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1 Introduction

The natural observables in a CFT are the correlation functions of local gauge invariant

operators. They are finite and exactly conformal functions of the coordinates, provided that

the operators remain in generic positions. Putting the operators in a singular configuration

generates UV divergences and yields the breakdown of conformal symmetry. A well-known

example is the lightlike limit in which the correlator becomes a Wilson loop [1, 2]. The UV

divergent lightlike Wilson loops have a conformal anomaly [3] with interesting implications

for the dual IR divergent scattering amplitudes of massless particles. Besides, even the

finite tree-level amplitudes have another, collinear type of singularity, leading to a specific

conformal anomaly. It was first identified and dubbed “holomorphic anomaly” in [4] and

then studied in detail in [5–7].

In this paper we reveal a new mechanism of conformal symmetry breaking in finite

observables at the lowest, Born level of perturbation theory. They present a conformal

anomaly, which is not due to divergences, but to collinear singularities in momentum space

of a new type.

These observables are generalized form factors in conformal theories in D dimensions.

We discuss theories that are conformal at the classical level but not necessarily at the

quantum level. The generalized form factor1 involves a time ordered product of n local

operators, O(x1)O(x2) . . .O(xn). It is defined as the matrix element of this product with

an on-shell state with m massless particles, p2
j = 0, j = 1, . . . ,m:

F (x1, . . . , xn|p1, . . . , pm) = 〈O(x1)O(x2) . . .O(xn)|p1, p2, . . . , pm〉 . (1.1)

The operators naturally live in coordinate space, and the particles in momentum space,

hence the mixed x/p functional dependence of F . One may say that the generalized form

factor is a hybrid between a correlation function of local operators (m = 0) and a scattering

amplitude (n = 0). As such, it has a much richer structure than these familiar quantities.

In the present paper we are interested in the conformal properties of this new object.

We work in the Born approximation — the lowest order of perturbation theory. At this

level there are no UV or IR divergences susceptible of breaking the conformal symmetry.

So it would be natural to expect that the quantities (1.1) inherit the classical conformal

symmetry of the theory. We show that in many cases this naive belief is not true. The

action of the conformal boost transformations becomes anomalous, n∑
i=1

K(xi)
µ +

m∑
j=1

K(pj)
µ

F (x1, . . . , xn|p1, . . . , pm) = Aµ(x, p) . (1.2)

The anomaly Aµ is a regular function, not a contact term. Here the conformal boost

generator consists of two pieces. The first piece K
(x)
µ acts in coordinate space, e.g. for a

scalar operator O(x) of conformal dimension ∆,

K
(x)
µ;∆ = i(x2∂xµ − 2xµx

ν∂xν − 2∆xµ) . (1.3)

1The term “generalized form factor” was introduced in [8], to distinguish it from the standard form

factors involving a single operator.
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The second piece K(p)
µ acts in momentum space, more precisely on the lightlike momenta

p2 = 0. For example, a 4D lightlike momentum pµ factorizes in a pair of chiral and

antichiral commuting helicity spinors, σµαα̇pµ = λαλ̃α̇, and the conformal boost becomes a

second-order differential operator [9],

K(p)
µ = 2 σ̃α̇αµ

∂2

∂λα∂λ̃α̇
. (1.4)

A similar realization of the conformal boost exists in six dimensions (see appendix A).

To be more specific, let us outline an example in 6D φ3 theory. It is conformal at the

classical level, with the scalar field having the canonical dimension ∆φ = 2. We choose

both local operators to be elementary fields, O(x) = φ(x), and consider the generalized

form factor with a single-particle scalar state φ(p) in the Born approximation,

F (x1, x2|p) = 〈O(x1)O(x2)|φ(p)〉Born =
g

x2
12

eipx1 − eipx2
i(px12)

. (1.5)

This expression is manifestly translation, Lorentz and dilatation invariant, but what about

conformal boosts? This symmetry is broken, as shown by the anomalous Ward identity(
2∑
i=1

K
(xi)
µ;∆=2 + K(p)

µ

)
F (x1, x2|p) = −g pµ

∫ 1

0
dξ ξξ̄ ei(px1)ξ+i(px2)ξ̄ , ξ̄ := 1− ξ (1.6)

derived in section 2.3 (see also appendix B). We can Fourier transform the local operators

of the generalized form factor (1.5) from position to momentum space, x1, x2 → q1, q2,

F̃ (q1, q2|p) = 〈O(q1)O(q2)|φ(p)〉Born =
g

q2
1q

2
2

δ(6)(q1 + q2 + p) . (1.7)

In momentum space the anomaly in the Ward identity (1.6) becomes a contact term,

K(q,p)
µ F̃ (q1, q2|p) = 4π3g pµ

∫ 1

0
dξ ξξ̄ δ(6)(q1 + ξp) δ(6)(q2 + ξ̄p) . (1.8)

The conformal anomaly arises on a configuration where the off-shell momenta of the local

operators become collinear with the on-shell momentum of the particle, qµ1 ∼ q
µ
2 ∼ pµ.

The collinear ‘holomorphic’ anomaly of scattering amplitudes mentioned above has a

different origin. Consider, e.g., the MHV tree-level color ordered 4D amplitude for n gluons

of helictites (−−+ . . .+):

An ∼
〈12〉3 δ(4)

(∑n
i=1 λi λ̃i

)
〈23〉〈34〉 . . . 〈n1〉

, (1.9)

where 〈ij〉 := λαi λj α are Lorentz invariant contractions of the chiral helicity spinors. This

amplitude has complex poles at λi ∼ λi+1, i.e. where the momenta of two adjacent particles

(except the first two) become collinear, pi ∼ pi+1. When the derivative ∂/∂λ̃i from the

conformal boost generator (1.4) hits such a pole, it produces a contact term ∼ δ(2)(〈i i+ 1〉).
This resulting anomaly relates KµAn to An−1.

– 2 –
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The mechanism of our new anomaly is more subtle, due to the presence of off-shell

momenta in the problem. Looking at the expression (1.7), it is hard to detect an obvious

problem, like the complex poles in (1.9), that is susceptible of breaking the symmetry. In

reality, the origin of the anomaly (1.8) is a hidden singularity in the product of the two

scalar propagators in (1.7) (for details see section 2). Importantly, the anomaly only takes

place in generalized form factors, i.e. when more than one off-shell momenta are involved.

Indeed, the same 6D φ3 vertex can give rise to a standard form factor with one operator

and two massless particles,

F̃ (q|p1, p2) = 〈O(q)|φ(p1)φ(p2)〉Born =
g

q2
δ(6)(q + p1 + p2) . (1.10)

Its conformal symmetry is not broken.

In the present paper we discuss several other examples of the same phenomenon. In

section 3.1 we examine the analog of the generalized form factor (1.5), based on the 4D

vertex φ4. In section 3.2 we use a 4D vertex of the Yukawa type as an example involving

fermion operators with spin. In section 3.3 we consider a gauge theory coupled to scalar

matter. Here the generalized form factor exhibits both types of anomalies, the familiar holo-

morphic one and the new collinear anomaly involving the off-shell momenta. In all of these

cases the anomaly is due to a hidden singularity on a collinear momentum configuration.

However, revealing this singularity directly in momentum space is hard. Instead, we study

the anomalies in the mixed coordinate-momentum representation like (1.5). The Fourier

transform to position space smears the contact anomaly and makes it easily detectable. Its

explicit form is obtained most efficiently by the method of Lagrangian insertion, inspired

by the treatment of the conformal anomaly of the lightlike Wilson loop [3].

We emphasize that our examples are not supersymmetric, although some of them can

easily be extended to superconformal theories. We are concerned with the breakdown of

ordinary conformal symmetry. In this context we should mention the papers [6] and [10],

where the anomaly of the dual Q̄ supersymmetry of the N = 4 SYM superamplitudes is

interpreted as originating from collinear singularities. This dual supersymmetry is equiva-

lent to ordinary S superconformal symmetry, and hence the Q̄ anomaly implies a conformal

anomaly as well. It should however be pointed out that Q̄ supersymmetry is an on-shell

symmetry, realized non-linearly on the chiral superamplitudes or on the dual super-Wilson

loops, see [11–13]. Our conformal anomaly is much more basic, it has to do with a standard

linear symmetry.

One might think that the conformal anomaly (1.8) is almost invisible due to its contact

nature in momentum space. In reality, it has an interesting non-trivial manifestation for

loop integrals. The general belief is that conformal symmetry breaking at the quantum

level is related to divergences of loop integrals and that finite quantum corrections could not

spoil the symmetry. Here we show that this is not true. The contact conformal anomaly of

the trivalent vertex (1.8) serves as a ‘seed’ that, being inserted in a naively conformal loop

integral, localizes one of the loop integrations and produces a regular contribution which

breaks the conformal symmetry. The corresponding anomaly is not contact and is easily

detectable. The anomaly occurs in various finite 6D and 4D integrals with one or more
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legs on the massless shell. The insertion of the 6D vertex (1.8) or of its 4D analog reduces

the transcedentality weight. Thus, the anomalies of the 6D one-loop boxes (section 4.1)

and hexagon (section 4.2) are simply given by logs and rational factors; that of the 4D

double box (section 4.3) by dilogs, etc. In this way we can find 2nd-order differential

equations for such integrals, with an easily predictable right-hand side. We check explicitly

that the known expressions for the 6D boxes and hexagon satisfy the predicted differential

equations. This procedure might provide us with useful information about the double box

and other unknown conformal integrals. It could serve as a new useful tool to test the

analytic expressions for these integrals.

The paper ends with several technical appendices. In appendix A we summarize the

realization of the conformal group in position and momentum spaces, including lightlike

momenta. In appendix B we present a direct proof of the anomaly (1.6). In appendix C

we give the derivation of the anomaly in a gauge theory. In appendix D we discuss the cuts

(discontinuities) of the 6D box integrals and of the corresponding conformal Ward identities.

2 Generalized form factor in D = 6 scalar φ3 theory

In this section we disscuss in detail the simple example from the Introduction, that of a

would-be conformal form factor in 6D scalar φ3 theory with Lagrangian L = 1
2(∂µφ)2+ g

3!φ
3.

We show that the careful treatment of the singularities exhibits a conformal anomaly.

2.1 The φ3 vertex as a generalized form factor

Let us start with the Born-level three-point Green’s function

〈φ(x1)φ(x2)φ(x3)〉g =
g

iπ3

∫
d6x0

x4
10x

4
20x

4
30

. (2.1)

Here we use the free 6D massless scalar propagator 1/x4.2 The integral (2.1) is finite and

manifestly conformally covariant.3 This is natural, since the classical theory is conformal.

We stay at Born level, so the non-vanishing β−function plays no role.

Now, let us define the generalized form factor obtained by amputating one leg of the

three-point function. To this end we first Fourier transform, e.g., point x3,∫
d6x0

iπ3

1

x4
10x

4
20x

4
30

→
∫
d6x0

iπ3

eipx0

x4
10x

4
20 p

2
=: I(x1, x2, p) , (2.2)

then multiply by p2 and put the leg on shell,

F (x1, x2, p) := 〈φ(x1)φ(x2)|φ(p)〉g = g lim
p2→0

∫
d6x0

iπ3

eipx0

x4
10x

4
20

. (2.3)

2In this paper the massless scalar propagator in D−dimensional momentum space is defined with

Minkowski signature (+ − . . .−) and Feynman prescription 1/(q2 + iε). In coordinate space it becomes

e−iπ(D−1)/22D−2Γ(D/2− 1)πD/2(x2 − iε)1−D/2.
3Conformal symmetry fixes the form of the three-point function up to a normalization constant,

C(x212x
2
13x

2
23)−1. We do not need this explicit expression for our argument.
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We would expect the result to be conformal as well because the amputation procedure

does not involve any IR or UV divergences. In fact, this is not true, as shown below and

has already been announced in the Introduction. The breakdown of conformal symmetry

is described by the anomalous Ward identity (1.6) in the mixed x/p space or equivalently,

by (1.8) in momentum space. Where does the anomaly come from?

The Fourier transform of the three-point function (2.2) is conformal for p2 6= 0,(
2∑
i=1

K
(xi)
µ;∆=2 +K

(p)
µ;∆=2

)
I(x1, x2, p) = 0 . (2.4)

We want to understand what happens when p2 = 0, that is, with the form factor (2.3). Its

explicit expression shown in (1.5) is worked out in appendix B.2 (see (B.10)). The conformal

properties of the result are also examined in appendix B.2. We apply the off-shell x−space

generator K
(xi)
µ;∆=2 (see (A.2)) and the on-shell p−space generator K(p)

µ (see (A.12)). The

calculation yields the anomalous Ward identity (see (B.16))(
2∑
i=1

K
(xi)
µ;∆=2 + K(p)

µ

)
F = pµA(x1, x2, p) , (2.5)

where the anomaly function A(x1, x2, p) can be written in the integral form (see (B.17))4

A(x1, x2, p) = −
∫ 1

0
dξ ξξ̄ ei(px1)ξ+i(px2)ξ̄ . (2.6)

Moreover, as shown in appendix B.2, there exists no function made of the two points x1, x2

and the lightlike momentum p which satisfies the exact conformal Ward identity (2.4). This

is only possible if p2 6= 0.

What is the deep reason for this anomaly? The Fourier integral in (2.2) comes from

the conformal three-point function (2.1), so it is invariant under the combined action of the

conformal boosts K
(xi)
µ;∆=2 and K

(p)
µ;∆=2. In particular, the factor eipx0/p2 transforms with

a weight factor ∼ x0µ needed to compensate the weight of the measure and of the two

x−space propagators. After the amputation in (2.3) we act with K
(p)
µ;∆=4, to adjust for the

weight of the missing propagator factor. One would think that the integral should remain

invariant. However, the weight factor ∼ x0µ together with the on-shell condition p2 = 0

make the integral diverge. To regularize it, we may modify the dimension of the measure,

d6−2εx0, but this creates a mismatch of the conformal weights ∼ ε. This factor multiplies

the pole 1/ε of the divergent integral and results in a finite anomaly term.

We exploit this mechanism in section 2.3 for the alternative, and in practice most

efficient proof of the anomalous Ward identity. It is inspired by the treatment of the

conformal anomaly of the lightlike Wilson loop in ref. [3] and consists in inserting the

Lagrangian, xµ0L(x0), in the path integral as a way of revealing the anomaly. For the third

proof in appendix B.3, we start with the off-shell Fourier integral (2.2), then act with the

conformal generator and take the on-shell limit.

4From here on we omit the coupling constant g.

– 5 –



J
H
E
P
0
4
(
2
0
1
8
)
0
8
2

2.2 Anomalous Ward identity in momentum space

To elucidate the nature of the anomaly, we Fourier transform the form factor (2.3) from

position to momentum space, x1, x2 → q1, q2, and obtain (up to a normalization factor)

F̃ (q1, q2, p) =
δ(6)(q1 + q2 + p)

q2
1q

2
2

. (2.7)

We want to study its behavior under the off- and on-shell conformal boosts (A.6) and (A.12),

respectively. At first sight, apart form the singularities at q2 = 0 (regulated with the

iε prescription), this distribution shows no particular problem which might cause the

anomaly (1.8). However, there is a hidden singularity in the collinear regime p ∼ q1 ∼ q2.

This is difficult to see directly in momentum space, therefore we start from the mixed

x/p representation of the form factor (1.5) and of its anomaly (2.5). Fourier transforming

both sides of eq. (2.5) with the anomaly in the form (2.6), we obtain the anomalous

conformal Ward identity for the form factor in momentum space(
2∑
i=1

K
(qi)
µ;∆=2 + K(p)

µ

)
F̃ = 4iπ3 pµ δ

(6)(q1 + q2 + p)

∫ 1

0
dξ ξξ̄ δ(6)(q1 + ξp) . (2.8)

The anomaly is localized on a configuration where the three momenta become collinear,

q1 = −ξp , q2 = −(1− ξ)p , 0 ≤ ξ ≤ 1 . (2.9)

According to appendix A.2, the conformal boost goes through the momentum conser-

vation delta function, so the Ward identity (2.8) can be rewritten in the simplified form

(
K

(q)
µ;∆=2 + K(p)

µ

) 1

q2 (q + p)2
= 4iπ3 pµ

∫ 1

0
dξ ξξ̄ δ(6)(q + ξp) =: A(6D)

µ (p; q) . (2.10)

We use this result in sections 4.1 and 4.2 to derive the conformal Ward identities for the

6D box and hexagon integrals.

We emphasize that the anomaly is due to the on-shell leg (or massless particle) in the

form factor. Indeed, in momentum space the three-point function (2.1) has the form

〈φ(q1)φ(q2)φ(q2)〉 =
δ(6)(q1 + q2 + q3)

q2
1 q

2
2 q

2
3

. (2.11)

Being the Fourier transform of the exactly conformal integral (2.1), this distribution sat-

isfies an anomaly-free conformal Ward identity. When the third leg is amputated, the

distribution develops a collinear singularity on the surface (2.9), which yields the anomaly.

We can apply the same argument to the 6D form factor 〈O(x)|φ(p1)φ(p2)〉 with a single

operator and two on-shell legs. Its expression is

〈O(x)|φ(p1)φ(p2)〉 =
ei(p1+p2)x

(p1 + p2)2 + iε
, (2.12)

– 6 –
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or in momentum space

〈O(q)|φ(p1)φ(p2)〉 =
δ(6)(q + p1 + p2)

q2 + iε
. (2.13)

The collinear singularity at p1 ∼ p2 is regularized by the iε prescription. Acting with

the conformal boost generators on the right-hand side of (2.12), we find zero. Unlike the

holomorphic anomaly of the scattering amplitudes discussed in the Introduction, here the

collinear regime p1 ∼ p2 does not yield a breakdown of conformal symmetry.

This example illustrates the general phenomenon of collinear conformal anomaly. In

addition, it also serves as a ‘seed’ for revealing the conformal anomaly of some finite loop

integrals discussed in sections 4.1 and 4.2.

2.3 Derivation of the conformal anomaly by Lagrangian insertion

The method used in appendix B is not easy to generalize to form factors with several

operators O(x). The corresponding expression (the analog of eq. (1.5)) depends on many

kinematical variables. Working it out and finding its anomaly is a non-trivial task.

The most efficient way of deriving the conformal anomaly is by a Lagrangian insertion

in the path integral [3]. We consider the Green’s function 〈φ(x1)φ(x2)|φ(p)〉 in the theory

with modified action

S =

∫
dDx

g2µ2ε

(
1

2
∂µφ∂µφ+

1

3!
φ3

)
. (2.14)

Here the dimension of the measure has been changed to D = 6 − 2ε while the scalar

field keeps its canonical dimension ∆φ = 2 and the difference is compensated by the

dimensional regularization scale µ. When performing a conformal transformation with

generator Kµ in the path integral, there is a mismatch between the canonical dimension

∆L = 6 of the Lagrangian L(x0) and the modified measure
∫
dDx0. This leads to a

breakdown of conformal invariance originating from the term ∆ xµ0 = (D−∆L)xµ0 = −2εxµ0
in the conformal boost (A.2). The symmetry breaking term takes the form of an insertion

∼ ε
∫
dDx0 x

µ
0 L(x0) into the Green’s function. Then, if the integral over x0 has a pole 1/ε,

in the limit ε→ 0 this results in a finite conformal anomaly. Naively, we would not expect

a pole in a tree-level calculation, but once again this is not true.

So, to obtain the anomaly at lightlike p2 = 0 we need to calculate

lim
ε→0

(−2iε)

∫
dDx0 〈φ(x1)φ(x2)

(
xµ0
g2µ2ε

L(x0)

)
|φ(p)〉 . (2.15)

We first consider the insertion of the cubic term in the Lagrangian at p2 6= 0,5∫
dDx0〈φ(x1)φ(x2)L(x0)|φ(p)〉p2 6=0 =

∫
dDx0

iπ
D
2

eipx0

x4
10x

4
20

=: I(x1, x2, p) . (2.16)

5Alternatively, we could insert the kinetic term Lkin = φ�φ into the scalar propagator lines. It is easy

to see that this is equivalent to inserting the interaction term.
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Here we omitted the coupling constant and the dimreg scale g2µ2ε. We are allowed to use

the (D = 6)−dimensional form 1/x4 of the x-space propagators, since the finite O(ε0) part

of this integral is irrelevant for our purposes.

We go through the standard procedure of introducing Schwinger parameters in the

integral in eq. (2.16) and doing the space-time integrations, with the result

I(x1, x2, p) = −
∫ 1

0
dξ

∫ ∞
0

dη η3−D2 ξξ̄ e
− p

2

4η
−ξξ̄ηx212+i(px1)ξ+i(px2)ξ̄

. (2.17)

Then, to produce the factor xµ0 in (2.15), we differentiate with respect to pµ and set p2 = 0:6

− i
∫
dDx0 x

µ
0 〈φ(x1)φ(x2)L(x0)|φ(p)〉p2=0

=

∫ 1

0
dξ

∫ ∞
0

dη η3−D2 ξξ̄

(
−p

µ

2η
+ iξxµ12

)
e−ξξ̄ηx

2
12+i(px12)ξ+i(px2) . (2.18)

We are interested in the pole part of this expression, so only the first term in the parentheses

is relevant. We find

− i
∫
dDx0 x

µ
0 〈φ(x1)φ(x2)L(x0)|φ(p)〉 =

pµ

2ε
A(x1, x2, p) +O(ε0) , (2.19)

with A(x1, x2, p) defined in (2.6). Substituting this result in (2.15) reproduces the anoma-

lous conformal Ward identity (2.5).

It should be noted that the same mechanism of Lagrangian insertion can measure the

dilatation anomaly, if existing. In our example
∫
dDx0 L(x0) . . . produces the integral (2.17)

which does not have a pole at p2 = 0 and hence there is no anomalous dimension. So, the

anomaly is only in the conformal boost. The reason for the pole there is the insertion of

xµ0 which makes the integral in (2.15) diverge.

In conclusion, this method of deriving the conformal anomaly is the most efficient one.

The contact term in (2.8) is hard to detect directly. The Fourier transform (q1, q2) →
(x1, x2) smears the contact anomaly and makes it easily visible in the form (2.5), (2.6).

3 Conformal anomalies in D = 4 theories

In this section we show three examples of anomalous conformal Ward identities for tree-

level generalized form factors in 4D conformal theories. Firstly, we study the analog of

the 6D form factor (2.3) with a single-particle state for the 4D φ4 theory. Secondly, we

examine a Yukawa vertex where the two fermions are treated as operators and the scalar

is the on-shell particle. Finally, we consider a Yang-Mills field coupled to a scalar and give

an example of a generalized form factor of two composite operators with a three-particle

state. The Ward identities are derived in the mixed x/p representation by the method of

Lagrangian insertion. The anomaly in the momentum q/p representation occurs when the

off-shell momenta q become collinear with the on-shell ones p.

6The result (2.17) is obtained by Wick rotation to Euclidean space. Before taking the limit p2 → 0 we

rotate back to Minkowski space, keeping p2 > 0 and x212 > 0 for convergence. The final result (2.19) can

be analytically continued to all values of x212.

– 8 –



J
H
E
P
0
4
(
2
0
1
8
)
0
8
2

3.1 Scalar φ4 theory

3.1.1 The φ4 vertex as a generalized form factor

The 4D analog of the 6D ‘seed’ form factor from section 2 is defined by the φ4 vertex

F (x1, x2, x3, p) := 〈φ(x1)φ(x2)φ(x3)|φ(p)〉Born =

∫
d4x0

iπ2

eipx0

x2
10x

2
20x

2
30

∣∣∣∣
p2=0

. (3.1)

The φ4 theory is conformal at tree level, so naively the generalized form factor (3.1) should

be conformally invariant. However, this is not true as we show below.

Unlike the 6D analog in (1.5), this form factor is not expressible in elementary functions

in the mixed x/p representation. Introducing Schwinger parameters and doing the space-

time integrations we find the following integral expression

F (x1, x2, x3, p) =

∫
dΩ(α, β, γ) eiα(px1)+iβ(px2)+iγ(px3) Λ−1(α, β, γ, x1, x2, x3) , (3.2)

where the measure is dΩ(α, β, γ) := dα dβ dγ δ(α + β + γ − 1) and we integrate over

α, β, γ ≥ 0. We also use the shorthand notations ᾱ := 1− α, etc., as well as

Λ := αᾱx2
1 + ββ̄x2

2 + γγ̄x2
3 − 2αβ(x1x2)− 2αγ(x1x3)− 2βγ(x2x3) . (3.3)

3.1.2 Conformal anomaly in x/p space

Here we show that the generalized form factor (3.1) satisfies the conformal Ward identity(
3∑
i=1

K
(xi)
µ;∆=1 + K(p)

µ

)
F (x1, x2, x3, p) = pµA(x1, x2, x3, p) (3.4)

with the anomaly given by

A(x1, x2, x3, p) := −
∫
dΩ(α, β, γ) eiα(px1)+iβ(px2)+iγ(px3) , (3.5)

or explicitly,

A(x1, x2, x3, p) =
∑
σ∈Z3

ei p xσ1

(xσ1σ2p)(xσ1σ3p)
. (3.6)

We apply the method of Lagrangian insertion in D = 4− 2ε dimensions, described in

section 2.3. To obtain the conformal boost variation of the generalized form factor F (3.1)

we need to calculate the residue

lim
ε→0

(−2iε)

∫
dDx0 x

µ
0 〈φ(x1)φ(x2)φ(x3)L(x0)|φ(p)〉 , (3.7)

where p2 = 0 and L(x0) ∼ φ4(x0). We start with the integrated Lagrangian insertion in

the off-shell version of F given by

I(x1, x2, x3, p) :=

∫
dDx0

iπ
D
2

eipx0

x2
10x

2
20x

2
30

with p2 6= 0 . (3.8)
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It has a Schwinger parameter representation similar to (3.2),

I(x1, x2, x3, p) =

∫
dΩ(α, β, γ) eiα(px1)+iβ(px2)+iγ(px3)

∫ ∞
0

dη ηε exp

[
− p

2

4η
− ηΛ

]
. (3.9)

Then we differentiate the integral (3.9) with respect to pµ, set p2 = 0 and extract the pole:

∂pµI|p2=0 = −p
µ

2

∫
dΩ(α, β, γ) eiα(px1)+iβ(px2)+iγ(px3)

∫ ∞
0

dη ηε−1 e−ηΛ +O(ε0)

=
pµ

2ε
A(x1, x2, x3, p) +O(ε0) , (3.10)

with A defined in (3.5). Inserting the pole in (3.7) we arrive at the Ward identity (3.4).

We have confirmed this result by a direct check, namely, we acted with the conformal

boost generators on the integrand of (3.2), then numerically integrated over α, β, γ and

compared with the right-hand side of (3.4).

3.1.3 Conformal anomaly in q/p space

The Fourier transform xi → qi in (3.1) defines the generalized form factor in momentum

space,

F̃ (q1, q2, q3, p) =
1

q2
1q

2
2q

2
3

δ(4)(P ) , (3.11)

where P = q1 + q2 + q3 + p is the total momentum and the iε prescription is implied. Its

conformal anomaly is the Fourier transform of (3.4), (3.5):(
3∑
i=1

K
(qi)
µ;∆=1 + K(p)

µ

)
F̃ = 4π4pµδ

(4)(P )

∫
dΩ(α, β, γ) δ(4)(q1 + αp) δ(4)(q2 + βp) . (3.12)

Like in the 6D case (2.8), the anomaly has support on the kinematic configuration where

the three (off-shell) momenta associated with the ‘operators’ φ(xi) become collinear with

the on-shell momentum p of the incoming massless particle,

q1 = −αp , q2 = −βp , q3 = (α+ β − 1)p . (3.13)

According to appendix A.2, we can omit one of the off-shell momenta and the momen-

tum conservation delta function in (3.12),(
2∑
i=1

K
(qi)
µ;∆=1 + K(p)

µ

)
1

q2
1q

2
2(q1 + q2 + p)2

= 4π4pµ

∫
dΩ(α, β, γ) δ(4)(q1 + αp) δ(4)(q2 + βp) =: A(4D)

µ (p; q1, q2) . (3.14)

We use this result in section 4.3 to derive the conformal Ward identity for the 4D six-leg

double box integral.
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3.2 Yukawa vertex

In this subsection we show an example of a generalized form factor for operators with

Lorentz spin. The 4D Yukawa-type vertex
∫
d4xψα(x)ψα(x)φ(x) is conformally covariant.

We consider the following form factor corresponding to this trivalent vertex,

Fα
β(x1, x2, p) := 〈ψα(x1)ψβ(x2)|φ(p)〉Born = (∂x1 ∂̃x2)α

β I(x1, x2, p)p2=0,ε→0 . (3.15)

It is given by the double derivative of the scalar integral

I(x1, x2, p) :=

∫
dDx0

iπ
D
2

eipx0

x2
10 x

2
20

, (3.16)

where D = 4− 2ε and ε > 0 is an intermediate regulator. Evaluating the integral yields a

compact expression for the form factor (3.15),

Fα
β(x1, x2, p) = − lim

ε→0
(∂x1 ∂̃x2)α

β Γ(ε) (x2
12)−ε

∫ 1

0
dξ eiξ(px1)+iξ̄(px2)

=
2

x2
12

∫ 1

0
dξ
[
i(x12p̃)α

β − 2 (1 + i(px12)ξ) δα
β
]
eiξ(px1)+iξ̄(px2) . (3.17)

Like in the preceding sections, we expect the anomalous conformal Ward identity(
2∑
i=1

K
(xi)
µ;∆=3/2 + K(p)

µ

)
Fα

β(x1, x2, p) = pµAα
β(x1, x2, p) . (3.18)

This is a matrix relation because the form factor F carries (chiral) Lorentz indices. The

space-time conformal boost generator (A.2) involves a term acting on them, −2ixνΣνµ. In

the case at hand Σµν = i
4(σµσ̃ν−σν σ̃µ) is the Lorentz generator in the spinor representation

(1/2, 0). The conformal weights at points 1 and 2 equal 3/2 as for a Dirac spinor field.

The conformal anomaly A is obtained by the method of Lagrangian insertion from

section 2.3. We need to calculate the residue

pµAα
β(x1, x2, p) = lim

ε→0
2ε ∂pµ(∂x1 ∂̃x2)α

β I(x1, x2, p)|p2=0 . (3.19)

Introducing Schwinger parameters we obtain

I(x1, x2, p) = −
∫ 1

0
dξ

∫ ∞
0

dη η−1+ε e
− p

2

4η
−ξξ̄ηx212+i(px1)ξ+i(px2)ξ̄

(3.20)

(cf. eq. (2.17)). Substitution in (3.19) yields the anomaly

Aα
β(x1, x2, p) = 2

∫ 1

0
dξ ξξ̄

[
6δα

β + i
(
ξ(px̃12)α

β − ξ̄(x12p̃)α
β)
)]
ei(px1)ξ+i(px2)ξ̄ . (3.21)

Now we transform the above results to momentum space, in order to clarify the collinear

nature of the anomaly. The form factor (3.15) is given by the matrix product of two

momentum space fermionic propagators

F̃α
β(q1, q2, p) =

(q1)αα̇
q2

1

(q̃2)α̇β

q2
2

δ(P ) , (3.22)
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p1 p2

xa xb
p3

p1 p2

p3
xa xb xa xb

p1 p2

p3

Figure 1. Feynman diagrams contributing to the generalized form factor F (xa, xb|p1, p2, p3),

eq. (3.25), in the theory with the Lagrangian (3.24).

where P = q1 + q2 + p is the total momentum. The anomaly in the conformal Ward

identity (3.18) takes the form of a one-parameter integral

2iπ2pµδ
(4)(P )

∫ 1

0
dξ ξξ̄

[
6δα

β + ξ(p ∂̃q1)α
β − ξ̄(∂q1 p̃)αβ

]
δ(4)(q1 + ξp) . (3.23)

In close analogy with the 6D trivalent vertex (2.8), the anomaly is supported on the collinear

configuration q1+ξp = q2+ ξ̄p = 0. The new element is the Lorentz tensor structure carried

by the derivatives of the delta function.

3.3 Gauge theory with scalar matter

In this subsection we present another example of an anomalous conformal Ward identity

in 4D conformal theories. We consider a massless scalar field in the adjoint representation

of some gauge group, interacting with the gauge field,

L = tr

[
1

2
(Dµφ)2 − 1

4
(Fµν)2

]
. (3.24)

This theory is conformal at tree level. We define the gauge invariant operator O = trφ2(x).

Then we consider the Born level form factor of two such operators with an external state

made of two scalars and one positive helicity gluon,

F (xa, xb|p1, p2, p3) := 〈O(xa)O(xb)|φ(p1)φ(p2)g(+)(p3)〉Born . (3.25)

The computation is most easily done in momentum space, i.e. after Fourier transforming

the two operators O from position to momentum space, xa,b → qa,b. The two types of

tree-level Feynman diagrams are shown in figure 1. The result is (up to a color factor)

F̃ (qa, qb|p1, p2, p3) = δ(4)(P )
〈1|qa,1,3q̃a,1|2〉
〈13〉〈23〉q2

a,1q
2
a,1,3

+ (a↔ b) , (3.26)

where we use the shorthand notations P = qa+qb+p1 +p2 +p3, qa,i,...,j = qa+pi+ . . .+pj ,

etc. This expression involves the off-shell momenta qa, qb as well as the on-shell ones

pi = |i〉[i|. We remark that the Born-level generalized form factor of two weight-two half-

BPS operators O20′ in N = 4 SYM is given by the same expression.

In the form factor (3.26) we observe the familiar two-particle collinear poles of the

type 〈ij〉−1. As we have mentioned in the Introduction, they give rise to the so-called
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“holomorphic anomaly” in amplitudes [4]. Here we discuss the more general situation of a

form factor, where some ‘legs’ are off shell, the others are on shell. We wish to show that

the collinear configurations of one off-shell and two on-shell legs cause new singularities

which lead to specific conformal anomaly terms. Unlike the obvious poles 〈ij〉−1, the new

singularities are hard to detect in momentum space. This is why we now Fourier transform

the form factor (3.26) back to coordinate space, qa,b → xa,b. The Fourier transform can be

easily implemented by means of the formula7∫
d4q

4π2

e−iqx 〈`|q|p]
q2(q + p)2

=
eixp − 1

2i(xp)

〈`|x|p]
x2

. (3.27)

The result is

F (xa, xb|p1, p2, p3) =
eip1xa+ip2xb

(p3xab)x
2
ab

{
〈2|xab|3]

〈23〉
eip3xb − 〈1|xab|3]

〈13〉
eip3xa

}
+ (a↔ b) . (3.28)

Note that the pole at (p3xab) = 0 is fake (its residue is zero), as can be seen by expanding

the exponentials. This is logical because the mixed x/p-space singularities are not physical.

The form factor (3.28) is not invariant under conformal boosts with generator whose

position space part K
(x)
µ;∆=2 is defined in (A.2) and the momentum part K(p)

µ in (A.9). In

appendix C we derive the anomalous Ward identity8∑
i=a,b

K
(xi)
µ;∆=2+

3∑
i=1

K(pi)
µ

F =− i
4
eip1xa+ip2xb [3|σ̃µxab|3]A(xa,xb,p3)+(a↔ b) , (3.29)

where

A(xa, xb, p3) := −
∫ 1

0
dξ ξξ̄ eiξ(xap3)+iξ̄(xbp3) . (3.30)

A direct numerical calculation also confirms this result. Curiously, the expression for this

4D conformal anomaly function coincides with the 6D one in (2.6).

The anomaly is easier to obtain in the mixed x/p representation but its true nature

is revealed in momentum space. As in the previous examples, the origin of the anomaly

is a hidden collinear singularity in the momentum space expression (3.26). To see it, we

Fourier transform the anomaly term (3.29) back to momentum space, xa,b → qa,b, and find∑
i=a,b

K
(qi)
µ;∆=2 +

3∑
i=1

K(pi)
µ

 F̃ =
iπ2

2
δ(4)(P )[3|σ̃µ∂qa |3]

∫ 1

0
dξ ξξ̄ δ4(qa,1 + ξp3) + (a↔ b) .

(3.31)

The anomaly has support on the configurations where the off-shell momenta become

collinear with linear combinations of two on-shell momenta, qa+p1+ξp3 = qb+p2+ξ̄p3 = 0.

7We thank Grisha Korchemsky for help with this integral.
8We ignore the holomorphic anomaly due to the poles 〈13〉〈23〉, etc. in this calculation.
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4 Conformal anomaly of loop integrals

An interesting corollary of the conformal anomaly of the Born-level vertices is the confor-

mal anomaly of certain Feynman integrals involving these vertices. We consider several

examples of one- and two-loop finite Feynman integrals, which are conformal if all the ex-

ternal legs are massive, p2
i 6= 0. We show that if some of the legs become massless, p2

i = 0,

without causing IR divergences, the conformal symmetry is broken by the vertex anomaly.

We derive anomalous Ward identities in the form of 2nd-order inhomogeneous differential

equations. We check them against the known expressions for these integrals. In section 4.1

we consider the 6D one-loop boxes with different configurations of the external legs (on-

or off-shell). In section 4.2 we study the 6D on-shell hexagon and in section 4.3 the 4D

double box with two on-shell and four off-shell legs. Finally, in appendix D we reinterpret

the 6D conformal anomaly in terms of the discontinuities (cuts) of the integrals and of the

‘seed’ vertex (2.10).

One-loop momentum integrals are conformal if their legs are off shell, p2
i 6= 0. Indeed,

consider the integral

In(p1, . . . , pn) = δ(D)(P )

∫
dD`

`2(`+ p2)2(`+ p2 + p3)2 . . . (`+ p2 + . . .+ pn)2
, (4.1)

where P =
∑n

i=1 pi is the total external momentum. If n > D/2 and all the external

momenta are off shell, p2
i 6= 0, the integral is UV and IR finite. We can Fourier transform

it to coordinate space. The result is a closed frame of free scalar propagators,

Ĩn(x1, . . . , xn) =

n∏
i=1

1

(x2
i,i+1)D/2−1

, xn+1 ≡ x1 . (4.2)

This expression is manifestly conformal with weight ∆i = D − 2 at each point. Con-

sequently, the function In(p1, . . . , pn) is also invariant under the action of the conformal

boost generator (A.6). The same is true for the reduced integral, where the delta function

and pn are dropped,

In(p1, . . . , pn−1) =

∫
dD`

`2(`+ p2)2(`+ p2 + p3)2 . . . (`+ p2 + . . .+ pn−1)2(`− p1)2
. (4.3)

It should be made clear that the conformal symmetry of these integrals has nothing to

do with dual conformal invariance [14, 15]. The latter is a hidden symmetry of some loop

integrals, while the former is just the native conformal symmetry of the theory.

The question now is what happens if some legs are put on shell, p2
i = 0, for a subset

{i} ⊂ {1, . . . , n}. Depending on the space-time dimension, the integral may develop an IR

singularity or remain finite. In the first case the regularization inevitably breaks conformal

invariance, but what happens in the second case? This is what we wish to investigate here.

4.1 Conformal anomaly of the 6D one-loop boxes

In this and the next subsection we consider six dimensions. The one-loop integrals (4.3)

are finite for D = 6, even with some or all of the external legs on the massless shell. Here
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p4

p1 p2

p3 p4

p1 p2

p3 p4

p1 p2

p3 p4

p1 p2

p3 p4

p1 p2

p3 p4

p1 p2

p3

I0m I1m I2me I2mh I3m I4m

Figure 2. 6D box integrals. Thick external legs are off-shell and thin are on-shell momenta.

we show that the conformal symmetry of the off-shell integral is in general spoiled by the

collinear anomaly of the trivalent vertices with one massless leg.

Consider first the one-loop integral (4.3) of the box type, i.e. for n = 4,

Ibox(p1, p2, p3) =
1

iπ3

∫
d6`

`2(`+ p2)2(`+ p2 + p3)2(`− p1)2
. (4.4)

According to the configuration (on-shell/off-shell) of the external legs p1, . . . , p4 one speaks

of zero-mass, one-mass, two-mass-easy, two-mass-hard, three-mass, and four-mass box in-

tegrals, see figure 2. Let us stress once more that unlike their 4D cousins, the 6D boxes

are finite, because the trivalent vertices with a massless leg at the corners do not cause

divergences in 6D.

The box integrals admit the following Feynman parameter representation

Ibox = −
∫ 1

0

4∏
l=1

dαl
δ
(∑4

k=1 αk − 1
)

∑
i<j αiαj y

2
ij

, (4.5)

where the region momenta are defined by yi− yi+1 = pi, y5 ≡ y1, so yij = pi,i+1,...,j−1. The

iterated integrations over α can be performed resulting in dilogs and logs. However, the

expressions are complicated and it is not obvious how to get a compact result.

According to [16]9 the 6D box integrals can be expressed in terms of the 4D box and

triangle integrals. We find particularly simple formulae in the cases of the zero-mass, one-

mass, and two-mass-easy boxes. In these cases the 4D triangles are absent and the 6D

boxes are given by the finite part of the 4D boxes:

I0m =
1

2p2
13

[
log2

(
p2

12

p2
23

)
+ π2

]
, (4.6)

I1m =
1

p2
13

[
Li2

(
1− p2

4

p2
12

)
+ Li2

(
1− p2

4

p2
23

)
+

1

2
log2

(
p2

12

p2
23

)
+
π2

6

]
, (4.7)

I2me =
1

p2
13

[
Li2
(
1− ap2

2

)
+ Li2

(
1− ap2

4

)
− Li2

(
1− ap2

12

)
− Li2

(
1− ap2

23

)]
, (4.8)

where a :=
p22+p24−p212−p223
p22p

2
4−p212p223

. The results for I0m and I1m can also be found in [17].10 The

remaining 6D box integrals are more complicated because of the 4D triangle contributions.

The corresponding formulae can be extracted from [16].

9We thank Zvi Bern for the reference.
10We thank Claude Duhr and Dmitri Kazakov for discussions of these integrals.
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(
4∑
i=1

Kµ
i

)
p4

p1 p2

p3

ℓ =
p4

pµ1 p2

p3
+

p4

p1 pµ2

p3

+
p4

p1 p2

pµ3

+
pµ4

p1 p2

p3
= 0

Figure 3. Cancellation of the conformal anomalies of the 6D zero-mass box. The momenta of the

highlighted lines are collinear.

We wish to show that the box integrals, like the three-point vertex (2.7), satisfy anoma-

lous conformal Ward identities with anomaly Aµbox,(
4∑
i=1

Kµ
i

)
δ(6)(P ) Ibox = δ(6)(P )Aµbox , (4.9)

where Kµ
i denotes either K

µ (pi)
∆=4 (A.6) for an off-shell leg or Kµ (pi) (A.12) for an on-shell

leg. The conformal weight of the massive legs is ∆ = 6−2 = 4, as explained after eq. (4.2).

To put the identity in a more practical form we use the property (A.13) and drop the delta

function together with one of the external momenta, pi4 , i4 ∈ {1, 2, 3, 4}. Denoting the

indices of the remaining momenta by i1, i2, i3 ∈ {1, 2, 3, 4}\{i4} we obtain(
Kµ
i1

+Kµ
i2

+Kµ
i3

)
Ibox(pi1 , pi2 , pi3) = Aµbox(pi1 , pi2 , pi3) , (4.10)

where pi4 = −pi1 − pi2 − pi3 .

The explicit form of the anomaly Aµbox depends on the configuration of the external

legs. The four-mass box is conformal since all legs are off-shell, i.e. Aµ4m = 0. If one or more

legs are on-shell, the integration over the regions where the loop momentum ` is collinear

with the on-shell leg, in general spoils the symmetry. The zero-mass box I0m (4.6) is an

exception. In this particular case the contributions from the four collinear loop integration

regions cancel in the sum and the integral is conformal, as explained below.

The conformal anomaly A
(6D)
µ (p; `) of the trivalent vertex at a massless corner with

inflowing loop momentum ` and on-shell momentum p is given by (2.10). We act on each

leg of I0m with the conformal boost. If we ignore the anomaly, the transformation of the

external legs is compensated by that of the loop momentum, since we know that the four-

mass box is conformal. The effect of the anomaly amounts to replacing each vertex by the

contact term A
(6D)
µ , see figure 3. This localizes the loop integration on the configuration
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(Kµ
1 +Kµ

2 +Kµ
3 +Kµ

4 )
p4

p1 p2

p3

ℓ =
p4

pµ1 p2

p3
+

p4

p1 p2

pµ3

6= 0

Figure 4. Anomalous conformal Ward identity for the two-mass-easy 6D box integral.

of collinear momenta. The remaining integration over ξ from (2.10) is straightforward,

Kµ
i I0m ⇒

∫
d6`

A
(6D)
µ (pi; `)

(`− pi+1)2(`− pi+1 − pi+2)2
=

4iπ3pµi
p2
i−1ip

2
ii+1

. (4.11)

Summing up all four contributions, we find that the anomaly cancels,(
4∑
i=1

Kµ
i

)
δ(6)(P )I0m = 4 δ(6)(P )

4∑
i=1

pµi
p2
i−1ip

2
ii+1

= 0 . (4.12)

The direct application of the conformal boost Kµ from (A.12) on the expression (4.6)

confirms that the massless 6D box integral has no anomaly.

The conformal symmetry of the remaining 6D boxes in figure 2 with on-shell legs

is broken by the collinear anomaly. The corresponding Ward identities are obtained as

above. We act with Kµ on the on-shell legs and with Kµ
∆=4 on the off-shell legs. Each

massless corner i is replaced by the anomaly (2.10) which freezes the loop momentum, see

figure 4. The result of the integration over ξ depends on the configuration of the adjacent

legs i− 1, i+ 1:

Ai µon/on =
4pµi

p2
i−1ip

2
ii+1

=: aµ ,

Ai µoff/on =
aµ

1− r−

(
1 +

r− log r−
1− r−

)
with r− =

p2
i−1

p2
i−1i

,

Ai µon/off =
aµ

1− r+

(
1 +

r+ log r+

1− r+

)
with r+ =

p2
i+1

p2
ii+1

,

Ai µoff/off =
aµ

1− r−r+

(
r− log r−
(1− r−)2

+
r+ log r+

(1− r+)2

)
+

aµ

(1− r+)(1− r−)
. (4.13)

Summing up the relevant anomaly terms, we find the following conformal Ward identities

for the remaining box integrals,

(Kµ
1 + Kµ

2 + Kµ
3 +Kµ

4 ) δ6(P ) I1m = δ6(P )
(
A1µ

off/on +A2µ
on/on +A3µ

on/off

)
, (4.14)

(Kµ
1 +Kµ

2 + Kµ
3 +Kµ

4 ) δ6(P ) I2me = δ6(P )
(
A1µ

off/off +A3µ
off/off

)
, (4.15)

(Kµ
1 + Kµ

2 +Kµ
3 +Kµ

4 ) δ6(P ) I2mh = δ6(P )
(
A1µ

off/on +A2µ
on/off

)
, (4.16)

(Kµ
1 +Kµ

2 +Kµ
3 +Kµ

4 ) δ6(P ) I3m = δ6(P )A1µ
off/off . (4.17)
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(
6∑
i=1

Kµ
i

)
ℓ =

6∑
i=1

pµi

Figure 5. Conformal Ward identity for the 6D hexagon integral with all legs on shell.

We have checked the identities (4.12), (4.14) and (4.15) explicitly, in the form (4.10) by

acting with the conformal boost directly on the expressions (4.6), (4.7) and (4.8) for the

zero-mass, one-mass and two-mass-easy boxes, respectively. For the two-mass-hard and

three-mass integrals, to save effort we did not use the explicit expressions, but we acted

with the conformal boost on their α-parameter representation (4.5) and then performed

the α-integration numerically.

In conclusion, the one-loop 6D boxes are not conformal, except for the four-mass and

zero-mass cases. The breakdown is due to the collinear anomaly that we have revealed. We

can predict this anomaly without actually knowing the expression for the integral itself.

It would be interesting to investigate if the anomalous conformal Ward identities can be

turned into useful differential equations in momentum space. They will relate the `−loop

(pseudo)conformal integrals to (` − 1)−loop ones. Solving such equations could be an

alternative way of calculating (pseudo)conformal loop integrals.

4.2 Conformal anomaly of the 6D hexagon integral

Another interesting example is the 6D on-shell hexagon integral, p2
i = 0, i = 1, . . . , 6,

Ihex =
1

iπ3

∫
d6`

`2(`+ p1)2(`+ p1,2)2(`+ p1,2,3)2(`− p5,6)2(`− p6)2
. (4.18)

This integral is finite. If all the legs are massive, the integral is conformal, see (4.3). In the

massless case the collinear anomaly breaks the conformal symmetry in a predictable way.

Besides the (anomalous) conformal symmetry, this integral is also dual confor-

mal [14, 15]. As a corollary, it is a function of three cross-ratios, and is expressed in terms of

weight three polylogarithms, see [18, 19]. Like in section 4.1, using the seed anomaly (2.10)

at each vertex, we obtain the conformal Ward identity depicted schematically in figure 5,11

(
6∑
i=1

Kµ
i

)
δ6(P )Ihex = 4δ6(P )

6∑
i=1

pµi
p2
i,i−1p

2
i,i+1

log

(
p2i+1,i+2p

2
i−1,i−2

p2i,i+1,i+2p
2
i,i−1,i−2

)
(p2
i+1,i+2p

2
i−1,i−2−p2

i,i+1,i+2p
2
i,i−1,i−2)

.

(4.19)

We have checked it using the explicit functional expression for Ihex from [18, 19].

11The possibility of a conformal anomaly in momentum space is mentioned at the end of ref. [18].
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(
6∑
i=1

Kµ
i

)
p1

p2
p3

p6

p4

p5

ℓ1 ℓ2 =

p1

p2
pµ3

p6

p4

p5

+

p1

p2
p3

pµ6

p4

p5

Figure 6. Conformal Ward identity for the 4D double box. We act with Kµ on the on-shell legs

p3, p6, and with Kµ
∆=2 on the off-shell legs p1, p2, p4, p5.

4.3 Conformal anomaly of the 4D six-leg double box integral

Another interesting example of a finite integral is the 4D double box depicted in figure 6,

Idbl
box(p1, . . . , p6) =

1

4π4

∫
d4`1 d

4`2
`21`

2
2(`1 − p2)2(`1 − p1,2)2(`2 − p4)2(`2 − p4,5)2(`1 + `2 + p3)2

.

(4.20)

Unlike the previous examples, the analytic answer for this integral is unknown and it is

believed not to be expressible in terms of harmonic polylogarithms. In particular, the

maximal cut of the double box integral is given by an elliptic integral [20].

If all of its legs are off shell, it is the Fourier transform of a frame of free scalar

propagators 1/x2
ij , with the same topology and with conformal weights ∆ = 2 at the

corners and ∆ = 3 at the middle points. This shows that the off-shell integral is conformal.

We are interested in the case where the two middle legs are massless, p2
3 = 0, p2

6 = 0.12

The integral remains IR finite but its conformal symmetry is broken. As shown in the figure,

around the massless legs we find 4D ‘seed’ configurations of four momenta which have a

collinear anomaly, see (3.14). Acting with the conformal boost
∑

i=1,2,4,5Ki ;∆=2 +K3 +K6,

we produce contact terms which lift one of the loop integrations. The anomaly can be put

in the following Feynman parameter form∑
i=3,6

pµi

∫ 1

0

dαdβ dγ δ(α+β+γ−1)

(αy2
i−1 i+1+ᾱy2

i−1 i)(αy
2
i−2 i+1+ᾱy2

i−2 i)(βy
2
i i+2+β̄y2

i+1 i+2)(βy2
i i+3+β̄y2

i+1 i+3)
,

(4.21)

where the region momenta are defined by yi − yi+1 = pi, y7 ≡ y1, so yij = pi,i+1,...,j−1. It

is straightforward to reduce this integral to polylogs of weight two.

We have checked this anomalous Ward identity by numerical integration. We used

a Feynman parameter representation for the double-box integral, similar to (4.5), and

acted on it with the conformal boost generators. Then we chose random kinematics in the

Euclidean region and performed the integrations.

In conclusion, our method produces a potentially useful 2nd-order differential equation

for the double box integral, whose right-hand side is given by polylogs of weight two. It is

interesting to clarify the relationship with the 1st-order differential equation from [21].

12In the literature this integral is referred to as the ten-leg double box, implying that the massive as well

as the massless legs come from φ4 vertices. We count six legs, four massive and two massless.
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5 Conclusions

In this paper we have revealed a new mechanism of breakdown of conformal invariance, at

the lowest, Born level of perturbation theory, hence in the absence of UV or IR/collinear

divergences. The phenomenon occurs in generalized form factors involving more than one

local operator and an on-shell state of massless particles. The breakdown is due to hidden

singularities on configurations in momentum space where the momenta of the operators

become collinear with the on-shell momenta of the particles. The contact nature of the

conformal anomaly makes it difficult to detect directly in momentum space. It is much

easier to see in the mixed representation, where the operators live in coordinate and the

particles in momentum space. There the anomaly is not of the contact type and can be

most efficiently worked out by the method of Lagrangian insertion. We have presented a

number of examples in 4D and 6D conformal theories.

We have found a practical application of the new conformal anomaly to the study of

loop momentum integrals. It concerns a class of `−loop integrals which remain finite if

some of their legs become massless. The integrals are conformal if their legs are massive

but the collinear region around a massless external leg creates a contact anomaly of the

type we are discussing. The loop integration makes this anomaly visible. It takes the

form of a 2nd-order differential equation whose anomalous right-hand side is given by

(` − 1)−loop integrals. We have verified explicitly these equations by acting with the

conformal boost on the known expressions of several one-loop scalar integrals, as well as on

the numerically integrated double box. Our differential equations might prove useful for

calculating unknown finite loop integrals. Differential equations of a different origin have

been successfully exploited in refs. [15, 18, 22]. It would be very interesting to combine

the two methods. Our new Ward identity adds to the list of usual checks on the analytic

expressions for finite conformal integrals, e.g. numerical evaluation, soft, collinear and

Regge limits.

In this paper we have restricted ourselves to 4D and 6D conformal theories but it is

straightforward to extend our results to 3D form factors based on the conformal φ6 vertex.

Another line of generalization is to study not only scalar finite integrals but also those with

fermion lines. We can expect similar anomalies and differential equations.

Our discussion here concerns only ordinary conformal symmetry. It can be extended

to the maximally supersymmetric N = 4 SYM theory, which is conformal at all levels of

perturbation theory. In this theory there exist Born-level generalized form factors with

loop topology, so their conformal anomaly is expected to be non-contact. One should also

encounter an anomaly of the superconformal symmetry (S or S̄). It would be interesting

to clarify the relation to the dual Q̄, or equivalently, S̄ supersymmetry of amplitudes

discussed in ref. [10]. Conformal and dual conformal (super)symmetry are at the base

of the Yangian symmetry of superamplitudes [23, 24] and more recently, of the multi-

loop fishnet graphs [25]. Our new anomaly mechanism may have implications for these

larger symmetries too. In particular, the considerations in the present paper should be

sufficient to describe the anomalies of the level one Yangian symmetry generators of the

fishnet graphs.
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Note added. Several months after the preprint of our paper appeared on the arXiv, an

interesting one-parameter integral representation of the elliptic 4D double box was derived

in [28]. Our Ward identity (4.21) could serve as a non-trivial check of this result.
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A Conformal generators in coordinate and momentum space

In this paper we consider the D−dimensional conformal group SO(2, D) realized in coor-

dinate and momentum space. We focus particularly on the cases D = 4 and D = 6.

The familiar coordinate space realization of the translation Pµ and conformal boost

Kµ generators on a function of several points ϕ(xi) with conformal weight ∆i and

D−dimensional Lorentz spin Si at each point, has the form

P (x)
µ = i

∑
i

∂xµi (A.1)

K
(x)
µ;∆,S = i

∑
i

(
x2
i ∂xµi − 2xi µx

ν
i ∂xνi − 2∆ixi µ − 2ixνi Σi νµ

)
. (A.2)

Here Σi is the matrix part of the Lorentz generator Lµν corresponding to the given rep-

resentation. They satisfy the conformal algebra [Pµ,Kν ] = 2iLµν + 2iηµνD, where the

dilatation operator is D = −i
∑

i

(
xµi ∂xµi + ∆i

)
. The generators are defined so that

the propagator of a massless scalar field with canonical conformal weight ∆ = D/2 − 1,

〈φ(x1)φ(x2)〉 = (x2
12)1−D/2, is invariant,

{P,K,L,D} 〈φ(x1)φ(x2)〉 = 0 . (A.3)

The momentum space realization is obtained by Fourier transforming the x-space con-

formal generators (A.1), (A.2) according to the following rule with a test function ϕ(x),

G(q) ϕ̃(q) :=

∫
dDx eiqxG(x) ϕ(x) where ϕ̃(q) :=

∫
dDx eiqxϕ(x) . (A.4)

We find

P (q)
µ =

∑
i

qi µ (A.5)

K
(q)
µ;∆ =

∑
i

[
−qi µ�qi + 2qνi ∂qνi ∂q

µ
i

+ 2(D −∆i)∂qµi + 2iΣi,µν∂qi ν

]
. (A.6)

– 21 –



J
H
E
P
0
4
(
2
0
1
8
)
0
8
2

The Fourier exponential eiqx is invariant under both generators,

(P (q)
µ + P (x)

µ ) eiqx = 0 , (K
(q)
µ;∆ +K

(x)
µ;D−∆) eiqx = 0 . (A.7)

The arbitrary choice of the conformal weight ∆ reflects the property of δ(D)(x12) (the

inverse Fourier transform of eiqx12). Its total weight is D, but the individual weights at

points 1 and 2 cannot be distinguished.

Since the conformal boost generator (A.6) is a 2nd-order operator, the product of two

conformal functions of the momenta is in general not conformal. A useful illustration is

the product of a scalar propagator 1/q2 and some other scalar function ϕ(q). We have

K
(q)
µ;∆

[
1

q2
ϕ(q)

]
= 4

(
∆ + 1− D

2

)
qµ
q4
ϕ(q)

+
1

q2
[−qµ� + 2qν∂ν∂µ + 2(D −∆− 2)∂µ]ϕ(q) . (A.8)

We see that this product is conformal only if ∆ = D/2 − 1, i.e. the conformal weight

of a scalar field in D dimensions. Consequently, the function ϕ(q) must have weight

∆ϕ = D/2 + 1. This is the momentum space equivalent of the coordinate space statement

that the equation �xφ(x) = ϕ(x) is conformal only if ∆φ = D/2− 1 and ∆ϕ = D/2 + 1.

A.1 On-shell realization

The conformal group can also be realized on functions of on-shell momenta ϕ(p) with

p2 = 0. This realization depends on the space-time dimension. Here we give the details for

the cases of interest in this paper, D = 4 and D = 6.

A real lightlike momentum pµ, p2 = 0 in 4D Minkowski space is parametrized by a

complex conjugate pair of commuting chiral and antichiral SL(2, C) spinors, σµαα̇pµ = λαλ̃α̇.

They are defined up to a U(1) ∼ SO(2) phase which is associated with the helicity of the

on-shell particle. This SO(2) is the little group (subgroup of SL(2, C)) which leaves pµ
invariant. In this parametrization the on-shell conformal generators take the form [9]

Pµ =
∑
i

pi µ =
1

2
σ̃α̇αµ

∑
i

λi αλ̃ α̇ , Kµ = 2 σ̃α̇αµ
∑
i

∂2

∂λαi ∂λ̃
α̇
i

. (A.9)

A short calculation using the chain rule shows that

Kµ ϕ(p) = K
(p)
µ;∆=3 ϕ(p) for D = 4 , (A.10)

on the space of on-shell test functions ϕ(pαα̇ = λαλ̃α̇). Thus the off-shell, eq. (A.6), and

on-shell, eq. (A.9), versions of the conformal boost are compatible.

In the case D = 6 we use the commuting spinor parametrization of a 6D lightlike vector

of ref. [26]. The complexification of the 6D Lorentz group is SL(4), and the corresponding

little group of a lightlike vector is SL(2)×SL(2). We use chiral spinors λAa carrying an SL(4)

index A and an SL(2) index a of the little group labeling the helicity states. The vector

representation of SO(6) is equivalent to the antisymmetric bispinor representation of SL(4),

so pµ is given by the antisymmetric product of two chiral spinors, pµσ̃ABµ = λAaλBa . The
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Clebsch-Gordon coefficients σ̃ABµ are the 4× 4 6D Pauli matrices (see appendix A in [26]).

In this spinor parametrization the on-shell conformal boost generator takes the form

Kµ = −σ̃ABµ
∂2

∂λAa∂λBa
. (A.11)

On the space of on-shell test functions ϕ
(
pAB = λAaλBa

)
this is equivalent to

Kµ ϕ(p) = K
(p)
µ;∆=4 ϕ(p) for D = 6 . (A.12)

A.2 Conformal properties of the momentum conservation delta function

Here we prove that the momentum conservation delta function in expressions of the type

δ(D)(
∑n

i=1 qi)ϕ(qi) can be dropped when checking the conformal properties. It is sufficient

to show that K
(q)
µ ϕ(q) = 0, where ϕ(q) depends on (n − 1) momenta. For simplicity, we

consider the case n = 2, the generalization is straightforward.

We want to show that

(K(q)
µ +K(k)

µ )
[
δ(D)(q + k)ϕ(k)

]
= 0 iff K(k)

µ ϕ(k) = 0 . (A.13)

Here we also assume that ϕ(k) is Lorentz invariant and homogeneous of degree ∆k,

Lµνϕ ∼ (kµ∂kν − kν∂kµ)ϕ = 0 , kν∂kνϕ = ∆kϕ . (A.14)

The conformal generator in D−dimensional momentum space is given in (A.6), with ∆i

being the conformal weight associated with the point xi whose Fourier dual is qi. The

operator K
(q)
µ in (A.13) acts only on the delta function whose conformal weight is ∆q = D.

Switching the derivatives from its q end to the k end and integrating by parts, we find

K(q)
µ δ(D)(q + k) = [kµ�k − 2kν∂kν∂kµ − 2D∂kµ ] δ(D)(q + k) , (A.15)

therefore

(K(q)
µ +K(k)

µ ) δ(D)(q + k) = −2∆k∂kµ δ
(D)(q + k) . (A.16)

The operator K
(k)
µ acts also on the function ϕ(k). We assume that it is invariant,

i.e. for some ∆k we have K
(k)
µ ϕ(k) = 0. What remains are the mixed terms where the

second-order derivatives in K
(k)
µ are distributed between δ(D)(q + k) and ϕ(k):

−kµ�k (δϕ) → −2kµ(∂kνδ) (∂kνϕ)

2kν∂kν∂kµ (δϕ) → 2kν((∂kµδ) (∂kνϕ) + (∂kνδ) (∂kµϕ))

= 2(∆k (∂kµδ)ϕ+ kµ(∂kνδ) (∂kνϕ)) . (A.17)

Going from the second to the third line we have used the properties (A.14) of the function

ϕ(k). So, the net result from (A.17) is 2∆k (∂kµδ)ϕ, which cancels the delta function

contribution (A.16), and we arrive at (A.13).

The same argument works if the momentum kµ is on-shell, k2 = 0. After distributing

the derivatives from the generator K(k) (A.10) or (A.12), we use the analogs of (A.14).
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B Calculation of the 6D φ3 form factor and its anomaly

Here we present a direct derivation of the conformal anomaly in the generalized 6D form

factor in the mixed x/p-space representation (2.3). It is an alternative to the Lagrangian

insertion procedure from section 2.3.

We start with the Fourier transform of the three-point function (2.2), where we have

restored the iε prescriptions,

I(x1, x2, p) :=

∫
d6x0

iπ3

eipx0

(x2
10 − iε)2(x2

20 − iε)2(p2 + iε)
. (B.1)

When p2 6= 0 this integral is conformal,(
2∑
i=1

K
(xi)
µ;∆=2 +K

(p)
µ;∆=2

)
I(x1, x2, p) = 0 . (B.2)

We want to understand what happens when p2 = 0, that is, with the form factor (2.3),

F (x1, x2, p) = lim
p2→0

p2I(x1, x2, p) =

∫
d6x0

iπ3

eipx0

(x2
10 − iε)2(x2

20 − iε)2

∣∣∣∣
p2=0

. (B.3)

B.1 Differential equation for the form factor

Let us examine the properties of the function F (x1, x2, p) following from its Lorentz,

dilatation and translation invariance. The off- and on-shell realization of the transla-

tions, eqs. (A.1) and (A.5), respectively, together with Lorentz invariance imply that

F (x1, x2, p) = e
i
2
p(x1+x2) ϕ(x2

12, (px12)). Further, the scaling behavior of the integral

in (B.3) is given by 1/x2
12, the rest should be a function of the dimensionless variable

(px12) only. We thus arrive at the following general ansatz

F (x1, x2, p) = e
i
2
p(x1+x2) ϕ(α)

x2
12

, α :=
1

2
(px12) , p2 = 0 . (B.4)

In addition, the function ϕ(α) must be even,

ϕ(α) = ϕ(−α) , (B.5)

as a consequence of the permutation symmetry of the integral in (B.3).

Now, hitting the integral by, e.g., �1 and using the identity [27]

�
1

(x2 − iε)2
= −4iπ3δ(6)(x) , (B.6)

we find the inhomogeneous differential equation

�1F (x1, x2, p) = −4
eipx1

x4
12

. (B.7)

Next, we use translation invariance to fix the frame x2 = 0. Then the ansatz (B.4) becomes

F (x, 0, p) =
1

x2
eiα ϕ(α) :=

1

x2
f(α) . (B.8)
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The differential equation (B.7) takes the form

�

[
1

x2
f(α)

]
= − 4

x4
[f(α) + αf ′(α)] = − 4

x4
e2iα . (B.9)

Its solution is f(α) = (e2iα−C)/(2iα) with a constant C. Then ϕ(α) = (eiα−Ce−iα)/(2iα)

and the boundary condition (B.5) fixes C = 1. We obtain the expression for the form factor

F (x1, x2, p) =
1

x2
12

e
i
2
p(x1+x2) sinα

α
with α =

1

2
(px12) , (B.10)

coinciding with (1.5). Notice the absence of the unphysical pole at (px12) = 0.

Later on we will also need the integral (B.3) with modified prescription of the first

propagator,

F̂ (x1, x2, p) =

∫
d6x0

iπ3

eipx0

(x2
10 + iε)2(x2

20 − iε)2

∣∣∣∣
p2=0

. (B.11)

We rewrite the ansatz (B.4) with a new function ϕ̂(α). It satisfies a different boundary

condition. The integral (B.11) changes sign under the simultaneous complex conjugation,

exchange x1 ↔ x2 and also p↔ −p. This operation leaves α invariant, therefore we require

ϕ̂(α) = −ϕ̂(α)∗ . (B.12)

Next, we hit the integral (B.11) with �1 and use the complex conjugate of the identity (B.6).

Repeating the steps of fixing the frame x2 = 0, defining f̂(α) = eiαϕ̂(α), we obtain the

differential equation

�

[
1

x2
f̂(α)

]
= − 4

x4
[f̂(α) + αf̂ ′(α)] = 4

e2iα

x4
. (B.13)

Its solution is f̂(α) = (−e2iα−C)/(2iα), hence ϕ̂(α) = (−eiα−Ce−iα)/(2iα). The boundary

condition (B.12) fixes C = 1 and we obtain ϕ̂(α) = i cosα/α. Finally,

F̂ (x1, x2, p) =
i

x2
12

e
i
2
p(x1+x2) cosα

α
. (B.14)

Note that this unphysical quantity has a pole at (px12) = 0. We define it with the principal

value prescription, which is compatible with the boundary condition (B.12).

B.2 Conformal Ward identities

Let us examine the conformal properties of the result (B.10). We need to apply the off-shell

x−space generator K
(xi)
µ;∆=2 (see (A.2)) and the on-shell p−space generator K(p)

µ (see (A.12)).

To this end it is sufficient to use translation invariance and fix the frame x2 = 0.13 We go

back to the general ansatz (B.8) and obtain(
K

(x)
µ;∆=2 +K

(p)
µ;∆=4

) f(α)

x2
=
pµ
4

[
2if ′ − f ′′

]
+
xµ
x2

[
αf ′′ + 2(1− iα)f ′ − 2if

]
. (B.15)

13The origin x = 0 is stable under conformal transformations.
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Conformal invariance would mean that the coefficients of the two vectors pµ and xµ van-

ish. These two equations are incompatible, so we conclude that there is no function of

the form (B.4) satisfying the homogeneous Ward identity, i.e. which is an exact confor-

mal invariant.

Now we take f(α) = (e2iα−1)/(2iα) for the form factor (B.10) and insert it in (B.15).

The term ∼ xµ vanishes, while the term ∼ pµ yields the anomalous Ward identity (2.5),(
2∑
i=1

K
(xi)
µ;∆=2 +K

(p)
µ;∆=4

)
F = pµ e

i
2
p(x1+x2) 1

2α

d

dα

sinα

α
=: pµA(x1, x2, p) , (B.16)

where we have restored the translation invariant dependence on x2. Notice that if we

know in advance that the anomaly term is ∼ pµ only, as it is the case in (B.16), then

the differential equation following from the vanishing of the term ∼ xµ, and the boundary

condition (B.5) fix the solution (B.10), up to an overall constant.

The anomaly function A(x1, x2, p) can also be rewritten in the integral form (see (2.6))

A(x1, x2, p) = −
∫ 1

0
dξ ξξ̄ ei(px1)ξ+i(px2)ξ̄ . (B.17)

This identity is easy to check, but it is also useful to interpret it as a Fourier transform. We

again use translation invariance to fix x2 = 0 and denote ω ≡ (px1). We get from (B.16)

A(x1, 0, p) =
eiω + 1

ω2
+ 2i

eiω − 1

ω3
. (B.18)

Then we use the Fourier transform [27]14∫ ∞
−∞

dω ω−m e−iωξ =
(−i)mπ
(m− 1)!

sign(ξ) for m ≥ 1 (B.19)

and its inverse to rewrite (B.18) in the integral form

A(x1, 0, p) = −
∫ 1

0
dξ ξξ̄ eiωξ . (B.20)

Restoring the point x2 by translation invariance, we obtain (B.17).

In a similar way we derive the anomalous Ward identity for the integral F̂ (B.11),(
2∑
i=1

K
(xi)
µ;∆=2 +K

(p)
µ;∆=4

)
F̂ = pµ e

i
2
p(x1+x2) i

2α

d

dα

cosα

α
=: pµÂ(x1, x2, p) . (B.21)

The sum of the two anomalies (B.16) and (B.21) gives

A+ Â = 2eipx2
(px12)− 2i

(px12)3
. (B.22)

Repeating the steps from (B.18) to (B.20), we can rewrite this sum as follows:

A+ Â = −
∫ ∞
−∞

dξ ξξ̄ sign(ξ) ei(px1)ξ+i(px2)ξ̄ . (B.23)

14Here ω−m is defined as the finite part of the singular distribution.
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B.3 Evaluation by Schwinger parameters

Here we present another independent calculation of the form factor and its conformal

anomaly. We first do the d6x0 integration in (B.1), for p2 6= 0, by introducing Schwinger

parameters. The result is a single-parameter integral of a modified Bessel function of the

second kind [27]. Then we use the asymptotics for p2 → 0 and integrate over ξ,

I(x1, x2, p) =
eipx1√
p2x2

12

∫ 1

0
dξ

√
ξξ̄ e−iξ(px12)K1

(√
x2

12p
2ξξ̄

)
=

τ

p2
− 1

4
A log p2 + . . .

(B.24)

The integral has a pole 1/p2 and a cut starting at p2 = 0. The dots denote terms which

are not singular after acting with the conformal boost (A.6) (e.g., the next term in the

expansion p2 log p2 is finite after acting on it with K
(p)
µ ). The residue τ of the pole is

τ(x1, x2, p) =
1

x2
12

e
i
2
p(x1+x2) sinα

α
with α =

1

2
(px12) , p2 6= 0 . (B.25)

The expression for A(x1, x2, p) is the same as in eq. (B.16) but with p2 6= 0.

In the on-shell limit (B.3) only the first term in (B.24) survives, and we find the

generalized form factor defined in (B.3), in accord with (B.10),

F (x1, x2, p) = τ(x1, x2, p
2 = 0) . (B.26)

As we already know, this result is not invariant under conformal boosts. To evaluate the

anomaly, we use the fact that the off-shell integral I(x1, x2, p) is conformal, so substituting

the asymptotic expansion (B.24) in the Ward identity (B.2) gives(
2∑
i=1

K
(xi)
µ;∆=2 +K

(p)
µ;∆=2

)
τ

p2
=
(
K

(x1)
µ;∆=2 +K

(x2)
µ;∆=2 +K

(p)
µ;∆=2

) 1

4
A log p2 + . . . , (B.27)

where the dots stand for the omitted nonsingular terms. Then we multiply both sides of

this relation by p2, take into account (A.8) in the form

K
(p)
µ;∆=2 1/p2 ϕ(p) = 1/p2K

(p)
µ;∆=4 ϕ(p) , (B.28)

and that log p2 produces a pole 1/p2 upon differentiation,

lim
p2→0

p2K
(p)
µ;∆=2 log p2 ϕ(p) = 4pµ ϕ(p) . (B.29)

This enables us to take the limit p2 → 0,

lim
p2→0

(
2∑
i=1

K
(xi)
µ;∆=2 +K

(p)
µ;∆=4

)
τ(x1, x2, p) = pµA(x1, x2, p

2 = 0) , (B.30)

in accord with (B.16). We see that the expression for the conformal anomaly is given by

the discontinuity A(x1, x2, p) on the cut of the integral I(x1, x2, p), eq. (B.24).
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p1 p2

xa xb

p3

p1 p2

p3

xa xb
x0 x0

xa xb

p1 p2

p3

x0

Figure 7. Feynman graphs for the generalized form factor with Lagrangian insertion (C.2).

C Derivation of the Ward identity (3.29)

Here we show how the anomalous Ward identity (3.29) can be derived via the Lagrangian

insertion method described in section 2.3. We need to find the residue

lim
ε→0

ε

∫
dDx0 〈O(xa)O(xb) (xµ0 LYM(x0)) |φ(p1)φ(p2)g(+)(p3)〉Born , (C.1)

where D = 4−2ε and we insert the Yang-Mills part of the Lagrangian (3.24). We start with

the generalized form factor of three operators with three on-shell particles. It is calculated

in momentum space. The contributing diagrams are shown in figure 7. The result is

〈O(qa)O(qb)L(q0)|φ(p1)φ(p2)g(+)(p3)〉Born

= δ(4)(P )

[
[3|q̃1,aq2,b|3]

q2
1,aq

2
2,bq

2
1,2,a,b

+
〈2|q1,a,b|3][23]

q2
1,aq

2
1,a,bq

2
1,2,a,b

−
〈1|q2,a,b|3][13]

q2
2,bq

2
2,a,bq

2
1,2,a,b

]
+ perm (a↔ b) , (C.2)

where P is the total momentum, P = qa+qb+p1 +p2 +p3. Then we Fourier transform this

result to coordinate space, qa, qb, q0 → xa, xb, x0. To transform the last two terms in (C.2)

we use (3.27), and for the first term we use the formula∫
d4p

4π2

d4q

4π2

e−ipx−iqy〈`|p q̃|`〉
p2q2(q + p)2

= − 〈`|x ỹ|`〉
x2y2(x− y)2

. (C.3)

The result for the generalized form factor in the mixed x/p-space representation is

〈O(xa)O(xb)L(x0)|φ(p1)φ(p2)g(+)(p3)〉Born =
[3|x̃a0xb0|3]

x2
a0x

2
b0x

2
ab

eixap1+ixbp2+ix0p3

+
〈2|xb0|3][23]

〈2|xb0|2]x2
abx

2
b0

eix0p3+ixap1
(
eix0p2−eixbp2

)
+
〈1|xa0|3][13]

〈1|xa0|1]x2
abx

2
a0

eix0p3+ixbp2
(
eixap1−eix0p1

)
+perm (a↔ b) . (C.4)

Like in (3.28), the poles at (xa0p1) = 0 and (xb0p2) = 0 are absent.

Then we substitute (C.4) in (C.1) and extract the residue of the integral at the pole

1/ε. We are interested in the divergent part, so we can use the D = 4 integrand. The last

two terms in (C.4) do not contribute to the residue, while for the first term we obtain∫
dDx0 x

µ
0e
ix0p3 [3|x̃a0xb0|3]

x2
a0x

2
b0x

2
ab

=
iπ2

2ε
[3|σ̃µxab|3]A(xa, xb, p3) +O(ε0) , (C.5)

with A defined in (3.30). Thus the Lagrangian insertion (C.1) yields the anomaly (3.29).
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D Unitarity cuts of the conformal Ward identities

Here we discuss the cuts of the 6D boxes and the corresponding conformal Ward identities.

For simplicity we consider the one-mass I1m and two-mass-easy I2me cases, figure 2, and

take the unitarity cut in the s = p2
1,2 channel. The explicit expressions (4.7), (4.8) have

the cuts

Disc
p21,2

I1m = 2πi
1

p2
1,3

[
log

(
p2

1,2

p2
2,3

)
+ log

(
1− p2

4

p2
1,2

)]
,

Disc
p21,2

I2me = 2πi
1

p2
1,3

log
(
1− ap2

1,2

)
. (D.1)

The integrals satisfy the conformal Ward identities (4.14) and (4.15), respectively, with the

right-hand sides given explicitly by eqs. (4.13). The anomalies are expressed in terms of

logarithm functions, so they also have discontinuities in the variable p2
1,2,

Disc
p21,2

(
A1µ

off/on +A2µ
on/on +A3µ

on/off

)
= −8πi pµ3

p2
4

p2
2,3(p2

3,4 − p2
4)2

,

Disc
p21,2

(
A1µ

off/off +A3µ
off/off

)
=

8πi p2
1,2

p2
2p

2
4 − p2

1,2p
2
1,4

[
pµ1 p

2
2

(p2
1,2 − p2

2)2
+

pµ3 p
2
4

(p2
1,2 − p2

4)2

]
. (D.2)

Now we can explicitly check that the cuts (D.1) of the integrals I1m and I2me satisfy

conformal Ward identities whose right-hand sides are the cuts of the anomalies of the

integrals (D.2):

(Kµ
1 + Kµ

2 + Kµ
3 +Kµ

4 ) δ6(P ) Disc
p21,2

I1m = δ6(P ) Disc
p21,2

(
A1µ

off/on +A2µ
on/on +A3µ

on/off

)
,

(Kµ
1 +Kµ

2 + Kµ
3 +Kµ

4 ) δ6(P ) Disc
p21,2

I2me = δ6(P ) Disc
p21,2

(
A1µ

off/off +A3µ
off/off

)
. (D.3)

This is an example of the generic phenomenon of commuting conformal anomaly and

unitarity cut.

These conformal Ward identities for the discontinuities of the loop integrals follow from

the anomaly of the cut of the trivalent vertex with p2 = 0 and with the loop momentum `

(see the proof below),(
K

(`)
µ;∆=2 + K(p)

µ

)
(−2πi)δ(`2)

1

(`+ p)2
= 4iπ3 pµ

∫ ∞
−∞

dξ ξξ̄ sign(ξ) δ(6)(`+ ξp) . (D.4)

Using this result we can derive the Ward identities (D.3) for I1m and I2me by cutting the

relevant propagators, see figures 8 and 9. The first two contributions on the right-hand

side of figure 8 vanish. For instance, in the first term ` ∼ p1 on the support of the anomaly.

Momentum conservation at the vertex with p2 and the cut condition imply that the lightlike

vectors `+ p1, p2 and `+ p1 − p2 at the vertex are collinear. However, we assume that p1

and p2 are generic lightlike momenta.
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(
3∑
i=1

Kµ
i +Kµ

4

) p1 p2

p4 p3

=

=0︷ ︸︸ ︷
pµ1 p2

p4 p3

+

=0︷ ︸︸ ︷
p1 pµ2

p4 p3

+

p1 p2

p4 pµ3

Figure 8. Conformal Ward identity for the s-channel cut of the one-mass 6D box. The momenta

of the highlighted lines are collinear. The first two contributions vanish.

(Kµ
1 +Kµ

2 +Kµ
3 +Kµ

4 )

p1 p2

p4 p3

=

pµ1 p2

p4 p3

+

p1 p2

p4 pµ3

Figure 9. Conformal Ward identity for the s-channel cut of the two-mass-easy 6D box.

Proof of (D.4). Consider the sum of the integrals (B.3) and (B.11),

F + F̂ =

∫
d6x0

iπ3

eipx0

(x2
20 − iε)2

[
1

(x2
10 − iε)2

+
1

(x2
10 + iε)2

]
. (D.5)

Its Fourier transform gives the cut of the propagator 1/(q2
1 + iε) in the trivalent vertex,

F + F̂
FT→ δ(6)(q1 + q2 + p)

q2
2 + iε

[
i

q2
1 + iε

− i

q2
1 − iε

]
=
δ(6)(q1 + q2 + p)

q2
2 + iε

2πδ(q2
1) . (D.6)

The anomaly of the sum F+F̂ was found in (B.23). Its Fourier transform is straightforward

and we arrive at (D.4).
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