PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: February 12, 2018
ACCEPTED: March 28, 2018
PUBLISHED: April 9, 2018

Coulomb branch operators and
mirror symmetry in three dimensions

Mykola Dedushenko,” Yale Fan,’ Silviu S. Pufu® and Ran Yacoby®
@ Walter Burke Institute for Theoretical Physics, California Institute of Technology,
Pasadena, CA 91125, U.S.A.

b Department of Physics, Princeton University,
Princeton, NJ 08544, U.S.A.

¢ Department of Particle Physics and Astrophysics, Weizmann Institute of Science,
Rehovot 76100, Israel

E-mail: dedushenko@gmail.com, yalefan@gmail.com, spufu@princeton.edu,
ranyacoby@gmail.com

ABSTRACT: We develop new techniques for computing exact correlation functions of a
class of local operators, including certain monopole operators, in three-dimensional N =
4 abelian gauge theories that have superconformal infrared limits. These operators are
position-dependent linear combinations of Coulomb branch operators. They form a one-
dimensional topological sector that encodes a deformation quantization of the Coulomb
branch chiral ring, and their correlation functions completely fix the (n < 3)-point functions
of all half-BPS Coulomb branch operators. Using these results, we provide new derivations
of the conformal dimension of half-BPS monopole operators as well as new and detailed
tests of mirror symmetry. Our main approach involves supersymmetric localization on a
hemisphere HS? with half-BPS boundary conditions, where operator insertions within the
hemisphere are represented by certain shift operators acting on the HS? wavefunction. By
gluing a pair of such wavefunctions, we obtain correlators on S? with an arbitrary number
of operator insertions. Finally, we show that our results can be recovered by dimensionally
reducing the Schur index of 4D AN = 2 theories decorated by BPS 't Hooft-Wilson loops.

KEYwORDS: Extended Supersymmetry, Supersymmetric Gauge Theory, Supersymmetry
and Duality, Conformal Field Theory

ARX1v EPRINT: 1712.09384

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP04(2018)037


mailto:dedushenko@gmail.com
mailto:yalefan@gmail.com
mailto:spufu@princeton.edu
mailto:ranyacoby@gmail.com
https://arxiv.org/abs/1712.09384
https://doi.org/10.1007/JHEP04(2018)037

Contents

1 Introduction
1.1 Technical overview

1.2 Summary of results

2 Preliminaries
2.1 N = 4 theories on S3
2.1.1 Supersymmetry algebra
2.1.2 Lagrangians
2.1.3 Abelian gauge theories
2.2 Twisted operators and the 1D theory
2.3 Coulomb branch operators
2.4 Remarks on monopoles
2.4.1 The monopole counterterm
2.5 Remarks on normalization
2.5.1 Phase ambiguity of chiral operators
2.5.2  Subtleties with antiperiodicity

3 Localization on S3
3.1 BPS equations and their solutions
3.1.1 Non-singular solutions
3.1.2  The two-monopole background
3.2 Localization of correlators with monopoles
3.2.1 Two monopole insertions

4 Localization on HS3 and 0H S3
4.1 Cutting and gluing
4.2 Supersymmetric cutting and gluing of hemispheres
4.2.1 Operator insertions and su(2|1)
4.2.2 The phase space
4.2.3 The su(2|1)-invariant polarization
4.3 Boundary localization and the gluing formula
4.3.1 The monopole HS? wavefunction
4.3.2 Reproducing two-point function from gluing
4.4 Bilinear form and conjugation

5 Correlators with multiple insertions
5.1 Shift operators
5.1.1 Twisted CBOs as shift operators
5.1.2 Including mass and FI parameters
5.2  Reduction of Schur index

oo

10
12
12
15
16
19
20
20
21

23
23
24
24
26
27

30
31
33
34
35
37
40
42
44
44

46
46
48
o1
52



5.2.1 The line defect Schur index

5.2.2  Supercharges of line defects and twisted CBOs

5.2.3 Reduction on S?!

Applications
6.1 Chiral ring relations

6.2 Mirror symmetry: SQEDy and N-node necklace quiver

6.2.1 Higgs branch topological sector
6.2.2 Matching of partition functions
6.3 HBOs in N-node quiver and CBOs in SQED
6.3.1 The mirror map
6.3.2 Star product and composite operators
6.4 HBOs in SQEDy and CBOs in N-node quiver
6.4.1 The mirror map
6.4.2 Star product and composite operators

Discussion

Conventions

A.1 Coordinates

A.2 Supersymmetry transformations
A21 3DN =14
A22 2D N =(2,2)

More on monopoles
B.1 Global symmetries and defects
B.2 Boundary terms and monopole counterterms

General BPS monopole backgrounds
C.1 Singular solutions to BPS equations
C.2 Relation to monopole singularities

Hypermultiplet one-loop determinant on S3
D.1 Bosonic spectrum
D.2 Fermionic spectrum
D.2.1 Eigenvalue problem
D.22 ¢>|q|+
D.23 (=|q| -
D.2.4 Summary

I ST

Hypermultiplet one-loop determinant on HS3
E.1 Bosonic spectrum

E.2 Fermionic spectrum

E.3 Monopole spinor harmonics

— 11 =

93
o4
95

57
o7
99
99
61
61
62
63
66
67
68

71

73
73
75
75
75

77
7
79

81
81
83

84
84
85
86
86
88
88

88
89
90
93



F More on matching 94

F.1 Mass and FI parameters 94
F.2 Proof: basic mirror duality 96
F.3 Proof: HBOs in N-node quiver and CBOs in SQEDy 98
F.4 BF theories: an appetizer 101
G Supergravity background 103

1 Introduction

N = 4 supersymmetry in three dimensions provides a rich middle ground between the
availability of calculable supersymmetry-protected observables and nontrivial dynamics.
As an example that will be relevant to us, N' = 4 gauge theories with matter hypermul-
tiplets exhibit an infrared duality known as mirror symmetry [1], under which the Higgs
and Coulomb branches of the vacuum moduli space of a given theory are mapped to the
Coulomb and Higgs branches of the other. In particular, the half-BPS operators that
acquire expectation values when the theory is taken to the Higgs/Coulomb branch, hence-
forth referred to as Higgs/Coulomb branch operators (HBOs/CBOs), are mapped to the
CBOs/HBOs of the mirror dual theory. The duality is nontrivial for several reasons: while
the Higgs branch is protected by a non-renormalization theorem and can simply be fixed
classically from the UV Lagrangian [2], the Coulomb branch generically receives quantum
corrections; the duality exchanges certain order operators and disorder operators; and non-
abelian flavor symmetries visible in one theory may be accidental in the mirror dual. At the
same time, N = 4 supersymmetry allows for various calculations of protected observables
that led to the discovery of the duality and to various tests thereof, such as the match
between the infrared metrics of the Coulomb and Higgs branches [3], scaling dimensions of
monopole operators [4], various curved-space partition functions [5-7], expectation values
of loop operators [8, 9], and the Hilbert series [10].

Our goal in the present paper is to provide new insights into the mirror symmetry
duality and, more generally, into 3D N = 4 QFTs, by developing new techniques for cal-
culating correlation functions of certain CBOs that include monopole operators. These
techniques are related to the observation of [11, 12] that all N' = 4 superconformal field
theories (SCFTs) contain two one-dimensional topological sectors, one associated with the
Higgs branch and one associated with the Coulomb branch. These sectors are described
abstractly as consisting of the cohomology classes with respect to a pair of nilpotent su-
percharges, and each cohomology class can be represented by a position-dependent linear
combination of HBOs/CBOs that can be inserted anywhere along a line. For the Higgs
branch case, it was shown in [13] that the 1D sector has a Lagrangian description that
can be obtained by supersymmetric localization and that gives a simple way of computing
all correlation functions of the 1D Higgs branch theory. The objective of this work is to
provide an explicit description of the Coulomb branch topological sector. Having explicit



descriptions of both the Higgs and Coulomb branch 1D sectors allows for more explicit
tests of mirror symmetry, including a precise mapping between all half-BPS operators of

the two theories.

L Any

For simplicity, in this work, we focus only on abelian N/ = 4 gauge theories.
abelian N’ = 4 gauge theory has a known mirror dual, which is also abelian. The funda-
mental abelian mirror duality, proven in [4], states that the IR limit of N =4 SQED with
one flavor coincides with a free (twisted) hypermultiplet. All other abelian mirror pairs
can be formally deduced from the fundamental one by gauging global symmetries [15].

Compared to the Higgs branch 1D theory described in [13], the description of the
Coulomb branch theory is more complicated because it involves monopole operators. Mon-
opole operators in 3D gauge theories are local disorder operators, meaning that they can-
not be expressed as polynomials in the classical fields. Instead, their insertion in the
path integral is realized by assigning boundary conditions for the fields near the insertion
point. Specifically, a monopole operator is defined by letting the gauge field approach the
singular configuration of an abelian Dirac monopole at a point. Calculations involving
monopole operators are notoriously difficult, even in perturbation theory. Following [16],
the IR conformal dimensions of monopole operators have been estimated for various non-
supersymmetric theories using the 1/N expansion [17-22], the (4 — €)-expansion [23], and
the conformal bootstrap [24]. In supersymmetric theories, one can also construct BPS
monopole operators by assigning additional singular boundary conditions for some of the
scalars in the vector multiplet. For such BPS monopoles, some nonperturbative results are
known: for instance, in N/ = 4 theories, their exact conformal dimension was determined
in [4, 25-27].2 The correlation functions that we calculate in this paper provide additional
nonperturbative results involving BPS monopole operators.

The Coulomb branch 1D theory whose description we will derive encodes information
on the geometry of the quantum-corrected Coulomb branch. The Coulomb branch is
constrained by supersymmetry to be a (singular) hyperkéhler manifold which, with respect
to a fixed complex structure, can be viewed as a complex symplectic manifold whose
holomorphic symplectic structure endows its coordinate ring with Poisson brackets.? The
holomorphic coordinate ring of the Coulomb branch, which describes it as a complex variety,
is believed to coincide with the ring of chiral CBOs. As explained in [11], the OPE of the
1D Coulomb branch theory provides a deformation quantization of the Poisson algebra
associated with the chiral ring.

In brief, we obtain an explicit description of the Coulomb branch 1D theory as follows.
First, we stereographically map the N' = 4 theory from R? to S®. While the 1D theory
is defined on a straight line in R3, after the mapping to S, it is defined on a great circle.

In fact, our results can easily be generalized to theories with both ordinary and twisted multiplets
coupled through BF terms, first studied in [14].

2The exact results mentioned above are valid for “good” or “ugly” theories, to use the terminology
of [25]. We will only consider such theories in this paper.

3The description of the Coulomb branch as a complex symplectic manifold is not sufficient to reconstruct
its hyperkahler metric. It would be interesting to understand whether, and how, information on this metric
is encoded in the SCFT.



Ideally, we would like to perform supersymmetric localization on S2 with respect to a
judiciously chosen supercharge such that the 3D theory localizes to a theory on the great
circle (this is how the description of the 1D Higgs branch theory was obtained in [13]).
Unfortunately, it is challenging to calculate functional determinants in the presence of an
arbitrary number of disorder operators inserted along the great circle. To circumvent this
problem, we develop another approach in which we cut the S® into two hemispheres HS>
glued along an S? that intersects the great circle at two points, and then calculate the
HS? wavefunction. Because we can add a localizing term on S?, it is sufficient to evaluate
the HS? wavefunction along a finite-dimensional locus in field space. For every insertion
within the hemisphere, we derive a corresponding operator acting on the H.S? wavefunction.
As we will explain, gluing two hemisphere wavefunctions allows us to compute arbitrary
correlators of the 1D theory.

We hope that the methods presented in this paper can be generalized and applied also
to non-abelian N = 4 theories. In these theories, both the Coulomb branch geometry and
mirror symmetry are less understood than in the abelian case. In particular, the mirror
duals of non-abelian theories are not always known, and the Coulomb branch metric can
no longer be simply computed due to nonperturbative effects that are absent in abelian
theories. A general picture for the Coulomb branch geometry was recently proposed in [28],
and it should be possible to verify it rigorously using correlators of CBOs (there have also
been a number of papers on Coulomb branches of 3D N = 4 theories in the mathematical
literature [29-33]). Furthermore, correlators of CBOs and HBOs could shed light on non-
abelian mirror symmetry, because this duality maps these two classes of operators to each
other. We hope to report on progress in answering these interesting questions in the
near future.

The remainder of this section contains a technical overview of our approach and a
summary of our results. The rest of the paper is organized as follows. In section 2, we
introduce in detail the theories that we study and their 1D topological sectors. In section 3,
we perform supersymmetric localization on S% with monopole-antimonopole insertions at
opposite points on the sphere. In section 4, we perform supersymmetric localization on a
hemisphere and on its boundary and explain how to glue two hemisphere wavefunctions. In
section 5, we explain how to compute correlators in the 1D theory with multiple operator
insertions. In section 6, we discuss, as applications of our results, a derivation of the chiral
ring relations, and we provide several new tests of mirror symmetry. Several technical
details are relegated to the appendices.

1.1 Technical overview

Let us now describe the general logic behind our computation, which closely follows that
of [13]. Consider an N' = 4 theory with gauge group G and a hypermultiplet transforming
in a (generally reducible) unitary representation R of G. The theory could also be deformed
by real masses and FI parameters, which, for simplicity, we set to zero until further notice.
The above information determines an A = 4 preserving Lagrangian Lgs on R? and another
Lagrangian L£gs on an S® with radius r, both of which coincide when r — oco. Furthermore,
the theories on R? and S® have the same IR limit, and we will consider examples in which



it is a nontrivial SCFT.* From our point of view, the advantage of working on S? is
that Lgs preserves certain supercharges Q° and Q, which are only symmetries of the
flat space theory at the IR fixed point. The attractive property of Q¢ (or Q) is that its
cohomology contains local operators which have nontrivial correlation functions, and which
form a subset of the full family of CBOs (or HBOs).? It follows that the correlators of
these Q%-closed (QH-closed) operators, which are known as twisted CBOs (HBOs), could
possibly be computed using supersymmetric localization of the path integral on S® with
respect to Q¢ (QH). Indeed, the problem of localizing with respect to Qf was fully solved
in [13], thus making correlators of twisted HBOs calculable.

In this work, we are interested in correlators of twisted CBOs, which can be described
abstractly as follows. First, each CBO is a Lorentz scalar transforming in a spin-j irrep
of an SU(2) R-symmetry, such that in the IR SCFT, it is a superconformal primary of
dimension A = 5.5 Each twisted CBO is given by a certain position-dependent linear
combination of the SU(2) R-symmetry components of a CBO, and is restricted to lie on
the great circle fixed by the S3 isometry generated by Q¢. Furthermore, at each point on
this circle, the twisted CBOs are chiral with respect to a distinct N' = 2 subalgebra. More
details will be given in section 2. Restricting our 3D theories to the cohomology of Q°,
therefore, results in some 1D field theory on a circle whose local operators can be identified
with cohomology classes of twisted CBOs, which, in turn, are in one-to-one correspondence
with Coulomb branch chiral ring operators.

The above 1D theory provides a significant simplification of the original 3D problem
of computing correlators of CBOs, due to the following properties. First, the IR two- and
three-point functions of twisted CBOs in the 1D theory are sufficient to fix the correspond-
ing correlators of CBOs in the full 3D SCF'T, simply because a two- or three-point function
of Lorentz scalar primary operators is fixed by conformal invariance up to an overall con-
stant (see, e.g., section 6.4 of [13]). Moreover, it turns out that the 1D theory is topological
in the sense that its correlators are independent of the relative separation between inser-
tions, but can depend on their order on the circle. We will refer to this theory as the
Coulomb branch 1D topological quantum field theory (TQFT). The topological correlators
could in principle be functions of dimensionless parameters along the flow. Because we set
all the real masses and FI terms to zero, the only remaining dimensionless parameter is
g%Mr. However, the 1D theory is independent of gy (and therefore of g%M'r) because, as
shown in [13], the Yang-Mills action is Q%-exact. It follows that the correlators of twisted
CBOs are RG-invariant and can be identified, all along the flow, with those of the IR SCFT.
The same results also hold for twisted HBOs, whose associated 1D TQFT is obtained by
passing to the cohomology of QF. The above properties of the 1D TQFTs turn them into
a powerful framework to study correlators of half-BPS operators in N = 4 theories.

4The limit gywm,r — oo on S? is identical to the flat space IR SCFT. Instead, taking gyy — oo at fixed
r leads to an SCFT on S whose correlators are equivalent to those of the IR SCFT on R3, by a conformal
map from S® to R®. One subtlety in this procedure, first noted in [34], is that on S3, there can be mixing
between operators of different conformal dimensions, though this mixing can always be resolved.

>This cohomology is distinct from the chiral ring, as will be explained later.

6Strictly speaking, the RG flow on S® only preserves a U(1) subgroup of the SU(2) R-symmetry men-
tioned above. Nevertheless, it is useful (and possible) to group CBOs into SU(2) irreps also along the flow,
even if it only becomes a true symmetry in the IR.



The observation that some BPS operators in d-dimensional theories with eight super-
charges admit a lower-dimensional description was made for SCFTs in [35]. Earlier works
achieved an analogous suppression of non-compact spacetime directions in four dimensions
via the Omega-background: see [36-38] for the original discussion. In both approaches,
equivariance plays an important role, though the precise relation between them has not
yet been worked out. It is believed that in four dimensions, the SCFT approach of [35]
corresponds to a new type of Omega-deformation. In three dimensions, on the other hand,
the Omega-deformation and the associated quantizations of moduli spaces, first discussed
in [28, 39, 40], are most likely directly related to quantization in the SCFT picture.

Following the work of [35], the 1D TQFTs associated with 3D N = 4 SCFTs were
studied in detail in [11, 12]. It was shown in [11, 12] that conformal bootstrap arguments
can be used to fix the 1D TQFT in some simple examples, though doing this for general
3D N =4 SCFTs proved to be difficult. Finally, the fact that the 1D TQFTs can also be
defined along ' = 4 RG flows on S3, as we just reviewed, was discovered in [13]. This
fact allows for the use of supersymmetric localization to calculate correlators in the 1D
TQFTs for 3D N = 4 theories described in the UV by a Lagrangian. Moreover, it follows
that the 1D theory is also defined along relevant deformations of the theory on S3 by real
masses and FI parameters. The correlators of twisted CBOs are in general sensitive to
these deformations, providing nonperturbatively calculable examples of correlators along
RG flows.”

We develop three complementary approaches to computing correlators of twisted
CBOs. In section 3, we use localization on S% in an SO(3)-symmetric background created
by a monopole-antimonopole pair to compute correlators involving two twisted monopole
CBOs and an arbitrary number of non-defect twisted CBOs. In sections 4 and 5, we explain
how to vastly generalize these results by localizing on a hemisphere HS? with half-BPS
boundary conditions, which allows for insertions of twisted CBOs anywhere along a great
semicircle. These insertions are conveniently described by certain operators acting on the
H S?3 wavefunction. Pairs of such wavefunctions can then be glued along their S? boundary
to reproduce the S partition function with an arbitrary number of twisted CBOs. In
section 5, we further show how to interpret our results as a dimensional reduction of the
Schur index of 4D N = 2 theories enriched by BPS 't Hooft-Wilson loops.

1.2 Summary of results

Let us now summarize our results and fix our notation. We consider A/ = 4 theories with
gauge group G = U(1)" and N}, > r hypermultiplets of gauge charges ¢; = (g3, ...,q}) € Z"
with I =1,..., Nj. Viewing ¢ as an Nj, x r matrix, we demand that rank(q) = r to avoid
having U(1) subgroups of G with no charged matter. The theory has flavor symmetry
G x Go where Gg acts on the hypermultiplet, while G¢ generally emerges in the IR
and acts on the Coulomb branch. Only a maximal torus of G¢ is manifest in the UV as
a “topological symmetry” U(1)" acting on monopole operators and generated by currents
jr constructed from the field strength as jp ~ *F.

"The topological invariance of the Coulomb (Higgs) branch 1D theory is lost upon turning on FI (real
mass) parameters. However, the resulting position dependence of correlators turns out to be very simple.



Let the 1D theory live on a great circle parametrized by ¢ (see figure 1). The Q€-closed
twisted CBOs are constructed from products of bare twisted monopole operators Mg(cp), la-
beled by their G¢ charge be I';, € R" where I';, is the monopole charge lattice determined
by Dirac quantization, as well as twisted vector multiplet scalars (@) = (®1(¢), ..., " (¢))
corresponding to each U(1) factor of G. As we will see in section 2, B is a position-dependent
linear combination of the three real vector multiplet scalars, while M® can be described as
a particular QC-invariant background for the vector multiplet fields, which inserts the ap-
propriate Dirac monopole singularity. These singular backgrounds are described in detail
in appendix C.

In section 5, we present a matrix model expression for a correlator with n insertions
of twisted CBOs (’)(k)(cpk), where k = 1,...,n. To describe this expression, it is useful to
think of S® as a union of two hemispheres HS% = B3 joined along their S? boundary, as
depicted in figure 1. The 1D TQFT circle intersects the boundary S? at its North and
South poles labeled, respectively, by N and S in figure 1. Under this decomposition, the
path integral on S3 can be thought of as an inner product (more accurately, a bilinear form)
composing the wavefunctions of H Si and HS?. Moreover, in this language, the insertions
of twisted CBOs can be represented as certain shift operators acting on the hemisphere
wavefunctions.

Explicitly, consider the case in which the (’)(k‘)(wk) are all inserted along the semicircle
inside the upper hemisphere HS? (0 < ¢ < 7) in the order 0 < 1 < 2 < -+ < ¢, < T.
There is no loss of generality in inserting all operators in H Si because the 1D TQFT is
topological, so only the order of the insertions is important. Our analysis then implies that
this correlator can be computed in terms of an ordinary r-fold integral given by

1 . oo ~ -
(OD(p1) 0o = 5 3 [ (4515 v-G.B0Y - 0w, G.B). (1)
Bery,

Let us now unpack the notation in (1.1):

e The ¥ (7, B’) represent wavefunctions defined by the path integral on the hemispheres
HS3 = B3 evaluated with certain half-BPS boundary conditions on HS? = S%. We
will show in section 4 that these boundary conditions are parametrized by constants
¢ € R" and by the monopole charge B e I';,. In particular, the vacuum wavefunctions
Uy (a, E), which have zero monopole charge, are given by®

, 1 /1
Uy (3, B) =655 ] =T ( —id - &) . (1.2)

The variables ¢ arise from localization of scalars in the vector multiplet.

e In (1.1), each of the twisted CBOs OW%) is represented by a certain shift operator, denoted

by (7)\](\];), acting on the HS% wavefunction U (7, B). The label N on the (7)\](\];;) implies

®In general, the above correlator can be written as (1/Zg3) Y 5 [[d#] 5¥1(, B)Ws(&, B), where ¥,
and W, are hemisphere wavefunctions with arbitrary insertions. In (1.1), we represent insertions by shift
operators acting only on the (empty) upper hemisphere wavefunction, in which case the sum over B collapses
to the B = 0 term.



that it represents an insertion of @®*) through the North pole of dH S3 = S2, labeled
by N in figure 1. The order in which the shift operators (5](\];) act on ¥, represents
the order of insertions on the semicircle. There is a second set of shift operators @Eqk)
representing insertions through the South pole (labeled by S in figure 1), such that the

same correlator (1.1) is given by

1

(OW(p1)--- 0" (pn))gs = Zo

—

3 /T[dg]g v_(3,B)00...00w, (7 B). (13)
Bel',

The order in which the S operators act on W also represents the order of insertions on the
semicircle, but in the opposite direction. The shift operators corresponding to the bare
twisted monopoles M?() and the vector multiplet scalars ®(y) are written explicitly
in (5.20), (5.21), and (5.13), respectively. It is important that the shift operators do
not depend on the insertion point. This must be the case because the correlators are
topological and depend only on the order of the insertions, which is reflected in the
nontrivial commutation relations between the shift operators.

e The HS3 wavefunctions can be glued into a partition function on S® with the measure
as in (1.1), where [do] 5 is given explicitly by

[d7) 5 = u(3, B)d"o,

Noo ﬂF(lH(ZIB"-FiCTI'&’)
L o= |g7-B|—-4d;-B 2
wu(d, B) = | |(—1) 2 TN (1.4)
I=1 I (TI —1q7 - 0'>

This measure is simply the S? partition function of N}, chiral multiplets in a 2D A =
(2,2) theory, coupled to U(1)" vector multiplets with magnetic charge B [41]. We have
normalized the correlators (1.1) by the S partition function Zgs, such that (1)gs = 1.

e The above expressions can be generalized straightforwardly to include deformations by
real masses and FI parameters. This will be described in section 5.1.2.

The above description of correlators of twisted CBOs in terms of hemispheres and shift
operators, while derived using localization in 3D, was inspired by computations of Schur
indices with line defects in 4D N = 2 theories [42-44].7 In fact, as we show in section 5,
these problems are closely related. The defect Schur index can be computed by a path in-
tegral on S3 x S' with 't Hooft-Wilson loops wrapping the S'. To preserve supersymmetry,
the defects should be inserted at points along a great circle in S3. As we will show, upon
dimensional reduction of the 4D index along S', the line defects become twisted CBOs
in the 3D dimensionally reduced theory. The above expressions for correlators of twisted
CBOs can all be derived from the 4D defect Schur index, providing a strong consistency
check of our results.

°In turn, the interpretation of loop operator insertions on S° x S* as shift operators acting on half-indices
in [42—-44] was inspired by earlier works [45-47], where loop operator insertions on S* were also understood
as shift operators acting on the HS* wavefunction, as derived via localization in [48].



OHS3 = 5% ={X4 =0}

Figure 1. A schematic 2D representation of S3 given by X? + X35+ X2 + X2 = r2. The 1D TQFT
lives on the S* defined by X; = X3 = 0 (red) and parametrized by the angle ¢. The S3 can be
cut into two hemispheres HS3 = B? whose boundary forms an S? = 9HS3 (blue circle) defined
by X4 = 0. The 1D TQFT circle intersects this S at two points identified with its North (N) and
South () poles.

2 Preliminaries

In this section, we set the stage for the problems that we study in the rest of the paper.
We start by reviewing the construction of N' = 4 supersymmetric Lagrangians using vector
multiplets and hypermultiplets on S3. We then describe a BPS sector of these theories
that is captured by a 1D theory, focusing on the case of the Coulomb branch. Finally, we
give a careful definition of BPS monopole operators, which are of primary interest in this
paper, and explain some of their properties.

In this section, we try to be maximally general and define everything for non-abelian
gauge theories. However, the actual localization computations in the rest of the paper will
be performed only for abelian theories.

2.1 N = 4 theories on S3

The theories that we analyze in this paper are Lagrangian 3D N = 4 gauge theories. We
start by giving a short review of their structure and summarizing our conventions, referring
the reader to [13] for more details.

2.1.1 Supersymmetry algebra

N = 4 supersymmetry on S is based on the superalgebra su(2|1), @ su(2|1), or a central

extension thereof. Its even subalgebra contains the su(2), @ su(2), isometries of S3, whose

r)

generators we denote by Jo(fg and J! 4, as well as the R-symmetry subalgebra u(1), & u(1),

«

generated by Ry and R,. The odd generators are denoted by Qgi) and Qg £) 10 The

0 Above, a, 3,... = 1,2 are spinor indices. They can be raised and lowered from the left with the anti-
symmetric symbols €43, e*P . where €91 = €2 = 1. The same raising/lowering convention will also be used
for the fundamental indices of su(2) R-symmetries. See appendix A for a full list of our conventions.



algebra obeyed by Jggg, Ry, ,(fi) is

IO IO = ied0, 9,00 = L (@ 42 0) . (2)
[Re, QU9 = Q%) {Q), )y = _% <J§2 + ;sa53g> , (2.2)
where we have set
7 = (—(Jl(z) ;)z'JQ“)) (@Jé@‘ (@) . (2.3)
Jj S —idy

The generators of su(2|1), obey the same relations with ¢ — r.

The generators Jf and J!" act by Lie derivatives £uf and L,r with respect to the left-
and right-invariant vector fields v/ and v} on S%. The generators J§ and J; will often be
important to us, and their corresponding vector fields are given by

i r ¢
vh=—5(0-+0,), vh=—5(0—0,). (24)

Above, we have used coordinates that exhibit S® as a U(1) fibration over a disk D? with
the fiber shrinking at the boundary, which will be useful in the remainder of the paper (see
appendix A.1 for details). Explicitly, let us embed S® in R* as

X2+ X3+ X34+ X3 =12 (2.5)
and parametrize the X; by
X1 +iXy =rcosbe’™, Xs+iXy=rsinfe?, (2.6)

where 0 < 6 < § and —7 < ¢, 7 < 7. In these coordinates, sin fe’? parametrizes the unit
disk, and €™ the U(1) fiber. We also sometimes use the notation

Pr=—(J5+J3), Po=—J5+Jj (2.7)

to denote the 7 and ¢ rotation isometries of S3.

It is convenient to think of su(2|1), @® su(2[1), as a subalgebra of the 3D N = 4
superconformal algebra osp(4]4), whose R-symmetry subalgebra is s0(4) = su(2) g ®su(2)c.
This embedding is parametrized by the choice of the u(1), & u(1), subalgebra of su(2)y @
su(2)c, which is specified by the Cartan elements

ho! € su(2)y, R €su(2)c, (2.8)

where a,b,... = 1,2 (a, b,...=1,2) label the fundamental irrep of su(2) (su(2)¢). Here,
he? and B” ; are traceless Hermitian matrices satisfying hothel = 6, and ﬁaéﬁéb = (5“",-). They
determine a relation between the generators Ry, R, of u(1l);@u(l), and the generators R,
R"; of su(2)y @ su(2)c:

1 1 1 —a —i
5 (Be+ Ry) = 5haf’Rba =Ru, 5(Re—Ry)=3h'\R'a=Ro. (2.9)



The superconformal symmetries of osp(4|4) are parametrized by conformal Killing spinors
€aaa satisfying the conformal Killing spinor equations on S3:

1
v,ugad = ’Y,uf(/m s v,ug(/;a = _477,2'7;1&1&, (2'10)

where 7, are curved-space gamma matrices and r is the radius of S3 (the first equation
implies the second via 7"V & . = —%Réad where Rgs = 6/r2). Those that correspond to
supersymmetries within the subalgebra su(2|1), @ su(2|1), satisfy the additional condition

i —b
S = 5 ha Gl - (2.11)
To conform with previous works, we use the convention that

he' = —02, B =—0o%. (2.12)
Different choices of h, h are related by conjugation with SU(2)z x SU(2)¢ and, as will be
explained shortly, determine which components in the triplets of FI and mass parameters
can be present on the sphere: ¢ = hq®((gat)p® and m = Edb(mﬁat)bd. In appendix G, we
describe how the su(2|1), @ su(2|1), algebra is obtained from the rigid limit of off-shell 3D
N = 4 conformal supergravity, following the philosophy of [49]. The latter point of view
elucidates the origin of the matrices h and h as background values for scalar fields within
a certain 3D Kaluza-Klein supergravity multiplet.

2.1.2 Lagrangians

The supersymmetry algebra just described acts in Lagrangian theories constructed from a
vector multiplet V and a hypermultiplet H. The vector multiplet transforms in the adjoint
representation of the gauge group G and has components

V= (A,ua )\aada <I>b’ Dab) ; (213)

a

consisting of the gauge field A, gaugino Ay, and scalars ®,; = ®; . and Dy, = Dy, which
transform in the trivial, (2,2), (1,3), and (3, 1) irreps of the su(2) g ®su(2)c R-symmetry,
respectively. The hypermultiplet transforms in some unitary representation R of G and
has components

H = (qa» Gas Vair, Pod) (2.14)

where q,, ¢, are scalars transforming as (2, 1) under the R-symmetry and as R, R under G,

respectively, while Vg, Jad are their fermionic superpartners and transform as (1, 2) under

the R-symmetry. The SUSY transformations of V and ‘H are collected in appendix A.2.
The action for H coupled to V is

~q ) 3 ~q -~
Shyper[/va] = /d3x\/§|:pﬂq DMQa — i ¢¢a+ @q Ga + 19 Dabe (2'15)

1 il Tag b ~ay b Ta
- ST g — 0+ (T TNa) |
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which actually preserves the full superconformal symmetry osp(4|4). The super Yang-Mills
action preserves only the su(2|1), @ su(2|1), subalgebra and is given by

1 g , o
Sym[V] = o / d3x\/gTr (F‘“’FW—D“@CdDMQéd—i—i/\““ZD)\aa—DCdDCd—i)\aa[Aab, D,
YM

Liod of 11a ' abpa R, gl L wed
=07, @[ @0, %] - h °hf b)\aa/\bb—i— (ha"Dy") (R B"3) = —5 @ dq>éd).

(2.16)

The theory (2.15) has flavor symmetry group Gg x G¢, whose Cartan subalgebra we
denote by tg @ tc. The factor Gy acts on the hypermultiplets, while G = U(l)#U(lyS in G
contains the topological U(1) symmetries that act on monopole operators.!! It is possible
to couple the theory to a supersymmetric background twisted vector multiplet in to, which
on S3 leads to a single FI parameter ¢ for every U(1) factor of the gauge group (as opposed
to an su(2)y triplet on R?). The corresponding FI action is given by

dim(tc)

Spr[V Z (r / d%[( *(p® )b“—fh“ (@, > : (2.17)

where D((I? and @é? are the scalars in the vector multiplet gauging the It U(1) factor of G.
Similarly, one can introduce real masses for the hypermultiplets by turning on background
vector multiplets W}, o in ty. In order to preserve supersymmetry, all the components of
Vh.g. are set to zero except for

r a
~ha"(Dpg )p™ (2.18)

1, ~
== h(®rg)'a = 3

In particular, on S3, there is a single real mass parameter for every generator in ty (as
opposed to an s5u(2)¢ triplet on R?). In the presence of nonzero real mass and FI parameters,
the su(2|1), ®su(2|1), algebra is centrally extended by charges Z, and Z, for the respective
factors of the superalgebra. The central charges are related to the mass/FI parameters by

1 PO 1 .
;(Z@ + Z,) =1im € ity, ;(Zg —Zy)=1iC € itc. (2.19)

A more detailed description of the superalgebras can be found in [13].

Finally, let us specify the contour of integration in the path integral. Because we work
in Euclidean signature, the fermionic fields do not obey any reality conditions, while the
bosonic fields satisfy

d=7 AL=A €= -a% Dl= D" 20

where the Hermitian conjugate is taken in the corresponding representation.

G may be enhanced to a non-abelian group in the IR.

- 11 -



2.1.3 Abelian gauge theories

In the bulk of the paper, we will focus exclusively on abelian gauge theories. Specifically, we
will consider a G = U(1)" gauge theory coupled to Nj, hypermultiplets with gauge charges
qr = (q},...,q’j) € 7", where I = 1,...,Nj. The maximal tori of the global symmetry

algebras in this case are given by ty = U(1)M~" and tc = U(1)".
transform under Gy with weights Qr = (@, ..., ?[h_r) € 7ZN»=" while monopole op-

The hypermultiplets

erators transform under the topological symmetry G¢ with charges b€ I'y € R". The
monopole charge lattice I'y,, C R" is defined through Dirac quantization by the constraints
q b € Z where ¢ ranges over all gauge charges allowed in the theory. We assume throughout
this paper that charges have been normalized such that I',,, = Z".

2.2 Twisted operators and the 1D theory

Supersymmetric field theories with eight supercharges in various dimensions have subsec-
tors of operators which can be described by lower dimensional theories. Our 3D N = 4
theories are among those that have such sectors, which, moreover, turn out to furnish
certain 1D theories. This fact was originally noticed for SCFTs in [35], further developed
in [11, 12], and extended to non-conformal N = 4 theories on S® in [13].

Following [13], we consider two pairs of supercharges within su(2[1),®su(2[1),.1? Those
associated with the Higgs branch are

ol = o™ + o, off =l 4+ o, (2.21)
and those associated with the Coulomb branch are
of = o\ ol 9f — o )y o). (2.22)

Each of these four supercharges is nilpotent. There exists a 1D theory associated with
cohomology classes of Q{{Q and another associated with those of Ql%. To see this, let us
focus on the (equivariant) cohomology of Qg = Ol + QI or QF = Of + BQY acting on
local operators, for an arbitrary constant 5 # 0. Because of the relations

(QF)* = @(PT + R +irC), (2.23)
(95)% = @(PT + Ry +irm), (2.24)

local operators in the cohomology of Qg or Qg must be annihilated by the right-hand side
of (2.23) or (2.24), respectively. This implies that local operators can only be inserted at
the fixed points of the P, isometry, which form a great circle parametrized by ¢ at § = 7/2,
where the 7-circle shrinks (see (2.6)).!3 In flat space, P, is the rotation that fixes the line
along which operators are inserted.

2The embedding of these supercharges inside osp(4/4) is given in appendix A.2.

"®1t also follows from (2.23) (or (2.24)) that the spins and R-charges of QF- (or QF-) closed operators
should be related. However, this constraint turns out to be trivial because all these operators turn out to
be Lorentz scalars transforming trivially under su(2)c (or su(2)g).

- 12 —



Another important property emphasized in [13] is that

{QF ...} =P, + Ry +irm, (2.25)
{9§,...} =P, + Rc +irC, (2.26)

which leads to the definitions of twisted translations:

PH =P, + Ry, (2.27)
PY =P, +Rc. (2.28)

The twisted translations ﬁf (or ]35 ) are Qg - (or Qg—) closed, and can therefore be used
to translate cohomology classes along the great ¢-circle. The cohomology classes of Qg
and Qg therefore form two distinct 1D theories. Furthermore, when m = 0 (or ¢ = 0),
the twisted translation ﬁg (or 135 ) is exact under Qg (or Qg) The twisted-translated
cohomology classes then become independent of the position ¢ along the circle. In such
a situation, the cohomology classes furnish a 1D TQFT, meaning that their OPE is inde-
pendent of the separation between operators, but can depend on their ordering along the
circle. This OPE therefore determines an associative but non-commutative product, which
can be thought of as a star product on some variety.

The operators in the cohomology are most easily classified at the superconformal point,
where the symmetry is enhanced to osp(4[4). In this case, one finds that for every fixed
insertion point ¢, the operators in the cohomology of Qg and Qg are in the Higgs and
Coulomb branch chiral rings, respectively, with respect to some N = 2 superconformal
subalgebra of osp(4]4).1* Indeed, for SCFTs, we have the algebraic relations

(o, o'ty = (ol 01"}y =8(D - R, Y), (2.29)
{0f, 0" ={0f, 05"} =8(D — L(R;2 + Ry1)), (2.30)

where D is the generator of dilatations. The relation (2.29), together with the state-
operator map (which yields an inner product, hence a notion of adjoint in radial quan-
tization) and the standard Hodge theory reasoning (which exhibits a unique harmonic
representative of each cohomology class), implies that representatives of the cohomology
of QEI , when inserted at the origin, satisfy

D =Ryt (2.31)

Such operators belong to the Higgs branch chiral ring. They are the su(2)y highest-weight
components of HBOs H,,...q, , which are half-BPS superconformal primaries transforming
in the spin-% irrep of 5u(2) 7, and are Lorentz scalars of dimension A = §. Similarly, (2.30)
implies that the representatives of Qg cohomology at the origin satisfy

1 _ - .
D= 5(R12+R21), (2.32)

1n particular, the star product in the 1D TQFT then yields a deformation quantization of the chiral
ring, which describes the Higgs or Coulomb branch of the moduli space of the theory as a complex variety;
this point of view was advocated in [11].
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which is the defining relation of Coulomb branch chiral ring operators for the appropriate
choice of u(1)c C su(2)c. They are the su(2)c highest-weight components of CBOs Cj,
which have the same quantum numbers as HBOs with su(2)y interchanged with su(2)c.

1:Qm>

To define the operators in the cohomology away from the origin, one simply applies the
appropriate twisted translation (2.27) or (2.28). For the HBOs H,, ...q,,, the corresponding
twisted-translated operator is given by

L
H(p) = Haypoq u®™ ™, 0 = (Cosg> . (2.33)

Sin 5

For the CBOs Cy,...4,,, the corresponding twisted-translated operator is given by

. . . _eie/2
Clp) = Caya,v™ -0, 0% = Yiefw/z : (2.34)

In (2.33) and (2.34), it is understood that the operators are restricted to the § = 7
circle. The reason that u® and v® are different in (2.33) and (2.34) is that in defining the
su(2[1), @ su(2[1), algebra on S2, we chose different Cartan elements (2.12) for su(2)y and
for su(2)c. Because the translation in (2.27) (or (2.28)) is accompanied by an R-symmetry
rotation, the twisted operators (2.33), (2.34) at ¢ = 0 and ¢ # 0 are both in chiral rings,
but with respect to distinct Cartan elements of su(2)y (or su(2)c). This twist allows us
to go beyond the chiral ring data. In particular, cohomology classes at different points ¢
are not mutually chiral, and may thus have nontrivial SCFT correlators.

Above, we have formally classified operators in the cohomology within SCFTs. In
practice, for what follows, we need a definition of such operators along RG flows on S3,
where only su(2[1), @ su(2|1), C osp(4|4) is preserved. Some of the properties mentioned
above for HBOs, CBOs, and their twisted analogs then become imprecise, and we would like
to clarify some possible confusions. In particular, along the flow, the su(2) g ¢ symmetries
are broken to their u(1) g ¢ Cartans. The operators Hy,...q,, and Cjg,...q,, are generally still
present, but their different a;,a; = 1,2 components are no longer related by su(2)y c,
and their correlators therefore need not respect these symmetries away from the fixed
point. However, the twisted operators (2.33) and (2.34) are still in the cohomology, and
this notion is well-defined along the flow. For example, the components ¢; and gs of the
hypermultiplet scalars need not be related by su(2)y along the flow. Nevertheless, they
are still well-defined operators, and the twisted operator Q(¢) = cos $q1(¢) + sin £q2(p)
is still in Qg -cohomology. Furthermore, we stress that H(y) and C(p) are not chiral with
respect to any N = 2 subalgebra of the su(2]1), & su(2[1), symmetry preserved along the
flow; they become chiral with respect to certain such subalgebras of 0sp(4|4), which is only
realized at the fixed point. Nevertheless, it can be checked by inspection that they are
half-BPS under su(2|1), @ su(2|1),.1°

®In particular, Q(¢ = 7/2) = (q1(7/2) + g2(7/2))/+/2 is invariant not only under the Qf; in (2.21), but
also under Qéu) — Qéri) and Q§£7> - QYH, as can be checked by using the explicit SUSY transforma-
tions (A.13). Similarly, the twisted CBOs C(¢ = 7/2) that will be constructed explicitly for our theories in
the following sections can be checked to be invariant under Qlo,z as well as Q§“‘) — QY_) and Q;H) — Qg\_”.
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2.3 Coulomb branch operators

In [13], the Higgs branch case was studied in detail, and all twisted HBOs were constructed
from the hypermultiplet scalars. Our focus here is on the Coulomb branch, so let us first
understand what the corresponding observables are.

Twisted CBOs are observables in the cohomology of Qg. If we try to construct them
from local fields, we find that there is only one such operator:

D) = 0 (b . (2.35)

=1

However, it is well-known that a complete picture of the Coulomb branch must also include
monopole operators. Let us first summarize the prescription for inserting these operators,
before providing a more detailed explanation. A twisted-translated monopole operator
inserted at the point p with coordinate ¢ along the great circle is defined via the follow-
ing prescription:

e Pick a monopole charge b. For G = U(1), b € Z. For G = U(1)", b belongs to a lattice
'y € R” of magnetic charges allowed by Dirac quantization. For non-abelian semisimple
G, it is a cocharacter b : U(1) — G, and we use the same letter b to denote the image of
1 at the level of maps of Lie algebras: R — g, 1 — b.

e Near the insertion point p, impose the singularities

Yudy" b,
M , (I)ii = —((1322)T ~ _me L (I)iQ ~ 0, (236)

13 7 13

where the notation “~” means “= up to regular terms” and y*, u = 1,2,3, are local
Euclidean coordinates centered at p (i.e., Riemann normal coordinates).

e Further restrict the space of fields by requiring that all vector multiplet fields commute

with b at the insertion point, which we write formally as:'

WV, pr =0. (2.37)

e Restrict gauge transformations at p to a subgroup Gy C G preserving b. In other words,
allow only gauge transformations by g(x) such that

g(p)bg(p) ' =b. (2.38)

e The actions (2.15), (2.16), (2.17) must be modified by certain boundary terms near the
insertion at p. Namely, we cut out a ball Up(€) of radius € at p and modify the action as

glmon) — Jimy / L— 3 I (2.39)
0 [ /$3\Up(e) AUy (e)

16Because [b,b] = 0, the regular part of the vector multiplet commutes with b at p by itself.
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where L is viewed as a top form and ¥ will be referred to as the “monopole countert-
erm.” Without X, the action can diverge in the monopole background, and may also not
preserve the right amount of supersymmetry. While the boundary terms 3 do not seem
to leave any imprint on our calculations, it is important that there exists a choice of ¥
such that the modification S\(;i/fn') of Sym in (2.16) is Qg—exact, because we will use it
as a localizing term.

In the remainder of this section, we provide additional details regarding the above def-
inition, including discussions of the monopole counterterm and of subtleties in defining
the normalization of monopole operators via the path integral, which may be skipped
at first reading. In particular, the singular part of the twisted monopole operator back-
ground (2.36) will be derived from the results of [4] on half-BPS monopole operators. This
background can alternatively be viewed as a solution to the Qg BPS equations, with a

Dirac monopole singularity *F ~ byT;'gM. These solutions, which also involve fixing the

regular parts in (2.36), will be classified in section 3 and appendix C.

2.4 Remarks on monopoles

Monopoles introduce point-like sources of magnetic flux and are characterized, in the case
of U(1) gauge group, by a number b — their magnetic charge. They are analogs of 't Hooft
lines in 4D theories, and in Kaluza-Klein (KK) reduction from 4D to 3D, monopole op-
erators correspond to 't Hooft lines (worldlines of 4D magnetic monopoles) winding the
KK circle. At the location of the 3D monopole operator, the gauge field strength is pre-
scribed to have a singularity of the form (xF'), ~ bé%. In the path integral formulation,
we are instructed to integrate over field configurations with such a fixed singularity. For
non-abelian gauge group G, we simply embed the U(1) monopole in G as a GNO monopole
whose charge is given by a cocharacter

b:U(1) = G. (2.40)

Note that the topological charge of a monopole (corresponding to the conserved topological
current) is labeled by 7 (G), while its GNO charges are labeled by cocharacters of G,
modulo gauge and Weyl symmetries [50]. Unless G = U(1), in which case topological and
GNO charge coincide, each topological class contains infinitely many GNO monopoles. For
instance, when G = U(N), the topological charge is the sum of the GNO charges.

There exists a supersymmetric version of the monopole operator that is of particular
relevance to us. In [4], such observables were defined for theories with A/ = 2 supersymme-
try as well as in the N' = 4 context. In the ' = 2 case, they were constructed as half-BPS
operators sitting in the lowest component of the short multiplet, and therefore contributing
to the chiral ring. The half-BPS property requires that, in addition to the gauge field being
singular, the real scalar in the A/ = 2 vector multiplet diverge as ﬁ near the monopole.'”

More precisely, if the monopole charge is given by a cocharacter b : U(1) — G, then at

the level of Lie algebras, there is a map R — g, and we denote the image of 1 by the same

1" This follows from the vanishing of the SUSY variation of the gaugino.
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letter b. Denoting the real scalar in the ' = 2 vector multiplet by x (we only need it in

this paragraph, so this notation is by all means temporary), the singularity is prescribed

to be:

Yudy" 1
ly[? 2[y|

while the rest of the fields are regular. Consistency also implies that the monopole operator

x F = b + *Freg, X = b + Xreg7 (241)

slightly breaks the gauge group: at the location of the monopole, the gauge transformations
are restricted to lie in Gy, where Gy, C G is the centralizer of b. This also means that F®8
and x™8, as well as the gauginos (that is, all fields in the vector multiplet), commute with
b at the location of the monopole.

Extending this definition to the A" = 4 case is straightforward, as long as we still impose
that the operator be an element of the chiral ring. Indeed, the definition of N' = 4 Higgs
and Coulomb branch chiral rings involves picking an N = 2 subalgebra and considering
operators that are chiral with respect to this subalgebra. This choice is equivalent to
choosing a Cartan subalgebra in the su(2)y @ su(2)c R-symmetry of the N/ = 4 theory.

In particular, the choice of U(1)¢: C SU(2)¢ is parametrized by SU(2)¢/U(1)c = CPL,
which is discussed extensively in section 2.5.1. This same choice tells us which components
of the triplet of scalars ®,; belong to the AN/ = 2 chiral multiplet, and which component
is part of the N = 2 vector multiplet. Let us parametrize points of this CP! by «,, and
pick a local section of the Hopf fibration as:

cos Let¥/2
_ 2
v = (sin %e_w/z ) (2.42)

We refer to this vector v as the R-symmetry polarization. This v is acted on by SU(2)¢
in the fundamental representation, and U(1)c simply multiplies it by a phase. This means
that it is the highest-weight vector with respect to the choice of U(1)¢. For any operator in
the spin-% representation of SU(2)¢ written as a symmetric tensor with n indices My, 4,
the highest-weight component is then given (up to an arbitrary phase) by

M(v) = Mg, 4,0 .. 0. (2.43)

This component has the maximal Rc-charge n/2, as measured by the generator of U(1)¢. It
is this component that contributes to the chiral ring if the multiplet is short. In particular,
for ®;, the component

P(v) = ;v (2.44)

is in the chiral ring: it is the complex scalar in the N’ = 2 chiral multiplet. This implies
that, according to the definition of the A/ = 2 half-BPS monopole operator, this component
should remain regular near the insertion point p of the monopole:

00’ ~ 0. (2.45)

Note that ®(v) has U(1)c-charge (weight) +1. Acting with lowering operators of SU(2)¢,
one can obtain the component of weight zero (the N/ = 2 vector multiplet scalar) and the
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component of weight —1 (the antichiral conjugate of ®(v)). Only the component of weight

ﬁ near the monopole. This translates into the following

boundary conditions defining the chiral component of the BPS A = 4 monopole:

zero is required to blow up like

Yudy" . (v)
where @élé) denotes the v-dependent singular part of ®,;, given by
oV = b cos o\ = — (@Q))* = _b sinae™ (2.47)
27 gyl ’ ii 22 2ly|

Again, the regular parts of these fields should commute with b at y = 0: the gauge group
is broken to G at the location of the monopole.

The reason we have kept v general should be clear by now: we want to define twisted-
translated monopoles, and for that, we should know how to construct different R-symmetry
components. Comparing (2.34) with (2.42), we see that for twisted-translated operators,
the R-symmetry polarization vector has o« = 7/2 and ¢ = ¢. The resulting singular-
ity (2.47) is precisely as announced in (2.36).

To further determine the normalization of monopole operators requires careful study
of the path integral measure in the presence of monopole singularities. We will be able to
avoid this subtle issue by finding alternative ways to fix the normalization in sections 3
and 4.

An observation. Notice one curious feature. The monopole operator, written as a
symmetric tensor Mp,. 4, , transforms in the spin-f representation of su(2)c. Acting on
its chiral component M (v) = M, 4, v ...v% with an R-symmetry transformation U €
SU(2)¢, we obtain

UM©) U™ = (Ua," ... Us oMy oo = M() (2.48)

lbn

where:
v = U’ (2.49)

In other words, the action of U on M (v) produces a different chiral component of M

characterized by the R-symmetry polarization v. Notice that our definition of the monopole

(v)
o ab
have @gg)vavb = 0. To build the chiral component along the R-symmetry polarization

is such that @abvavb remains regular. For the singular part of ®; called ®’.7, we simply

vector v, we should also have @éz)ﬁd'ﬁb = 0. Therefore, we claim that
o'V = (U AU el (2.50)

What this observation illustrates is that acting with U on a monopole operator is equivalent
to acting with U ! on the corresponding boundary condition. In fact, this is quite a general
observation about defect operators, whose detailed derivation is given in appendix B.1.
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2.4.1 The monopole counterterm

The last ingredient needed to have a complete and well-defined notion of “monopole op-

erator” is the monopole counterterm. Already in the non-supersymmetric case, merely
Yudy*
ly[*
In this case, simply accompanying each monopole insertion by a factor of

imposing *xF' ~ b makes the Yang-Mills action infinite, with the divergent piece given
8m Tr b2
Gy

exp (ngirb?) suffices, as it cancels the divergence and makes the action at least naively

well-defined in the ¢ — 0 limit.
The problem is slightly more complicated for BPS monopoles. One reason is that

by

the divergent part of the action receives another contribution from the singular boundary
condition for the scalar. Another reason is that, even if the supersymmetry equations
hold,'® the presence of the singularity might break too much SUSY in the following way.
Our prescription for evaluating the action involves cutting out balls of radius e around the
monopole insertions (followed by subtracting divergent pieces and taking € — 0). Since
the SUSY variation of the Lagrangian is actually a total derivative, not just zero, this can
generate boundary terms in the SUSY variation. These boundary terms might not vanish
in the € — 0 limit, thus breaking SUSY.

The resolution of this problem is to include a proper boundary counterterm which will
cancel not only divergences in the € — 0 limit, but also SUSY-breaking terms. The choice
of such a counterterm is not unique: we can always add a term which remains finite in the
€ — 0 limit and whose SUSY variation vanishes in this limit.

A very natural and convenient boundary counterterm is constructed as follows. First
of all, we note that only the Yang-Mills action becomes divergent and requires a boundary
counterterm, while the hypermultiplet action and the FI term both remain finite and
supersymmetric in the presence of monopoles. We know from [13] that the Yang-Mills
action is Qg—exact. For the Lagrangian, this means that

Ly = {QF, T} +dx, (2.51)

where ¥ is some fermionic operator. We will simply use this > to construct the boundary
correction. Namely, every monopole insertion should be accompanied by a term

- / ) (2.52)
aU(e)

in the action, where U(e) is a ball of radius € around the monopole insertion point. With
such a choice, the Yang-Mills action plus boundary counterterms are written together as:

sigi = [ (95} (2.59)

regardless of how many monopoles we have inserted.
The action (2.53) is now manifestly supersymmetric because, as it turns out, (Qg)2
annihilates W. Moreover, it is finite in the presence of BPS monopole insertions simply

BThe equations dsusy (fermions) = 0 were used in [4] to argue that the vector multiplet scalar should
also be singular near the monopole.
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because [ S3{Qg, U} vanishes on solutions to the BPS equations. This ensures the cancel-
lation of the leading % divergence. (If it were not canceled, it would be present even for the
action evaluated on the BPS solution.) A possible subleading log e divergence is absent, as
can be checked by inspecting each term of the classical action — this is actually ensured
by the fact that B commutes with all the vector multiplet fields at the insertion point. So
what remains is a finite action, just as we wanted.'?

The proper monopole counterterm Y as defined above is explicitly constructed in ap-
pendix B.2.

2.5 Remarks on normalization

2.5.1 Phase ambiguity of chiral operators

Suppose we are given an HBO H,, ,, whose su(2)y R-charge equals its conformal dimen-
sion, or a CBO Cy, . 4,, with the analogous property. The highest weight component of
H,, ., or Cy, . 4, will then give an element of the corresponding chiral ring: it lives in the
bottom of the chiral multiplet in the N' = 2 decomposition of the corresponding N' = 4 mul-
tiplet. To define the highest weight vector, we need to pick maximal tori U(1)y € SU(2)y
and U(1)c C SU(2)¢. These choices are parametrized by CP} = SU(2)g/U(1)y and
CPL = SU(2)¢/U(1)¢, the twistor spheres of the Higgs and Coulomb branches (which
are hyperkéahler cones). However, a point of the twistor sphere only determines the chiral
operator up to a phase. In the following few paragraphs, we explain this freedom for the
Higgs branch case. The Coulomb branch case is completely analogous and can be obtained
by replacing the label H by C in what follows.

Suppose we are given a point of (DP}I with homogeneous coordinates (z : y). We can
pick a point of the tautological bundle O(—1) that belongs to the fiber above (x : y), say
u = (x y)T. Naively, the corresponding chiral operator is

H(u) = Hyy. q,u™ ... u™, (2.54)

since this object is the highest weight component of H. However, u is only defined up to
an overall C* scaling: thus this definition is not unique. In fact, H(u) gives a polynomial
function of degree n on the total space of O(—1) with values in operators, or equivalently,
an operator-valued holomorphic section of O(n) over CP%.?° Alternatively, we can pick u

to be normalized as u'u = 1. Then it parametrizes points of SI?; the total space of the

opf?’

Hopf fibration. H(u) becomes an operator-valued function on S% i.e., for each point of

opf?’
S%Opf, there is a unique and unambiguous choice for the chiral operator H(u).

This suggests that we cannot identify chiral operators for each point of CP}{ globally:
to do that, one would have to pick a global section of the Hopf fibration and plug it into

H (u), but such a section simply does not exist. So at best, we can do so locally on CP},

9The reader might be wondering how it is possible that in [4], supersymmetry implied a relation between
the singularities for F),, and for ®_;, while here, supersymmetry holds without additional conditions. The
answer is that even though the action (2.53) is manifestly supersymmetric, in order for it to stay finite, we
still need to impose the same relation between the singularities of F,,, and of ®_;.

20This has been noted for the Coulomb branch chiral operators in, e.g., [4].
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say if we remove a point from it. Even in this case, for each point of CP}I, H(u) is only
defined up to a phase, since we still have to pick a local section of the Hopf fibration. So,
to emphasize, the definition of H(u) for a point of CP}, involves a phase ambiguity and
requires making an arbitrary choice. The Coulomb branch version of this story is exactly
the same.

This phase ambiguity is rather innocent in the Higgs branch case, since all Higgs
branch operators are constructed from fields in the Lagrangian. Then for each u, we have
a direct definition of the operator H(u), and there is no real need to talk about points of
CPIQ. The Coulomb branch case is more involved, as we will leave the normalization of the
path integral measure undetermined, in addition to making a non-unique choice for the
monopole counterterm. Therefore, our path integral definition of the monopole operator
only encodes the point of (DPé, any possible additional data being ignored. Thus the phase
is not manifestly fixed, and we will have to use some other reasoning to pin down the
normalization of monopole operators.

2.5.2 Subtleties with antiperiodicity

In our analysis, we have not needed to directly confront the fact that H(u) or C'(v) cannot
be written globally on CP}I or CP&. Indeed, we are mostly interested in twisted-translated
operators, and such operators have v and v as in (2.33) and (2.34), which are only de-
fined on great circles of CP}, and CPé. Clearly, we can trivialize the Hopf bundle if we
restrict it to a circle on the base. However, due to the definition of twisted translations, we
are forced to consider sections that are antiperiodic on this circle. Indeed, both w and v
from (2.33), (2.34) are antiperiodic under ¢ — ¢ + 2. Therefore, the periodicity of H(u)
or C(v) depends on the sign of (—1)" or (—1)": twisted translations give antiperiodic
operators on the circle for half-integral R-spins.?! The occurrence of antiperiodic observ-
ables on S! is of course familiar from the study of twisted HBOs in [12, 13]. Here, we
have simply emphasized the similar origin of these antiperiodicities in both the Higgs and
Coulomb cases.

If we have some twisted-translated observable on a circle O(p) that happens to be
antiperiodic, then we should take extra care in defining its sign. This is directly related to
the phase ambiguity of general chiral operators discussed in the previous subsection. Once
we pick v and v as in (2.33) and (2.34), we fix the phase ambiguity almost completely, except
for operators of half-integral R-charge, whose sign remains undefined. Such observables are
only single-valued on the double cover of S'. We deal with this ambiguity by inserting a
“branch point” somewhere on the circle. Then we choose to insert all observables away
from the branch point, and if we ever have to move an observable past the branch point, it
should pick up an extra sign of (—1)" in the Higgs branch case or of (—1)" in the Coulomb
branch case (here, n/2 is an su(2)y spin and m/2 is an su(2)¢ spin). In the presence of
such a branch point, all observables become single-valued.

For each observable, we pick its sign at ¢ = 0, and then apply twisted translations to
extend the definition to the rest of the circle (away from the branch point). This procedure

2In the language of [4], this sign arises due to the Berry phase: parallel transport in O(n) along the
great circle of CP' results in a holonomy (—1)™.
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is trivial in the Higgs branch case: because all Higgs branch operators are constructed from
the hypermultiplet scalars q,, and these are both single-valued and canonically normalized,
the sign choice is simply a choice for the value cos ¢/ 2’so=0 =1 (as opposed to —1, which
would also be valid since cos /2 is only defined up to a sign on the circle).?? The sign
choice is less trivial in the Coulomb branch case because, as we have already mentioned,
the disorder-type definition of a monopole does not come with any canonical normalization.
We will use a different consideration to fix the phase, and in particular, the sign.

In section 3, we will fix the sign by comparing with the two-point function in the
SCFT on R3. According to [11-13], twisted-translated operators are inserted along the z3-
axis, and we choose the normalization such that the two-point function of a monopole at
x3 > 0 and an antimonopole at 23 < 0 is positive. Identifying R? with S? via stereographic
projection such that ¢ = 0, # = 7/2 maps to the origin allows us to pin down the signs
as in (3.41). With such an identification, the zz-axis maps to the interval —m < ¢ < 7 of
the great circle, implying that the branch point is located at ¢ = 7. Had we chosen to
perform stereographic projection with ¢ = +m, § = 7/2 taken as the origin, but with the
same normalization in R?, we would have obtained a sign differing by (—1)? where B is the
monopole charge. The interval (0,27) would then have mapped to the x3-axis, resulting
in a branch point at ¢ = 0. So we see that the choice of branch point is correlated with
choice of the sign in (3.41). Our convention is to always put the branch point at ¢ = +m.

From the point of view of the discussion in section 4, this sign will be slightly more
obscure. There, we cut the sphere into two equal halves and then glue the hemisphere
wavefunctions together. It turns out that the two hemispheres give precisely equal con-
tributions, so the sign should be contained entirely in what we refer to as the “gluing
measure” (o, B). In accordance with the rest of the paper, we assume that the branch
point is at ¢ = +w. Then, under stereographic projection, the upper hemisphere corre-
sponds to the upper half-space 3 > 0 while the lower hemisphere corresponds to xg < 0.
Putting the branch point at ¢ = 0 instead (which is the only possibility other than ¢ = £+
consistent with cutting and gluing, as other locations would break the symmetry between
the upper and lower hemispheres) would correspond to swapping these identifications, and
would need to be accompanied by a sign in the gluing measure for consistency. This can
be achieved by simply replacing u(o, B) — u(o, —B).

We can give one more argument to demonstrate that our method of fixing the signs is
correct. Suppose we have a monopole at ¢ = 7/2, an antimonopole at ¢ = —7/2, and a
branch point at ¢ = +x. Let us perform a twisted translation by +x while simultaneously
moving the branch point by +#. The two-point function will remain the same, simply
because the correlator can only depend on the distance between the observables, and no
operator crosses the branch point in this process. We end up with a monopole at —m/2, an
antimonopole at +7/2, and a branch point at 27 (or, equivalently, at 0). Next, we switch
the monopole with the antimonopole, so that we end up with the initial configuration
for the operator insertions, except that now the branch point is at ¢ = 0. This swap of

22The choice of this sign at ¢ = 0 does not affect physical answers due to R-symmetry: every nonvanishing
correlator has total R-charge zero, so flipping the signs of all observables of half-integer R-charge does not
change the answer.
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monopole with antimonopole produces exactly the sign difference explained in the previous
paragraphs, as we will see from our results.

3 Localization on S3

We now perform supersymmetric localization of abelian A/ = 4 theories on S with respect
to the supercharge Qg. As described in the previous section, the cohomology of Qg includes
twisted-translated monopole operators that can be inserted anywhere along a great circle
of §3. In what follows, we will derive a matrix model expression for correlators containing
such a monopole, a corresponding antimonopole, and arbitrary additional insertions of
twisted-translated operators constructed from the vector multiplet scalars.

3.1 BPS equations and their solutions

Let us start by describing the vector multiplet BPS equations 55;? A4, = 0, where the SUSY

transformation rule is given in (A.10) and §g is the Killing spinor corresponding to Qg.z?’
The results are most simply expressed in terms of the fields

®, = Re(Re®i;), ®; =Im(Re?dy;), (3.2)

where R = sinf € [0, 1] and the coordinates (0, ¢, T) were defined in (2.6). Note that ®;
is regular at R = 0, as there are no insertions there, implying that ®,; in (3.2) satisfy

lim ®,; = 0. 3.3
Lim ®,.; (3.3)

In terms of (3.2), the BPS equations can be summarized as

Dis =Re(D11) =0, Im(Dy1) = —29;5, (3.4)

0, ®is = 0:®; = 0,®, =0, (3.5)
ROp®; + 0,9, =0, (3.6)

R(1 — R*)Op®, — 9,9, =0, (3.7)
Fu =¢€,,0°®, . (3.8)

Note that (3.5) implies that the vector multiplet scalars are independent of 7 on the BPS
locus. Together with (3.4) and (3.8), it follows that all of the vector multiplet fields are
7-independent. This is, of course, also an immediate consequence of (2.24). The BPS field
configurations can therefore be viewed as functions on the disk parametrized by (R, ¢).
Clearly, the remaining content of the first two sets of equations (3.4), (3.5) is that ®; is a
constant, in terms of which D, is determined. In what follows, we will study the remaining
equations (3.6)—(3.8).

23In the stereographic frame, we have

c e e+ Bd  c—Bd c _ e[ d+pe —d+pe
(€ s = 5 <i<c— Bd) e+ 507)) BT (i(d ~ ) —id+ 55)> o

where €% = 1+ :c2/41"2)71, c=1x1 + x2, d = 2r — ix3, and x; are the standard stereographic coordinates
on S® (see appendix A.1).
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3.1.1 Non-singular solutions

Let us first review the non-singular solutions to (3.6)—(3.8), which were already described
in [13] from a slightly different point of view. Equation (3.8) is the Bogomolny equation on
S3. Tts only regular solutions have A, = 0 and ®, constant. Equations (3.6) and (3.7) then
imply that ®; is also a constant. As argued around (3.3), these constants must vanish to
avoid having a singularity at R = 0. Therefore, ®;, = 0. To summarize, the non-singular
BPS locus is given by

Viee = {A)°, Aloc @loe, Dlecy (3.9)
where
Boe — jrDloc — Dl — Lo gloe — ploc _ gloc _ gloc _ \loe _ (3.10)
i2 — 1 = 2 & 7 o 12 T L T T2 T Tah T :

and for a U(1)" gauge group, o € R" is a constant r-vector. Note that the non-singular Qg
BPS locus (3.10) coincides with the saddle points of the N' = 4 Yang-Mills action [51, 52].
Indeed, as shown in [13], the Yang-Mills action is Qg—exact. It can therefore be used as a
localizing term, so that the path integral reduces to a sum over its saddles.

The cohomology of Qg includes local operators constructed from the vector multiplet
scalars ®,;. As shown in [13], and as we now review, these operators evaluate to polyno-
mials in o on the BPS locus (3.10). According to the prescription (2.34), gauge-invariant
polynomials in

q)(go) = @dbvavb = (I)iQ + 7;‘131‘ (3.11)
R=1 R=1
are Qg—closed. This fact can be readily checked using the SUSY variations given in (A.11).
Plugging in (3.10), we see that in the absence of defect operators, (3.11) localizes to

(@) = Proc(p) = %U- (3.12)

As we will see later, insertions of monopole operators modify the r.h.s. of (3.12), since they
lead to a nontrivial background for ®,.

3.1.2 The two-monopole background

The BPS equations (3.6)—(3.8) also admit singular solutions describing insertions of twisted-
translated monopole operators. In appendix C, we explicitly construct these solutions for
any number of insertions of such operators at R = 1. As shown there, the solution is
uniquely determined by the values of ®;(R, ) at the boundary of the disk (R = 1), where
it must be a piecewise constant periodic function of ¢. In particular, for n insertions, it
takes the form

1
®i(R:17@):_7Zbk [sgn(go—gok)—i-% ) (3.13)
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where b, € T',, is the charge of the k'™ monopole, ¢, is its angular position at R = 1,
and Y ,_; br = 0 because the total charge on S3 must vanish.?* The solutions for general
configurations of monopole operators are given in terms of complicated expansions, such
as (C.5), which are difficult to use in explicit localization computations. Instead, we will
work with a simple background corresponding to the insertion of two monopole operators.
As we will see in section 5, this is sufficient to construct arbitrary correlators with n > 2
insertions of monopole operators.

Let us now describe the two-monopole background. Consider a monopole of charge b

s

at ¢ = § and one of charge —b at ¢ = —7. In this case,

b
O (R=1,p) = 5y SEnCos ©. (3.14)

The (unique) solution to (3.6)—(3.8) with boundary condition (3.14) is given by

o, — 0 ftsing (3.15)

2r \/1- R?sin?¢p’

b Rcosyp
2r \/1— R2sinZ¢p
e Reose 1) ar, (3.17)
2\ /1 - R2sin’ ¢
where A~ is defined only in the patch {0 < R <1} U{R =1,-% < ¢ < 5}, while A" is
definedin {0 < R<1}U{R=1,—7m<9p<-SUZ <p<m}

The background (3.15)—(3.17) can be rewritten in a more familiar form by passing to

d; = (3.16)

spherical coordinates 7,1 € [0, 7] and 7 € (—m, 7], defined as

X1 =rsinnsintcosT, Xo =rsinnsinysinT,

X3 = —rsinncos, X4 =rcosn, (3.18)
and in which the metric is given by
ds® =r? (aln2 + sin? 7 dsQSQ) , dS%vz = dy? +sin? ¢ dr?. (3.19)

In the coordinates (3.18), the monopole is inserted at 7 = 0 and the antimonopole at n = 7.
In particular, (3.15)—(3.17) become

b
D = —(DPss)* = 3.20
= (@) = (3.20)
b
A% = ) (cosyp F1)dr. (3.21)

The background (3.20), (3.21) is stereographically projected to a half-BPS monopole op-
erator of charge b inserted at the origin of R®. Indeed, one can check that it preserves the
supercharges Qg&) + Qgri) and Qgi) F Qgi), a fact that will become useful in section 4. In
what follows, we will compute correlation functions with two twisted-translated monopole
operators by using the solution (3.20) and (3.21).

*The sign function in (3.13) is defined for ¢ € (—m,7]. For other values of ¢, it should be replaced by
PPk )
5ok ).

sgn (Cos £ sin
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3.2 Localization of correlators with monopoles

Let us now discuss some general aspects of our localization problem.?> We wish to calculate
correlators of Qg—closed local operators. These operators include the monopole operators
described above as singular supersymmetric backgrounds, as well as polynomials in the
twisted-translated vector multiplet scalars ®(¢) defined in (3.11). They are all inserted
along the great circle at R = 1, which is parametrized by the angle ¢.%5 The path integral
expressions of such correlators are given by

(MO (1) - MO () -+ ) =

/ .@H.@V e—SYM[Vb g. +V)—Shypor [H: Vo, g. +V]( ) ’ (3'22)
Zgs
where the MY () denote charge-by, twisted-translated monopole operators. On the r.h.s.
of (3.22), Zgs is the S3 partition function, while Vj, , denotes the monopole background
described in the previous subsection and in appendix C; the fluctuations around it are
denoted by V. The final ellipses (- --) in (3.22) represent arbitrary additional insertions of
® () polynomials at different points on the great circle. The Yang-Mills and hypermultiplet
actions Sym and Shyper were defined in (2.16) and (2.15). We will assume that these actions
also contain appropriate boundary terms (the “monopole counterterms”) at the positions
of the defects, as discussed in section 2.4.1, though their explicit form will not be needed.

Localizing the path integral (3.22) over V for abelian theories is very simple. By
taking into account the counterterm required to define the insertions of twisted-translated
monopole operators, it was argued in section 2.4.1 that the Yang-Mills action is Qg—exact
(and closed). It can therefore be used as a localizing term. Because the gauge group is
abelian, this action is quadratic, and in fact completely independent of the background
Vb.g.- The localization locus for V is therefore identical to the one written in (3.10), which
was derived assuming VW, . = 0. The Yang-Mills action vanishes on the localization locus.
Moreover, the one-loop determinant of fluctuations around it is known to be equal to 1
(see, [51, 52]).

We conclude that for a U(1)" gauge group, (3.22) localizes to

(M (1) - M () ---) Zgg/(l‘[%) (0,01, ba) () (3.23)
Z(0,by,...,by) = / PH e~ Swver[MVos HViec] (3.24)

In (3.23) and (3.24), Vioe is the same as V. in (3.10), depending only on the r real constants
0;, and the (---) denote additional insertions of localized ®(¢) polynomials. Note that in
the presence of monopoles, insertions of ® () do not quite localize to o as in (3.12). Instead,
using (3.11), we have:

B(p) = Prael) = 1o+ iB(R=1,0), (3.25)

#For an introduction to supersymmetric localization, we refer the reader to [53] and references therein.

26The cohomology of Qg also includes BPS vortex loops wrapping the R = 1 circle, as well as BPS Wilson
loops wrapping 7-circles. The former line operators were first described in the context of localization of 3D
N = 2 theories in [8, 9], and for N' = 4 theories in [54]. We will not discuss them in this paper.
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with ®;(R = 1, ¢) given in (3.13). All that is left is to calculate Z(o,b1,...,by) in (3.24).
Note that in principle, it should be possible to evaluate the path integral in (3.24) explicitly,
even without localization, because Shyper is quadratic in H. We now carry out this step
for n = 2 insertions of twisted-translated monopole operators.

3.2.1 Two monopole insertions

To evaluate the localization formula for correlators of a twisted-translated monopole op-
erator M®(¢), an antimonopole M~%(¢), and additional insertions of polynomials in the
twisted-translated vector multiplet scalars ®(y) requires calculating the hypermultiplet
path integral (3.24) around the singular background given in (3.20), (3.21), which corre-
sponds to inserting M®(¢) at ¢ = % and M~%(p) at ¢ = —Z. Because correlators of
twisted-translated operators are topological, there is no loss of generality in fixing the in-
sertion points in this way. Note that by using (3.14), we find that in the two-monopole
configuration, ®(y) localizes to:

1 b
Doc(p) = - (0 + 7, Sgn.cos gp) . (3.26)

Let us now describe the computation of Z(o,b) = Z(0,b, —b). Because Shyper is quadratic,
the H path integral in (3.23) is given by the ratio of one-loop determinants

det A_lpf

Z(o,b) = —Shyper[HVb.g. A Vioe] — SV Ef
(Uv ) /@He Y g detA_QDb7

(3.27)
where Dy, and Dy are differential operators appearing in the bosonic and fermionic quadratic
pieces of Spyper, respectively. These differential operators depend explicitly on o and on the
monopole background (3.20), (3.21). As we show in appendix D, they can be diagonalized
explicitly by expanding their eigenfunctions in monopole spherical harmonics on the S?
parametrized by ¥ and 7. In (3.27), we have introduced an arbitrary scale A on dimensional
grounds. It should be thought of as a UV scale necessary for a proper definition of the
path integral, and will be removed at the end of the computation by a renormalization of
the monopole operators.

Let us first summarize the results of appendix D for SQED, in which b € Z. In this
case, the spectrum of Dy is given by

1 1+ 3+1b
’ r

with degeneracies dlz‘:,n = (n+1)(n+[b] +1). The spectrum of Dy is given by

1

Ai,n:r[i<”+3—;|b|)+w}’ n=0,1,..., (3.29)
1 1+1b

/\i?n_r{i<n+ +2||>+ia}, n=0,1,..., (3.30)
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with corresponding degeneracies di,n =2(n+|b| +2)(n+ 1) and di?n = |b.2" Using the
above spectrum, and the fact that dlj):,n—l — di,n—l + dbi’n - dft’?n = 1, we can write the real
part of the S® free energy as

2

0o 1+1b| .
n+-——+10
F = log | —2—— 3.31
Re ;} og A ( )
To evaluate this sum, let us define
N (Ar)*® (Ar)*®
fls)=>" TR | (3.32)
n=0 [ (N + —5— +10 n+-—— —10
This function is related to Re F' in (3.31) by
d
Rer =¥ (3.33)
ds|,_
Moreover, the infinite sum defining f(s) in (3.32) is convergent for large enough s, and can
be analytically continued to small s using the Hurwitz zeta function ((s,q) = > ., m:
1+ |B 1+ |B
f(s) = —(Ar)® [C (s, +2’ | —i—ia) +¢ <s, +2’ | wﬂ : (3.34)

Plugging (3.34) into (3.33), and using ((0,¢) = 3 — ¢ and %‘ - log f/(—%)r, results in
s—=

2
r (712\5\ + ’ia)

Re F' = |b| log(Ar) —lo 3.35
|blog(Ar) — log Nors (3.35)

We conclude that for SQED,, the absolute value of (3.27) is given by

1 1 1
1Z(0,0)| = (Ar) P T <+2b| - w) r ( +2|b| + w) . (3.36)
As a check of (3.36), we find that
1
Z =\|Z(o,b= = — .

S3.0 | (Ua 0>| 2 cosh o’ (3 37)

which is the correct S? partition function of a free hypermultiplet coupled to a real mass
m = o. To complete the calculation, the overall phase of Z(o,b) still needs to be deter-
mined. We have not been able to compute this phase rigorously, but we postulate that the
full answer takes the form

Z(0,b) = (—Ub;b%(irwr (1 +2|b| - io) T <1+2|b‘ + ia) . (3.38)

The overall sign in (3.38) will be explained momentarily.

2"In (3.29) and (3.30), we actually quote the spectrum of Dy defined in (D.23). Its determinant is equal
to that of Dy. The fermionic eigenvalues Ai?n in (3.30) arise from zero modes of the Dirac operator on S2.
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First, we note that according to (3.23), integrating Z (o, b) over o gives us the twisted
monopole two-point function in SQED;. In particular,

_ 1 o vl-b  (|b])!
MU DM /D)o, sqen, = 5 [ do 200 = ("5 G ea)

The IR limit is obtained by renormalizing the monopole operators as M? — A% M? and
sending A — oo, while keeping r fixed. From the power of r in (3.39), it follows that the
dimension of a charge-b monopole CBO in SQED; is given by A, = |b|/2. This is a new
derivation of the dimensions of the half-BPS monopole operators of SQED;, which were
first obtained in [4].® Note that while the classical dimensions of hypermultiplet fields are
the same as their dimensions in the IR SCF'T, the dimensions and R-charges of monopole
operators are inherently quantum: they cannot be read off from the action, and they are
related to proper regularization of the path integral. Supersymmetry requires that the
dimensions of monopoles induced by quantum effects coincide with their IR R-charges.

The sign of (—1)|b‘Tib in (3.38) can now be understood as follows. As shown in [11-13],
the two-point function of a twisted operator O(y) corresponding to a CBO of dimension
A has position dependence

(O(1)O(2)) g3 = csgn(ip1 — p2)*2 (3.40)

for some constant c¢. It follows that

(MP(e) M (02)) 55, sqen, = (sen(b) sen(p1 — w2))"h([b)
o] —b
= (=1)"7 (sgn(e1 — w2))"n(Jb]) (3.41)
[b]—b
where, crucially, the factor of sgn(b)/®l = (=1) "z accounts for the permutation symmetry
p1 ¢ P2, b <> —b, and h depends only on |b|. In our calculation of the two-point func-
tion (3.41), we fixed p; = 7/2 and w2 = —m/2, but this still leaves us with the b-dependent
[b]—b . . . . . .
prefactor (—1) 2 .2? From the point of view of the determinant calculation of this section,
the origin of this sign is quite mysterious because the spectrum is symmetric under b <> —b.
Nevertheless, the above argument strongly suggests that it should be included in the final

answer (see section 2.5 for further remarks). In section 4, we will provide an alternative
derivation of the (—1)|b|77b factor.

It is straightforward to generalize (3.38) to abelian theories with G = U(1)" and N},
hypermultiplets, as defined in section 2.1.3. For these theories, we have

Ny, lar-bl=ay-b

. —1)"=z — _[(1+]|q b 14| - b
Z(&,):H( ) 2.|1‘< +|;11 !_icjl.a)r<+|2qf|+@.g> (3.42)

28In particular, A =1 = 1/2, so the IR limit of SQED, is the theory of a free twisted hypermultiplet.

29Note that replacing (—1)1b1=/2 _ (—1)(bI+8)/2 iy (3.38) would also lead to an expression satisfying
the desired properties of twisted monopole two-point functions. We will see in section 4.3.2 that the choice
in (3.38) is the one consistent with our conventions.
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(recall that ¢7 € Z" is the vector of gauge charges of the I'' hypermultiplet). From (3.42),
one can read off the BPS monopole operator dimensions to be Ay = ?7:’11 @, which is
indeed the correct answer.

To summarize, we have shown that arbitrary correlators involving two twist-

ed-translated monopole operators can be calculated by solving the matrix model

(M /2) M f2) ) = (H dai> 2B, (3.43)
i=1

 Zg
where Z(&,b) is given in (3.42) and the (---) are some polynomials in ®(), which in the
monopole background localizes to (3.26). We will discuss applications ofﬂthe formula (3.43)
in section 6. Before doing so, we will show that the product over F(W —iq;-&) in (3.42)
can be viewed as the partition function on a hemisphere with b units of fAux threading its
boundary S2. The full expression (3.42) can be viewed as the result of “gluing” two such
partition functions. This point of view will lead to a simple generalization of (3.43) to cor-
relators with an arbitrary number of insertions of twisted-translated monopole operators.

4 Localization on HS3 and O0H S?3

A very useful representation of correlators of twisted CBOs, powerful enough to facilitate
computations with an arbitrary number of monopole insertions, can be obtained by cutting
S3 into two hemispheres HS® along the equatorial S? that is orthogonal to the great circle
where the 1D theory lives. The path integral on HS? then generates a state at the boundary
OHS3 = S?, and insertions of twisted CBOs can be represented by certain differential
operators acting on this state. Gluing two hemispheres back together then allows one to
recover the full S? answer.®’ As we will see, the boundary states (with insertions) in our
case are Qg—closed. It follows that the gluing of two such Qg—closed states depends only
on their cohomology classes.?! We will not, in practice, describe these cohomology classes:
rather, we will utilize a slightly different philosophy, outlined in the next paragraph.

Our strategy for gluing can be summarized as follows. Gluing two hemispheres along
their common boundary is represented by a path integral on S?, which we refer to as the
“gluing theory.” This integral is taken over the space of boundary conditions corresponding
to a fixed polarization on the phase space of the bulk theory. As will be explained, for
our particular choice of supersymmetric polarization, the gluing theory itself preserves
2D N = (2,2) supersymmetry on S?. Applying supersymmetric localization to the gluing
theory then reduces the infinite-dimensional functional integration at the boundary S? to a
finite-dimensional integral over the space of half-BPS boundary conditions. In what follows,
we will describe this technique, derive the gluing formula (4.48) via boundary localization,
and derive the hemisphere partition function (or wavefunction) via localization on HS3.

3%We thank Davide Gaiotto for sharing the idea to use this approach.
31In fact, we are going to compose a Qf -closed vector |¥) (QF|¥4) = 0) with a QF-(co)closed covector
(¥_| ((¥-|QF = 0). This composition indeed descends to a composition on cohomology.
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4.1 Cutting and gluing

The cutting and gluing axiom is one of the most fundamental properties of any local quan-
tum field theory. The essence of cutting is that under a decomposition of a spacetime
manifold into two components, the QFT dynamics as described by the path integral will
generate physical states at the boundaries. The two boundary components in this de-
composition have opposite orientations, so that one component supports a state living in
some Hilbert space H, whereas the other supports a state living in the dual HY. The
gluing property refers to the opposite procedure: if we have two identical boundary com-
ponents of opposite orientation, they support states in H and H", respectively, and we can
glue the spacetime manifold along these boundary components simply by composing the
corresponding states.

In the context of supersymmetric boundary conditions and domain walls, the gluing
procedure has appeared in various forms throughout the literature, a few examples be-
ing [55-64]. In some of these works, concrete expressions for gluing are derived with the
aid of heuristic arguments — for example, in [62], where the need for a more illuminat-
ing derivation was emphasized. Here, we describe such a first-principles derivation for 3D
N = 4 theories, explaining the proper framework and relevant concepts along the way. A
more detailed exposition of the gluing procedure and related symplectic geometry will be
presented in [65].

In this problem, it is natural to start with a Hamiltonian formalism. Indeed, close to a
boundary component C' C 9M, the manifold looks like a cylinder C'xR. In the Hamiltonian
description, R plays the role of time and the space of fields on C' is the configuration space.
The bosonic fields and their time derivatives become, respectively, bosonic “positions” and
“momenta,” while half of the fermionic fields become fermionic “positions” and the other
half become fermionic “momenta.” There is a canonical Poisson bracket defined on the
fields. This describes the phase space of the model, which is of course infinite-dimensional,
unless we work with quantum mechanics (a 1D QFT).

“polarization” [66]:

To describe a boundary state, one has to choose what is called a
roughly, to pick one half of the phase space coordinates that Poisson-commute with each
other and declare them to be “position coordinates.” States can then be defined as func-
tionals of these position coordinates. The simplest situation occurs in quantum mechanics,
where the phase space is R?” parametrized by p;,q*, i = 1...n, with the canonical Poisson
bracket. Then the standard choice is to define states as square-integrable functions of ¢'.
In the path integral formulation, the action corresponding to this choice of polarization is

written as T
S :/ (pig" — H)dt (4.1)
0

with H being the Hamiltonian. The boundary conditions are allowed to fix ¢’ at the
boundary, leading to the path integral formula for states in the “position representation.”
For example, one can write ¢ (z) = (g = xz|e”*T|q = 0) using the path integral as

Y(x) = /zma PqIpet o il —H ) (4.2)
q(0)=0
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In an alternative polarization, one could choose to fix the momenta p; at the boundary:
this is commonly referred to as the “momentum representation.” It is known that for these
boundary conditions to work, one has to write the action as:

T
Sp = / (—¢'pi — H)dt = Sy — piq'|,_p + pid'|,_y = Sq — pid'|,_, - (4.3)
0

This differs from the action S, that was appropriate for the position picture by the boundary
terms —piqi}OT. We could also choose to fix coordinates for the first k degrees of freedom
and momenta for the remaining n — k degrees of freedom. Then the proper boundary terms
would be — 37", piqi|0T.

One of the reasons that the boundary terms show up is to make the variational problem
well-defined, i.e., to ensure that there are no boundary corrections to the equations of

motion.?? For example, the variation of the position picture action Sy is
-4 i i i|T
58, = /dt [6pi(¢" — OH/0p;) — 6" (ps + OH/9q")] + pidq'|, - (4.4)

Generically, the Hamiltonian equations of motion follow from the above variation if d¢’
vanish at the boundary, so that the positions ¢’ take fixed values thereon. If this is not
the case and we are considering more general boundary conditions, then we are forced to
‘t:O =0 and p;0¢* + 5F2‘t:T = 0. The
case of general boundary conditions given by Lagrangian submanifolds, and in particular

include boundary terms F o such that pidq’ + 0F,

the question of how to construct boundary terms in that case, will be studied in [65].

In the upcoming subsections, we will use the fact that if the theory has a symmetry that
preserves the polarization, then this symmetry is induced in the gluing path integral [65].
For us, the relevant symmetry will be supersymmetry. What does it mean that a symmetry
preserves the polarization? If we choose to fix the positions ¢’ at the boundary, it simply
means that the symmetry transforms a ¢ = const. submanifold into ¢ = c/o;/st., where

const. are some other constants.

Let us illustrate this statement for the simplest example of a position-based polariza-
tion, in which the wavefunctions depend only on ¢*. Suppose that a theory has a symmetry
whose generating function is

Y = Z ¢'pi+alq), (4.5)

where ¢ are constants. The corresponding Hamiltonian vector field, Xy = > ¢ 2

aq°
8;;?) 6%_, obviously preserves the position-based polarization: every subspace ¢* = const. is
3

transformed into another subspace of the same type. Suppose that 1, and o are states

32Note: this is a different perspective from the one adopted in some literature on supersymmetric bound-
ary conditions, where boundary terms in the equations of motion are used to derive boundary conditions,
e.g., in [64]. From that perspective, one would start with the action (4.1) without any boundary conditions
and conclude that boundary equations of motion enforce p(0) = p(T) = 0. This gives a single boundary
condition, as opposed to a family of boundary conditions parametrized by q. We need the latter perspective,
in which p,ﬁqﬂ vanishes because of 5qi‘ = 0, not because of p¢| = 0, to be able to describe boundary states.
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annihilated by the symmetry generated by Y, i.e.,
. ;0
—1 zj: d@lﬁl@ + a(q)wl,Q = 0, (4.6)

or in infinitesimal form,
U12(g" + ec’) = e Dy 5 (4.7)

Then, clearly, the following holds:
Vi + ec)alq’ +ec') = i(q)a(q"). (4.8)

The symmetry Y induces a transformation ¢* — ¢' + ec’ on the positions, and the prod-
uct 17 (q)12(q) is invariant with respect to it. This means that the integral performing
the gluing,

/ i@ (a) (4.9)

has a symmetry ¢ — ¢' + ec’. We can say that |1»2) € H, whereupon 1; determines an
element of the dual space:

(1l € 1Y, (¥nlo) —/d"q (lg)al2),  (ilg) = ¥i(q), (glve) = valq). (4.10)

This formulation is very natural: two copies of the boundary, with opposite orientations,
support the Hilbert space H and its dual H", with (g|i2) and (1)1]|q) representing their
elements, respectively. The complex conjugation comes into play only if we use the Hilbert
space structure on H to relate it with H".

The above quantum mechanics example is a model of what is going to happen in our
3D theory: the symmetry Y will be replaced by supersymmetry and the boundary states
will be supersymmetric, as will the boundary path integral performing the gluing. This
will allow for the use of supersymmetric localization to simplify the gluing.

4.2 Supersymmetric cutting and gluing of hemispheres

Upon cutting S? into two hemispheres along the equatorial S2, the isometry group SO(4) is
broken down to the isometry group SO(3) of S2. Correspondingly, the A = 4 superalgebra
su(2[1)y @ su(2|1), is broken as well. The maximal subalgebra that can remain unbroken is
su(2|1), which is the N = (2,2) superalgebra on S2. As is well-known, the latter comes in
two versions, su(2|1) 4 and su(2|1) g, related by 2D mirror symmetry [67]. Correspondingly,
we can impose two types of boundary conditions on an empty hemisphere, preserving either
su(2[1) 4 or su(2|1) .3 To see how this works in relation to 3D mirror symmetry, consider
an outer automorphism a of su(2|1), @ su(2|1), that acts trivially on all generators, except:

a(RT‘) = _RT7
a(QU) = Q™). (4.11)

33In the language of [68], these two types of boundary conditions are both called “A-type,” while their
“B-type” preserves (0,4) SUSY and has no counterpart in our story.
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This is the automorphism underlying 3D mirror symmetry: in particular, it switches Ry
and Rc. Up to conjugation, one can identify the su(2|1)4 subalgebra as diag[su(2[1),®
su(2|1),]. Then, up to conjugation, the su(2|1)p subalgebra is diag [su(2|1); & a(su(2|1),)].
We observe that QS € su(2|1)4 and Q¥ € su(2|1)p. Furthermore, insertions of twisted
CBOs at the tip of the hemisphere preserve su(2|1)4, while similar insertions of twisted
HBOs preserve su(2|1)p (see Footnote 15). This implies that in this paper, we need
only preserve su(2|1)4 at the boundary, as su(2|1)p would be relevant for the mirror
Higgs branch story. For this reason, we drop the subscript A in what follows and sim-
ply write su(2[1).

In our conventions, the diagonal subalgebra diag [su(2]1); @ su(2|1),] preserves the
great S? located at ¢ = +m/2. We choose to perform a cut along a different great S
located at o = 0 and ¢ = 7. Correspondingly, we will denote by H Si the hemisphere
with 0 < ¢ < 7, and by HS? the one with —7 < ¢ < 0. The su(2|1) preserved by this cut
is conjugate to diag [su(2|1), & su(2|1),]. More explicitly, in terms of the su(2|1), &su(2[1),
supercharges o) and Qg i), the su(2|1) subalgebra preserved on our HS? is generated by

Qf = o+ o) o = o) — of™), (4.12)
Qr=af7 -, @r=0{"+9of”. (4.13)

Most importantly, our Coulomb branch supercharges (2.22) are part of this algebra, and
identified as Q¢ = Qf and QF = Q5 .

In the presence of real masses m, it is the central extension of su(2|1) that becomes
relevant. Indeed, by (2.19), the central charge entering diag [su(2|1), & su(2|1),] is irm.
This fact is not changed by conjugation, so the central extension appearing in our su(2|1)
always corresponds to mass deformations. The central transformations generated by FI
terms, on the other hand, are not symmetries on HS3. Those transformations multiply
monopoles by a phase proportional to their charge, and because the total charge need not
vanish on HS?, they are not symmetries there. Note that the twisted translation (2.28) is
also not a symmetry on HS3, and only becomes one on the full S3.

In what follows, we will first discuss how to include insertions of twisted CBOs on HS?
in an su(2|1)-invariant way. We will then describe the phase space of our theories close
to the S? boundary, and show that there is an su(2|1)-preserving polarization in the sense
described in the previous subsection.

4.2.1 Operator insertions and su(2|1)

The path integral on an empty H.S® generates a state at the boundary S? which is invariant
under all supersymmetries, and in particular under su(2|1). Moreover, the tip of HS? is
a fixed point of the SO(3) isometry, so the latter is not broken by insertions of scalar
local operators there. In fact, it turns out that the full su(2|1) symmetry is preserved by
insertions of twisted CBOs at the tip of HS? (see Footnote 15 and the previous subsection).
On the other hand, insertions of twisted-translated operators along the great semicircle of
HS? away from the tip generally break the su(2|1) symmetry. However, by performing a
simple step before cutting S® into two halves, we can reduce calculations involving generic
insertions to those involving only su(2|1)-invariant insertions, without any loss of generality.
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Indeed, owing to (2.25)—(2.26) and (2.27)—(2.28), we know exactly how correlators
of twisted-translated operators on S3 depend on their insertion points along the great
circle. Specifically, suppose that O1(¢1),...,On(pn) are twisted-translated operators in-
serted at points ¢ < --- < ¢, and suppose that they carry monopole charges by, ..., by,.
From (2.25)—(2.26) and (2.27)—(2.28) (which state that ﬁf and ﬁg are cohomologous to
—irm and —irg , respectively), we deduce that their correlation function on S has posi-
tion dependence

(O1(#1) - - Onlipn)) ox exp (—rz wak> : (4.14)

k=1
where ( is an FI parameter (if the gauge group contains multiple U(1) factors, then ¢ and
by, are vectors, and they are dotted into each other in the expression above). In particular,
for vanishing FI parameters, the correlator has no position dependence at all, as long as
we keep the ordering of operators unchanged.

Now suppose that we cut S® along the equator at ¢ = 0 and £7. Some insertions (say,
O1,...,0}) will end up on the hemisphere H.S?, while the others end up on HSi. Let us
move all operators to the tip of their corresponding hemisphere. Using the OPE, we define
lim/2 OkJrl (SOkJrl) Ok+2(80k+2) ce On((Pn) = O+(7‘r/2) + {QC, e } ,

P T
Pr41<<Pn

%EIEITF/Z O, (@1) 02(4,02) - (’)k(cpk) = 0_(—71'/2) + {QC, e } , (4.15)
Pr<-<pp

where O, are some twisted CBOs. Then the full correlation function on S is simply

n
(O1(p1) - - On(epn)) = (O4(7/2)O_(=7/2)) x exp (—T’ZCbkwk> : (4.16)
k=1

Now we can safely cut S3 into two halves, with O inserted at the tip of HS%. These
configurations generate su(2|1)-invariant states W at the boundaries of HS3. The use of
the OPE above is a bit formal, as we do not know it a priori. In section 5, we will see how
it can nevertheless be determined only from knowing how to glue HS3 wavefunctions with
insertions at their tips.

4.2.2 The phase space

To apply the canonical formalism, we start by describing the phase space for the theory
on S? x R. Note that close to the equator, S? looks like S? x R. Hence there is no need
to separately study actions on S? x R, as all relevant information can be read off from the
action on S3. In other words, the Hilbert space of states on S? does not depend on which
three-manifold this S? bounds: it could be H.S3, a half-cylinder S? x R, , or anything else.
The role of the bulk is merely to prepare a certain state at the boundary.

Let 0, denote the derivative along the unit normal to S?. In the canonical formalism,
0, is thought of as the “time derivative.” On S? x R, we have 0, = O with 20 being the

00
coordinate on R. On HS? (0 < ¢ < ), 9, is given by

__sgn(cosp) 0
oL = rsinf  do’ (4.17)
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while on HS? (-7 < ¢ < 0), it is given by

_ ,sgn(cosp) 0
oL=+ rsinf  dp (4.18)

With respect to 9, the momenta canonically conjugate to g, and ¢% are, respectively,

p® =D, ¢* and P, = D qu. The corresponding Poisson brackets are3*

{a(2), 008" (W)} P = 6a 1RG5z (z —y),  {@"(2).01@(y)}p = 0 Irds2(z —y), (4.19)

where 1% is the identity matrix in the representation R, and dg2(z — y) is a delta-function
on S?. Similarly, the Poisson brackets for . are

y 2 o .
{@,4(2), 00 0% (y)}p = =L (8507 4 6707 ) Lagydee (v — ). (4:20)

The auxiliary fields Dy, are eliminated in the canonical formalism because the action does
not include their derivatives. There are many equivalent ways to understand this. For
example, they could simply be integrated out before quantizing the theory. Alternatively,
recall that the phase space can be interpreted as the space of solutions to the classical
equations of motion modulo gauge equivalences. The classical equations for D, are alge-
braic and can be used to express D, in terms of the other fields. Finally, we could apply
Dirac’s procedure by introducing conjugate momenta H%’ for D, with the Poisson bracket

1
{Dal) 5 (9) b = 5 (3508 + 6265 ) Taaidsa(z — ). (421)

which satisfy the constraint H%’ = 0. This induces a secondary constraint putting D,
on shell:

. 2 .
LGN ~ 1 = i 1
Dg, = — ;M QoI ) — Zhab(hai,q’A’ba) - 59\2(MC(TA)hab, (4.22)

where T4 (A = 1...dim G) denote the generators of G in the representation R and ¢(T4)
denote possible FI terms that can only be present for those T4 corresponding to U(1) factors
of G. Again, auxiliary fields are eliminated, the physical subspace being constructed as the
solutions to (4.22) and 1% = 0 (modded out by gauge symmetries). Note that because
of (4.22), be has nontrivial Poisson brackets with other fields on the physical subspace:

)
1 ~
{Dih(a), 013 ()} p = =265, Gy T2 (¢ — ).
< 2
1
[Dih(@), 01a" W)} = “T2L6E, T g 052 (2 — ) (4.23)
.7 2 — .
{Dih(@), 0107 (y)}p = ~LMp 5465w — ),

where we have left the representation label R on hypermultiplet scalars implicit.
As usual, it is useful to keep in mind all equivalent descriptions of the phase space at
once. In particular, we will often have D, present in our equations, alluding to the latter

34Gtrictly speaking, 81 ¢ here is not really a derivative but merely a symbol standing for p® + 4, g%,
and similarly for 0, q,. This distinction will not be important anywhere in this paper.
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description. On the other hand, the definition of the phase space as the space of solutions
to the classical EOMs allows us to be cavalier about closing SUSY off shell: when we act
with SUSY in the phase space, we simply transform one classical solution into another, so
we are completely free to use the equations of motion.

Proceeding with our description of the phase space, the remaining bosonic fields are
gauge fields. We denote the component of A, along the R direction in S% x R by Ay and the
components along the S? directions by A;. The canonical formalism complements them by
conjugate momenta 7° and 7’, as well as the constraints

Ag=n"=0, DA =Dir' =0. (4.24)

The canonical Poisson bracket {A,(z), 7™ (y)}p = 6,,0g2(x — y) induces a Poisson bracket
on the constraint subspace.?®> On HS?, we will identify A, with Ay where, as before, L
denotes the direction normal to S2. In this situation, it will be convenient to interpret the
constraint A| = 0 as a partial gauge-fixing on HS3.

Finally, let us turn to the fermions. In the canonical formalism, half of them become
“positions” and the other half their conjugate momenta. This is simply because the action
for fermions is of first order in derivatives. The Poisson brackets turn out to be?6

{Waa(@), 972 (y)} p = i6% (71)o P82 (z — ),

i
{Aaaa(@): Agy(9) 1P = —5€abesp (V1)ap 952 (2 — 1), (4.25)
where v, is the component of v, along the unit vector field normal to S2. In particular,
__ sgn(cosy) _
VL= " rsmo 7‘P‘boundary =93

4.2.3 The su(2|1)-invariant polarization

We would now like to describe a proper choice of splitting of the phase space variables of

our theory, such that half of them define an su(2|1)-invariant polarization. In other words,

we want to find field combinations that form su(2|1) multiplets, in addition to Poisson-

commuting with each other at the boundary.?” Fixing such field combinations on S? will

provide us with the appropriate family of boundary conditions, inducing 2D N = (2,2)

supersymmetry in the gluing theory and allowing for localization of the gluing path integral.
Our strategy is to start with the combinations of scalars (familiar from [13])

g+ =q tig2, ¢+ =q Eiq. (4.26)

35Note that A; can be interpreted as a gauge field on S?, and the constraint D‘A; = 0 as a gauge-
fixing condition. If we choose a position-based polarization and describe wavefunctions as functionals of
A; on a subspace determined by DA; = 0, then we can alternatively relax this constraint and say that
wavefunctions for the gauge field are simply gauge-invariant functionals of A;.

36 A naive application of the canonical formalism would not give a factor of 1/2 in the second equation
of (4.25): to obtain this coefficient, one must properly account for the second class constraints and construct
the Dirac bracket on the constraint surface.

3"Poisson commutativity would hold everywhere if we were working on S x R, but on HS?, it only needs
to hold at the boundary.
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Under su(2|1) SUSY transformations (restricted to the boundary), the combinations (4.26)
transform into the boundary fermions

X = (¢1 - 03¢2)| ’ 55 = ’L(Jl + 0-3'(22)‘ ) (427)
ﬁ: (Jl - U?ﬂZQ)l ) p= —Z(% + 0—377/)2)‘ ) (428)

where the notation X ‘ denotes the restriction of X to the boundary S2. The only nonva-
nishing Poisson brackets between the fermions in (4.27) and (4.28) are given by

{xa(2),8(W)} P = {Xa(®), ps(y) } P = 2icapds2(z — ), (4.29)

suggesting that, e.g., y and Y could be good candidates for the “positions” of the hypermul-

tiplet fermions (and indeed they are, as we will see momentarily). Further acting on y and

X with supersymmetry generates entire 2D N = (2,2) multiplets that Poisson-commute.
Let us summarize the results of this lengthy calculation. We identify a 2D N = (2,2)

chiral multiplet ®249 and a vector multiplet V(29 whose components we denote by
O = (¢, 6, Xas Xeus 1 1) (4.30)
VD = (a4, Aoy Aoy 51, 52, DPD) . (4.31)

In (4.30), the scalars ¢ and gg are complex conjugates, x, and Y, are their fermionic
superpartners defined in terms of the bulk fields in (4.27), and f and f are the complex
conjugate auxiliary fields of the 2D chiral multiplet. In (4.31), a denotes the 2D gauge field

on S2, \ and \ are the gauginos, s o are real scalar fields, and D)

is the auxiliary scalar
in the 2D vector multiplet.
Apart from y and X, which are already written in (4.27), the other components of

®C9 in (4.30) are identified with boundary values of bulk fields as

, f:(—Dm——””m)

o=a: . , (432

where ¢4 was defined in (4.26) and the conjugate components gg = ¢* and f: f* can be
found using the reality conditions (2.20) satisfied by the bulk fields.
The components of V29 can be written in terms of the bulk fields as

a= A||| , (4.33)
1 . .
A= ) ()\12 —iAgs + 03(>\11 — Z>\21)) ‘ , (4.34)
N 1 . .
A= =5 (g + Ay —o3(Ag +idsi)) | (4.35)
Bii + Dy
5 = i > 2 p—_—l (4.36)
D 1 ) P — Dy
Doy = |:_T12 + 5 (Dtl)il—shell + Dgg—shell) +iD, < 11 5 22>:| ‘ ) (437)

In (4.33), we have defined A = Agdf + A;dr. The Dowshell ahhearing in (4.37) denote
the on-shell values of the auxiliary fields given in (4.22). This traces back to the fact that
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in the description of the phase space, D, takes its on-shell value.?® Finally, in addition
to (4.27), (4.32), and (4.33)—(4.37), which fix the 2D multiplets ®?%) and V(% at the
boundary, we impose the boundary condition

Ayl=0. (4.38)

The condition (4.38) should be interpreted as a partial gauge-fixing on HS®. The necessity
of imposing this condition follows from the description of the phase space for gauge fields
in (4.24).

It is trivial to verify that the field combinations defined in (4.27), (4.32), (4.33)—(4.37),
and (4.38) form a maximal subset of the phase space variables that all Poisson-commute
at the boundary S2.39 This means that fixing them on S? is a consistent boundary con-
dition for the path integral on HS3. Moreover, one can check that under the su(2|1)
transformations restricted to S2, the combinations (4.27), (4.32), and (4.33)—(4.37) indeed
transform as 2D N = (2,2) chiral and vector multiplets, respectively. These transforma-
tions, as well as further details on the boundary su(2|1) SUSY variations, are summarized
in appendix A.2.40

For completeness, let us also describe the boundary terms that one must add to the
action to guarantee that the variational problem is well-defined with the above boundary

conditions. To do so, we introduce another set of fermionic variables

1 ) .
w = §(>‘12 — Ay — 03(Aj —1Xgi))
~ 1 . .
w= 5()\12 +idgs + 03()\11 + Z)‘Qi)) . (4.39)

These are canonically conjugate to A and X, so the only nonzero Poisson brackets are

Dale).5)}p = Dale),ws(0)} P = 5easdisn(z — ). (4.40)

The proper boundary term can then be written as follows:
1 - 1 ~ 1 ~ ~
So =3 /52 &’z <Q+(DJ_Q— +5(Pii — Pg)g-) +¢-(Drds + 5(Pij — 25)04) + x“pa>
1 .. .. ~ .
—— | d% (@1 = 0D (@) — @sg) + AT + Xwa) ) - (4.41)
gym J 52

The boundary term (4.41) can be constructed along the lines of the discussion in section 4.1.
Adding it to the action ensures that the path integral on the upper hemisphere H Si pro-
duces a boundary state written in our polarization. While (4.41) is needed for consistency,

2

38Using (4.22), the equation for Dy can alternatively be written as Dgy; = QYTM(@rTAq, + G- Thqy) —
) . A _ph
ety o, (#158)|

39When checking this, one should keep in mind that D, has nonzero Poisson brackets with some other
fields, as in (4.23).

4%Tn particular, when applying the SUSY variations in our formalism, one should impose the equations of
motion because the 3D N = 4 algebra does not close off shell on the hypermultiplet. Furthermore, SUSY
breaks the gauge-fixing condition A l‘ = 0, so this must be compensated for by a gauge transformation.
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we will see shortly that it vanishes on the localization locus of the HS® path integral, and
being a term in the classical action, it does not contribute in the localization computation.
If we denote the boundary conditions collectively by

B = (93D (D) (4.42)

then the state |V, ) generated by the H SS)’F path integral with these boundary conditions
(and the gauge fixing (4.38)) is represented by a functional of %:

VL[] = (B|.). (4.43)

The dual state (U_ | generated by the H.S? path integral with the same boundary conditions
can be written as

U_[B] = (V_|B). (4.44)

Gluing these states is tantamount to computing the path integral
JECR RTINS (4.45)

which has su(2|1) supersymmetry due to the su(2|1)-invariance of the polarization. The
computation of this path integral will be performed in the following subsection.

4.3 Boundary localization and the gluing formula

With the answer (4.45) in hand, all we must do is localize it. Localization of N' = (2,2)
theories on S? was studied in [69-71] and reviewed in [41]. We will simply borrow these
results, mostly following [70]. Notice that the supercharge used in [70] for localization is

Qf +Qy = of + 9of, (4.46)

which is precisely our Qg at § = 1. This fact implies that as long as we use our boundary
conditions, we do not really need the full su(2|1) symmetry to localize the gluing theory.
It is enough to have only sz preserved, and this gives us the freedom to move twisted
CBOs along the great semicircle of HS? as well as to include certain nonlocal observables.
For simplicity, we will not exploit this freedom in what follows: we will simply restrict our
attention to insertions of twisted CBOs at the tip of HS®.

The results of [70] come in two forms: those corresponding to Coulomb branch and to
Higgs branch localization. The one relevant to us is the former. On the localization locus,
all the 2D fermions vanish and the bosons take the following values:

_B
T

¢=0, f=0. (4.47)

B
azi;(sin@—l)dr, Doy =0, $1 szz—gzconst.,
T

In (4.47), B € t is the magnetic charge, where t is the Cartan of the gauge algebra g and
o € g is the Coulomb branch parameter (which can be further restricted to t at the cost
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of a Vandermonde determinant).*! The signs in the expression for the 2D gauge field a
correspond to its values on different patches of S?: in each of the two patches, 6 takes
values in [0,7/2], with § = 7/2 corresponding to the North and South poles of S? as in
figure 1 and # = 0 being the equator of S?, along which the patches are sewed.

It now follows from supersymmetric localization on S? that to compute (4.45), it
suffices to evaluate the functionals ¥1[Z%] on the localization locus (4.47): we denote
this restriction by ¥ (0, B) = \I/i[,%’H( 447y~ Furthermore, we must include the one-loop
determinant from the localization on $2.42 This one-loop determinant plays the role of a
“gluing measure,” which we denote by (o, B). To summarize, the full S? answer can be
written as

> /tda (o, B)¥_(o,B)¥ (0, B) (4.48)

Bel'y,

where I';,, is the lattice of magnetic charges allowed by the Dirac quantization condition.
The gluing formula (4.48) holds in all 3D N = 4 gauge theories, including non-abelian ones.

In this paper, we are concerned only with the abelian theories described in section 2.1.3.
For those theories, the one-loop determinant u(o, B) appearing in (4.48) only receives
contributions from the 2D chiral multiplets, and is given by

+|gr-Bl ., L
_ N |77 B|~g;-B 9 4F< |ZI | +qr - U)
w(@, B) = T[(-) ™" (ar) 2 2 . (4.49)
<1+|QI‘B‘ . _»)
I=1 r 5 —iqr -0

Note that the dependence of (4.49) on the UV cutoff A simply exhibits the one-loop exact
logarithmic running of the 2D FI term.*?
With the localized boundary conditions (4.47), the boundary correction (4.41) simpli-
fies to:
i

=" /sz P (C(TA)(q’fi = @i) + T+ (D1 — %Q)Q) : (4.50)

Aside from ensuring that the gluing procedure is consistent, this boundary action plays
another important role: its SUSY variation cancels the boundary terms (B.15) and (B.16)
generated by the SUSY variation of the bulk action. This follows from the general formalism
of section 4.1, as will be explained in more detail in [65], and can also be checked by an
explicit computation. Hence the total action, with (4.50) included, preserves the required
four supercharges on H.S? that form N = (2,2) supersymmetry at the boundary.

41n (4.47), we took B to have the opposite sign as compared to [70]. The reason is that the boundary
conditions with B as in (4.47) correspond to a monopole of charge B inserted at the tip of HS3. This can
be checked by taking the background solution (3.17) and restricting it to ¢ = 0. Thus to account for the
orientation of S, in borrowing any results from [70], one has to replace B — —B.

“2Note that there is no contribution from a 2D classical action evaluated on the localization locus (4.47),
simply because the gluing theory does not have such an action.

“3We have omitted an extra factor of (Ar)~" in the formula for the gluing measure because it cancels
with factors of v/Ar arising from the determinant of the vector multiplet on the hemisphere.

— 41 —



4.3.1 The monopole HS3 wavefunction

—

The remaining pieces of our solution are the hemisphere wavefunctions ¥ (&, B) entering
the gluing formula (4.48). They are both determined by a path integral on HS® with the
boundary conditions (4.27), (4.32), (4.33)—(4.37), and (4.38), restricted to the localization
locus (4.47). We now compute ¥ (&, B) for vanishing FI parameters and in the presence of
a charge—g twisted monopole operator M®(y) at the tip of H S2; the result will be denoted
by U, (&, E;Mg).

We can argue that the wavefunction ¥ (&, B; MZ;) will be equal to ¥_ (&, B; M_E), ie.,
the HS? wavefunction with an insertion of an oppositely charged twisted monopole M-t
at its tip. We therefore need not compute ¥, and ¥_ separately. One way to understand
this fact is to consider the background (3.20), (3.21) of section 3, which represents the
insertion of M? at the tip of HSi’_ and of M~? at the tip of HS? (see also section 4.4).
This background is invariant under the coordinate change n — m — 7, which exchanges the
upper and lower hemispheres. Therefore, the path integrals that generate U, (7, E; Mb)
and ¥_ (7, B ; M~?) are the same, and these two wavefunctions are equal:

U (3, B; MP) = U_ (&, B; M7Y). (4.51)

Moreover, by evaluating (3.20), (3.21) on S? (i.e., setting n = %), one sees that this
background is compatible with the 2D localization locus (4;47) of the gluing theory precisely
when B = b. In particular, this implies that U, (3, B;MV) =0if B # b:44

-,

Uy (&, B; M) = 65 Z1165(3, D) (4.52)

where Zj; gs is the H.S? partition function in the twisted monopole background, with bound-
ary conditions specified in the previous subsection and B=5.

Since the boundary conditions determined in (4.47) are half-BPS, we can apply super-
symmetric localization on HS? to compute Zgs(7, 5) With such boundary conditions,
the BPS equations on HS3 have the same solutions as on S3, described in section 3.1.2 (re-
stricted to the corresponding hemisphere). In particular, the boundary correction (4.50)
vanishes on the localization locus.*® Being part of the classical action, (4.50) therefore
leaves no imprint on the localization computation, in a similar manner to the mono-
pole counterterm.

The boundary conditions for fluctuations of the hypermultiplet fields around the BPS
locus simplify to

| =0, 91g-|=0, (¥ —o3¥)| =0, (P +o3ihs)| =0. (4.53)

As was the case on S2, the hypermultiplet path integral on HS? is given by the ratio
of determinants (3.27). Now, however, the modes of the differential operators appearing

44The latter fact does not change if we have some dressed monopole OF instead of M? at the tip, because
insertions of order operators do not change the value of the background on S2.

“5This is simply because (4.50) is proportional to ®;; — ®s5, which is zero on S? when evaluated on the
bulk localization locus.
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in (3.27) must be truncated according to (4.53). Recall that in abelian theories, the vector
multiplet contribution is trivial, so the partition function is fully accounted for by the
hypermultiplet one-loop determinant.

Let us summarize the results of the calculation of this determinant for SQEDq, leaving
the details to appendix E. Assuming (4.53), the bosonic eigenvalues are

14 b b
AgN:(NJr ZH ><N+3+2||:Fz'o>, N=o01,..., (4.54)

and have degeneracies

N+1)(N+1F1 b N+1F1 (N even),
gt = WEDWHIFD | Bl FLA ) (4.55)
’ 2 2 N+1 (N odd).
The fermionic eigenvalues are
1 1+1b
)\I%N:[i<N—|— ZH>+¢U}, N=01,..., (4.56)
’ r
and have degeneracies
N+1/24+1/2 (N even),
By = NN+ 1)+ o] x 1/ 12 (Neven (457)
’ N+1/2F1/2 (N odd).
The HS? free energy can then be written as
> _ N+ 2 o
FHS3 = Z [(dEN—’_dBN 1 dF,N)log+
N=0
N+ 2
+(dpy +dp y1 —dipy)log ——F——| - (4.58)

OnecancheckthatdgN—i—dBN 1 d}N—OanddBN—i—dBN 1 d;N:LWhence

> N+ 4 d , 1+ b
Fpgs = Z log ———— = 7 [(AT) ¢ (s, 5 —w)]

where we have used zeta function regularization to evaluate the divergent sum. From (4.59),
I'(9)

, (4.59)
s=0

using ¢(0,q) = % —q and % = log o We then extract the regularized value of the
hemisphere partition function Z HSs = e Fus3:
1 F(Hlel —i0)

ZHS3 - (AT)%fig m (460)

In a general abelian theory of the form described in section 2.1.3, the HS® wavefunction
with a twisted monopole operator of charge b € I',,, at the tip generalizes to

1 2 ar
Z = | | - . 4.61
HS? =1 (A lar-5] .. V2T ( )

1(Ar) =
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The cutoff dependence (Ar)"%% in (4.61) can be interpreted as the logarithmic running
of the FI term induced on the 2D boundary of H S3 by the I'" bulk hypermultiplet. The

[ . . .
dependence on (Ar) 2 arises because the monopole operator acquires conformal dimension

D ‘(j} . I;‘ /2. This power of A can be removed by formally renormalizing the monopole
operator itself.

4.3.2 Reproducing two-point function from gluing

Armed with the gluing measure (4.49) and the HS? partition function (4.60) corresponding
to Wy through (4.52) and (4.51), we can now reproduce from gluing the two-point function

-,

of M*" on S% computed in section 3. In particular, the S3 result Z(&,b), prior to the &

-,

integration in (3.43), is written in (3.42). From the point of view of this section, Z(&,b)
should be reproduced by the & integrand of the gluing formula (4.48). Indeed,

Bel'y,
Ny, |Gy -bl—adr-b R Lo
-1 1 -b 1 -b
) § S N r< nalll ’—iqq-5>r<+"“’+z'q}.a> (4.62)
71 2w (Ar)ldrbl 2 2

precisely as in (3.42), including all numerical factors!

The match exhibited in (4.62) is a strong consistency check on the technical details of
the gluing procedure that we have developed. In particular, it is pleasing that the cutoff
dependence due to the logarithmic running of the 2D FI term, which appears in the gluing
measure (4(7, E) as well as in the wavefunctions W, precisely cancels in the gluing. Indeed,
no such running should arise on 3. Moreover, the g—dependent sign that was conjectured in
section 3 based on general considerations is reproduced in the gluing computation, coming
entirely from the gluing measure.

4.4 Bilinear form and conjugation

So far, we have described the gluing procedure as the composition of a state vector |V )
and a covector (¥_|. The wavefunctions appearing in the gluing formula can be thought
of as

¥ (0,B) =V |0 B),
U, (0,B) = (0,B|V,), (4.63)

where (o, B| represents the boundary condition (4.47) imposed at the boundary of the
upper hemisphere H Si and |o, B) represents the same boundary condition applied to
the lower hemisphere HS3. We have assumed that the upper hemisphere path integral
prepares a vector, while that of the lower hemisphere prepares a covector. This formally
follows from the fact that gluing requires the boundaries of the two hemispheres to have
opposite orientations.

Can we “glue” two vectors? The answer is obviously yes, since the physical Hilbert
space is always equipped with a sesquilinear inner product that can be used to compose
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two states into a number. Here, however, we would like to define a different bilinear form
that is natural to our construction. To do so, we turn one of the state vectors into a
covector and then compose it with another state vector. There exists a natural operation,
a simple reflection across the equator, which flips the upper and lower hemispheres and
thereby turns a vector into a covector. In our fibration coordinates, it can be written as:

0—=0, p——p, T—T. (4.64)

On one hand, this is simply a coordinate change that leaves boundary conditions unaf-
fected. Hence the wavefunction ¥ (o, B) stays unchanged. On the other hand, it can be
thought of as a reflection of the hemisphere. Such an operation flips magnetic charges, so
it turns the upper hemisphere with a monopole insertion into the lower hemisphere with an
antimonopole insertion. If we also assign orientations properly, then we are in the situation
where the gluing procedure works and we can simply apply the gluing formula.

Thus if we are given two vectors |\111>/,\\/\I/2), then we can apply reflection to one of them,
say |W1), thereby obtaining a covector (¥1| with the property that (Vq|o, B) = (o, B|¥1).
Using the gluing formula, we then arrive at the definition of a bilinear form on H:

(U, Uy) = Z/d&,u(&, B)U (&, B)Uy(3, B), U, UyeH. (4.65)
B

Notice that if we have a monopole inserted on H Si close to the North pole of S? =
OH S? , then after applying the reflection, it turns into a monopole of the opposite charge
inserted close to the North pole of S? but from the HS? side. We can move it slightly
upward without affecting the answer for the glued correlator, so that it crosses the boundary
and enters H Si. Now it is again inserted on H Si, except that its charge has flipped. If
we represent the insertion of a monopole of charge bon H Si through the North pole of

the boundary S? by an operator MI];V, then this statement can be written as
(MR, Ws) = (U1, M), (4.66)
i.e., the following conjugation property should hold with respect to the bilinear form (4.65):
(M) = MY (4.67)

To derive a similar statement for the analogous South pole operator, we would have to
move it through the South pole. Recall from section 2.5.2, however, that monopoles of
half-integral R-charge are antiperiodic on S' and therefore defined with respect to a branch
point at the South pole of S? (p = :]:7'('2. For a monopole operator of charge g, the periodicity

is determined by the sign [];(—1)7*. As a consequence, the conjugation rule for South
pole operators is slightly different:

— — Nh I
(MG = M T](=)T. (4.68)
I=1

Later, when we derive explicit expressions for these operators, it will be instructive to check
that (4.67) and (4.68) hold.
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5 Correlators with multiple insertions

In this section, we derive a general expression for correlators of arbitrarily many twisted
CBOs inserted anywhere along the great circle in S3. In particular, we will represent these
insertions by certain shift operators acting on the H.S? partition function. As described in
section 4, two HS? partition functions with insertions can then be glued to obtain correla-
tors on S%. Furthermore, we will show that our results can be reproduced by dimensional
reduction of the 4D N = 2 Schur index with line defects.

5.1 Shift operators

Let us first study the abelian theories defined in section 2.1.3 with m = Z = 0, defer-
ring a discussion of nonzero mass and FI parameters to section 5.1.2. Consider a general
correlator of twisted CBOs in such a theory:

-

(O (1) - O (o)) ss » (5.1)

where the (’)Ei(goi) (i = 1,...,n) carry monopole charges b; € I'y, and are ordered on
the circle as —7 < ¢1 < -+ < ¢, < 7. When E = 0, the twisted translation (2.28)
is Qg—exact, so the correlator (5.1) only depends on the order of the insertions on the
circle. In particular, one can translate all the operators to the tip of H Si)’r (i.e., the point
(0,¢) = (7/2,7/2)) while maintaining their order, without changing the value of (5.1).
Then, by using the OPE at the tip, the above correlator can be represented by a one-
point function

(O (p1) - O (n)) 53 = (O°(m/2)) g5 (5:2)
where (’)5(77/2) is a twisted CBO of charge b = Yoy b; defined by

O'(x/2) = lim O (p))-- O (p,) (5.3)

pi—T/2

P1<-<pn
(of course, the correlator (5.2) vanishes unless b = 0). In (5.3), the ¢; — 7/2 limit is
taken in a way that maintains the order of the Ogi(goi) on the circle. The topological
property of the 1D theory then implies that (’)5(71 /2) is some position-independent linear
combination of twisted CBOs defined by the OPE, up to Qg—exact terms that do not affect
our correlation functions.*® In section 4, it was shown how to obtain an S3 correlator
of twisted CBOs at the tips of HS3 by gluing the HS3 partition functions along their
OHS% = S? boundary. In what follows, without loss of generality, we will only consider
the representation (5.2) of twisted correlators, in which there is an insertion at the tip of

HS’i and none at HS?.

In this case, the properties of the H.S® partition functions and of the gluing formula
in section 4 are simple to describe. The HS® wavefunctions with insertions at the tip only

46Upon passing to the cohomology of Qg, the order-preserving OPE defined in (5.3) is simply the non-
commutative star product of [11].
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depend on a finite-dimensional set of boundary conditions. These boundary conditions
are parametrized by & € R” and the topological charge Bel, measuring the number of
units of magnetic flux through the boundary S2. Due to this simplicity, the wavefunction
corresponding to an insertion of a twisted CBO Ob of charge be I';, and dimension A at
the tip can be evaluated explicitly: it takes the form

- 7\ Na N
N P(7,b 1 1 - b
W5, 500 = 5550 O F( = |—“TI'&)E(5

—,

where P(¢,b) is some polynomial. In the final equality of (5.4), we have factored out the
trivial dependence of the wavefunction on B.

For example, the insertion of a bare twisted monopole operator Mb of charge be | [,
is represented by a wavefunction (5.4) with P = 1:

. o U 1+ |q-b
(&, ByMb) =655 o |—z'q_’1-5 . (5.5)

The “vacuum wavefunction” is defined by inserting the identity at the tip, and is given by
simply setting b = 0 in (5.5):

Np,
_ 1 1
(3, B;1) =055 [ =T < —iqy - 5) =055%0(5) . (5.6)
) 71 A /277- 2 )

Unlike in previous sections, we work with renormalized quantities in what follows, thus
removing the explicit dependence on the UV cutoff. This requires formally renormalizing
the monopole operators by powers of the cutoff. Moreover, in the HS? partition func-
tion (4.61) and gluing measure (4.49), we set the renormalized 2D FI coupling to zero at
the scale at which we are working. This is done to avoid notational clutter, and will have
no effect on the final results. In particular, as we saw in (4.62), the running 2D FI terms
cancel anyway after gluing, as they must.*”

The S3 correlator (5.2) is given by gluing the appropriate wavefunction (5.4) to the
vacuum (5.6) using the gluing formula (4.48), resulting in

(O (1) -+ O (oo = (O (/D)o = - 3 / o u(G, BYW (7, B; 1)¥(5, B; 0°)

In (5.7), Zgs is the S3 partition function, and in the last line, we have evaluated the sum
over B while noting that (&, B), defined in (4.49), satisfies u(&,0)1(&) = (¢0(5))*. The

“"In other words, we define our shift operators without the factors of (Ar)*¥ in (4.61), which are
%1% in (4.49). This
definition is consistent because FI parameters, whether in 3D or 2D, should not affect the definition of

independent of the monopole charges, by absorbing them into the factors of (Ar)~

twisted CBOs (or the shift operators that create them) in an essential way: see (2.24).
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normalization in (5.7) is such that (1) = 1. Indeed, assuming that (1) = 1 and substituting
the explicit form (5.6) of the vacuum wavefunction into (5.7), we find that

Ny, 1
Zas = Zas(1) = [ d" _— .
w=Zo(b)= [ N etz 5 (5.8)

which is the correct S® partition function of our theory.

5.1.1 Twisted CBOs as shift operators

Let us now argue that insertions of twisted CBOs at the tip of H Si)’r can be realized
by differential operators acting on the wavefunctions (5.4). The operation of inserting a
twisted CBO along the R = 1 semicircle of HS? and moving it to the tip can be viewed
as the action of an operator on the Hilbert space of the 3D theory on S2. In particular,
such operators act on the subspace of the Hilbert space containing states whose H Si
wavefunctions are (5.4). On such states, these operators are represented by differential
operators in & and B acting on (5.4): they turn out to be simple shift operators.*® The
goal of this section is to construct these shift operators for the CBOs corresponding to the
generators of the Coulomb branch chiral ring.

In fact, in our case, there are two isomorphic sets of such shift operators. We define
Op as the shift operator implementing the insertion of the twisted CBO O(y) near the
North pole (R,¢) = (1,0) of 9HS? = S? and translating it to the tip, while Og(y) is
defined by the same operation but starting from the South pole (R,¢) = (1,£7) (when
the insertion through the South pole is in the upper hemisphere, we should take ¢ = 7w —,
and when this insertion is in the lower hemisphere, we should take ¢ = —7+¢€, with € > 0).
The wavefunctions Oy ¥ (7, B; O ) and OgV¥(7, B; 0 ) are generally distinct, because it is
not possible to move O(y) from the North pole to the South pole along the semicircle of
HS3 without crossing O’ (5) at the tip. Therefore, these two wavefunctions lie in different
Qg—cohomology classes, corresponding to taking the OPE of O(¢) and O'(¢) at the tip
in different orders on the semicircle. It follows that in general, the operators Oy and Og
should also be different.

A wavefunction corresponding to multiple insertions of twisted CBOs can be repre-
sented in several equivalent ways by acting on the vacuum wavefunction with the Oy g
in different orders. For example, consider an H Si wavefunction ¥(&, B ; OE) representing
the insertion of two twisted CBOs (951(901) and (952(@2), which are translated to the tip
while keeping 1 < @2 and fused into (95(77/ 2) with b = by + by. This wavefunction can be
obtained in three different ways by acting on the vacuum wavefunction (5.6) as

W(7, B, 0% = 0200w (7, B:1) = 0B 0% w(5, B;1) = 020w (7, B;1).  (5.9)

480rder operators are usually represented by finite-order differential operators. For instance, we will
see that insertions of ®(y) are represented by differential operators of order zero — that is, simply by
multiplication by a function. On the other hand, disorder operators such as monopoles are represented by

differential operators of infinite order. Operators of this type, such as €%

, will be called shift operators
because, e.g., €% f(z) = f(z + a). We will employ terminology in which we refer to all of the operators

that we use as shift operators.
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An important consequence of the definition of these differential operators is that for any
two twisted CBOs O(p) and O'(¢), we have

[On,0%] =0. (5.10)

The commutativity (5.10) expresses the fact that in bringing two operators to the tip from
opposite sides, they never intersect, regardless of which operator is brought to the tip first.
This is also related to associativity of the operator algebra: it does not matter whether we
first fuse Oy with whatever was already at the tip and then fuse the result with O%, or
whether we first fuse O with the operator at the tip and then fuse the result with Ox.

The shift operators Op g corresponding to insertions of twisted monopole operators
and vector multiplet scalars can be uniquely fixed from the explicit computations we have
done so far. Let us start by determining those corresponding to the twisted CBOs 5(@)
defined in (3.11), which are constructed from the vector multiplet scalars. As shown in
section 3, for any configuration of twisted monopole operators, ®(¢) localizes to ®pc(p) as
defined in (3.25) and (3.13). In particular, in the presence of a twisted operator OF with
topological charge beT,, at the tip of HS’?’H we find:

S 1] i-
Doe(p) = - [a + §bsgn (cos cp)} . (5.11)

The action of the operators ®y and $g on the wavefunction U(a, B ; (’)5), defined in (5.5),
is obtained by evaluating (5.11) either in the segment 0 < ¢ < 7 connecting the tip to the
North pole or in the segment 5 < ¢ < 7 connecting the tip to the South pole. The result is

- — —

- 1 ) -
dNU(,B; 0% = = <5+ ;b> (&, B; 0,
T
- o 3 AE 1/, - S
sV (5,B;O0%) = o Gl §b U (g, B;0°). (5.12)

From their action (5.12) on the HS% wavefunctions (5.4), ®x g can easily be re-expressed

as operators in the variables & and B. In particular, from the factorized form U(a, B:; (’)5) =

8 = b (&, b; (’)E) of the wavefunctions (5.4), one can reproduce the action (5.12) by setting

Bjb

- 1 - = 1 -
@ = — o — @ = — g — — . .1
N <U+ 23) , 5= <a 2B> (5.13)

The construction of the shift operators /\/ll];\a g corresponding to a twisted bare monopole

operator ./\/lg(cp) of charge bel,, requires slightly more elaborate reasoning. Clearly, by
acting with MEN, g on any wavefunction ¥(7, B ; (’)EI) of topological charge v , one obtains
a new wavefunction of the form (5.4) of topological charge b+ b. This fact, together with
the o éﬁ-dependence of the wavefunctions (5.4) mentioned above, implies that

M g = o} 5(3, B)e s (5.14)
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where v 5(a, E) are some differential operators in & with only polynomial dependence on

B. The operators Uévy 5(a, B ) can be constrained by using the commutativity property (5.10)
of North and South operators. In particular, demanding

My, P(®5)] = (MY, P(By)] = 0 (5.15)

for any polynomial P(z) and using the definitions (5.13), (5.14) implies that

W3 (7, B) = wy (&, B)e 2% | oG, B) = we(&, B)e2"% (5.16)

where wy (& , B) are simply polynomials in & and B. Moreover, imposing [M?V, Mg] =0
4),

and using (5.14), (5.16) further restricts the dependence of wy s(&, B) on & and B to be

ol

)

Q

wN(

)

N (& + ;5) = wy(rdy),
ws(@, B) = ws (5 - ;ﬁ) — we(rds). (5.17)

In summary, Ml]’v g must take the form

—

Mb, = wN(rq_ﬁN)eg'(_%aa_aﬁ) ) Mg = wg(r(fs)e_g'(_%af’aﬁ) , (5.18)

for some polynomials wy g(z). To determine these polynomials, we demand that when
the operators Mlj’vy g act on the vacuum wavefunction (5.6), they give rise to the wavefunc-
tion (5.5) with M®(¢) inserted at the tip, i.e.,

MYy (3, B; 1) = U(3, B; M) . (5.19)

The above equation uniquely determines the polynomials wy g(z), giving the final results

- Nuo_1\(@rb)+ - o
M = [H U (1 irdy <I>N> ] ¢ b (30+05) (5.20)
I=1 r 12 2 (qﬂl'ﬁ)-%
Nh T ,ﬂ
- —1)(=arb)+ P
MY = H ( )I“ 5| < +irqr ‘PS> e (3%705) (5.21)
I=1 r Ig (=qr-0)+

where (2)4 = max(z,0), r®y = &+ %E, and r®g = G — %é Note that Dirac quantization
implies that (£47 - b)4+ is a non-negative integer, and therefore that the Pochhammer
symbols*® in (5.20) and (5.21) are polynomials in (I;N,S- The twisted CBOs ®(¢) and
/\/lg(go) correspond to the Coulomb branch chiral operators of lowest dimension within
their respective topological classes (defined by their magnetic charges). In particular, all
other twisted CBOs/chiral operators are generated from their products.?® It follows that
all the corresponding shift operators are generated from the products of the fundamental

OWe use (2)n = I(z+ n)/F( ), which equals z(z + 1)(z +2) ... (z +n — 1) if n is a positive integer.
50The generators ® and M for any bel are, of course, not all independent.
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ones (5.13), (5.20), and (5.21) that we have already found. We conclude that any correlator
of twisted CBOs can be obtained by acting on the vacuum wavefunction (5.6) with the shift
operators (5.13), (5.20), and (5.21) in the right order and gluing the result using (5.7).%!

Note that while the N and .S operators clearly commute with each other, the algebras
of “all N” or “all S” operators are complicated by the fact that different U(1) factors of
the gauge group can be coupled through mutually charged hypers. In particular, the shift
operators associated to individual U(1) factors do not, in general, commute with each other.

Finally, we stress that above, we have only determined the shift operators implement-
ing insertions of twisted CBOs on the upper hemisphere H Si. One could equivalently
determine the corresponding operators representing insertions at the tip of the lower hemi-
sphere HS3 . These operators can be obtained by taking the adjoints of the H.S f’; operators
written above with respect to the (,) bilinear form (4.65) that implements the gluing. Us-
ing the explicit expression for the North and South operators, it can be verified that their
conjugates are as predicted in (4.67) and (4.68).52

5.1.2 Including mass and FI parameters

The above results can be generalized to account for real mass m = m - ty € tg and FI
C C to € to deformations where the t m,c are Cartan generators, m € RN.=" and C € R".
We begin by describing the modification from turning on nonzero real masses. The real
mass that couples to the I*® hypermultiplet of G g-weight @ 1 € ZNr7T is given by @ 7 m.
To include it, one should simply shift gy - & — 7 - & + rQy - 17 in all of the appropriate
formulas, except in the expressions (5.13) for ® g, which remain unchanged. In particular,
the vacuum wavefunction (5.6) becomes

Np, 7r-b
- —1)@b+ /1 - 4 (i
MZ]]V - [H ( \)* | (2 +irgr - Oy +irQr - r?z) b ] e_b'(533+8§) ’ (5.24)
=1 r 12 ((T]-b)+
Nh — ,_‘
= —1)(=arbv)+ /1 - - B i
Mg = !H ()W <2 +irg - B +irQ - m) ; ] GO (5.)
I=1 r2 (_(Tl'b)+

1A subtlety in defining higher-dimensional CBOs as products of the generators is the phenomenon of
operator mixing for CFTs on S3. In particular, on S*, operators can mix with lower-dimensional ones,
as described in [13, 34]. In our case, this mixing can always be resolved by diagonalizing the matrix of
two-point functions of twisted CBOs.

52In verifying these facts, it is helpful to use the property

Ny, [dr81-1 Fsgn(qr-b)
u@+ib/2,B+b) =pu@ B)[[ | T (sen(dr-b)(1/2+ ) +d - B/2Figr - &) (5.22)
I=1 £r=0

of the gluing measure (4.49). Note that conjugation with respect to the bilinear form (4.65) does not involve
complex conjugation.
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Including FI parameters is slightly more subtle because when they are nonzero, the twisted
translation ]35 in (2.28) is no longer Q-exact. In particular, correlators of twisted CBOs
acquire position dependence. Nevertheless, because ﬁg —H'TZ is Q%-exact, it is a simple mat-
ter to infer the position dependence of correlators with 275 0 from the known topological
correlators with ¢ = 0. Explicitly, if we modify all twisted CBOs as Og(gp) — er(g'g)‘pOb(@),
then these new operators have topological correlators. Another modification arises because
the FI action (2.17) localizes to Spi[V] — 872irC - &, which can be thought of as a part
of gluing measure (5.7).°> A general correlator of n twisted CBOs 0% (i;) of topological
charge b; € Ty, (¢=1,...,n) can then be written in the matrix model as

(O% (1) - O (i0n)) T
e_r 22:1(5509%

=0

T —872irC-G ()T [ =\ \* D by 7/ =
Sy b /d o e STICE (i (3)) 0% - ObryF (@), (5.26)

Zgz;{
where we have assumed that —7 < ] < 9 < -+ < ¢, < 7 and the vacuum wavefunction

wg““ and shift operators (5?\} are modified according to (5.23) and (5.24), respectively. A
similar statement holds for the S operators, but with —7 < ¢, < @p_1 < -+ < 1 < 7 (see
figure 1). As before, the correlator (5.26) can be represented in different ways by replacing

some or all of the North operators with South operators ng, modified according to (5.25)
to accommodate the real mass deformations. Finally, note that the S3 partition function

Zg?;g which appears in the normalization of our correlators (5.26) is given by

_ LM 1
Zné’C = /dra e~ 8mirC:d = , (5.27)
S 11;[1 2cosh(m(qy - @ +rQr - m))

so that (1>m§< =1.

5.2 Reduction of Schur index

Local monopole operators in 3D field theories are related to 't Hooft loops wrapping S! in
4D through a dimensional reduction of the 4D theory on S!. In this section, we present
a related correspondence between twisted CBOs in our 3D N = 4 theories and certain
line operators in 4D N = 2 theories. More specifically, we consider the Schur limit of
the superconformal index of 4D AN = 2 theories, which can be realized through a path
integral on S® x S1. As described in [42, 44], the Schur index can be decorated by certain
't Hooft-Wilson loops wrapping S*, which, to preserve supersymmetry, can only be inserted
53.54

at points along a great circle of We will argue that upon dimensional reduction on

51, the Schur index with such line defects reduces to a correlator of twisted CBOs on S3.

2.
—877ire-% a5 part of

53Here, for notational convenience, we are making a choice to regard the factor of e
the gluing measure rather than dressing each wavefunction by a factor of emantinCE s taking the latter
approach, one would also need to modify the shift operators as O — e—4n?irCd ean®irC'd  Note also that
the shift operators behave differently under conjugation with respect to the FI-deformed gluing measure,
so it is important that in (5.26), all of the shift operators act on a single hemisphere.

®4See [43] for a localization computation of the index with line operators.
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5.2.1 The line defect Schur index

Let us start with a brief review of the Schur index of 4D N = 2 abelian gauge theories and
its refinements by line defects. The reader is referred to [42, 44, 72] for more details. The
Schur index can be defined as a trace over the Hilbert space Hgs of the 4D A = 2 theory
on S3, which is given by

3 (p, g, ... sUpy) = Try

(—1)Fpt—f l'f[ uga] . (5.28)
a=1

In (5.28), F' is the fermion number, F is the energy, R is the su(2)g spin, and f, (a =
1,...,7f) are the Cartan generators of the rank-r; flavor symmetry algebra. In our con-
ventions, (—1)F = e2™1+72) where jj 5 are the spins of the su(2); @ su(2), isometry of S5.
The Schur index only receives contributions from states satisfying £ = 2R + j; + jo and
jo — j1 —r =0, where r is the U(1), R-symmetry charge.

For example, the index of a hypermultiplet coupled to a background U(1) vector mul-
tiplet with corresponding holonomy u is given by

e}

() (0 )= 1 _ 1
Tweer) = 1 e ) Gt 62

n=0

where we introduced the g-Pochhammer symbol (2;q) = [[3,(1 — 2¢*). In order to gauge
the U(1) symmetry, one has to project out gauge non-invariant states, which is achieved by

integrating (5.29) as f\u|=1 zfr?ulﬁiger(p, u). The index of an arbitrary abelian gauge theory
can be constructed simply by taking products of free hypermultiplet indices and gauging
flavor symmetries, as described above.

The Schur index can be reconstructed by gluing two copies of the “half-index” on
HS3 x St along their S? x S! boundary. This is the 4D analog of the 3D setup that have
we considered throughout this paper, and which was discussed in [42, 44]. It is instructive
to go through the details of this gluing procedure for the free hypermultiplet. In that case,
there are two boundary conditions on S? x S' which preserve 3D N = 2 supersymmetry,
resulting in half-indices TI* (p,u) on HS3 x S' given by

1
*(p,u) = ———— . 5.30
P = i) (5:30)
In (5.30), the half-indices II* correspond to fixing a 3D A/ = 2 chiral multiplet of U(1)
flavor charge +1 at the S2 x S boundary. The corresponding gluing measure is then simply
the S% x S! superconformal index Z3P (see [73-76]) of a 3D N = 2 chiral multiplet of unit
R-charge and flavor charge +1, given by

T3P (p,u) = (w? i) (5.31)

(utty/pip)
Indeed, one finds that (5.29) is recovered from gluing two copies of (5.30) with the corre-
sponding measure (5.31):

1) (p.u) = T3P (p, u) (T (p, u))?. (5.32)
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Let us now describe the refinement of the index by line defects in abelian theories. As
explained in [42], in the presence of a (gauge) U(1) BPS ’t Hooft loop of charge b € Z
wrapping S' and inserted at the tip of HS®, the hypermultiplet Schur half-indices (5.30)
are modified to

1

15 (p, u; b) = 0y ~
uTl; p)

(5.33)

1410

(p2

The gluing measure is now given by the generalized N/ = 2 superconformal index [76] (see
also [42, 77, 78]), with b units of flux through S?, of a chiral multiplet as described above:

14 B 1+|B|

Tl BB 1Bl (p~2 utl
T (pous By = 8 P2 ) qyleee 02 0T gy
—5—,,x1. +1.
(p 2 utlp) (p—2 u*lip)

The full Schur index of the hypermultiplet with 't Hooft loops of charge +b inserted at
antipodal points on S® is then given by composing two copies of (5.33) with the gluing
measure (5.34), resulting in

1bl=b du _b 1
— (-1 / e S - L (535)

One could also consider 't Hooft loops in flavor symmetries, in which case the dpp in (5.33)
should be omitted and there is neither a sum over B nor an integration over u in (5.35),
with the measure (5.34) simply evaluated at B = b.

More general insertions of multiple 't Hooft loops on the great (semi)circle of (H)S®
can be realized by acting with certain difference operators on the half-indices, again in
perfect analogy with our 3D construction. One can also insert BPS Wilson loops in the
index. According to [42, 44|, inserting a Wilson loop of minimal charge corresponds to
multiplying the hemisphere indices by

B B

IN=p2u, Is=p 2u. (5.36)

As in our 3D setup, &y (Zg) corresponds to inserting the loop through the North (South)
pole of OH Sf’L =~ 62 and translating it to the tip along the semicircle.

5.2.2 Supercharges of line defects and twisted CBOs

Let us now show that the line defect Schur index preserves supercharges that can be
identified with Qlc and ch, given in (2.22). This implies that line defect Schur indices
in some 4D N = 2 theory reduce on S' to correlators on S of local operators in the
cohomology of Q€2. These are precisely the correlators of twisted CBOs in the 3D N = 4
theory, which is the dimensional reduction of the original 4D theory.

The line defect Schur index preserves certain supercharges within the 4D N = 2 super-
conformal algebra sl(4|2) of the theory on S3 x R. We follow the conventions of [35, 44] for
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s0(4]2), with {Q%4, Qaa, S4%, S4%} denoting its odd generators. The A, B,... = 1,2 in-
dices label the fundamental irrep of the su(2)r C sl(4]2) R-symmetry, while o, 3,... = +, —
and &, B3, ... = 4+, =, label the fundamental irreps of su(2); and su(2)s, respectively, which
combine into the isometry algebra so(4) =2 su(2); @ su(2)2 C sl(2[4) of S3. In addition,
Mg, Maﬁ'» and R4 p denote the generators of su(2)1, su(2)2, and su(2)g, respectively, while

D is the generator of dilatations. As shown in [44], the line defect Schur index preserves
two supercharges, which, in the above notation, are given by

G'_=Q'_+Q,., H =8 +58". (5.37)

The su(2|1), @ su(2|1), symmetry algebra of our 3D N = 4 theories on S? can be identified
as a subalgebra of the s[(4]2) algebra of the 4D theory on S% x R. Indeed, the su(2|1),
generators {Q((f’), Ef” JO Ry} can be identified with {Q'a, S1a, Mag, D—2R'1}, and the

) a57
generators {Qg’), ((;”, JC%),RT} of su(2|1), with {QQQ,SQQ,MM,D + 2R%y}. Using the

explicit form of the s[(4|2) algebra given in [44], it is easy to check that the su(2|1),®su(2|1),
generators with the above identifications indeed satisfy (2.2). Furthermore, we find that
the supercharges (5.37) preserved by the index lie within su(2|1), & su(2|1),, and can be
written as

Gl_=0 )+ ol =9f, H~ =0 4ol =_0f (5.38)

where we used the definitions (2.22) in the final equality of (5.38). The identification (5.38)
is what we wanted to prove. Note that the analysis leading to (5.38) is completely general
and applies to all 4D /' =2 / 3D N = 4 theories. In particular, it applies to theories with
non-abelian gauge groups.

5.2.3 Reduction on S!

In this subsection, we explicitly construct the map between the line defects in the 4D
Schur index and our twisted CBOs on S? in abelian gauge theories. For simplicity, we will
focus on the 4D /3D theory of a single hypermultiplet coupled to a U(1) vector multiplet.
Restricting to this theory is sufficient to make our point, because all other abelian theories
can be constructed by taking products of the free hypermultiplet theory and gauging flavor
symmetries. Furthermore, taking products and gauging are simple operations at the level
of the index as well as in the matrix model for correlators of twisted CBOs.
To reduce the index on S!, we closely follow [77]. We set

p=e", u=p"” (5.39)

where 3 = 277y /r3, with r1 and r3 being the radii of S* and 53, respectively. The reduction
is obtained by taking the 8 — 0 (p — 1) limit. To determine this limit, note that the H.S3
indices (5.33) can be written as

| r, (S % io)
115 (p, u; b) = I (p, ™3 b) = 6pp f
(1-p)

(5.40)

o . )
iw(p; p)

where I'j(x) is the ¢-Gamma function satisfying I'y(z) — I'(z) as ¢ — 1.
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In taking the  — 0 (p — 1) limit in (5.40), one encounters divergences from the den-
ominator, which we now analyze. First, it is useful to introduce the Dedekind n-function:

_ miT

(pip) =p 12 0(r), p=emT =P, (5.41)

Using its S-transformation

n(r) = ihn (—i) = ﬁe‘g; ﬁl <1 - e‘“ﬂz") , (5.42)

a short calculation gives

1 1
1— 1_lelzi:ia . - g bl B ) a2 o _4n2n
( p) (p’ p)OO (1 —€ 6) 2 20624 \/%6 Gﬁ Hn:l ]. — € B
1
B =R (14 0(8)) (5.43)
T

We conclude that

— x2 bl 1 L+1[b] . 2 b
hmlHB(p,u;b)zég’beﬁ‘Bﬂ2 —7T 5 Fio | =e%8¥(+o, B; M”)
p—

B=(Ar)?
(5.44)

where we have set the arbitrary scale 8 to (Ar)~! in order to match our 3D conventions.
2

After matching those scales, and up to the prefactor 6273, (5.44) shows that HE dimension-
ally reduces to the hemisphere wavefunction (4.61) with an insertion of a charge-b twisted
monopole operator at the tip.?®> The exponential prefactor precisely matches the Cardy
behavior discussed in [79], and should simply be removed in extracting the H.S3 partition
function from the reduced index. A similar calculation shows that the 3D index (5.34)
reduces to the S? partition function in (4.49) (for Nj, = 1),

1B .
BB g0 1 L +io)

F( 1+2|B‘ e ZO')

lim Z3” (p,p"; B) = (—1) , (5.45)
p—1

after the same matching of scales. The integral over the compact gauged holonomies
decompactifies as § — 0, becoming an integral f_oooo do, which is the expected integration
measure in the $2 matrix model. Finally, recall that inserting a Wilson loop can be achieved
by acting with Zy ¢ in (5.36), which, upon substituting (5.39), become

iy = p%u = ¢~t80=i3) , g = p_gu = ¢ B+iF) (5.46)

Note that the exponents aiz’% in the above equation coincide with @y g, defined in (5.13).
To obtain ®y g in the reduced theory, we act on the H 53 half-index with

Ans— (@Ens)H poo B
: : — | =®yN5. 4
<2 25 ) <a Fig N.S (5.47)

®5Tn this subsection, we retain the explicit dependence on the cutoff A, as in (4.49) and (4.61).
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We have therefore found a one-to-one correspondence between BPS Wilson loops in the
Schur index and the twisted CBO ®(¢).

To conclude, we have essentially recovered the ingredients that are used to calculate
correlators of twisted CBOs on S in abelian N = 4 gauge theories from the reduction of the
defect Schur index of 4D A = 2 theories. While we have presented the results for a single
hypermultiplet, the generalization to an arbitrary abelian theory is straightforward. It
would be interesting to apply this logic to non-abelian gauge theories, where the “monopole
bubbling” phenomenon [80] plays an important role. We hope to return to this problem in
future work.

6 Applications

We have seen in the previous section how shift operators can be used to compute arbi-
trary correlators of twisted CBOs in general abelian theories and how these calculations
are modified in the presence of mass and FI parameters. In this section, we give explicit
examples of such calculations, and we match the results obtained to those of the corre-
sponding calculations in the 1D Higgs branch sector of the mirror dual theories. These
matches yield more refined tests of 3D mirror symmetry [1] than have been described in
the literature.

In the following, we work with renormalized monopole operators and the corresponding
renormalized shift operators (5.20) and (5.21), which we quote here for convenience:

Nh ﬂ,"
- -+ 1 L b(—i9:—0
M, = [H(|)| <2+”(I’N'“> 2 leb( e,
I=1 2 (bar)+ (6.1)
Nh _bd '
- —1)(=bdn+ /1 - bo(—i
M% _ H ( )|Eﬁ[\ (2 + irdg q1—> B ] e*b-(*iaa%)g)
=1 3 (=b-q1)+

where r®y = G +iB/2 and r®g = & — iB/2 as in (5.13).

6.1 Chiral ring relations

We first explain how our formalism reproduces the chiral ring relations obeyed by Coulomb
branch operators. As mentioned already, the moduli space of vacua of the theories that
we are considering (N = 4 gauge theories with matter) contains a Coulomb branch, which
receives quantum corrections and which is a hyperkihler cone.’® Functions on the Coulomb
branch are in one-to-one correspondence with the Coulomb branch operators of these the-
ories. For instance, the operators Cal,_@jo, which form a spin-jo multiplet of SU(2)¢,
correspond to an SU(2)c multiplet of functions which we may denote as Ca1..-d2jc- With
respect to a particular complex structure parametrized by an SU(2)¢ polarization v?, one
can identify the holomorphic component C =™ ... p%ic éa1...d2jc of the multiplet of func-
tions. Correspondingly, one can regard the operator C' = v%! - - v*2ic Cal...c'ch as chiral.

56In this section, we assume that mass and FI parameters have been set to zero. For an application of
our formalism to non-conformal QFT's, see section F.1.
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It follows that the algebra of twisted Coulomb branch operators C(0) defined in (2.34),
inserted at ¢ = 0, is isomorphic to the algebra A of holomorphic functions C or to the
algebra of chiral operators, i.e., the chiral ring. This algebra carries a commutative prod-
uct structure inherited from the ordinary product of holomorphic functions, as well as a
Poisson bracket.

This information (and more) is captured by our 1D topological theory and can be
read off from the rules for computing correlation functions presented thus far. In fact,
the algebra A admits a non-commutative star product x : A x A — A with a parameter
identified as 1/r that measures the degree of non-commutativity. When 1/r is taken to
zero, the star product reduces to the ordinary product of holomorphic functions, while the
terms of order 1/r in the star product correspond to the Poisson bracket of these functions
(terms of higher order in 1/r, fixed by deformation quantization, are necessary to ensure
associativity). This star product, which in general takes the form

k
Oix0j =3 ;0 (6.2)
k
for some coefficients ci-“j, is simply a shorthand for the OPE
0i(0)0;(p) = Zcfj(’)k(()) , as @ — 0 with ¢ > 0. (6.3)
k

One can thus extract the OPE coefficients from (6.3) to determine (6.2).

In general, the chiral ring is not freely generated due to the existence of chiral ring
relations. The chiral ring relations are simply relations obeyed by the regular multipli-
cation of functions and can thus be read off from the r-independent term in (6.2). For
operators represented by fields, they are sometimes trivial to see: for instance, products
of polynomials in ® can be trivially related to higher-degree polynomials.®” What will be
nontrivial for us are the chiral ring relations involving monopole operators, for which we
will need to use our definitions for the corresponding shift operators.

To derive the chiral ring relations obeyed by the monopole operators, let us work with
the North shift operators for convenience. We notice that to leading order in 1/7,

Ny, (=i & _,)5“?12\5“?1|
b —reN - qr “b(ioy105)
My = H a7 ez a) + T (6.4)
I=1 ro2
which implies that
s [ L Eabballedal| o
MEME = T (~i®n - a1) 2 MG+ (6.5)
I=1

From (6.5), one can extract the leading term in the OPE of M? and Mg, which (by (6.2)
and (6.3)) fixes the leading term in the star product:
- Nn a-qr|+|b-ar || @+5)-a1| =
M MP — [H(—Z(I; L) |a-ay |+] ‘112| |(@+8)-a1 ] M 0(1/r). (6.6)

I=1

5TAs we will see, in the 1D Higgs branch theory, the chiral ring relations are sometimes less obvious
because one must use the D-term relations.
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After taking the limit » — oo, this equation can be interpreted as a chiral ring relation.
This is precisely the chiral ring relation obtained in [28].

Interestingly, in the chiral ring, the product of two monopole operators of charges a
and b is equal to a monopole operator of charge a + b that is in general dressed by the
vector multiplet scalars. No dressing is required precisely when sgn(a- q7) sgn(l; -qr) > 0 for
all 1. Another interesting case is when b= —a, where we see that the chiral ring product
between a monopole of charge @ and its antimonopole can be expressed solely in terms
of ®:

Np
MO M= [H<—z‘<f> -qn) T o1 /r). (6.7)

I=1

Since the operator ® has scaling dimension 1, this expression provides another derivation
of the fact that the monopole operator M@ has scaling dimension Zﬁﬁ ld - g1 /2.

6.2 Mirror symmetry: SQEDxy and N-node necklace quiver

As a second application, let us show how our results are consistent with 3D mirror sym-
metry. The mirror dual of a 3D N = 4 abelian gauge theory built from vector multiplets
and hypermultiplets is a theory of the same type (here, we are not being careful to distin-
guish a theory containing only ordinary multiplets from a theory containing only twisted
multiplets). At a formal level, the duality was proven in [15], and a concrete map between
the operators of a given such theory and its mirror dual can be found, for instance, in [28].
Our construction allows us to go beyond the operator map and show that the correlation
functions, or equivalently the star product, match precisely across the mirror duality. We
will do so in a few simple examples.®®

One of the simplest examples of mirror symmetry [1] is the duality between SQED y (a
U(1) gauge theory with N hypermultiplets of unit charge) and the necklace quiver gauge
theory with gauge group U(1)" /U(1) depicted in figure 2. In the necklace quiver, there are
N U(1) gauge groups and N bifundamental hypermultiplets, the j'" of which has charges
1 and —1 under the (j — 1)** and j*® gauge groups, respectively. Nothing is charged under
the diagonal U(1), so we may regard the gauge group as U(1)"/U(1). Each of these two
theories has a Higgs branch that is mapped under the mirror duality to the Coulomb branch
of the other theory.

6.2.1 Higgs branch topological sector

Before we demonstrate how the mirror map works in detail at the level of the corresponding
1D topological sectors, let us briefly review the description given in [13] for the Higgs branch
topological sector. For a theory with gauge group G and a hypermultiplet whose scalar
fields transform in the representation R @ R of G, the associated 1D theory that allows for
the calculation of n-point functions of twisted Higgs branch operators is

1
Z = wi /t do det 4;(2sinh(70)) Z, (6.8)

8For an outline of a strategy for matching all twisted HBO/CBO correlators in arbitrary abelian mirror
pairs, see appendix F.
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Figure 2. The U(1)"Y/U(1) gauge theory that is mirror dual to SQED y.

where |[W)| is the order of the Weyl group of G, t is a fixed Cartan subalgebra of g, and
Zy = /.@Q 2Q exp [471'7“/(&,0 QV(&F, + U)Q] . (6.9)

Here, the 1D fields ) and CNQ transform in the representation R and its dual R, respectively.
The @ and QV obey antiperiodic boundary conditions on the circle, while the Cartan element
o is p-independent. The reality condition on bosons selects a certain middle-dimensional
integration cycle in (@, @)-space, which is implicit in (6.9). The operators in the 1D theory
are gauge-invariant products of () and @ Correlation functions of these operators can be
computed in two steps. First, one writes the n-point function (O1(¢1) ... On(¢n)) as

©1(01)---0ule) = 7 [ e @) Oulipa)o (610
where
det’ ,.(2sinh(mo
du(o) = do det o4;(2sinh(r0)) Z, = do d;a;(; cogh((ﬂ-g)))) (6.11)

and (O1(p1) ... On(¢n))e is a correlation function at fixed o. Second, one computes this
correlation function at fixed o by performing Wick contractions using the propagator

~ sgn 12 + tanh(wo)

(Q(1)Q(#2))0 = Golp12) S P12 = Y1 — P2, (6.12)

e T¥12

which can be derived from the Gaussian theory (6.9).%"

590ne might wonder how to define sgn 12 for circle-valued variables. Taking all ¢; to lie in (¢o, @o + 277]
for some g, one can show that correlation functions are independent of the fiducial ¢o. We use pg = —.
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When dealing with composite operators, one might also need to perform Wick con-
tractions between elementary operators at coincident points. Such Wick contractions suffer
from operator ordering ambiguities. We make the choice that when ¢; = pa = ¢, (6.12)
should be interpreted as
tanh(mo)

6.13
8r ( )

(QP)Q(p))o = Go(0) = —
Let us now use this formalism to see precisely how the Higgs (Coulomb) branch of SQED x
is mapped to the Coulomb (Higgs) branch of the necklace quiver gauge theory in figure 2.
6.2.2 Matching of partition functions

Before explaining the precise map of operators between the two 1D theories, we point out
that the partition functions of the two theories agree. Indeed, for SQED y, we have

)
[2cosh(ro)]N  2N\/zT (%) '

On the necklace quiver side, we have

N
Z:/d,u(a):/ jl_Ilde ZO'] HQCOSh(17 (6.15)

(6.14)

TOj-1,5)

where 0j_11 = 0j_1 —0; and 09 = on. To evaluate this integral, we appeal to the following
trick, which we will also use extensively in the matching of correlation functions. If F;(o)
are arbitrary functions whose Fourier transforms Fj(7) are defined by

Fj(o) = / dr e > OTE (), Fy(r) = / do ™77 F(0) (6.16)

then the following cyclic convolution identity holds:

/ jﬁld% ZUJ HF 0j-15) / ﬁ (6.17)

Using (6.17) with
1 ~ 1

Fy(o) = 2 cosh(mo) ’ Fy(r) = 2 cosh(77) (6.18)

for all j shows that (6.15) is precisely equal to (6.14).

6.3 HBOs in N-node quiver and CBOs in SQED

On one side of the mirror duality, we have the Higgs branch of the N-node quiver theory.
It is convenient to represent the (/N — 1)-dimensional integration in (6.8) and (6.10) as an
integration over NN variables o; with a delta function constraint. In particular, let us take
the integration measure in (6.10) to be

N
H do; Z oi | Z-, (6.19)
j=1
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where

N N o
N ~ 1
7, = / H 2Q; 2Q; | exp 47rr/d90]z:; Qj(0p + 0j-1,;)Q;5 | = ]1;[1 2cosh(ra;_1;)

i=1 TOj-15)
(6.20)

The Higgs branch chiral ring is C?/Z . Its generators are
X=Q1Q2Qn, Y=0QiQ1Qn, Z=QiQ1=...=QnQn, (6.21)

which obey the chiral ring relation Xx) = ZN¥ +0(1/r) (the equalities in the last equation
of (6.21) are enforced by the D-term relations). All other gauge-invariant operators in the
1D theory are products of X, YV, and Z.

On the other side of the mirror duality is the Coulomb branch of SQED 5. The gauge
group is U(1), so after boundary localization, the hemisphere wavefunction is just a function
of two variables, W(o, B), with 0 € R and B € Z. The operators in the 1D topological
theory are products of the twisted vector multiplet scalar ® and the monopole operators of
charge b € Z. Their insertions through the North pole are represented by the shift operators

o B y  (=1)NO+ 1-B N b( 26,10
Oy =—+i—, My = —Fr— <i0+> e~b(30-+0p) (6.22)
r 2r o 2 by

acting on ¥ (o, B). The hemisphere wavefunction with no insertions is

Wo(o, B) = 6.0 {\/127; <; _ w)] " (6.23)

The Coulomb branch chiral ring is also isomorphic to C?/Z and is generated by

1 1 ]
X=—"MT1 Y = ! Z:—Z

ToRE M =2, (6.24)

which, as per (6.7), obey the relation X+) = Z¥ +0O(1/r). We have used the same letters
X, Y, Z to denote the operators of the two mirror theories to emphasize that, as we will
show, their correlation functions in the two theories are identical.

6.3.1 The mirror map

To begin mapping the operators between the two sides, let us first explain why the mapping
works as stated above for the basic operators X', Y, Z. In the Coulomb branch of SQED y,
we calculate that for 0 < ¢; < @2 <,

1, (45
(Z(p1)2(02)) = - / i
(X (1) V(p2)) = — EB /dU Wo(o, B)* MM Yo(0, B) = Z/do S cosh(;a)]N .

(6.25)
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In the Higgs branch of the necklace theory, using the definition Z = élQl gives

1

1 (%)’
Z /dﬂ(a) [Gam (9012)G012(_§012) + GU12(O)2] = Z /dT m’

(Z(p1)Z(p2)) =

Yoy al R G

XV (e2)) = [ duto QIVCERERES [ e (6.26)
which agrees precisely w1th (6.25). In deriving the last equality in the first line of (6.26),
we used (6.17) with Fy(o [ (¢12)Go(—p12) + G4(0)?] /(2 cosh(mo)), whose Fourier
transform is Fy(r) = (—%) /(2cosh(n7)), and with Fj,ﬁj as in (6.18) for j > 2.
In deriving the last equality in the second line of (6.26), we used (6.17) with Fj(o) =
Gs(p12)/(2cosh(mo)) and ﬁj (1) = (=it +1/2)/(8nr cosh(nT)).

Having mapped the chiral ring generators between the two theories, we can construct
the mapping of composite operators using the OPE. In general, we can define composite
operators by point splitting:

(0102)4(0) = (01 % 02)(0) = Jim, 01(0)O2(e) - (6.27)
We can use this definition on both sides of the duality to find concrete expressions for
composite operators in the two theories. After doing so, one should still perform two
nontrivial checks of the mirror symmetry duality: (1) the one-point functions of the com-
posite operators should match, and (2) the star products of any pair of operators should
match. The matching of the one-point functions then guarantees the matching of higher-
point functions, because the one-point functions and the OPE determine all correlation
functions.®’

Whenever we define composite operators by point splitting as in (6.27), we use a
subscript x to indicate that all multiplications in the corresponding expressions are replaced
by star products. For the 1D topological Higgs branch theory reviewed above, we will also

define composite operators by simply multiplying the fields @); and @j.

6.3.2 Star product and composite operators

Let us demonstrate how this procedure works in detail for a few operators. The simplest
composite operator is (22), = Z x Z. On the Coulomb branch side, each Z is represented
by —i®/(4m), and we can easily see from the North pole representation of ® in (6.22) that
(2?), is represented by

1 2
- (4m)?
On the Higgs branch side, the calculation is slightly more complicated. If we represent
each factor of Z in the product by @1621, then

(2%, = Q1Q1 % Q1Q1 = Q3Q3 —

(22).

(6.28)

1
64m2r2

5ONote that we are not working in a basis of operators whose two-point functions are diagonal, so the

(6.29)

coefficients in (6.3) are not what one usually thinks of as OPE coefficients. Nonetheless, matching star
products and one-point functions in this basis will also guarantee a match after, e.g., Gram-Schmidt or-
thogonalization.
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This equality follows from observing that while all self-contractions in @%Q% are performed
with (6.13), the self-contractions in Q1Q1 x Q1Q1 between fields on different sides of the
star product are performed with the pi9 — 0 limit of (6.12). Thus the difference Q1Q1 *

Q1Q1 — Q2Q? evaluates to
01Q1* Q191 — Q3Q% = 1Q1(0) (G4 + 6G_) + 5G4 6G_, (6.30)
where we have defined

0G+ = lim (Gyo(te) — Go(0)) = F— 6.31
L= T (Golhe) = Gol0) = T (6:31)
and used (6.12) and (6.13). Substituting (6.31) into (6.30) gives —1/(64m2r?).

Note that we can represent (Z2), in a number of equivalent ways coming from the fact
that Z itself can be represented as Q;(Q); for any j (no summation). Thus, if we represented
the first Z factor by @Q1Q1 and the second factor by Q2Q2, then we would have

(29 = Q1Q1 % Q2Q2 = Q1Q1Q2Q> . (6.32)

The expressions (6.29) and (6.32) must be equivalent, and one can indeed check that they
give identical correlation functions.
More generally, we have that (ZP), is represented in the Coulomb branch theory by
1

(2P), = (-MY@?. (6.33)

In the Higgs branch theory, the expression for Z? is more complicated. When p < N, we
can represent the j™ factor in the product by Q;Q;, and since all factors are distinct, we
simply have

p
(27) = Qi *-*Qp@Qp =[] @@, 1<p<N. (6.34)

j=1

When N < p < 2N, we can write (ZP), = [(ZQ)Z’*NZQN*Z’]*. We can represent the ;!

(2?), factor by @?QJQ — ﬁ (see (6.29)) and the k' Z factor by @p_N+ka_N+k, giving
p—N _ 1 N
). =[] <Q§Q§ . W) [ @@, N<p<2N. (6.35)
J=1 J=p—N+1

Similar expressions can be constructed for p > 2N.
As a test of mirror symmetry, let us calculate the expectation value of ((ZP),) on both
sides. On the Coulomb branch side, we have

(27),) =+ <_i>p/da v (6.36)
Y Z\ A 2 cosh(ma)]N '
On the Higgs branch side, when p < N, we have
1 u 1 i \? P
1= L faior TG 0= L () for T e
(@ =g @ 16,0 =7 (~57) [0 gm0

J
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in agreement with (6.36). In deriving the last equality in (6.37), we used (6.17) with
Fj(0) = G5(0)/(2cosh(no)) and ﬁj(T) = (—i7)/(8nr cosh(n7)) for j < p and with (6.18)
for 5 > p. When N < p < 2N, we can use (6.35) and a similar calculation to show that
the same result (6.37) holds. We expect a similar result to hold for p > 2N.

With these definitions for the composite operators (ZP),, we can make another con-
sistency check. Let us compare the star product X’ x ) in both theories. In SQEDy, we
use the definitions (6.24) and (6.22) in terms of North shift operators to deduce that

<z + 871T7’)N] . (6.38)

*

Xx) =

In the necklace quiver theory, we use the definitions (6.21) to write
N N N o, 1 L \N
xxy=lle~[lQ=1](@@i+—=)=|(2+ , (6.39)
, , 8mr 8mr
Jj=1 Jj=1 J *
which agrees precisely with (6.38) derived in SQED .

=1
Other composite operators that we can define are powers of X and ). In SQEDy, we

can use again (6.24) to represent

() = Gy (M7

O = (47r)1Np/2 [(MDP], . (6.40)

*

The star product [(M‘l)p]* is easy to compute using the North shift operators (6.22) due

to the simple form of MY for b < 0, namely MY = T_blN/Q ¢~t(39:+98)  Thig gives
(XP), = ;M_p (6.41)
T (4m)Ne/2 ' '

The star product [(./\/ll)p]* is easier to compute using the South shift operators, for which
Mb = rb11V/2 ¢2(=29%+98) when b > 0. This gives

(VP)s = (471_)1]\[17/2/\/110- (6.42)

The same expression can, of course, be obtained using North shift operators. In the necklace
quiver, there are no ordering ambiguities in raising X and Y from (6.21) to the power of
p, so we can simply define

(A7) =Q Q% (V=@ Qk (6.43)

We can now perform another check of the mirror symmetry duality by computing (X?), *
(V?), on both sides. In SQED y, from (6.24) and (6.22), we see that

(X2), % (V2), = mi)m Kw— g - ;)jN _ <z+ 871W>N <Z+87?;7«>N]* . (6.44)
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To compute (X?), * (V?), in the necklace quiver, first note that

Q?*@?z@f@%%%@w#: [<Z+1> <Z+ i )} , (6.45)

32722 87r Sar

by the definition of Z = Q1Q; and the definition of (£2), in (6.29). Then we see that

<z + 871””)N <Z + ;)N] R (6.46)

in agreement with (6.44). Similar checks can be performed by computing (X?), * (YP)..

2 0 _T102« TT 6 —
(X%),x ) =[] @7+ ][ @ =
j=1 j=1

6.4 HBOs in SQEDy and CBOs in N-node quiver

Let us now turn our attention to the mirror duality between the Higgs branch of SQED
and the Coulomb branch of the necklace quiver gauge theory in figure 2. On the SQEDy
side, the 1D Higgs branch theory is described as follows. Since the gauge group is abelian,
we have only one integration variable o and N pairs of 1D fields (Q s, Q7 ). The integration
measure in (6.10) is simply du(o) = do Z,, with

N N
~ - 1

Z, :/ 207 2Q; | exp 47rr/dg0 Q'0,+0)Q; | =———— . (647

’ Ul Z_; (G +0) [2 cosh(ro) Y (6.47)
Jj= Jj=

The 1D theory has an SU(N) flavor symmetry under which the Qs transform as a fun-

damental vector and the @7 transform in the antifundamental representation. The Higgs

branch is a minimal nilpotent orbit of the complexified Lie algebra su(N). The Higgs

branch chiral ring is generated by the quadratic operators

I’ =QiQ7, (6.48)

which are traceless (Z?[:l Tl = Z?f:l Q:Q" = 0) due to the D-term relations. These
operators are also subject to the nilpotency constraint J;7 = J;% = O(1/r), which holds
because to leading order in 1/r, we can treat multiplication of operators as regular multi-
plication of functions, and we can use the D-term relations (below, we will present the full
expression for T’ +T JK ). The operators Jr”? transform in the adjoint representation of
SU(N). All other operators in the 1D theory can be obtained from products of the J;7 and
transform in irreducible representations of SU(N). Due to the nilpotency of J;7, the only
irreps of SU(N) that appear are those with Dynkin labels [n0 - - - On] for positive integer n.

The description of the Coulomb branch of the necklace quiver gauge theory is more
subtle because the SU(N) symmetry acting on it is not manifest. It is an emergent sym-
metry, with only its maximal torus U(1)V~! being visible in the UV. Since the gauge
group of the 3D theory is U(1)" /U(1), the hemisphere partition function after boundary
localization must be a function of N — 1 continuous “o” variables and N — 1 discrete “B”
variables. As in the previous subsection, it is convenient to represent the N — 1 vector
multiplets as N vector multiplets V; obeying the constraint Z?{:l Vr = 0. Thus both &
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and B are N-dimensional vectors obeying the constraints Z?[:l or =0 and Zﬁvzl Br=0.
These constraints are implemented by supplementing the gluing measure by a factor of

N
1
) (N ;07) 5072?721 By (6.49)

The lattice in which B is valued is determined by the Dirac quantization condition, which
implies that ¢ - B = Bj_1 — By € Z for all I. Here, qr = (0,...,0,1,-1,0,...,0) are
the hypermultiplet gauge charges (the I*" hypermultiplet has charge +1 under V;_; and
charge —1 under Vy).

The operators in the 1D Coulomb branch theory are products of the twisted vector
multiplet scalars ®; (obeying Zjlvzl ®; = 0) as well as monopole operators of charge b.
Their insertions through the North pole are represented by the operators

N (br-1,1)
or  .Br P -1 e 1-Br_11 B (i0atOa
(I)IN: 7+172 R MI])V: | | 7( )b - 201_17[—%72 e b (280+83)7
T r br—1.1] (b )
I=1 == 1-1,1)+

(6.50)

where o7_17 = o7—1 — o7 as in the previous subsection and b;_1; = b;—1 — b;. The
operators (6.50) act on the wavefunction W(&, B), which takes the form

N
- 1 1
Uo(3,B)=d5,][ {1‘<—¢071J>} (6.51)
T ver \2

in the absence of insertions.

6.4.1 The mirror map

Identifying which operators in the necklace quiver gauge theory correspond to the gen-
erators J7’/ of the Higgs branch chiral ring of SQEDy is aided by symmetries. The
necklace quiver has a U(1)V~! topological symmetry generated by the currents o=
ﬁe’“’p(FI,LW, — Fr,,) that should be identified with the Cartan of SU(NV). The twisted
vector multiplet scalars ®;_;; = ®;_; — ®; should thus be identified with the Cartan
elements J;!. We take

1Py g

47

We have Z?{:l Jr' = 0, just as for the corresponding operators (6.48) in SQEDy. The
off-diagonal J77, with I # .J, are monopole operators because they carry charges +1 and

(no summation over I). (6.52)

Tl =

—1 under j7 and j, respectively, and are uncharged under all other ji; with K # I,.J.
They are thus given by

bt J—T
ﬁJ:—A4 , b’=(0,...,0,1,...,1,0,...,0) — =—=(1,1,...,1),
4n -1 J—1 N—J+1 N
Mbs! N+I-J (653
Tl =— . b/=(1,...,1,0,...,0,1,...,1)— + (1,1,...,1),
47 ——— —— —— N

I-1 J-I N-J+1
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where J > I. The expressions for b 1/ can be determined from the conditions that g[‘] -qr =
—B}J ¢y =1, I;IJ -qx =0if K #1,J, and Z%:l(bIJ)K = 0. The overall factors in the
expressions for J;” are found empirically by matching the two- and three-point functions of
these operators across the mirror symmetry duality. We see that there are 2 (g ) =N(N-1)
independent monopoles with charges EIJ and b gl = —b;7.

The mapping (6.52)—(6.53), which relies on a description of the mirror theory to
SQEDy as a circular quiver, should be compared to that in [81]. An alternate but equiv-
alent presentation of the mirror map, which represents the mirror to SQED y as a linear
quiver, is given in [28]. In particular, note that our description of the necklace quiver as
a U(1)N/U(1) gauge theory involves fractional monopole charges. This is only because we
find it convenient to embed the ZN~1 charge lattice in RY.

A consistency check of the identification (6.52)—(6.53) comes from the chiral ring.
Indeed, given (6.6), we have

j]‘]*jj[ =—®7 11®5 1+ O(1/r),

6.54
T * TiE =idy 75 +00)r), (654

with no summation over I, J, K. These equations hold even if J =1 or J = K. Then it
is easy to see that since 21,1\7:1 ®;_1,5 =0, we have

N
T« TS =001/ (6.55)
J=1

for any I, K. This nilpotency constraint matches the constraint obeyed by Jr” in SQED y.

6.4.2 Star product and composite operators

Let us provide more evidence for our proposed correspondence between the chiral ring
generators, and provide a construction of more complicated operators that are dual on
both sides. We first point out that computing correlators in the Higgs branch topological
sector of SQED N can be done without evaluating any integrals over o, for the following
reasons. First, one can compute star products of various operators at fixed o, as we did
in the previous section for the Higgs branch of the necklace quiver theory. Second, if we
are careful to work with operators transforming in irreps of SU(V), then all such operators
have zero expectation value unless they are singlets of SU(N). The only singlet is the
identity operator.

Explicitly, let us compute J;7 * Tt = Q[@J * QK@L:
QIQ7 * QrQ" = QIQrQ’Q" + 5G 67 QKQ” + 6G..6}.Q1Q" + 576}.6G6G—, (6.56)

with 6G4 = Fg- (defined in (6.31)) being the difference between the coincident limit
of the propagator and the value assigned to the propagator at coincident points. The
operator Q7Q K@J @L does not transform in an irreducible representation of SU(N): it is
a linear combination of a singlet and an operator transforming in the [20 - - - 02] irrep. The
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latter is a traceless symmetric tensor Jrx’/t = Q;Q K@J C~2L — (traces) that can be written
explicitly as

JL _ ~IAL 4QuQM (s ~1) 20QuQM)?  (j.1)
Ji™ = QrQrQ Q" — — 7 =03 Q@7 + (N+1)(N+2)6(16K)' (6.57)

This expression can be simplified using the D-term relation @) K@K = 0, which implies that
Q1Q7 » Qr Q™ = 0. Then from (6.56), we conclude that

~ ~ 1

QQ'QKQ" = 5307 (658)

Combining (6.56)—(6.58) and doing a bit of algebra gives
jj*j L:j JL—L((SJJL—(SLJ J)_L 6L6J_i6J5L (659)

I K IK 871 KJI IJK 647T2T'2(N+1) I1°K N I1°K | - :
Since (Jr’t) = (J17) = 0, we immediately have that

J v = N 5ES) — 56k 6.60
(T (1) Tk (@2)>——m 19k = NO19K ) - (6.60)

Seeing as (J; ;5 « Jyu™) = 0 (because this product does not contain an SU(N) sin-
glet), (6.59) also implies the three-point function (for p; < p2 < ©3)

N

N s SNSL sLsNisJ
(87r)3(N +1) (0507 Oy — 07 010y - (6.61)

(Tt (1) Tk (02) T (03)) =

We can now write the nilpotency condition mentioned above more precisely: setting K = J
in (6.59) and summing over .J, we have

— 6k, (6.62)

This expression is O(1/r), as mentioned above.

Let us now reproduce these formulas from the Coulomb branch 1D sector of the neck-
lace quiver gauge theory. First, based on the definitions (6.52)(6.53), we represent [J;”
by the North shift operators

1 . Br_
(TN = — <101—171 - 1’I> ,

dmr 2 (6.63)
J 1 . 1—-Br-1r -3 I (105+05) .
(Jr')n = Ty \1O1-11 + )¢ 12%T%8)

where I # J (no summation over I). Using (6.63) and (6.51), we can then show that the
two-point functions of J; agree with (6.60):

P_1 [ Grlp1n)Grl(—pi) + G (0)
) N /d 2 cosh(nr)]N

(T (1) Tr (92)) = ;/dﬂ(U) (ial—l,[

4rr

A
N -1

e, . 6.64
64m2r2(N + 1)’ (6:64)
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where in the second equality, we used (6.17) with F;(o ) (427(1'77") /(2 cosh(mo)) and Fy(7) =

[G+(p12)Gr(—¢12) + G7(0)?] /(2 cosh(nT)) and FJ,F given in (6.18) for j # I. We can
also show that the two-point functions of the off-diagonal J;” agree with (6.60). For

1 < P2,

1\ (s 1
J 201—1,1 + 5) (wJ—1,J - 5)
(T (1) TS (p2)) /d 167272
+(012) G (—p12) N
1 _ , 6.65
/ [2 cosh WT)]N 6472r2(N + 1) ( )
. .1

where in the second equality, we used (6.17) with Fr(o) = #;Lh(m), Fj(o) = #sh?ﬂ'o‘)’
Fi(7) = [1 — tanh(r7)] /(1677 cosh(n7)), Fy(t) = [-1 — tanh(x7)] /(1677 cosh(m7)), and

F;, F; given in (6.18) for j # I and j # J. One can similarly check that all other two-point
functions of the J;”/ vanish, thus reproducing (6.60).

Lastly, we check that the three-point functions agree with (6.61). For instance, we
have (with no summation over distinct I, J, K, and @1 < @3 < ¢3)

1 T —+ 1 Yot I _1 ) _ _1
o0 02) i o3) = [ o) LT D s 23] oo =)
N

T ®rr (N + 1)

(6.66)

and

(iUI—I,I) (igl—l,l + %) (’L.O'J_17J - %)
647373

T 0717 (e2) 71 () = 5 [ duto)

N

T 8mr)B3(N+1)’ (6.67)

in agreement with (6.61).

We have thus matched all two- and three-point functions of the operators Jr”, which
are neatly summarized in the star product (6.59), across the duality. Note that in SQED y,
we can take derivatives with respect to mass parameters to compute correlation functions
of the diagonal J7!, so equality of the partition functions of SQEDy and the N-node
necklace quiver theory enriched with mass/FI parameters already guarantees matching of
correlation functions of J;! and @ 1—1,1- Hence our nontrivial check is of the correspondence
between the off-diagonal J;” and monopole operators.

Having matched the chiral ring generators J;7 between the two sides of the mirror
symmetry duality, one can construct composite operators by taking star products of J;”.
For example, for fixed I and J (no summation), we can consider on the SQED y side

N 1
I J _ IJj _ J_
Jr ~Jr" =J1s 6422 (N + 1) <51 ) . (6.68)
On the necklace side, we have
T x gyt = 2Ly (6.69)

1672
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The two expressions must match, so we conclude that

By Py N 1
1J 1-1,1%5-1,J J
=— A .
J1s 1672 64n?2(N 1 1) ( ! N) (6:70)

As another example, let I > J > K > L. Then on the SQED y side, we have J;7 x Tt =
Jr 5. On the necklace side, we have

br? A qbxL br? +br L
kL _ MU MPRT MPTRE (6.71)

Jis 1672 1672

One can construct other composite operators along the same lines. Note that because
all twisted HBOs in SQEDy can be obtained by taking traceless, symmetric products of
the J;7, we expect to be able to construct all bare monopoles in the necklace quiver as
polynomials in the basic monopoles (6.53) and twisted scalars (unlike in generic abelian
theories [28]).

7 Discussion

Twisted Higgs and Coulomb branch operators comprise protected 1D topological sectors of
3D N = 4 theories. Their OPE algebras can be viewed as noncommutative deformations
of the Higgs and Coulomb branch chiral rings, and their correlation functions can be
calculated exactly. In this paper, we have studied correlation functions of twisted CBOs
using supersymmetric localization. An arbitrary number of such operators can be inserted
anywhere along a great circle of S% while preserving a common supercharge, with the
resulting correlators depending only on their ordering along the circle. These correlators
determine the Coulomb branch chiral ring of our theories, and moreover, completely fix
the two- and three-point functions of all CBOs at the IR fixed point. In combination with
the results of [13], where similar results were obtained for the Higgs branch, we now have
a complete story for two- and three-point functions of half-BPS operators in 3D N = 4
abelian gauge theories. We have leveraged our results to perform new tests of abelian 3D
mirror symmetry, amounting to a proof at the level of two- and three-point functions of
half-BPS local operators.

Unlike in the Higgs branch case, a challenging aspect of dealing with twisted CBOs
is that they include defect monopole operators. As a result, while the Higgs branch 1D
TQFTs admit very explicit 1D Lagrangians [13], constructing such Lagrangians for the
Coulomb branch proved to be difficult. Instead, we have devised an alternative approach,
in which insertions of twisted CBOs are represented by certain shift operators acting on
hemisphere wavefunctions, which in turn can be glued into the desired correlators on S3.
The same approach was also used in the context of the line defect Schur index in 4D
N = 2 theories [42-44], which we have shown to be related to our 3D computations by
dimensional reduction.

The natural next step is to extend this work to non-abelian theories, where the
Coulomb branch chiral ring and mirror symmetry are less understood. In those theo-
ries, the BPS equations in the presence of monopole operators have “monopole bubbling”
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solutions in which the GNO charge of a singular monopole is screened away from the
insertion point [80]. These solutions have to be summed over, which considerably com-
plicates the analysis. Fortunately, this problem has been addressed in some examples in
4D N = 2 theories (see, e.g., [43, 48, 82]). Therefore, the 4D /3D relation we have uncov-
ered could prove to be useful in incorporating the monopole bubbling effect into our 3D
localization framework.

So far, in both the Higgs and Coulomb branch cases, only theories with hypermultiplets
and vector multiplets have been studied. It would be interesting to generalize our local-
ization computations to other theories that also include twisted multiplets. One class of
examples where the generalization is rather trivial is that of abelian gauge theories with BF
couplings [14];5! some aspects of these theories are discussed in appendix F. There are also
theories with Chern-Simons terms for which application of our results is less trivial, such
as those of Gaiotto-Witten [25], ABJ(M) [83, 84], and generalizations thereof [85, 86].92 A
technical obstruction to applying our formalism to those theories is that only an N = 3
subalgebra of the N' = 4 SUSY algebra is realized off shell on their vector multiplet. The
supercharge that we wish to use for localization, however, does not reside in this N' = 3
subalgebra, and therefore does not close off shell (as required for localization). Neverthe-
less, it is plausible that this technical difficulty could be overcome by closing off shell only
the particular supercharge in which we are interested.

An interesting offshoot of our analysis is the careful treatment of the gluing of hemi-
sphere partition functions into the S® partition function (with insertions). In particular, in
our approach, gluing is performed through supersymmetric localization of the path integral
over boundary conditions. It could be interesting to apply this approach to other supersym-
metric theories on manifolds with boundaries as studied in, e.g., [57, 58, 60, 62, 63, 88-91].

Finally, another open question, of a somewhat academic nature, is whether the 3D
gluing bilinear form has a 1D Hilbert space interpretation. For example, it would be
interesting to understand whether the hemisphere wavefunctions can really be thought of
as representing states in the 1D TQFT. In particular, in passing to cohomology, one is
tempted to view a state in the Hilbert space of the 3D theory on S? as a state in the
product Hy ® Hg, where H is the Hilbert space of the 1D theory and the two copies
correspond to the North and South boundary points of the semicircle. The North and
South shift operators that we have constructed are then simply interpreted as operators
acting on Hy and Hg, respectively. One fantasy is that the answers to these questions
could provide an interpretation of the S3 partition function of 3D N = 4 theories as some
trace over the Hilbert space of the 1D TQFTs. We hope to address some of the questions
raised here in future work.

51 These couplings are simply FI actions that couple background twisted vector multiplets to dynamical
vector multiplets. Introducing twisted hypermultiplets coupled to the background twisted vector multiplets,
and gauging the latter, produces BF-type theories.

52For recent progress on combining supersymmetric localization results with the conformal bootstrap in
the maximally supersymmetric case, see [87].
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A Conventions

Our conventions largely follow those of [13]. In particular, spacetime indices are denoted by
W, vy . . ., frame indices are denoted by i, j, ..., and fundamental indices of SU(2)x, SU(2)¢,
and SU(2)o¢ are denoted by a,b,... = 1,2; a,b,... = 1,2; and o, 3,... = 1,2, respec-
tively. SU(2)g,c, 1ot indices are all raised and lowered from the left with the antisymmetric
tensor, which satisfies €1 = e9; = 1. SU(2) g, indices are typically explicit while spinor
(SU(2)0t) and gauge (color) indices are typically suppressed; spinor contractions are de-
fined by ¥x = 9*x. The spinor parameter & is always taken to be commuting, so that d,

is anticommuting. For any given SU(2) index, we have the Fierz identity
:vayﬁzg + xgyazﬁ + xﬁygza =0, (A.1)

which holds regardless of whether the objects z,y, z are Grassmann-even or Grassmann-
odd, or c-numbers or g-numbers.

Unless otherwise stated, the gamma matrices in any local frame are the Pauli matrices,
which satisfy viq7 = §9 + i€/*v;. Recall that V,, = d,, + %wmjeij k4, on spinors.

A.1 Coordinates

Let us summarize the various coordinate systems on round S® of radius r used throughout
the text. It is useful to relate all of them to embedding coordinates (X1, Xa, X3, X4) € R%.

e In the usual fibration coordinates 6, 7, ¢ with 6 € [0,7/2] and T, ¢ € [—7, 7], we have
(X1, X9, X3, Xy) = r(cosf cos T, cos @ sin T, sin 6 cos ¢, sin 0 sin ). (A.2)
The metric takes the form

ds? = 1% cos® 0dr* + ds?y, dshe = r(df* + sin® 0 dp?). (A.3)
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Operator insertions lie along the 6 = 7 /2 circle parametrized by ¢:
St (X1 + X9, X3 +iXy) = (0,re"?)}.

We cut the S along an S? parametrized by 6,7 (= 7 circle fibered over a line segment)
orthogonal to this S' that meets this S at ¢ = 0, £

5% U{(Xl + X9, X3 +iXy4) = (rcos 0e'™, +r sinf)}.
+

The hemispheres HS3 bounded by this S? correspond to ¢ > 0 and ¢ < 0, respectively.

e In stereographic coordinates 123, we have

2X; 2X, )

_ .2 2 2
= = = ) A4
T IXr PT I X T TR (A4)
The metric takes the simple form
1 1+ X3/T‘
Q Q
ds® = 2 (da? + dx3 + dal), = 15 22/4r2 = 5 (A.5)

Stereographic projection maps the insertion circle to the line (1, z2, 23) = (0,0,2r tan £)
and the boundary S? to the (1,2)-plane

U (21, 29, 5) = 2rcosfcosT 2rcosfsint 0
- L2 =\ "1 £sing ° 1+sind ’

here written as the union of the interior/exterior of a circle.

e In spherical coordinates 7,1, T adapted to our two-monopole background (so that the
monopole and antimonopole insertions at 7 = 0, 7 correspond to ¢ = £7/2), we have

(X1, X9, X3, X4) = r(sinnsin ) cos 7, sinn sin ¢ sin 7, — sinn cos ¥, cos n) (A.6)

where 7 € [—m, 7] and 1,9 € [0, 7] (7 is the same as in fibration coordinates). The metric
takes the form

ds? = r*(dn* + sin? ndsss), dsge = dip? +sin® ¢ dr, (A.7)
The boundary S? corresponds to setting n = 7/2:

(X1, X9, X3,X4) =r(cosfcosT,cosfsinT,£sinf,0) =r(sin) cos,sinysin 7, — cos,0) .

fibration spherical

The + in £sin# can be suppressed by assuming that on the boundary, 6 € [, 7.
For fermions, we work mainly in the stereographic or the spherical frame. The stereo-
i

graphic frame is defined as (est)),

= BQ(SL while the spherical frame is defined as

(esph)1 =dn, (esph)2 = sinn di, (esph)3 = sinnsiny dr, (A.8)

in their respective coordinates.
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A.2 Supersymmetry transformations

The supersymmetry transformations used in the main text are as follows.

A2.1 3DN =4

These transformations are parametrized by the conformal Killing spinors (2.10) on $2. The
transformations of the vector multiplet V in (2.13) are given by

SeA, = %g%@ab, (A.9)
Sedy = — P Fo — Day — €D+ 20 €+ L€, 00, (A10)
0ePyj = €M) » (A.11)
5 Day = —1Dp (€1 Mye) — 200, Npye + i€ Ay %, @] (A.12)

The transformations of the hypermultiplet H in (2.14) are given by

0eq™ = £y, Setba = i7"6aaDpq” + 160" — 1ae® aq” (A.13)
eq = €%y, Bety = iV Eaa Dp® + 1G%Ly + 140G D . (A.14)
In terms of Poincaré and conformal supercharges of osp(4|4), the supercharges of primary

interest for us are

1
H
Qr = Q15— 5519

Q2 :Q211+§Szﬂv
o 1 , . i 1 i 1
Q 25 Q112+ZQ122+Q111‘HQ121+*Sl12_55122_2*5111"‘55121 )
1 7 1
C_
Q3 <Q211 Qg1 +Qa15— ZQ222"‘ 5211"’ 5221 27,5212_27,5222>a (A.15)

from which Qé{ and Qg follow. To derive the corresponding Killing spinors 55 and 55, we
use that in R3, the action of supersymmetries is

éaa = €qq + x' 7277aa7 faa = Nag — 5§O = aaaQaaa + 77 Saa[zy O] (A16)

2[
(for the explicit action of the generators of osp(4]|4) on fields, see appendix C of [13]).
Expressions for (55 )aaa and (Eg)aaa are given in (5.5) of [13] and (3.1), respectively.
A.22 2D N =(2,2)
These transformations are parametrized by a pair of Killing spinors € and € on S? satisfying
i i
V€= — 5, e V€= 57 (A.17)

where ;1 = 6, 7 is restricted to the directions along S?. We define the 2D gamma matrices

Ly =iosvg, TI'y=ios3vy,, (A.18)
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in terms of which the 2D Killing spinor equations (A.17) become
1 _ 1 _
V€= 27’P”03€’ V€= —ﬂfuage,

precisely matching those of [70].

(A.19)

The spinors parametrizing the N' = (2, 2) supercharges (4.12) and (4.13) are given by

e cosf
Q+ S e — 0 - "~ V/2+2sin6
1 - *a @ __i/1+sinf

H
m
fea)

§

in

+ .
QQ' €a =0, €0 = __eTcosf
V2+2sin 6

e Tcosf
- . _ = 2+2sm
Ql D ea=0,6 = i 1+s1n

1 1+sm
—. — R
Q2 € = 07 60& - €' cos 6 .
v242sin6

(A.20)

These can be derived by demanding that the corresponding Killing vectors contain no 9,

terms on the boundary S? (see appendix A of [13]).

The SUSY transformations of the 2D A/ = (2,2) chiral multiplets ®©% in (4.30) are

0 = €x,
06 = eX.
5x = i(T"Dyug + 519 — isado3 + 5-¢03)e + f€,
0X = i(TFDy + 516 + is2¢03 — £ do3)e + fe,
Of = i(DuxT* + s1x — isaxos + qb)\ + %XJg)E,
§f = i(DuXT* + 51X + i52X03 — OX — 2 X03)E.
The SUSY transformations of the vector multiplets V(29 in (4.31) are
da, = —L(e0 A+ €T, N,
651 = 3(eN— €A,
(552 = —L(eo3\ — €o3N)
= (iVFT, + V303 — Dag)e,
= (iVFT, +iV'03 + Dag)e,

§Dgq = —L&(TFDLA + [s1,A] — i[5, 03A]) + Le(TFDLX — [s1, N] — i[s2, 03N]) .

In the SUSY variations of A and X, we have used the following combinations:
1 1
VI =" Dysy + Dl'sy, V= seFu +ilsy, 5]+ s,
r
1

_ _ 1
VH =D, sy — Dhsy, V3= ie“VFW —i[s1, s2] + st
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where the 2D e-symbol is induced from the 3D orientation:

1
or
= A.24
¢ r2 cosf ( )

These results are in complete agreement with the SUSY variations from [70], up to a minor
change of notation.%

Finally, we comment on two issues regarding how these transformations are verified
when ®(49 and V(29 are identified with the boundary values of the 3D N = 4 fields
according to (4.27), (4.32), and (4.33)—(4.37). First, to obtain the variations of f and
f, one must use the equations of motion of the hypermultiplet fermions p and p defined
in (4.28). This is related to the fact that the 3D N = 4 algebra, and consequently, its
su(2|1) subalgebra that we are using, are not closed off shell.* A similar subtlety does not
arise in the computation of § Doy, which is related to the 3D A = 4 vector multiplet being
closed off shell.

The second issue is related to the partial gauge-fixing condition A L’ = 0 in (4.38).
The SUSY variation breaks this gauge, so to fix this, we must supplement it by some gauge
transformation with parameter x. A convenient way to do this, which does not affect any of
the other boundary conditions, is to find a x that vanishes at the boundary, and such that
(AL 40, n)‘ = 0. Because /€| = 0, it does not affect the boundary values of any fields except
for A, whose gauge transformation at the boundary becomes AJ_| — Al‘ + 8l/£‘ = 0.
Note that this is true even in non-abelian theories, simply because /f} =0=[AlL, RH =0.

B More on monopoles

B.1 Global symmetries and defects

A local order operator O[¢] in quantum field theory is constructed as a functional of local
fields ¢, and a symmetry transformation acts on it by transforming the argument:

UO[plU™ = o[ueU 1. (B.1)

On the other hand, given a local disorder operator M [b] defined by imposing some boundary
condition b close to its insertion point, the action of a symmetry transformation can formally
be written as

UMDBUY ~ M[U ], (B.2)

where the notation “~” means “up to normalization” and accounts for the fact that the
normalization of the defect operator M [b] might not be fixed by the boundary condition
b alone (as is the case for monopoles). In other words, to act with a global symmetry U
on a defect operator, one must act with U~! on the boundary condition that was used to
define it, and extra care should be taken to determine normalization.

%3 There is only a sign difference in the variations of the auxiliary fields f and ]7, as compared to [70].
The reason is that our SUSY parameters ¢ in 3D, and consequently the € in 2D, are commuting, whereas
their € are anticommuting.

54While the 3D A = 4 algebra cannot be completely closed off shell, it can be done for the s5u(2|1) sub-
algebra by introducing auxiliary fields. For our purposes, there is no need to perform this exercise explicitly.
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Let us prove this statement by deriving the Ward identities in the path integral for-
mulation separately for order and disorder operators. The results will differ by a sign.
Consider a symmetry transformation which also acts on boundary conditions:

¢ =¢+d6p, b =b+6b. (B.3)

Here, ¢ stands for all fields in the theory, and the transformation of a boundary condition
is simply given by restricting the transformation of ¢ to the boundary. The fact that it is
a symmetry means that

2¢ e = 9¢ 59, (B.4)

This transformation takes O[¢] to O[¢/] and M[b] to MV], where the tilde represents the
fact that the normalization (e.g., the phase) of the defect M [b] might change in a way not
fixed by b. Let us define

506 = O¢] — Ol¢], OM[b] = MV'] — M[b)]. (B.5)
Now consider the change of variables

where p(z) is a smooth function supported in a small neighborhood U(z¢) of the insertion
point xg of the operator of interest and equal to 1 in a compact V(z¢) C U(zg). Since p is
non-constant, this transformation is no longer a symmetry: instead,

2¢' ¢S = 9¢ 519 (1— / d"x@up(a:)j“(x)> (B.7)

where j# is the conserved current.
First suppose that the local operator inserted at xq is of type O[¢]. The trivial identity

/ 24 S0 / P6e SO, (B.5)

where (- --) represents insertions outside of U(xg), implies that:

((8010te0)] = [ @ 8,pt)i# )06 () =o. (B.9)

Now suppose that the operator inserted at xq is a defect. In this case, we should proceed
slightly differently: instead of (B.8), we start with (0M[b](---)) = (M[V](---))— (M]b](---)),
which is equivalent to

(GMp)(--)) = | 2¢/ e 5. /%es ), (B.10)
"

where the notation fb means that we compute the path integral with boundary conditions b.
We also assume that the path integral with boundary conditions ¥’ is properly normalized
so as to precisely represent the defect operator M [b']. Let us perform the coordinate
change (B.6) in the first integral. Close to the point =g, we have p(x) = 1, so the coordinate

— 78 —



change is simply ¢’ = ¢ + d¢ there; it transforms the boundary condition ' into b and the
operator M[V'] into M[b]. As a result, we obtain

GMBI(-) = [ D65 (1 -/ d":caup@w(x)) ()= [ F6e I
= [0 [ 2o, p@it@)-), (B.11)

e <<6M[b] + / d"z 8, p(x) " (z) M [b]) (- -)> =0. (B.12)

Notice that (B.9) and (B.12) differ by the sign, which is what we wanted to show.

In the situation where the boundary condition b determines M [b] only up to normaliza-
tion, there exist symmetries of the theory that act nontrivially in the bulk without changing
b. Such symmetries multiply M[b] by a number.%> Therefore, we could choose to consider
a different bulk symmetry,

¢ =¢+00, (B.13)

which restricts to the same transformation of the defect singularity b’ = b + §b. Following
the steps above, we obtain the same equation (B.12), except that the current j,(x) is
replaced by the current ;M(w) for the symmetry (B.13). The difference between j,(x) and
}H(w) is a symmetry that multiplies M[b] by a number. This is why the finite transformation
of the defect operator in (B.2) is written only up to normalization.

To have a precise equality, one must also determine whether U changes the normaliza-
tion of M [b]. However, it might be impossible to pick a consistent normalization of M [b] for
all possible b. An example of this kind was explained in the main text: it is impossible to
pick a normalization of the monopole operator for all possible singular boundary conditions,
as it would require choosing a global section of the Hopf fibration. It is possible, neverthe-
less, to pick a normalization of M[b] for some subset B of possible boundary conditions. In
this situation, one can write M [b] only for b € B, and the transformation becomes

UMPIU = NOU)M[U ], \U) € C*, (B.14)

where A(U) encodes the change of normalization. Moreover, we are only allowed to consider
those U for which U~!b € B.

B.2 Boundary terms and monopole counterterms

Writing (2.15) as Shyper[H, V] = [ d*x\/gLuyper[H, V], the boundary term in the SUSY
variation of the gauged hypermultiplet Lagrangian for £ € osp(4[4) is

5§£hyper [H7 V] = Du (({(Mﬂ;d)qua + qa(Dugadwd) + Z'G“quaDu(gad’pra)

—_

~a g ab 1 ~a b c ~a ( ¢cb
+ @ O (E 7 ) + 50 ("N )ae + 537 (E bv“Aa,-)qc)- (B.15)

55For example, in the case of half-BPS monopole operators in 3D N = 4 theories, b represents a monopole
singularity, and it remains invariant under U(1)c C SU(2)¢ transformations preserved by this singularity.
However, such transformations act nontrivially on M [b]: they multiply it by a phase.

- 79 —



Writing (2.16) as Sym[V] = gviy J Az /gLym[V], the boundary term in the SUSY varia-
tion of the Yang-Mills Lagrangian for £ € su(2|1), @ su(2|1), is

. 1 . 1. .
d¢Lyn[V] =Dy Tr (Zf““%mF W S PE N Fyp D e N + 56 A 24", D]
—EAADI B i PNy N DB 26! AN ;h“bﬁdbfaévﬂkbé@db> . (B.16)

For the monopole counterterm, it suffices to consider the abelian case, for which the
SUSY transformations are obtained by omitting the terms involving commutators in (A.10)
and (A.12). We need not include fermionic terms in the monopole counterterm because
fermions are set to zero in BPS configurations. Letting

/1
we compute that for arbitrary Killing spinors &, € in su(2[1), @ su(2[1),,
ab7 ab 1 1% 1 cd 1 e od
5£5§V|bos =h"h §faa€bbF,uuF —ifaasz,D Deq— §§ad€b58 o auq)(;d' (B'18)

& éd 3 7 éd (E s cH. ¢
~ €0 P P — 1 58aabyy O Py = 20(Ehale +Ehaee) Do @ ) +V,5¢
where
SH# = pebpib <£aégbd<1>dbaﬂq>é ALy 6 1,00, B; + 26,596 D6 (B.19)
1 c C £ ¢ -FC v e c
+ ielwp(fadgbc + gbcfaa)Fup(I)d', - Zga ’Yugb{:F'u (pd(', - Zéa ’Y“gcéDb (pab> .

Specializing to £ = fg, E= {96, he® = —(0%)a?, h% = —(03)%;, we have

Tabg . ab7ab & 2i abzab /g c 2 a7 b
hh%Eaa6y, = 8iB,  hhHEL.E, = —75, hR® (Gpalte + Ehabee) = —éhc he’ (B.20)

(the explicit form of gg is given in (3.1)), and substituting these results gives
5565‘/ = 5§5§~V‘bos =+ 5§5§~V‘fer = 4iBLMaxwell T V“(EN + EI;) (B21)
where

Laxwell = F/WFMV - 8Mq)édauq>c'd + i)\(mv)\ad - DCchd
L, abyab Lo by ayra, gb L wed (B.22)
— ?h h )‘ad)‘bl}—i_ *(ha Dy )(h bq) a) — 72(1) q>c'd
r r r
and E’; are fermionic terms that are irrelevant for our purposes. The monopole counterterm
Y# can likewise be simplified using the explicit forms of §,£, ha?, Bdb. In stereographic

coordinates, we obtain
YH = 82’5(6#((1)11 + @55 — 2(1)12) — eQ(2 + Z'l’g/’l“)auq)ii — GQ(Q — il’g/’l‘)@“@éi)@ij
+ 4’i56“V’OFVp((I)H — @22 — 69(2 =+ il’g/?”)q)ii + 69(2 — Z:L’3/7’)<I)22)
+ 46“””U,,(<I>118p<1>22 — @226p®ﬁ) + 16U1,F/W(I)12 + VH (B'23)
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where U, = 5629(5bx2 — 67a1)/r and

- 41'662&:6‘ 1T3 1T3
174 1,2 9 9

.
282 | 22 + 22 T3 2 T3 2
Er (@4 = @)+ (24 =5 ) @4y — (2027 ) Dy | By

r

V=

r2

Strictly speaking, our ¥ = ¥,dz" is actually the Hodge dual of the ¥ defined in (2.52).

C General BPS monopole backgrounds

C.1 Singular solutions to BPS equations

In this section, we construct the singular solutions to (3.6)—(3.8) that describe insertions
of multiple twisted-translated monopole operators anywhere on the R = 1 great circle of
S3. Consider n such operator insertions at angles —m < 1 < 9 < --- <, < 7. Let
the monopole at ¢ = ¢y, have charge by € ', (k =1,...,n). Because S3 is compact, the
charges must satisfy > ;_, bx = 0. Our task is to solve (3.6)—(3.8) on S* with punctures at
(R, ) = (1, p3) such that the fields near the k™" puncture approach a charge-b;, monopole
singularity, as prescribed in (2.36).

To define the gauge bundle on the punctured S®, we cover it with patches D(®) given by

DD ={0<R<1}U{R=1,0; < ¢ <pit1}, (C.1)

where it is understood that D™ > {R = 1,0, < ¢ < 7}U{R =1,-—7 < ¢ < ¢1}.
On each patch D, the gauge connection A® is a well-defined one-form, and A® — A©)
is a valid gauge transformation. In abelian gauge theories, the other fields in the vector
multiplet are neutral, so they must be globally defined functions on the punctured S®.

An important consequence of (3.6)—(3.8) is that the gauge field is related to ®;. Indeed,
by combining (3.8) with (3.6) and (3.7), it is straightforward to see that%¢

AD = (r®; + D)dr (C.2)

where the ¢ are constants. For A to be well-defined, ¢ —¢l9) must be integrally quantized
for all 1 <4,j < n, and moreover,

W = —rd, (C.3)
R=1
because the 7-circle shrinks at the boundary of the disk. We conclude that ®; must be a
piecewise constant function on the R =1 circle.
Let us now show that ®; is uniquely determined by its value at R = 1. First, combin-
ing (3.6) and (3.7), we find that ®; must satisfy the second-order differential equation

(R(1 — R*)Or(ROR) + 02)®i(R,¢) = 0. (C.4)

56First, the equation Fgr, = 0 implies that we can set Az = A, = 0, since there are no nontrivial flat
connections on the disk with punctures at its boundary. The other equations for A, can be written in each
patch as 9, (A" — r®;) = Or(AY — r®;) = 0, which can be integrated to (C.2).
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The general solution to (C.4), which is smooth in the interior of the disk, can be found
using separation of variables:

o D(nl/2+1)% nl n|
D; = p— e RInly (T 1,R?) . 5
R T A el )
In particular, at R = 1, we find
o0 .
®(R=1,0)= Y ane?, (C.6)

from which the coefficients a,, are uniquely determined. As argued around (3.3), the field
®; must vanish at R = 0, which implies that ag = 0. We show below that ®;(R =1, ) is
completely fixed by this requirement and the boundary conditions at the punctures.

Once ®; is fixed, ®, can be obtained simply by integrating the BPS equations (3.6)
and (3.7). In particular, integrating (C.5) term-by-term, we find that

, 2
o, = ZZ sgn(n)ane™? RIMy Fy <|n2]7 \n\;— Jn| + 1, R2> , (C.7)
n#0

where the constant mode has been set to zero, as before. Note that (C.7) is an expansion
of ®, in T-independent solutions of the Laplace equation on S2. That V2®, = 0 is satisfied
follows directly from the Bogomolny equation (3.8), and also by combining (3.6) and (3.7)
into a second-order equation for ®,. The linear equations (3.6), (3.7) provide the relation
between the mode expansions of ®; and ®,, as shown explicitly in (C.5) and (C.7).

To summarize, the solutions of the BPS equations (3.6)—(3.8) on the punctured S® are
uniquely determined by ®;(R = 1, ¢), which, according to (C.3), must be a piecewise con-
stant periodic function of ¢. Furthermore, ®;(R = 1, ) must not have a zero mode, i.e.,
ffﬂ dp®;(R = 1,¢) = 0. Let us finally spell out the connection between the above con-
struction and monopole operators. In appendix C.2, we show that the singular monopole
boundary conditions fix ®;(R =1, ) up to an overall constant:

1< -
;(R=1,¢) = ~5 ; bx sgn (cos % sin 7 2¢k> + constant . (C.8)
The undetermined constant in (C.8) is fixed by imposing that ®;(R = 1, ¢) have no zero
mode, resulting in the final expression®”
O, (R=1,9) :—izn:bk sgn cos Zsin L k) 4 P (C.9)
’ or £ 2 2 ™

This concludes our description of the solution for the background corresponding to n
twisted-translated monopole operators.

Y=k
2

57If we restrict to the range ¢ € (—, 7], then sgn(cos £ sin ) can be replaced by sgn(¢ — ¢k).
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C.2 Relation to monopole singularities

Let us now derive (C.8) by showing how the piecewise constant function ®;(R = 1,¢)
is determined by the monopole singularities (2.36). In stereographic coordinates x,, the
insertions lie along the line 1 = x93 = 0, and the monopole background is given by

+F ~ <1+ e 2) Zbk —*k|3’ (C.10)

where 7% = (0,0, 2r tan 7). The ~ sign in (C.10) implies equality up to non-singular
terms. We will use this notation throughout this section.

Because BPS configurations are functions on the (R, ¢) disk, it will be more convenient
to use the (R, p,T) coordinates. In these coordinates, the insertions are located at angles
¢k on the R =1 boundary of the disk, and (C.10) takes a more complicated form:

1 — cos ¢ + tan & sin
*FN_’E:bk ’ .2 £ zédR
r (1 — R? +tan® £+ (R(sing — cosp) — 1)%)2

cos® 2 (Rsin £ — sin (p — %)) 3Rd<p> . (Ca1)
(1 + Reosp)(1 — Reos(p — ¢x)))*

The gauge connection that reproduces the magnetic field (C.11) is given by

n 3 _ PE) _ éok
A0) _% (Z b Rsin (p — 5) —sin _ Zbk + Z bk) dr, (C.12)
k=1

1+Rcoscp)(1—RCOS e—wK) 1o k=i+1

where A® is defined in the patch D@ defined in (C.1). The constant terms in (C.12)

are chosen such that A® vanishes at R = 1, making it a well-defined one-form on D®.

Moreover, in D N DU we have that A® — AU) is a well-defined gauge transformation.
Up to regular terms, the scalars @, ; are determined by (3.7) and (3.8) to be

n

1 bi;
Oy~ @Z — £k)

#— cos (p—¥
1 n
vk 3
k=
At R =1, the singular part of ®;, given in (C.14), becomes a piecewise constant function:

RN 0= n P
= —%;bk [sgn <sm 5 > + sin 2} ) (C.15)

Any contribution to ®; at R = 1 from the terms suppressed in (C.14) must be a regular
periodic function f(y). However, as argued around (C.3), on the BPS locus, ®; must
be piecewise constant at R = 1. We conclude that regular terms can only contribute
f(¢) = constant, so that the expression for ®;(R =1, ¢) is as in (C.8).

cosp—(1+2Rcosp) cos(p—pk)
vV (1+Rcosp)(1—Rcos(p—px))

Rsi _ Pk _qin Pk
sin (¢—%+) —sin & Lsin PR (C.14)
v/ (1+Rcosg)(1—Rcos(p—px)) 2

+cos(o—pk) —cosga] , (C.13)

i (R

singular
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D Hypermultiplet one-loop determinant on S3

In this section, we calculate the hypermultiplet determinant (3.27) on S® in the two-
monopole background (3.20), (3.21). For simplicity, we consider a U(1) gauge theory with
a single hypermultiplet of unit charge. Moreover, to simplify notation slightly, we define
g = b/2 and set r = 1 throughout this section.

D.1 Bosonic spectrum

The eigenvalue problem for the bosonic part [ d3z \/g(j‘l(DB)abqb of the action (2.15) is

- 3 1 . .
Dp-f= [55 (—D“DM +1- 2q>ab¢>ab> + zDab] fo=ABfa. (D.1)
Diagonalizing the 2-by-2 R-symmetry matrix Dp and using the solution to the BPS equa-

tions leads to the equation

3 L
[—D2 +1+ 0% — @i ®sy £i(0 +iReD1y) — Ag] fe=0. (D.2)

For the specific configuration of (anti-)monopole at n = 0 (n = 7), ReD1; = 0 and we

can write

2 _ 1 2 -
[—DQ—i— q2 —)\ﬂ f+ = [—82—2cotn3n—D%27q+q2—A§} f+=0, (D3)

sin“n sinn sin“n

where Dgg ‘ is the gauge-covariant Laplacian on S? with metric ds? = di)? + sin? ¢dr? in
the charge-¢ monopole background and we have defined

AL =)% - G +o%+ z’a> : (D.4)

The eigenfunctions can be expanded in monopole spherical harmonics,
fr = he(m)Ygem (¥, 7) (D.5)
which satisfy
D?@ @ Yastm = — (6@ +1) - qz) Yoiem (D.6)

with £ = |q|,|q| +1,... and m = —¢, —¢+1,...,£. We are left with an ordinary differential
equation

l+1) ~
[—ag — 2cotnd, + Ty Ag] he =0, (D.7)
whose solutions are given by
1 04+1/2 0+1/2
h =——— [P + D.8
+(n) (1— 332)1/4 !61 @_1/2(x) CQQ@_I/Q("@) (D.8)
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where x = cosn and P, () are associated Legendre functions. The solutions are singular at

VA +1=04+1,042,.... (D.9)

Hence the bosonic spectrum on S2 is

x = +1 unless%®

1 .
G = (£+n)2—1iw+02, n=1,2..., £=|qlg+1,..., (D.10)
with degeneracy 2¢ + 1 for each sign. Equivalently, set N + |¢| + 1 = £ + n; then
3.
)\ﬁ:(N+!q\)(N+\q|+2)+ziw+02, N=0,1,... (D.11)

with (¢,n) = (lq|, N +1),(|lg| + 1,N),..., (N + |g|,1) and therefore degeneracy

N+|q|
> (20+1)=(N+1)>+2[q|(N +1) (D.12)
£=|q|

for each sign, as in (3.28).

D.2 Fermionic spectrum

On 53, we work in the frame
el =dn, e?=sinndy, € =sinysinydr, (D.13)

in which the nonvanishing components of the spin connection are given by

wil = —wf =cosn, wl=—wl=cosnsiny, w?=—w?=costp. (D.14)
On 52, we work in the frame
el =dyp, é&*=sinvdr, (D.15)

and choose the associated 2D gamma matrices to be 71 = o1 and A, = 09.° The nonvan-
ishing components of the spin connection on S? are then

O = 012 = cos. (D.16)

T

Using the above conventions, we can decompose the S3 and S? covariant Dirac operators
in the monopole background as

1 1 1
lDSS,q = Ugdn + @ESQ,(p lp327q =01 <Dw + 5 cot w) + UszT, (D]_?)

58 Py (z) is regular on [—1,1] only if L, m are integers with 0 < m < L, and a similar statement holds

for Q7' (z) when L, m are half-integers. If ¢ is an integer, then ¢ is an integer and we keep the @ solution;
otherwise, we keep the P solution.
59We have chosen these conventions in light of (4.53), to make the fermionic analysis on HS® more natural.
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where d,, = 0, +cotn. The latter is diagonalized by monopole spinor harmonics, which are
two-component spinors that satisfy

iBs2,qY gim = DyiYoim  Dgo=+V+1/22 = ¢ (D.18)

for ¢ =|q| +1/2,|q| +3/2,... and m = —¢,—¢ + 1,...,£. For q # 0, there also exist zero
modes

iDg2 Y pm =0 (D.19)

with ¢ = |¢| — 1/2. We will make use of the properties

oYt =YT,

q,tm q,bm >

03Y e = 580(0)Y gl - (D.20)

D.2.1 Eigenvalue problem
The eigenvalue problem for the fermionic part — [ d®z \/571;"1(13;7)@61/15 of the action (2.15) is

—ilDpy — iq’ab% = Ara . (D.21)

Substituting the background <I>ii = —@22 =0 and <I)ié = —<I>Qi = —iq/ sinn for the scalar
fields, the operator that we wish to diagonalize can be written as

Dp = (”p "7 S 2) : (D.22)

-4 15 i) —io

sinn

Let us start by making some manipulations to eliminate o from the problem. Since we are
only interested in the determinant of D, we can instead solve the eigenvalue problem for

. i +ic —=1-1,
Dr =Dr(o3®12) = < 41, i)+ ia> '

" sing

(D.23)

We can now absorb ¢ into the eigenvalues, i.e., instead of D, we will diagonalize

. ip -1,
Dr = sinn D.24
F < 4_q, _le ) > ( )

sinn

whose eigenvalues are related to those of Dp by A = A +io. Using the spherical symmetry
of the background, the eigenspinors ¥ = (11, 12)” of D can be decomposed into monopole
spinor harmonics. To do so, we consider separately the cases ¢ > |q| + % and £ = |q| — %

D.2.2 £>]q|+1

In this case, we write

1= fre (MY, + Fim(D)Y (D.25)
Yo = for (MY p + Fom (DY 4 - (D.26)
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In terms of the above decomposition, we have

Dl — io3dy + GryiPs2 4 — s l2 fis Y, o + f1i-(m)Y, aim ) S
— sy L2 —io3dy — giPs2 g ) \ o (MY, + - (Y4
(D.27)
Using the property angigm = }[q:FZm and linear independence of Y+, this is equivalent to
+ f 1+(77) fi+(n)
S dy -1 1 .
M. f _ 1o1dy + B Sln77 sinn A2+ (77) =\ f1—(77) ) (D.28)
— gy L2 —ialdn — Sy +(n) fa+(n)
fo—(n) fo-(n)

This system of four coupled equations can be decoupled into a pair of two coupled equations
by making a unitary transformation: in terms of

— g -1z z 0o®0 q
My =U"MU, fu=U7'f, U=e%28%)  tan(20) = A (D.29)
q7
it becomes My - fU =\ fU where
MU 0 ~ . !/ %
— ~ = t 3. D
My ( 0 —MU> , My =io1(0, + cotn) + pr o3 (D.30)

Now let us make a further rotation on (D.30) and consider the eigenvalue problem

1
e+L Y\ -~ [i(9y+cot _ths A
050 cotm) — 2oy | = OOt G M 5 (M) (o
sing) s (g, 4coty) | \ N2 ha

sinn

The solutions are given by

13

1 <1
hi = e (2?) 2 (1 - 22 V2% F <e+ g lHl=Ag - )\,x2>

Fep(a?) (1 — 22V R <£+3 140+ )= > +)\ x) (D.32)
. 20+ 1 9\ 224 2\0—1/2 3 3 5 2
= - 1— F S140-02
ho = icy (2)\_})(3:) z (1—2a%) oY €+2, + /£ )\ 5 -\
(23 +1 144 _ 1 c 1 .
—ch<%+l>(x2)1§ (1—22)12% R <€+2,1+€+)\,2+)\,x2>, (D.33)

where z = €. The hypergeometric function oF(a, b, c; 2) is regular on the unit circle if
c=0,1,... and Re(c —a —b) > 0, or if either a or b are non-positive integers (in which
case the hypergeometric series terminates). The first condition is always violated in the
above solution, so we conclude that there exists a regular solution if

N 3
A=t(n+Ll+1), n=0,1,..., z_yq|+ Jal+3 (D.34)

The degeneracy of each eigenvalue above, considered as an eigenvalue of My (rather than
of My) in (D.30) and hence of Dy, is 2(2¢ + 1).
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D.23 ¢=|q -1

In this case, we work directly with (D.24) and expand ¥ = (t1,42)7 in zero modes as

Y1 =Mh (n)ifq%mv o = h2(77)}/:](3ﬁm : (D35)
Using the property angogm = sgn(q)YqOZm, the eigenvalue problem Dp¥ = AU becomes
i(0y +cotn)  —Jd hy < (h
sinn ] n 2 2
where it is understood that ¢ = || — 3. This is precisely (D.31), with A — sgn(q)A.

The corresponding solutions (D.32) and (D.33) are regular when 1 + ¢ 4 sgn(¢)A < 0, so
regardless of sgn(q), the eigenvalues are the same as for the non-zero modes. However, the
degeneracies are halved relative to that case. Namely, the eigenvalues are given by

“ 1
A = +sgn(q) <n+|q\+2> , n=0,1,..., (D.37)
with degeneracy 2|q|.

D.2.4 Summary

The eigenvalues of D in (D.23) are
L (n+l+1)4io, n=0,1,..., £=|q+1/2|q/+3/2,... (D.38)
with degeneracy 2(2¢ + 1) for each sign and
t(n+l+1)4+ioc, n=0,1,..., L=]q—1/2 (D.39)

with degeneracy 2¢+ 1 for each sign. Equivalently, set N+ |¢| =n+¢+1/2 (N =0,1,...);
then the eigenvalues are £(N + |¢| + 1/2) + io with degeneracy

N+|q|-1/2
2+ D 2(20+1)=2N(N +1)+2/q|(2N + 1) (D.40)
l=|q|+1/2

for each sign, as in (3.29) and (3.30).

E Hypermultiplet one-loop determinant on HS3
In this section, we perform the H.S3 counterpart of the calculation in the previous section,

using the same conventions throughout. To implement the boundary conditions (4.53), it
will be necessary to keep careful track of the relevant eigenvectors and eigenspinors.
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E.1 Bosonic spectrum

Recall that the bosonic R-symmetry matrix and its eigenvectors are

D243 40?4 —0 f
(Dp)a’ = 4 sin” 7 . |, ([P = 7* (E.1)
o -D?4+3 407+ 4 a2 Fifs

sin? 7

with corresponding eigenvalues )\E, where fi can be written in terms of monopole spherical
harmonics as in (D.5) and (D.8).
On HS3, we have two cases:

1. The eigenvectors with eigenvalues )\E have gy = 2f; and ¢— = 0, so the boundary
conditions reduce to
@+ =0+ fi|=0.

By linear independence of the Y4, this is equivalent to h(7/2) = 0. Both P;/*(0) =0
and Q7'(0) = 0 when L —m is an odd integer, so allowed eigenfunctions have n even.
This means that we sum over only those ¢ with N + |¢| — ¢ odd (i.e., those ¢ = ¢ — |q]
with N — ¢ odd). Hence the degeneracies are modified to

N(N +1 N(N +1
(2) + |q|N (N even), (2) +]g/(N +1) (N odd) (E.2)
for the “4” sign.
2. The eigenvectors with eigenvalues Az have ¢ = 0 and ¢— = 2f_, so the boundary

conditions reduce to
01¢-| =0<+<= 0, f-| =0+ 0,h_(7/2) = 0.

If ¢ is an integer, then we keep only the @) solution in h and

=1 0+1/2
o (n/2) (g +1-1) Q UL

which vanishes when (S\E; + 1)/2 — £ is an odd integer (it is never zero). Similarly, if ¢
is a half-integer, then we keep only the P solution in h and

Ah_(1/2) o <\/XB +1- z) P%H/Q(O),
B

1/2

which again vanishes when (5\]_3 + 1)/ — £ is an odd integer. Hence in either case, the

degeneracies are modified to

(N+1)(N+2)
2

(N+1)(N+2)
2

+1ql(N +2) (N even),

+g|(N+1) (N odd) (E.3)

for the “—” sign.

Note that in (E.2) and (E.3), |g| is always multiplied by an even integer. Combining these
results gives (4.55).

— &89 —



E.2 Fermionic spectrum

Let D denote the fermionic R-symmetry matrix (D.22), let Dy = Dp(03®15) as in (D.23),
and let A\p denote the eigenvalues of Dy (not of Dp). Our basic approach to evaluating
the fermionic functional determinant is as follows. The space of four-component spinors
splits as V = X @Y where spinors in X satisfy the 1) boundary condition and spinors in Y’
satisfy the ¢ boundary condition. Left multiplication by o3 (in the sense of R-symmetry
indices) takes the subspaces X and Y to each other: that is, x = (03 ® 12)¢ and v satisfy
the same boundary conditions. Thus the path integral with action ’L;DFQJJ computes the
determinant of Dp, restricted to the subspace Y. As we will see, however, Y is not an
invariant subspace of Dp. Hence one cannot simply diagonalize Dp in Y. Rather, for a
linear operator M and a subspace S, we define the determinant of M “restricted to S” as
detgM = exp(trglog M), regardless of whether the operator M|g makes sense.
To begin, we know that the eigenvalue problem

. +1)2 hi(n)\ _ hy(n)
<201(877+00t?7)+ sy 0’3) (ht(n)) =A (hf(?])) (E4)

has the following solutions for the eigenvalues:
A=x(n+L+1), n=0,1,... (E.5)

with degeneracy 2¢ + 1 for each sign.”’ The corresponding eigenspinors are given by

1
V2

where for A = +(n + £ + 1), we substitute

(m) _ ( Fy(x) > E)
- 1(20+1 2 .
ha et B (@)

and for A = —(n + £ + 1), we substitute

©)
F
) B ) (E.8)

b (1) = = () — ha(m)), h<n>=;§<h1<n>+h2<n>> (E.6)

20+1 n,
with
FU (@) =21 =2 V2 (0 +1/2,—n, —n — £ — 1/2,27), (E.9)
FA(z) = 2t 701 = 22 V2R (04 3/2, -0, 1/2 — n — £,27), (E.10)
and x = "
Use g = % (1) €SUR) = g(01,02,03)g " = (03,02, —01) to change basis to (D.31).
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From the previous paragraph and the manipulations of the previous section, we deduce
that the eigenspinors x of Dp are as follows. First consider the non-zero (4) modes, with
¢ > |q| +1/2. Define

Sqntm+ (0) = J5(cosO(FL) () — g2 ) (2)) +sin 0(F ) () - D U )V,
+ 5 (cosO(FL L) (1) + 52 B2 () —sin0(FL) (2)+ LGV E) (2) Y,
Sqmim—(0) = 5 (cosO(FL) () — LGP B (@) 4sin (L) (1) — 225 B (@)Y
+ I (cosO(F) (2)+ L2GEEED B (2)) —sin0(F!) (2) + 5 s B2 (@) Y,y g
For A\p = +(n+ ¢+ 1) + io, we have
Xi =Y amSqnim+(0), X3 =D @ Sqnem—(—0). (E.11)

For \p = —(n+ £+ 1) +io, we have
Xi— Z bmsq,nfm— (9)7 X3 = Z b;n,sq,nfm-‘r(_e)' (E'12)

Now consider the zero modes, with ¢ = |q| — 1/2. For A\p = sgn(q)(n+ ¢+ 1) +io, we have

F(l) YO
( ) Zam< 2e+1 ;())( Jyo ) (E.13)

2(n+£)+1 n,l g,fm

For A\p = —sgn(q)(n + £+ 1) +io, we have

Z bom . (E.14)

i(2(n+L) +1) (1) 0

( > < 20+1 Fn,ﬁ ( )Y:] Im

The coefficients a, b, a’, b’ parametrize linear combinations of degenerate eigenspinors.
Specializing to the hemisphere with boundary S? at 7 = 7/2 means restricting to those

spinors x satisfying x|; = —o3x|s. Clearly, among non-zero modes, the allowed spinors
reduce at the boundary to linear combinations of

YT, Y
<_§q;”_m ) : <_{f;ﬂm ) : (E.15)
q,tm q,fm

which span a 2(2¢+1)-dimensional subspace of the 4(2¢+1)-dimensional subspace of spinors
with fixed n, ¢. Using the property

2P (04+1/2,—n,—n—€—1/2,~1)  (=1)"(2(+1) FY) (i) _(=Dn(26+1)

oF 1 (0+3/2,—n,1/2—n—{,—1) n 2(n+0)+1 FT(LQZ)(Z) - i(2(n+0)+1) (E.16)

allows us to write Y= as linear combinations of s4|: namely, for fixed n, £, we have up to
an m-independent constant that

Yq+€m X Ci(e)sq,n£m+<9)‘ + Ci—(e)sq,n@mf @)1, (E.17)
Yq,zm o ¢ (0)Sqnem+(0)] + cZ(0)sqnem—(0)], (E.18)
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where

() =i(1+ (-1)™)(2(n+¢)+1)cosd+ (1 — (—1)")(2¢ + 1) sin b, (E.19)
() =(1—(=1)")(20+ 1) cosf +i(1 + (—=1)")(2(n + £) + 1) sin 6, (E.20)
cr(0) =—i(1 - (-1)")(2(n+¥€)+1)cosh — (1 + (—=1)")(20+ 1) sin 6, (E.21)
c(0) =1+ (=1)")(20+1)cosf+i(1—(—1)")(2(n+£)+1)sinb. (E.22)

We see that none of the eigenspinors of Dy survive the boundary conditions, and moreover,
that Dr does not act in a simple way on the subspace of spinors that do (it is neither an
invariant subspace nor mapped to its orthogonal complement). Therefore, to compute
the desired determinant of f?p, we exponentiate the trace of log Dp in the subspace Y of
allowed spinors. In view of (E.15), (E.17), (E.18), an orthonormal basis for this subspace
is given by

S = \/7 _C+( )sq,nfm-i-(_g) - C:(_H)Sq,ném—(_g)
_ 1 ( 5 (0)Sqntm+ (8) + ¢~ (6)5qnim—(0) ) |

1( CE(O)34ntm(0) + * O3y (0) )

2m = \/T —CI(_Q)Sq,anﬂ-(_Q) - cf(—@)sq,nzm—(—e)

where the normalization constant is N = 4((2(n+£) +1)% 4 (2¢+1)?) under the assumption

that sjl nome * Sqmtme = Oeer for some suitably defined inner product.”t We compute that
~ " cos 20
3]; mlog Dp)stm = Z £ 2) log(£(n+ ¢+ 1) +io),
+
~ 1)" cos 260
sgm(log Dr)som = Z il 2) log(£(n+ £+ 1) +i0),
+
whereupon
try log Dp = Zszm (log DF)sim = (20 + 1) Zlog (n+0+1)+1io0). (E.23)

zm

Hence the degeneracies of the 4+ eigenmodes are halved on the hemisphere. We now turn
to the zero modes with ¢ = |¢| — 1/2:

e For A\p =sgn(q)(n+ £+ 1) + io, we have

Yo
xli o) m
<x\g> F) Z am ( anYO ) : (E.24)

q,fm

so the boundary condition reduces to 1 = (—1)"sgn(q).

e For \p = —sgn(q)(n + £+ 1) + io, we have

X|i (2); Yoém
— 2NN b, ¢ : E.25
<X|2> n,ﬁ( )%: ( )nyq(?ém ( )

so the boundary condition reduces to 1 = (—1)"*!sgn(q).

"I This assumption is justified because ﬁp — i0ly4 is Hermitian.

~ 92—



In other words, regardless of sgn(q), we must have n even for A\p = +(n + ¢+ 1) + io
and n odd for A\p = —(n + ¢+ 1) + ic when ¢ = |¢| — 1/2. Hence on the hemisphere, the
eigenvalues +(N + |q| + 1/2) +io (resp. —(N + |q| + 1/2) + ic) have degeneracies
N+lql-1/2
2|q| + Z (20+1)=N(N+1)+2|qg/(N+1) (N even, resp. odd), (E.26)
t=lql+1/2
N+lq|—1/2
> (20+1)=N{E+1)+2[gIN (N odd, resp. even). (E.27)
L=|q|+1/2

This completes the derivation of (4.57).

E.3 Monopole spinor harmonics

The explicit forms of the Yqi’gl, while not needed here due to our judicious conventions,
can be obtained from [26]. Set y = cost. Matching to our conventions, let

:Fezpiw/szT (y)
Of =N, . Am E.28
q,fm q.¢ (7—) <:|:€:tz7r/4wsem(y) ( )
where
\e—m; joNe+1/2 _ i(m+aq)T
qum(q_)_ (-1) (i/2) (£+1/2) (l—m)le a (E.29)

 JT{+3/2—qT(t+3/2+q) \ (t+m)! oz

m— m . dZ+m _ -
Wt () = (1) D (L A (1) 0 (1) 7120, (E30)

m m— -~ di+m _ _
Wt (Y) = (L=g) YO Ly B2 P (1) TR (L) ), (B31)

1+ L 1—r 2 _
}/q—j_ém = \/?6 171'/49;:&” + sgn(q) \/76“1-/49(;7&”’ (E.32)
— 1—7r g 1+7r , _
Y = riR Y - AN

where 7, = /1 — ¢2/({ + 1/2)2. Note that

1 1-—
cosf = \/%, sin @ = sgn(q) #, (E.34)

with 6 defined in (D.29). Further define, for ¢ = |¢| — 1/2,

1
0o _
Youm = 75
. . +
The desired properties 0-3}/;],[771, =Y7

q,fm
£ _ OF + 0 : :
of angvem = :l:qu’Em. The Y 5, and Y ', are eigenmodes of lesz,q where

and then set

(Y, o +520(0)Y, ) (E.35)

and ang?em = sgn(q)Yq?gm are satisfied by virtue

1 1 1 1 )
msﬂ’q =01 (Drl/, + 5 cot 1/)) +0'2mD7— =01 <8¢ + 5 cot 1/)) +0'2m(87——’LA7-) (E36)

and the gauge field is defined in the coordinate patches 0 < ¢» < 7/2 and 7/2 < 1) < 7 as
A* = —g(cos1pF 1), respectively. The formulas above are suited to the patch 0 < ¢ < /2.
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F More on matching

In this appendix, we elaborate on several aspects of the matching of twisted correlators
across mirror symmetry. Throughout this section, for notational convenience, we leave all
correlators unnormalized (i.e., we omit an overall factor of 1/Z) and set r = 1.

The mirror dual of any 3D N = 4 abelian gauge theory consisting of only ordinary
or twisted multiplets is known: therefore, the 1D topological theory for twisted HBOs in
such a theory gives a completely general prescription for computing correlators of twisted
CBOs in its mirror dual. On the other hand, shift operators provide a completely general
prescription for computing correlators of twisted CBOs in any such theory directly. To show
that these two prescriptions give identical results for all correlators consists of two steps:

1. Prove this statement for the fundamental abelian mirror symmetry: namely, an arbitrary
twisted HBO correlator in the free massive hyper is equal to the corresponding twisted
CBO correlator in SQED; with matching FI parameter.

2. Show how to obtain twisted CBO correlators in a general abelian theory from those of
the free hyper/SQED1, namely as sums of products of two-point functions, integrated
over appropriate subsets of mass/FI parameters.

We carry out the first step in appendix F.2 by proving that all twisted correlators match
across the basic duality between a free hyper with mass m and SQED; with FI parameter
m. We then illustrate the second step in appendix F.3 by proving that all twisted CBO
correlators in SQED y match the corresponding twisted HBO correlators in the N-node
abelian necklace quiver. In this case, the map between CBOs and HBOs is very simple, and
we derive explicit formulas for all correlators. In principle, our arguments can be extended
to match correlators of twisted HBOs and CBOs in arbitrary abelian mirror pairs using
the general mirror map between chiral ring generators presented in [28].

F.1 Mass and FI parameters

Before embarking on this program, we first review how the shift operator prescription
works in the presence of nonzero mass and FI parameters. As explained in section 5.1.2,
real masses modify the vacuum wavefunctions, the gluing measure, and the multiplicative
factors in the monopole shift operators via ¢ — o + m. On the other hand, FI parameters
modify the gluing measure by a factor of e~87C7 for each U(1) factor in the gauge group.
Moreover, in the non-conformal case, correlators take the form of topological correlators
dressed with simple position-dependent factors. The latter are fixed by symmetry, and the
shift operator prescription allows us to compute the topological parts, which we denote
by ()top- In particular, mass (FI) parameters leave the topological nature of CBO (HBO)
correlators unchanged while making HBO (CBO) correlators non-topological. For an n-
point function of twisted Higgs/Coulomb branch operators, each global (flavor /topological)
U(1) symmetry contributes a factor of e=¢ 2199 where ¢; is the charge of the i*" operator
in the correlation function and ¢ is the associated mass/FI parameter.”

"2Strictly speaking, our conventions require an extra factor in the map between mass and FI parameters:
m <> —4n(.
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Let us demonstrate how these rules work in practice in the case of the SQED y /abelian
necklace quiver duality by matching the three-point function of a monopole X9, anti-
monopole Y9, and (composite) product of twisted scalars (Z?),. This correlator will be a
useful base case in the arguments to follow.

Masses in SQED y /FI parameters in N-node quiver. FI parameters in the abelian
necklace quiver correspond to real masses for the Cartan of the SU(N) flavor symmetry in
SQED . For massive SQED y, we use

I'(1/2 —i(oc+my))’ Vor '

with the mass parameters mj satisfying Z?]:l my = 0. Using a slightly more natural

H I'(1/2+i(c +myg)) UB—5BOH I'(1/2 —i(oc +my)) (F.1)

convention for the Coulomb branch chiral ring generators than in the main text, namely

1 L 1 . i

the corresponding North shift operators (appropriately modified by m;j) are

N .
B-1 i i B
M = [H ( (o + m))] e300 My = 0408 oy — o+ D (R3)

2 2
I=1

Using (F.2) and (F.3), we compute that for ¢1 > p2 > @3,

(F.4)

P q q _ [ do(io) [17_(i(o +my) —£+1/2)
((ZP)x (1) XU (p2)V(p3)) _/<47r)qN+p11i11[ = 12cosh( (0 +myg))

in SQEDy. On the necklace quiver side, we write the N FI parameters (of which N — 1
are independent) as (; = w;j_1 — w; subject to the condition Z]‘ w;j = 0. We now define

p
X=Q1Qn, Y=Q1Qn, (2, HQJQ]"‘ZUJ] (F.5)

assuming for simplicity that p < N. The definition of (Zp)* is the natural one from the
point of view of the D-term relations (the parameters w; resolve the geometry of the Higgs
branch). The integration measure (6.19) is modified as

N 87r W0 41

H 2 cosh(moj ji1)’

(F.6)

while the 1D propagator (6.12) (which is sensitive to mass parameters) remains unchanged.
Counting Wick contractions carefully yields the basic three-point function

N
((ZP)x(p1) XU (p2) Y (3)) = (q!)N/du(Uj) [I Gojyia(020)"
Jj=p+1
X [[(Goposs (0)Go, o1 (928) + 4Gy iy (921)Gory o (913)) Gy o (923)T . (FLT)

a=1
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Assuming that p; > @2 > 3, we may use (6.17), the identity

m

(sgn @12 + tanh(mwo))™ _ 1 H ((2j 1) sgn 1 — 1d> I (F.8)

2 cosh(mo) m! wdo ) | 2cosh(rwo)’

J=1

1 27r1

integration by parts, and Foosh(ro) = = [dr 2c05h(7r7') to simplify (F.7) to

(it —drwr) — j +1/2)

\p N
(ZP)a(1) X (02) Y (3)) = / (Z:—T)(Z;\-f)ﬁ—p H [ = 1200sh(7r(7' — 4rwr))
I=1

This matches the SQED y result if we identify m; <> —47wwy.

FI parameters in SQEDy/masses in N-node quiver. Mass parameters in the
abelian necklace quiver correspond to FI parameters in SQEDy. Consider adding a real
mass associated to the U(1) flavor symmetry of the necklace quiver under which Q;, Q; carry
charge +1/N. In practice, this means replacing all instances of o j41 by 0j 41 +m/N in
the 1D theory computations. Using the identity

N 1 N N ' N _
/ ]:EdO'j 1) N,Zlgj HFj(O‘jJJrl +m/N) = /dT€2mmTHFj(T), (F.lO)
j= Jj= j=

j=1
which is the appropriate modification of (6.17), we obtain (with ¢1 > @2 > ¢3)
dr 6271'2'7717' q

((ZP)(1) XU (02) Y (03) Y top = / @ Cosh = H (it —j+1/2)N.  (F.11)
7=1

This matches the expression

—i pdo_627rzmo'

(2o (2) V) = [ S (00000 ) MR ME P W0 B Lo
(F.12)
on the SQED y side.

F.2 Proof: basic mirror duality

With this warmup complete, we now match all twisted correlators in SQED; with FI
parameter ¢ and a free hyper of mass m = —4xw(. In the free hyper theory, correlation
functions of X = Q, Y = Q, Z = QQ are computed using the measure

do d(o)

du(o) = 5———— F.13
#) 2 cosh(mm)’ (F.13)
and Wick contractions are performed using the o-independent Green’s function
~ sgn +tanh(mm) _,,
Glgra) = (Qp1)Olpa)) = — Bprz t 1ANIT) iy (F.14)

81

Correlators are no longer topological due to the factor of e="*%12.
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In matching all correlators, let us focus only on the topological parts (as the position-
dependent parts match trivially). We wish to show that

!
<S>t0p7 SQED; — <S>t0p7 free hyper (F15)
where § is some operator string in X', ), Z and operators appearing in correlation functions
are understood to be in descending order by insertion point (i.e., 1 > --- > ©,).” Shift
operators in SQED; with FI parameter ¢ give

(OF! - O op = / do ¢ 1u(a,0)Wo (0, 0)[(On)ly - (O Vol Bllp—0  (F.16)

where O; € {X, Y, Z} and

B-1 e~ 30:—08 e30-108 i iB
N ( 2 “’) Camiz N T Camier AN T g (U+ 2 > (F.17)

Here, the notation ZP is understood to mean p adjacent insertions of Z at separated points,
which is equivalent to a single insertion of the composite operator (ZP),. On the other
hand, the 1D theory for the free hyper with mass m gives

6—27”7'0

PL .. MPn — 2mimT Pl ... ()Pn
(O - OPm ) iop, /dTe /da S ooshiima) COSh(ﬂ'O’)w(Ol Obn) (F.18)

where w(s) denotes the sum of all full Wick contractions of the operator string s and Wick
contractions are performed using the “topological” propagators

+1 + tanh(mo) tanh (7o)
-, Gop=—77—.
8m 8m

We proceed by induction. In the previous subsection, we established the base case

Gy = (F.19)

P Va9 _ [ 2P vaya
D, = op, free er- .
(ZPXIYT)0p, SQED, = (ZPXIYT)iop, ¢ hyp (F.20)

Now fix some S and suppose we have established that (S)top, SQED, = (S)top, free hyper;
as well as a similar statement for all operator strings containing fewer operators than S.
Consider swapping two adjacent operators in S to form a new operator string S’. Starting
from the basic string ZPX9)4, one can obtain any other string by performing three types
of swaps (below, let Sy, r denote substrings of S):

1. Let S= S, XYSg, S’ = SLYXSR, and Sy = S Sk.
2. Let S=8.ZXSg, 8’ = S, XZSR, and Sy = S, X Sk.

3. Let S = SLZJ/SR, S = SLyZSR, and 80 = SLySR.

"In SQEDy, when restricting our attention to the operators X and ), it suffices to consider correlators
of the form (X*1YP1x2)P2... x% Ybn) for a;,b; € Zso for two reasons. First, if X7 (p;)XPi+1(p;41)
appears somewhere in the operator string, then we may replace it by XPi*Pi+1 and similarly for ): this is
obvious from composition of shift operators, and also from the mirror 1D theory because Wick contractions
depend only on the ordering between X and ). Second, correlators on the circle simply change by signs
under cyclic permutations of the insertions: for example, (X™Y™ "x™) = (—1)V™(x™TmY™T"): this

property is clear from moving shift operators past the branch point but harder to see from the 1D theory.
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In all three cases, the Wick contractions of the strings so defined are related in a simple way,
implying relations between the corresponding correlators (F.18) in the free hyper theory:

L w(8') = w(8)+(G- =G )w(So) =w(S)+3zw(So) == (S )iop = (S)iop+ 5z (So)top-
2. w(8) =w(S)+(G1—G_)w(Sy) =w(S)— Ew(Sp) = () t0p = (S)top — 1= (S0 top-
3. Same as in case (1).

On the other hand, the shift operators (F.17) for SQED; satisfy the commutation

relations 1 . .
(XN, YN ] - (XN, ZN] 1N YN, ZN] 47r37N, (F.21)

implying that the correlators (F.16) in SQED; satisfy identical relations in the three cases:
L (8"top = (S)rop + 5 (S0) op-
2. (8 top = (S)top — 15 (S0} top-
3. Same as in case (1).

By the induction hypothesis, (S)top and (Sp)top both match in SQED; and the free hyper,
which immediately implies that (S)top, sQED, = (S')top, free hyper, as desired.

F.3 Proof: HBOs in N-node quiver and CBOs in SQED N

All correlation functions of twisted CBOs in SQEDy can be written very explicitly with
the aid of the shift operators

B-1 N ¢=500-05 ¢200+05 i iB
Xn=—-—1 _— = ZNy=— — F.22
N ( 'LO’) <—47T)N/2, yN (—47T)N/27 N An <U+ 2 ) ) ( )

which are the appropriate generalizations of (F.17). Namely, consider a correlator with n
operators, drawn from X,), Z, having positive integer powers pi,...,p, and labeled by
signs €1,...,€, € {0,£1} indicating whether the operator is X (¢ = +1), Y (e = —1), or
Z (e = 0). We assume that the charges sum to zero, so that the correlator is nontrivial:
Yo, €p; = 0. For arbitrary f(o, B), we have that

_1)pN P N
Xﬁf(a,B):é;;mé_l—{(E—;—lj—l—w) f(oc —ip/2,B —p) (F.23)

while Y f (o, B) = (—4n)PN/2 f(c 4+ ip/2, B + p). Hence we obtain, using (F.22),

(OPr...OPn) = (F.24)

] (1+4€5)

(_]_)Nijje?/Q do
(—47T)szpj6?/2+szj(16?)/(2cosh(7ra))N

n j pi(1=€) p; ) j
X 1 [(Zekpk—i0> H <€—2+Z'U—Z€kpk>

Nej;/2

J
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where the insertion points of the OF satisfy ¢1 > -+ > ¢,. Note that Zj pje?/Q is
always an integer, by the (mod 2)-version of the zero-charge condition Y, €p; = 0.
The formula (F.24) encodes all possible correlators of twisted CBOs in SQED . One can
check that (F.24) includes (F.4) (without mass parameters) as a special case. The shift
operator approach to twisted CBOs in SQEDy is significantly simpler than the mirror
approach to twisted HBOs in the necklace quiver using the Higgs branch topological theory:
reproducing (F.24) in full generality using the latter approach is so laborious as to be
intractable. Nonetheless, we now present a proof that all twisted HBO/CBO correlators
match across this duality.”

Let us use the result of the previous subsection to match all shift operator results for
SQEDy to the mirror correlators computed using the 1D theory in the necklace quiver.
Our argument relies on the procedure of building mirror pairs from (copies of) the basic
mirror duality and gauging subsets of mass/FI parameters. The basic ingredients are as
follows. The 1D theories for the free hyper with mass parameter m associated to the U(1)
flavor symmetry under which Q, Q have charge 1 and for SQED; with FI parameter ¢ are

Zieom) = [ 9Q9Q eI a0 e, (.25)

ZSQED1 (C) — /dO’ 6—87r2i§cr/DQ DQ e47de(PQ~(agp+O')Q‘ (F26)

The basic examples of gauging/ungauging are

/dm Ztvee(Mm) = ZsqED, /dC Z3qED, (—C/4AT) = Ztree, (F.27)

where Z = Z(0) (compare these operations to the S-transformation in [92]).
In our case, the 1D theory for SQEDy is obtained by taking N copies of Zgee and
gauging the diagonal U(1) subgroup:

N ~
Zsqepy = / do / [10Q; DQ; | e/ de2im et / dC Ziee Q). (F.28)
j=1

The 1D theory for the necklace quiver is obtained by writing

N N N
1 ~
ZyyNju() = / [Idos|é N > 0j | ] Zeel0jiji1) = / A1 Zgseo(T),  (F.29)
j=1 j=1 j=1

where we have used (6.17). Any correlator of the form (O} (¢1) - - - OF" (¢r)) in the necklace
quiver where O; € {X,V} (¥ =Q1---Qn and Y = Q- QN) can be written as

N
(07! (1) -+~ OR (o)) = /dr (/dCe‘%”CZfree(C)[o’{l(sm)--'02"(%)0 , (F.30)

Zgree Q) [0} (1) - - 0} (0m)] = /@@ 9Q 4] 4 QOAOQP (o) - b (p), (F.31)

" Mirror symmetry seems to entail a principle of “conservation of effort”: for twisted CBO correlators in
the necklace quiver, using the mirror 1D theory is simpler in practice than using shift operators (unlike for
twisted CBO correlators in SQED ).
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with o; € {Q, Q} There remains a correspondence between operator insertions in
ZU(l)N JU(1) and operator insertions in Zgee(¢) when the operators include Z: letting O; €
{X,Y, Z} be specified by signs €;, we have in the necklace quiver that (O} (¢1) - - OF" (¢n))
is given by

N N
1
Zuayn jumy 07 (1) -+ - OF™ (n) —/ Hd% 0 NZUJ‘ 1 Zsee(os540) M1,
j=1 j=1
= H (i) TR 2Q ()~ (1=e0)/2)Pe QQ ooy ) PPN k) (L) (F.32)

where the Heaviside step function € is defined so that #(0) = 1; here, we have assumed
that if €; = 0, then the corresponding p; < N. By (6.17), this can be written as

N
Zuyw jum 07 (e1) - - O ()] = /dT H/dffj € ™% Zivee(0j) Mjliop | (F.33)

where
Ztree <0j> [Hj] =e 7 21 PreR P Zfree(Uj) [Hj]top (F'34)

and we have shifted the 7 contour to replace Zgee(0;)[ILj] by Zgree(0j)[I;]top in (F.33).
Using the shift operator formula

. ijje§/2 27iCT
(O O — (=1) /dT ¢ (F.35)
1 n /top (747T)ijj€?/2+2jpj(1_ei) 2 cosh(7T) ’
n j pi(1=€;)(1+¢5) p; ) j ej(1+€;)/2
le;[l [(g&m%—?r) g<£—2+i7—;ekpk> ]

for SQED; with FI parameter —(/4m (the N = 1 case of (F.24), with an extra insertion

of 62”4") and the result of the previous subsection, we have in the free hyper theory that

(_1)kakei/2 / e2mio;T;

(—dmr) 2k Prei/ 243 O(pre—i) (1) g 2 cosh(r;)

0(pk—5)(1—€x)(1+ex) p, ) k e (14ek)/2
(Z €1Pe — iTj> H (m -3 + a7y — Z egpg> ] .

/=1 m=1 /=1

Zfree(aj)[nj]top = (F36)

I

Substituting (F.36) into (F.33) and simplifying shows that

Zyayw jum 07 (@1) - - O (pn)] = (O (1) - - - O () (F.37)

where the right-hand side is given precisely by the shift operator formula (F.24) for SQED .
This completes our proof of matching for the SQED y /necklace quiver duality.

- 100 —



F.4 BF theories: an appetizer

In some cases, it is possible to test mirror symmetry at the level of 1D topological sectors by
working purely on the Higgs branch. This observation dovetails with another application
of our formalism, namely to BF' theories.

So far, the 1D formalism for HBOs has been applied to theories containing only ordi-
nary or only twisted A/ = 4 multiplets. There are some situations in which it can describe
theories containing both ordinary and twisted multiplets. Namely, one can couple ordi-
nary and twisted abelian vector multiplets through a BF (mixed Chern-Simons) term that
preserves N' = 4 supersymmetry [15]. In addition, one can couple the vector multiplet
to hypermultiplets and the twisted vector multiplet to twisted hypermultiplets. Call such
abelian /' = 4 CSM theories, which have only mixed ordinary-twisted BF terms, “of
BF type”.

As an example, consider the N' = 4 CSM theories of Jafferis-Yin [93]. These are
special cases of their model II(Ny);, which is defined (in N = 3 notation) as a U(1); x
U(1)_, theory with N —1 hypermultiplets (X, X;) of charge ((+1,+1), (=1, —1)) and one
hypermultiplet (Y,Y) of charge ((+1,-1),(—1,4+1)) where X;,X;,Y,Y are N = 2 chiral
multiplets. The II(Ny); theory is of BF type: in N' = 4 language, it consists of one
vector coupled to Ny — 1 hypers (X, )N(i), one twisted vector coupled to one twisted hyper
(Y,Y), and (after a simple change of variables) a mixed BF term at level k. The classical
moduli space has two Higgs branches Mx and My, of complex dimension 2(N; — 1)
and 2, respectively. These are parametrized by X;, X; and Y,Y (modulo constant gauge
transformations), respectively. An important feature of N/ = 4 CSM theories is that
their Higgs branches can receive quantum corrections [94]. Assuming that k is even, the
quantum-corrected Higgs branches are

Mx = CQNf///U(l)a My = Cz/zk/2+Nf—1 (F.38)
where, in the first case, the action of U(1) on the coordinates (X;, X;, X', X’) of C2V7 is
Xi — €2i0/kXi, Xz — 6_2i6/k)2i, X' — eieX/, X’ — e_ieX’ (F.39)

(we have introduced extra variables X’ . X', whose charges we have swapped relative to
those of [93]). Concretely, Mx can be described by the equations

Ng—1 Ny—1
- k - [

§ (X2 = | X %) + 5(|X’|2 — X3 =0, § X, X, + 5X’X’ =0 (F.40)

i=1 i=1

modulo the action (F.39). The theory II(N¢)i=2 is argued to describe the same IR fixed
point as N = 4 SQEDy,. Indeed, SQED y, has Coulomb branch 02/ZNJ, and Higgs branch
equal to the hyperkahler quotient (F.40) with k& = 2.

Let us write down, and qualitatively discuss, the 1D theory for the Jafferis-Yin theory
II(N¢)k. Let 0 and 7 denote the scalar components of the ordinary and twisted abelian
vector multiplets, respectively; let @);, Q; denote the twisted scalars of the N ¢ — 1 hyper-
multiplets (X;, X;), and let R, R denote the twisted scalars of the twisted hypermultiplet
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(Y,Y) (hopefully, confusion will not arise between the two senses of “twisted”). Motivated
by the identification with SQED v, let us interpret SU(2), as SU(2)p (acting on the Higgs
branch) and SU(2)g as SU(2)¢ (acting on the would-be Coulomb branch). The N = 4
Yang-Mills term is both Qg - and Qg—exact, so we may use it to localize with respect to
eithe:r supercharge. If we localize with respect to Qg , then we obtain a 1D theory for
@i, Q; with a determinant contribution from the twisted part:

—Zk'7r0'7'
Z= / dodr ———— / 9Q; 9Q; ' [ 1 Qi(@pt0)Q:. (F.41)

2 cosh(m)

If we localize with respect to QB , then we obtain a 1D theory for R, R with a determinant
contribution from the untwisted part:

7@]671"0‘7’
47 [ dp R(, +T)R
Z= /dadT 2 cosh(ma)) Vs~ 1/@R@Re : (F.42)

These two representations are equivalent, and they can be summarized by writing a 1D
theory for both ordinary and twisted fields as follows:

= / do dr e~ T / 9Q; 9Q; DR DR ™ 10 (Qi(0+0)Qit RO +7)R) (F.43)

Integrating out R, R in (F.43) reproduces (F.41), and integrating out Q;, Q; in (F.43) repro-
duces (F.42). Operators in the cohomology of Qg are Q;, Q; and monopoles for the twisted
U(1). Operators in the cohomology of Qg are R, R and monopoles for the untwisted U(1).
The Coulomb branch chiral ring of this theory is simple to describe (again, by “Coulomb
branch,” we mean the Higgs branch My that would be interpreted as the Coulomb branch
of SQEDy, when k = 2). Let M, M denote the basic monopole/antimonopole of the
untwisted U(1). Due to the mixed Chern-Simons term, M and M are charged under
the twisted U(1) (the hypermultiplets do not contribute to the monopole charges). Given
the explicit description of My as the hyperkihler cone C2/Z,, /2+N;—1, We expect that the
Coulomb branch chiral ring is generated by three gauge-invariant twisted CBOs X,Y, Z,
modulo the relation XY = Z*/2+Ns=1 The natural candidates for these operators are

X ~R2M, Y ~ RF*M, Z~ RR. (F.44)

In particular, when k = 2, we may identify the dressed monopoles RM, RM of the CSM
theory with the (gauge-neutral) bare monopoles of SQED Ny, which satisfy the chiral ring
relation (RM)(RM) = ZNs. The Higgs branch chiral ring (i.e., that of Mx) is more
complicated. If, in addition to Q;, Q;, one introduces twisted scalars @', Q' for the (X', X)
n (F.39) and (F.40), then one can construct the generators from the gauge-invariant com-
binations

ArQ, alq. (F.45)
Let us simply observe, using the basic Fourier transform identity for (2cosh(wo))~!, that
the Higgs branch representation of the 1D theory (F.41) can be written as follows:

ar [de QI (0p+0)Q:
/2COSh (kro/2) /@Ql IWie (F.46)

— /da/@Qz @Q@ @Q/ @QI 647rfd50 Q18¢Q1+QIB¢Q/+U(Q1Q1+%Q/Q/)) (F47)
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Hence o can be interpreted as a Lagrange multiplier enforcing the constraint

Ny—1

> QiQi+ gQ'Q' =0, (F.48)
i=1

which corresponds to the second of the defining conditions (F.40) for the Higgs branch.
When k = 2, we obtain the usual D-term relation in SQED y,. This is a consistency check
of the CSM description of SQEDy, from the point of view of the 1D theory.”™

G Supergravity background

In this section, we briefly show how to obtain our non-conformal rigid N' = 4 supersymme-
try algebra on S2, namely su(2[1); @ su(2[1),, from a supergravity background (analogous
constructions are known in the 2D N = (2,2) context, which is similar to 3D A/ = 4 in
terms of how mirror symmetry acts on R-symmetries; see, e.g., [95]).

We use the off-shell formulation of 3D A = 4 conformal supergravity presented in [96],
which dimensionally reduces off-shell 4D A = 2 SUGRA to off-shell 3D N' = 4 SUGRA.
In the process, the 4D R-symmetry group (SU(2) x U(1))/Z3 is enhanced to the 3D R-
symmetry group (SU(2) x SU(2))/Z2 = SO(4). The 4D Weyl multiplet decomposes into
a 3D Weyl multiplet and a 3D Kaluza-Klein vector multiplet. In 4D and 3D, matter
multiplets are defined in a superconformal background of 4D or 3D Weyl multiplet fields,
according to the superconformal method for constructing matter-coupled Poincaré super-
gravity. There is a direct correspondence between 4D and 3D matter multiplets, namely
vector multiplets, tensor multiplets, and hypermultiplets (i.e., these multiplets are irre-
ducible under reduction).

A note on conventions: [96] uses indices i, j (our a,b) for the fundamental of SU(2) g
and p,q (our a, b) for the fundamental of SU(2)c. The spinor parameters of Q- and S-
supersymmetry are €? and 57, which have Weyl weights —1/2 and 1/2, respectively (the
former should not be confused with the Levi-Civita symbol, for which €'2 = 1). Below,
spinor indices are suppressed.

The 3D background multiplets are as follows:

e The 3D Weyl multiplet consists of fields e, %, 1, ', b, V' i, AuPq, C, X*P, D (vielbein, grav-
itino, dilatation gauge field, SU(2) g R-symmetry gauge field, SU(2)¢ R-symmetry gauge
field, and auxiliary fields) with Weyl weights —1,—-1/2,0,0,0, 1,3/2, 2, respectively. Its
transformation rules are given by (3.1) of [96]. The BPS conditions require that

69, = 2D, — y,m™ = 0, (G.1)

. . . 1 ) 1 ) . )
OXT = 2P0 + D + SR(A)a” (v e = SR(V)ap' 7" +2Cn" = 0. (G:2)

e The 3D Kaluza-Klein (compensator) vector multiplet consists of a scalar triplet (L°)?,
(antihermitian), a spinor ¥, a gauge field By, and an auxiliary scalar triplet (Y9,

"Note that in going from (F.41) to (F.47), we are really using the equivalence of SQED; to a free hyper.
Thus the new fields Q" and Q’ correspond to the monopole operators for 7 in the theory (F.41).
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(Hermitian), with Weyl weights 1,0,3/2,2, respectively. Its transformation rules are
given by (2.40) and (2.41) of [96]. The BPS conditions require that

S = DL€ = SP(B)an™e? + C(LOP4et + (YO 7 o+ (L = 0. (G:3)

In the above, the derivative D), is covariant with respect to Lorentz, dilatation, and R-

symmetry transformations, while the derivative D, is covariant with respect to all su-

perconformal symmetries and includes fermionic terms. The 3D matter multiplets are
as follows:

e The 3D vector multiplet, like the KK vector multiplet, consists of fields L”,, W,,, QP Yy’ j
with Weyl weights 1,0, 3/2,2, respectively. Its transformation rules are given by (4.6)
of [96]. Setting the background fermions to zero, these are:

Wy = €727, (G.4)
SQP = PLP 'l — §F(W)aw“be’p +Y'eP + CLP e + LP g, (G.5)
(5qu = QEtiip - 5pq€z'rQir7 (G6)
SYT; = 28, PO — 208, — 7,0 — (trace). (G7)

The transformation rules for the 3D tensor (twisted vector) multiplet are given by (4.17)
of [96]; these are similar.

e The 3D hypermultiplet consists of fields (A%);, (“ with Weyl weights 1/2, 1, respectively.
Its transformation rules are given by (4.22) of [96]:

5(A%); = 2, ()P, (G.8)
(P = P(A™)ie™ — LC(A™)e? + L (A, (G.9)

Here, a can be thought of as a flavor index (superconformal invariance requires that the
hypermultiplet target space be a hyperkéhler cone, so that « takes an even number of
values). The transformation rules for the 3D twisted hypermultiplet, which cannot be
obtained by dimensional reduction, are given by (4.23) of [96]; these are similar.

The desired BPS configuration of the background fields is as follows. We set
by Vi'js APq, C,D =0, B, =0 (G.10)

in the 3D Weyl and KK vector multiplets, thus reducing the BPS conditions (G.1), (G.2),
(G.3) to

0=2V,e? —~,n", (G.11)
0= PLOPge'? + (YO € + (LO)P g (G.12)

Keeping in mind the Weyl weights and hermiticity properties of L? and Y, if we take

a, _ i 1
€aa = Caa>  MNaa = 25;('17 (LO) b — ih b (Yo)ab - ;hab (G.13)
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where h and h are constant su(2)y ¢ matrices, then the conditions (G.11), (G.12) become

1
V€aq = §'Yu77aa <~ Vugad = ’Vuféma (G.14)
b . ad a . i 7
(L)Pan™ = —(YO) e = €l = ghabsz}hbm (G.15)

which are precisely the Killing spinor equations (2.10) and (2.11).

We now substitute the background values into the transformation rules for the mat-
ter multiplets. In doing so, we recover only the transformations for abelian vector mul-
tiplets and ungauged hypermultiplets rather than the full supersymmetry transforma-
tions (A.9), (A.10), (A.11), (A.12) for the vector multiplet and (A.13), (A.14) for the
hypermultiplet. This is because [96] considers only abelian 3D vector multiplets and
3D hypermultiplets that are not coupled to vector multiplets (although one can gauge-
covariantize the SUSY transformations of the latter by hand). From (G.10), we have for
the vector multiplet that

W, = €27, Qip, (G.16)
i 4
(SQZ'p = —§F(W)abe“bc’yceip — Yijejp + ’Y‘“Eiqaqup - qumq, (G17)
6Lpg = —(€pQg + €4 Qip), (G.18)
_ _ 1 _ _
0Yij = Ep V" + GV’ — 5 (pQ” + 0jpi?). (G.19)
If we now assume that the Dirac conjugates satisfy € = %e = %5 and 7 = %77 = ¢
and identify
(W, Qs Lis Yab) = (A, Mgy =145, Dab), (G.20)
then we reproduce the abelian vector multiplet transformations
Ui
deAu = 5§ Py g (G.21)
i v, c . ¢ I e
65)\16 = —§€u p7p£abFHy — D, fd') — ’L"}/Mfa 8”@0.3 + 21(1)1'] ‘f(/u':v (G.22)
1 (& C
55(1)(16 = 5(5 d)‘ci) + & B)‘Ca)’ (G.23)
0¢Dgp = —§(§ac’Y“VW\be + &Y'V dae) + 5(526)%@ + & Nae). (G.24)
From (G.10), we have for the hypermultiplet that
5(AY)® = —2e7(¢?);. (G.25)
(6% a\a 1 a\a
0(¢M)a = —P(A%) €as = 5(A%) Naas (G.26)
so that if we take @ = 1,2 and identify
((Al)i7 (Cl)p) X (Qtla iwd)v ((A2)i7 (CQ)P) X (dav iqﬁd)v (G'27)
then we reproduce the ungauged hypermultiplet transformations
0eq = €y, Fetha = i7"€aalug” + i0aq", (G.28)
0eq" = €y, Setha = i7" €aaBud” + iG" €L (G.29)
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