichlet boundary

conditions. Their flavor symmetries can be weakly gauged by background vector multiplets,

therefore introducing real masses µ. They also carries R-charges ∆. One can form complex

masses by defining

fundamental : m ≡ µ+
∆ε1

2
, anti-fundamental : m̃ ≡ µ̃− ∆̃ε1

2
, (C.2)

adjoint : m̃ad ≡ µad +
∆adε1

2
. (C.3)

Here we defined q ≡ e2πiε1 . The contributions to the 3d and 2d 1-loop determinants include

the following:13

• vector multiplet contributes

Z
Cq×S1
vector (σ) =

n∏
a,b=1
a 6=b

(e2πi(σa−σb); q)∞ ; (C.4)

• N chiral multiplets with Neumann (N) or Dirichlet (D) boundary conditions transforming

in the representation ρ of the U(n) gauge group contribute

Z
Cq×S1
N =

N∏
A=1

∏
w∈ρ

1

(e−2πi(w(σ)+FAmA); q)∞
, Z

Cq×S1
D =

N∏
A=1

∏
w∈ρ

(q e2πi(w(σ)+FAmA); q)∞ ,

(C.5)

where w denotes the weights in the representation ρ.

• boundary multiplets contribute [62–64]

Z
T2
q

chiral =
1

Θ(e−2πi(w(σ)+ν); q)
, Z

T2
q

Fermi = Θ(e2πi(w(σ)+ν); q) , (C.6)

12In the absence of any two dimensional boundary interaction, ICq×S1 = ID
2
q×S1 .

13We choose to ignore the exponential factors arising from regularization. We have rescaled and renamed

the parameters by iβrρ(a) → 2πiρ(σ), FlMl → 2πiFAµA, e−2β2 → e2πiε1 . We also adopt the quiver

convention for the equivariant parameters, so that N fundamental chiral multiplets transforms in the anti-

fundamental of the U(N) flavor group, with FA = −1. The resulting equivariant parameters will behave

like ρ(σ) + FAµA → σa − µA.
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where ν is some U(1) mass parameter. Notice that the 1-loop determinants of 3d chiral

multiplets with opposite boundary conditions can be related using the identity

(q e2πi(w(σ)+m); q)∞ =
Θ(e−2πi(w(σ)+m); q)∞

(e−2πi(w(σ)+m); q)∞
. (C.7)

This can be related to anomaly cancellation conditions of Chern-Simons terms in the

presence of a boundary, and each Θ function is associated to a Chern-Simons unit.

Let us examine the special case of a U(n) gauge theory, coupled to 1 adjoint, N

fundamental and N fundamental chiral multiplets, each with Neumann, Neumann and

Dirichlet boundary condition respectively. In this case, the 1-loop determinant reads

Z
Cq×S1
1-loop =

n∏
a,b=1
a 6=b

(e2πi(σa−σb); q)∞

(e−2πi(σa−σb−mad); q)∞

N∏
A=1

(q e+2πi(σa−mD
A); q)∞

(e−2πi(σa−mN
A); q)∞

. (C.8)

D Free sector

The products of q-Pochhammer symbols in the prefactor 1/BN�, as written in (2.27),

can also be recognized as the partition function of a collection of free chiral multiplets on

Cq × S1 and Ct−1 × S1, together with a collection of 1d free chiral and Fermi multiplets on

the intersection S1

Q~r·~c

B(~r,~c)N�(~r,~c)
= W~r,~c Z

Ct−1×S1
free Z

Cq×S1
free ZS1

free chiral+Fermi . (D.1)

Here, ZCq×S1 receives contributions from two sets of Neumann and two sets of Dirichlet

free chiral multiplets, with masses mA,Bi listed in the following table (i = 1, . . . , rB):

Neumann Dirichlet

mR
A,Bi −(XA + rAε2) +XB + (i− 1)ε2 −XA +XB + ε1 + iε2

.

Similarly for ZCt−1×S1 , with replacement rA ↔ cA, ε1 ↔ ε2. These free 3d chiral multiplets

organize into bi-fundamental representations of some U(N)×U(r) flavor group(s). The 1d

term ZS1
free chiral+Fermi receives contributions from two sets of free Fermi and two sets of free

chiral multiplets, with masses listed in the following table:

Fermi mA,Bij chiral mAi,Bj

i = 1, . . . , rB, j = 1, . . . , cB i = 1, . . . , rA, j = 1, . . . , cB

MA −MBij M ε2
Ai − (M ε1

Bj + rBε2)

MA + cAε1 + rAε2 −MBij (M ε2
Ai + cAε1)−M ε1

Bj

,

where we have defined the equivariant mass parameters

MA ≡ XA, M ε
Ai ≡ XA +

(
i− 1

2

)
ε, MBij ≡ XB +

(
j − 1

2

)
ε1 +

(
i− 1

2

)
ε2 . (D.2)
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As indicated by the names of the masses, the Fermi multiplets organize into bi-fundamental

representations of some U(N)×U(~r·~c) flavor symmetry group(s), while the chiral multiplets

organize into bi-fundamental representation of some U(r)×U(c) flavor group(s).14 Finally,

the coefficient Wr,c(m) reads

W~r,~c ≡
η−rζ

R
η−cζ

L

Q~r·~cg

[
N∏
A=1

rA∏
i=1

(xAt
1−i)−ζ

R

][
N∏
A=1

cA∏
j=1

(xAq
j−1)−ζ

L

]

×
[

1

(t; q)∞
Res
z→1

1

z(z−1; q)∞

]r[
1

(q−1; t−1)∞
Res
z→1

1

z(z−1; t−1)∞

]c
. (D.3)

E Infinitely-many screening charges

Let us consider based screening charges defined by Jackson integrals [39], namely

Q(±)
z ≡

∑
k∈Z

zqk± S(±)(zqk±) . (E.1)

This (less familiar) definition allows one to consider the insertion of infinitely-many screen-

ing charges as there are no explicit integrals to compute, and an additional label attached

to the screening charge as the base point z is quite a free parameter. Therefore, we can

consider infinitely-many base points in the set

χ∅ ≡ {xAi ≡ xAt1−i |A = 1, . . . , N , i = 1, . . . ,∞} , (E.2)

and define the operator

Z ≡
�∏

z∈χ∅

Q(+)
z , (E.3)

where
∏� denotes an ordered product.15 Notice that we have again explicitly broken the

q ↔ t−1 symmetry by considering only one kind of screening charge and a specific set of

base points. However, this symmetry will be at the end restored by the infinite product.

In order to recast this state in a more familiar form, one observe that the points xAt
1−iqkAi

give rise to zeros in the “OPE” function of the screening charges, unless they fall into a

Young diagram classification, namely kAi ≥ kA,i+1 ≥ 0. Therefore, we denote the set of

contributing points as (now replacing kA with Young diagrams YA)

χ ≡ {xYAi ≡ xAt1−iqYAi |A = 1, . . . , N , i = 1, . . . ,∞} , (E.4)

14We note that there are different equivariant mass parameters, which correspond to different flavor

symmetry groups. For instance, the U(N) parameters MA and MA + cAε1 + rAε2 correspond to different

U(N) symmetries.
15We define the order � on χ∅ by declaring xAi � xBj if A > B, and for A = B if i ≥ j. The ordered

product
∏� follows the reverse ordering.
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where ~Y ≡ (Y1, . . . , YN ) is a collection of Young diagrams, and write16

Z =
∑
~Y

�∏
z∈χ

z S(+)(z) . (E.5)

Proceeding formally as in the finite case, we can write

Z = ĉβ(x∅; q)
∑
~Y

(
∆̂t(xY ; q)

�∏
z∈χ

z
√
β(
√
β|χ|−Q) :

�∏
z∈χ

S(+)(z) :

)
, (E.6)

where x∅ ∈ χ∅, xY ∈ χ, and the hat reminds us that we are considering infinitely-many

variables (the affine limit). With an abuse of notation, we have denoted by |χ| the (infinite)

number of screening charges. Now we notice that

∆̂t(xY ; q) =
∏

(A,i) 6=(B,j)
A,B=1,...,N
i,j=1,...,∞

(xABq
YAi−YBj tj−i; q)∞

(txABqYAi−YBj tj−i; q)∞
=

∆̂t(x∅; q, t)∏N
A,B=1NYAYB (xAB; q, t)

. (E.7)

Therefore, we compute the properly (re)normalized correlator

〈µ∞|Z|µ0〉
〈µ∞|

∏�
z∈χ∅ z S(+)(z)|µ0〉

=
∑
~Y

Q
|~Y |
g∏N

A,B=1NYAYB (xAB; q, t)
, (E.8)

where the external states are eigenstates of P and µ∞ is chosen to ensure charge conser-

vation, with Qg ≡ q
√
β(
√
β|χ|−Q+µ0). As follows from the BPS/CFT correspondence, in the

expression above we can easily recognize the Nekrasov instanton partition function of 5d

U(N) pure Yang-Mills theory. Finally, the inclusion of an equal number of fundamental

and anti-fundamental matter is equivalent to the normalized correlator

〈µ∞|
∏
f V(Qf )Z

∏
f V(Q̄f )|µ0〉

〈µ∞|
∏
f V(Qf )

∏�
z∈χ∅ z S(+)(z)

∏
f V(Q̄f )|µ0〉

=

=
∑
~Y

Q|
~Y |
g

∏
A,f N∅YA(t−1/2p1/2Q̄f/xA; q, t)NYA∅(q

1/2xA/Qf , ; q, t)∏
A,B NYAYB (xAB; q, t)

. (E.9)

The standard relation between vortex and instanton partition functions (see e.g. [27])

allows one to identify the two approaches at specific limits of the 5d Coulomb branch

parameters. In fact, at q1/2xA/Qf = trA , rA ∈ Z≥0, only Young diagrams YA with at most

rA rows contribute to the instanton partition function, and (E.9) collapses to the vortex

partition function (3.16) with r =
∑

A rA and normalized by its perturbative part. We

refer to [27] for more details about the identification.

16Since we are dealing with infinite products, some care with regularization is needed. In this note, we

do not address this issue in detail but we simply observe that some divergence can be reabsorbed into µ0,

which has in fact to “absorb” an infinite number of screening charges.
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Relation between contour and Jackson integrals. We would like to close this section

by briefly discussing a formal relation between ordinary contour integrals and Jackson

integrals. This relation will produce a map between the screening charges adopted here

and those in section 3.

The ordinary definite Jackson integrals are defined by∫ z

0
dqx f(x) ≡ (1− q)

∑
k≥0

zqkf(zqk) ,

∫ ∞
z

dqx f(x) ≡
∫ z−1

0

dqy

y2
f(y−1) = (1− q)

∑
k≥0

zq−kf(zq−k) .

(E.10)

We define the based Jackson integral to be (without the 1− q factor for simplicity)∫
z

dqx f(x) ≡ 1

1− q

(∫ z

0
dqx f(x) +

∫ ∞
zq−1

dqx f(x)

)
=
∑
k∈Z

aqkf(zqk) . (E.11)

Notice that when z = 1, this definition coincides with the improper Jackson integral∫
1

dqx f(x) =
1

1− q

∫ ∞
0

dqx f(x) =
∑
k∈Z

qkf(qk) . (E.12)

We can give a relation between based Jackson integrals and ordinary contour integrals by

using q-constants. For instance, let us consider the q-constant

cλ(x; q) = xλ
Θ(qλx; q)

Θ(x; q)
, cλ(qx; q) = cλ(x; q) , λ ∈ C\Z . (E.13)

If we assume the function f(x) to be regular at x = zqZ, then we have∮
dx

2πi
cλ(x/z; q) f(x) = Resx=1

Θ(qλ; q)

Θ(x; q)

∑
k∈Z

zqkf(zqk) , (E.14)

where the integration contour is chosen to pick up the sum of the residues at the poles

x = zqZ coming from the zeros of the denominator of cλ(x/z; q). Assuming |q| < 1, this

means we are integrating around a segment interpolating between x = 0 and x =∞ passing

through x = z. In fact, for k ≥ 0 we integrate around the segment [0, z], while for k < 0 we

integrate around the segment [q−1z,∞). This fits with our definition of the based Jackson

integral, which is then given by∫
z

dqx f(x) = − (q; q)2
∞

Θ(qλ; q)

∮
dx

2πi
cλ(x/z; q) f(x) , (E.15)

where we used Resx=1Θ(x; q)−1 = −(q; q)−2
∞ . If we extend the based Jackson integral to

operator-valued functions, we can write the screening charge (E.1) as

Qz =

∫
z

dqx S(x) = − (q; q)2
∞

Θ(qλ; q)

∮
dx

2πi
cλ(x/z; q) S(x) . (E.16)
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Moreover, λ has appeared so far as a free parameter, and then we can try to turn it into

the P operator17 and consider

Qz ≡ −(q; q)2
∞

∮
dx

2πi
S(x)

c−
√
βP(x/z; q)

Θ(q−
√
βP; q)

. (E.17)

Notice that the zero mode part of the integrand is[
S(x)

c−
√
βP(x/z; q)

Θ(q−
√
βP; q)

]
0

= e
√
βQ Θ(q−

√
βPx/z; q)

Θ(x/z; q)Θ(q−
√
βP; q)

z
√
βP , (E.18)

which, at z = 1, is exactly the redefinition of the zero mode part that was introduced

in [65] (see also [50] for more explanations). We also observe that the integrand appearing

in (E.17) is equivalent to a dressed screening current given by

S(x) c−
√
βP(x/z; q) = ΦP−2

√
β(z)−1S(x)ΦP(z) , ΦP(z) ≡ : V(q1/2zq

√
βP)V(q1/2z)−1 : .

(E.19)
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