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1 Introduction

Since its introduction [1, 2], the SYK model has been generalized in many ways. It has

been endowed with extra global symmetry [3, 4], supersymmetry [5–7], it has been studied

as a tensor model with non-random coupling [8, 9], also with added supersymmetry [10]. In

this paper, we study an N = 2 supersymmetric version of the model, and then generalize

further to a two-dimensional theory.

The study of the SYK models with extra symmetries largely follows the scheme devel-

oped in [11]. The two-point function of the model is found from Schwinger-Dyson equations,

following immediately from the Lagrangian. The four-point function can be found directly

from summing ladder diagrams, but this is rather tricky; instead, the four-point function is

expanded in the basis of eigenfunctions of the Casimir of the corresponding superconformal

group. The four-point function contains information about operator content of the theory;

also, by means of the out-of-time ordered four-point functions we can find the chaos expo-

nent, which is one of the main attractive features of this model. This is the scheme we are

following in this paper as well.

Supersymmetric generalizations [5] of the model are interesting for several reasons.

First, they allow us to study two-dimensional versions of the SYK model. In two dimen-

sions, fermions have scaling dimension 1/2, so a relevant interaction cannot be constructed

from fermions only. In contrast, two-dimensional scalars have scaling dimension zero, but

a bosonic random potential can have negative directions. To cure that, one can consider a

supersymmetric two-dimensional model of scalar superfields with a random superpotential.

In an N = 2 supersymmetric SYK model, we consider chiral superfields with a random

holomorphic superpotential.

A two-dimensional N = 2 model with a (quasi)homogeneous holomorphic superpo-

tential is generally assumed to flow to a conformal fixed point [12]. SYK models with

less supersymmetry are conformal in the infrared limit at large N , but one might ex-

pect that 1/N corrections induce a “slow” RG flow and drive the system away from the

conformal point. Such corrections are hard to study and little is known about them to

date. In contrast, we expect the N = 2 model to flow to a true conformal point, which

we can conveniently study in the large N limit with the methods designed for the usual

non-supersymmetric SYK.

Although we don’t discuss this question in the paper, we notice that constructing a

gravity dual of SYK is a challenging task. The similarities between SYK and AdS2 gravity

has already been noticed in the early papers on the subject [11, 13–16], however the full

understanding of a gravity dual is still missing, except for some particular cases as in [17].

We hope that adding extra supersymmetry might shed some light on this question as well.

The N = 2 SYK model has already been studied in [5] and [7]. In this paper, we

develop the approach of [5] and work in superspace with chiral and anti-chiral fields. The

N = 2 supersymmetry allows complex superfields, and therefore we have to consider four-

point functions with different parity under exchange of incoming particles. In this respect,

it is very similar to the SYK model with complex fermions we have studied in [18]. Also,

the SU(1, 1|1) superconformal group is large enough to restrict the odd coordinates in the
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chiral-anti-chiral four-point function to zero. We see that the eigenfunctions of the Casimir

turn out to be purely bosonic, and in fact linear combinations of the N = 0 eigenfunctions.

This paper is a logical continuation of [18] and relies heavily on the machinery de-

veloped in [6]. We also compare some of our results against [5] and [7] and find them in

agreement.

The structure of this paper is the following. In section 2 we introduce N = 2 super-

space and superfields. In section 3 we write the Lagrangian of the model and discuss the

conformal two-point function found from the Schwinger-Dyson equation. In section 4 we

discuss the two-particle superconformal Casimir and write its eigenfunctions in the shadow

representation. Then we find the norm of the eigenfunctions and the eigenvalues of the

SYK kernel acting on them. It allows us to write the full four-point function as a series. In

section 5 we find the retarded kernel and compute the Lyapunov exponent corresponding to

the superconformal charge multiplet which turns out to be maximal. Finally, in section 6

we generalize some of our results to two dimensions.

Acknowledgments

The author is grateful to Edward Witten for suggesting the problem and discussions on

the subject, and also to Douglas Stanford for useful conversations. The author appreciates

the hospitality of the Simons Center for Geometry and Physics where a part of this work

has been done.

2 N = 2 superspace and superfields

We study the N = 2 model at large N in the strong coupling limit. The model flows to a

theory which possesses the full SU(1, 1|1) superconformal symmetry. To study the corre-

lators, it is convenient to work in the one-dimensional N = 2 superspace (with Euclidean

signature), parameterized by:
(

τ, θ, θ̄
)

. (2.1)

In what follows, we will often substitute this set of coordinates with a single number

representing the index of the supercoordinate, for example:

Φ (1) ≡ Φ
(

τ1, θ1, θ̄1
)

. (2.2)

The SU(1, 1|1) group has four bosonic and four fermionic coordinates. It is generated by

super-translations:

τ → τ + ǫ+ θη̄ + θ̄η, θ → θ + η, θ̄ → θ̄ + η̄, (2.3)

inversions:

τ → −1

τ
, θ → θ

τ
, θ̄ → θ̄

τ
, (2.4)

and the R-symmetry transformation:

θ → eiαθ, θ̄ → e−iαθ̄. (2.5)

– 2 –
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In appendix A, we write down the generators of the su(1, 1|1) superconformal group as

differential operators in the superspace.

The correlators in a CFT have to be conformally covariant. In particular, they have to

be invariant under translations, which in non-supersymmetric theory makes them depend

only on differences of coordinates:

τ12 = τ1 − τ2. (2.6)

In the supersymmetric case, this condition gets more restrictive and correlation func-

tions are invariant under super-translations, together with R-symmetry. We can write

two combinations of super-coordinates with conformal weight −1 which satisfy these

restrictions:

∆12 ≡ τ1 − τ2 − θ1θ̄2 − θ̄1θ2, λ12 ≡ (θ1 − θ2)
(

θ̄1 − θ̄2
)

. (2.7)

These two combinations have different symmetry under 1 ↔ 2 permutation:

∆12 = −∆21, λ12 = λ21. (2.8)

The correlators should be functions of ∆, λ. In fact, we can restrict them even further

using chirality constraint. The complex fermions and bosons in the model can be arranged

into chiral superfields Ψ, Ψ̄ satisfying:

D̄Ψ = 0, DΨ̄ = 0, (2.9)

where D, D̄ are super-derivatives:

D ≡ ∂

∂θ
+ θ̄

∂

∂τ
, D̄ ≡ ∂

∂θ̄
+ θ

∂

∂τ
. (2.10)

Correlators of chiral (anti-chiral) fields are also chiral (or anti-chiral):

D̄1〈Ψ(1) . . . 〉 = 0. (2.11)

Therefore they should depend on a chiral (anti-chiral) combination of the super-translation

invariants ∆, λ. Let us find a linear combination annihilated by D:

〈12〉 = ∆12 − λ12 = τ1 − τ2 − 2θ̄1θ2 − θ1θ̄1 − θ2θ̄2. (2.12)

This choice is unique, and the nice thing about this invariant combination is that it is both

chiral in the first coordinate and anti-chiral in the second one:

D1〈12〉 = D̄2〈12〉 = 0. (2.13)

It makes writing the correlators particularly easy. For example, the two-point function can

depend only on the 〈12〉 combination:

G (1|2) ≡ G
(

τ1, θ1, θ̄1|τ2, θ2, θ̄2
)

≡ 〈Ψ̄
(

τ1, θ1, θ̄1
)

Ψ
(

τ2, θ2, θ̄2
)

〉 = G (〈12〉) . (2.14)
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Likewise, the three-point function combining a chiral and an antichiral fields with some

superfield V is a function of three invariants:

〈Ψ̄ (1)Ψ (2)V (0)〉 = f (〈12〉, 〈10〉, 〈02〉) . (2.15)

To make this three-point function non-trivial, the R-charge of the V operator has to vanish.

It means in particular that V cannot be a chiral or an anti-chiral superfield.

In what follows we write all the correlation functions in terms of the 〈ij〉 invariants.

This makes the correlators manifestly supersymmetric. Using the superconformal group

sometimes helps us fix most of the odd variables, so that the results can written as functions

of purely bosonic variables; however, the odd variables are generally easy to reinstall back.

This can be used to find the correlation functions of the component fields, although we are

not following this approach here.

3 Two-point function

We are studying correlators of chiral superfields Ψ, Ψ̄, written in the N = 2 superspace.

The Lagrangian of the model consists of a kinetic F -term and a holomorphic superpotential:

L =

∫

dθ̄dτΨ̄iDΨi+i
q̂−1

2

∫

dθdτCi1i2...iq̂Ψi1 . . .Ψiq̂+i
q̂−1

2

∫

dθ̄dτC̄i1i2...iq̂Ψ̄i1 . . . Ψ̄iq̂ , (3.1)

with the random Gaussian coupling:

〈Ci1...iq̂ C̄i1...iq̂〉 = (q̂ − 1)!
J

N q̂−1
, (3.2)

q̂ being an arbitrary odd integer.

Ψ is a chiral superfield annihilated by D̄, so in components it reads as:

Ψ = ψ
(

τ + θθ̄
)

+ θb. (3.3)

ψ, b are complex fermion and scalar. From the Lagrangian (3.1) we see that the scalar

field is non-dynamical. We can integrate it out and find that the effective Lagrangian has

the schematic form:

Leff =

∫

dτ
(

ψ̄∂τψ + CC̄ψ̄q/2ψq/2
)

, (3.4)

with q = 2q̂ − 2. It is very similar to the Lagrangian of the non-supersymmetric SYK

model for complex fermions (although the coupling CC̄ has different structure), so we can

expect the story to be reminiscent of the non-supersymmetric case.

Now we can find the conformal two-point function of the superfield. Keeping in

mind (2.14), we look for the propagator of the form:

G (1|2) = G (〈12〉) = b
sgn (〈12〉)
|〈12〉|2∆ , (3.5)

where 〈12〉 is the invariant defined in (2.12). The propagator has to satisfy the Schwinger-

Dyson equation. We can read it off the Lagrangian (3.1). Neglecting the DG term, we find

the equation to be (see figure 1):
∫

dτ1dθ1JG (〈01〉)G (〈21〉)q̂−1 =
(

θ̄0 − θ̄2
)

δ (〈02〉) . (3.6)
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Figure 1. Schwinger-Dyson equation for the two-point function. The melonic part contains an

even number of propagators.

The delta-function has to be chiral in the first coordinate, hence it depends only on 〈02〉
(and therefore is anti-chiral in the second coordinate). The value of ∆ follows from dimen-

sional considerations:

2∆q̂ = 1. (3.7)

To find b and check the ansatz (3.5), we integrate over odd variables in the Schwinger-Dyson

equation and then make a one-dimensional Fourier transformation, using the integral:

∫

dτ
1

|τ |2∆ eiωτ =

√

2

π
|ω|−1+2∆Γ (1− 2∆) sinπ∆. (3.8)

Then the b constant is fixed to:

4πJbq̂ = tanπ∆. (3.9)

The four-point function in the model can also be found from an integral equation. To

solve it, we use the fact that the integral kernel commutes with Casimir of the conformal

group, and therefore they have a common basis of eigenfunctions. In the next section, we

find eigenfunctions of the Casimir and expand the four-point function in this basis.

4 Four-point function

We are looking for a four-point function with two chiral and two anti-chiral fermions:

W (1, 2|3, 4) ≡ 〈Ψ̄ (1)Ψ (2) Ψ̄ (3)Ψ (4)〉. (4.1)

After dividing by propagators, this four-point function becomes invariant under the

superconformal group:

W ≡ W

G (〈12〉)G (〈34〉) . (4.2)

It means that W can depend only on the cross-ratio of the coordinates. Unlike the non-

supersymmetric and N = 1 supersymmetric cases, there is only one cross-ratio consistent

with chirality, namely:

χ ≡ 〈12〉〈34〉
〈14〉〈32〉 . (4.3)

There is no nilpotent invariant as in the N = 1 case either.

We can use the superconformal symmetry to fix the coordinates conveniently. There

are four bosonic generators, one of which generates the translation symmetry, and four
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fermionic ones. We can use the fermionic generators to fix four out of eight odd coordinates.

Looking at the structure of the invariant (2.12), we see that if we fix θ = 0 for the chiral

and θ̄ = 0 for the antichiral fields:

θ2 = θ4 = 0, θ̄1 = θ̄3 = 0, (4.4)

the cross-ratio reduces to the conventional bosonic cross-ratio:

χ =
τ12τ34
τ14τ32

. (4.5)

Next we can use the bosonic conformal subgroup to fix three out of four coordinates in the

standard way:

τ1 = χ, τ2 = 0, τ3 = 1, τ4 = ∞. (4.6)

This implies that the conformal four-point function is a purely bosonic function and

does not depend on odd coordinates, unlike the N = 1 four-point function [6]:

W = W (χ) . (4.7)

This also means that the Casimir operator as a differential operator acts only on even

coordinates. We see in what follows that it is closely related to the Casimir of the non-

supersymmetric model.

4.1 Casimir of su(1, 1|1)

The most general four-point function can be expanded in the basis of eigenfunctions of the

two-particle superconformal Casimir. We present our convention for the generators and

the Casimir of the su(1, 1|1) algebra in the appendix A. Conjugating with the two-point

functions, we can write the Casimir in terms of the cross-ratio:

C1+2

(

1

〈12〉2∆
1

〈34〉2∆W (1, 2|3, 4)
)

=
1

〈12〉2∆
1

〈34〉2∆C(χ)W (χ) , (4.8)

where the conformally-invariant Casimir C (χ) is a second-order differential operator:

C (χ) ≡ χ2 (1− χ) ∂2
χ + χ (1− χ) ∂χ. (4.9)

This operator is diagonalized by functions ϕh:

Cϕh (χ) = h2ϕh (χ) , (4.10)

which for χ < 1 can be expressed in terms of a hypergeometric function:

ϕh (χ) ≡ χhB (h, h) 2F1 (h, h; 1 + 2h;χ) , χ < 1. (4.11)

Notice that the equation (4.10) is symmetric under h ↔ −h, so the basis of the Casimir is

spanned by ϕh(χ) and ϕ−h (χ).

The Casimir of the sl(2) algebra is very similar to C(χ):

CN=0 = χ2 (1− χ) ∂2
χ − χ2∂χ = CN=2 − χ∂χ, (4.12)

– 6 –
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and the eigenfunctions of the N = 0 and N = 2 SYK models are closely related too. If we

denote the eigenfunction of the non-supersymmetric model as Fh(χ):

CN=0Fh(χ)=h(h−1)Fh (χ) , Fh (χ)≡B(h,h)χh
2F1 (h,h;2h;χ) for χ< 1, (4.13)

then the eigenfunction of the N = 2 model ϕh is a linear combination:

ϕh (χ) = Fh (χ)− Fh+1 (χ) . (4.14)

For a proof of this relation see appendix C.

Knowing the basis of the Casimir, we can fix the properties of the four-point function

under discrete symmetries (exchange of two fermions) and then find it as a linear combi-

nation of ϕh, ϕ−h. But we find it advantageous to use the shadow formalism to derive an

alternative basis of eigenfunctions, which would already have the desired symmetries by

construction.

4.2 Shadow formalism

Using the shadow prescription, we treat the fields at the points 1 and 2 as living in a

different CFT than the fields at the points 3 and 4. Then the four-point function is just a

product of independent two-point functions:

W = G (〈12〉)G (〈34〉) +O(ε). (4.15)

To find the four-point function, we add a fictitious term to the Lagrangian, which introduces

a small coupling between these two CFTs:

ε

∫

dτ0d
2θ0Vh

(

τ0, θ0, θ̄0
)

V ′
−h

(

τ0, θ0, θ̄0
)

. (4.16)

Here Vh, V
′
−h are fictitious bosonic operators with dimensions adding up to zero, so that

the whole integral is dimensionless.

To the first order in ε, this interaction adds to the four-point function an integral of a

product of two three-point functions:

W = G (〈12〉)G (〈34〉) +
∑

h

ε

∫

dτ0d
2θ0〈Ψ̄ (1)Ψ (2)Vh (0)〉〈Ψ̄ (3)Ψ (4)V ′

−h (0)〉+O
(

ε2
)

.

(4.17)

Now we have to fix the form of chiral-antichiral three-point function. In one dimension,

a three-point function with two complex fermions can be either odd or even under exchange

of those fermions. Generically it is a linear combination:

〈Ψ̄ (1)Ψ (2)Vh (0)〉 = AfA
h (1, 2, 0) + SfS

h (1, 2, 0) , (4.18)

where the form of the three-point functions is fixed by chirality:

fA
h (1, 2, 0) =

sgn (〈12〉)
|〈12〉|2∆−h |〈10〉|h |〈02〉|h

, (4.19)

fS
h (1, 2, 0) =

sgn (〈10〉) sgn (〈20〉)
|〈12〉|2∆−h |〈10〉|h |〈02〉|h

. (4.20)
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Here fS
h , fA

h are respectively symmetric and antisymmetric under the exchange
(

τ1, θ1, θ̄1
)

↔
(

τ2, θ2, θ̄2
)

.

Dividing the four-point function (4.17) over the appropriate propagators to make it

conformally invariant, we find:

F =
∑

h

∫

dτ0d
2θ0

(A+ S sgn τ12 sgn τ10 sgn τ20) (A
′ + S′ sgn τ34 sgn τ30 sgn τ40)

|〈12〉|−h |〈10〉|h |〈02〉|h |〈34〉|h |〈30〉|−h |〈04〉|−h
+O(ε2).

(4.21)

where we denote W = 1 + ǫF . We call the functions in the sum (4.21) Ξh. They are

eigenfunctions of the Casimir:

CΞh = h2Ξh. (4.22)

The shadow representation allows us to find the explicit form of Ξh as an integral. In the

coordinates chosen as in (4.4), (4.6), the eigenfunction reads:

Ξh =

∫

dτ0d
2θ0

(A− S sgnχ sgn τ0 sgn (χ− τ0)) (A
′ − S′ sgn (1− τ0))

|χ|−h
∣

∣τ0 − θ0θ̄0
∣

∣

h ∣
∣χ− τ0 − θ0θ̄0

∣

∣

h ∣
∣1− τ0 − θ0θ̄0

∣

∣

−h
. (4.23)

Now we integrate over Grassmann coordinates and rename y = τ0, to find the four-

point function as an integral over even coordinates:

Ξh=

∫

dy(A−S sgnχsgny sgn(χ−y))
(

A′−S′ sgn(1−y)
)h|χ|h|1−y|h
|y|h|χ−y|h

(

1

y
+

1

χ−y
− 1

1−y

)

.

(4.24)

We break this integral into four parts in a straightforward way:

Ξh = AA′ΞAA
h +AS′ΞAS

h + SA′ΞSA
h + SS′ΞSS

h . (4.25)

Each of the four integrals can be found directly, but we can save the effort if we notice

similarities to the non-supersymmetric SYK model with complex fermions. In that case,

the four-point function is given by an integral:

ΨN=0
h =

∫

dy(a+ssgnχsgny sgn(χ−y))
(

a′+s′ sgn(1−y)
) |χ|h|1−y|h−1

|y|h|χ−y|h . (4.26)

It is also a sum of four parts:

ΨN=0
h = aa′ΨA

h (χ) + ss′ΨS
h (χ) + as′ΨAS

h (χ) + sa′ΨSA
h (χ) . (4.27)

These functions have different parity under exchanges of two fermions. The function

ΨA is odd under both 1 ↔ 2 and 3 ↔ 4, and it is the same as the eigenfunction in

the original SYK model, found in [11]. The function ΨS is even under both of these

permutations. The functions ΨAS , ΨSA have mixed parity. They break the time-reversal

symmetry T , whereas ΨA and ΨS preserve it.

Upon inspection, we see that the N = 2 eigenfunctions are linear combinations of the

non-supersymmetric ones, in particular:

ΞAA
h = h

(

ΨSA
h+1 (χ)−ΨAS

h (χ)
)

, (4.28)

ΞSS
h = h

(

ΨAS
h+1 (χ)−ΨSA

h (χ)
)

, (4.29)

ΞAS
h = h

(

−ΨS
h+1 (χ) + ΨA

h (χ)
)

, (4.30)

ΞSA
h = h

(

−ΨA
h+1 (χ) + ΨS

h (χ)
)

. (4.31)
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We notice that an eigenfunction in the N = 2 model built from three-point functions of

the same type (AA or SS) is a sum of “mixed” eigenfunctions in N = 0, and vice versa:

a “mixed” N = 2 eigenfunction is a combination of “pure” N = 0 eigenfunctions. As a

consequence, “mixed” eigenfunctions in N = 2 preserve time-reversal, and “pure” four-

point functions break it. This happens because the N = 2 eigenfunctions are integrals over

Grassmann coordinates. The Grassmann measure dθ0dθ̄0 is an imaginary quantity and

therefore is odd under time-reversal. So the functions of mixed parity, which are T -odd in

the N = 0 model, turn out to be T -even in the N = 2 model.

It is interesting to notice the properties of these eigenfunctions under the transforma-

tion h ↔ −h. From (4.17), we see that this transformation corresponds to exchange of

pairs of fermions: (1, 2) ↔ (3, 4). We know what happens to the eigenfunctions of the

non-supersymmetric SYK when we take h ↔ 1− h:

ΨA
1−h = ΨA

h , (4.32)

ΨS
1−h = ΨS

h , (4.33)

ΨAS
1−h = ΨSA

h . (4.34)

From here, we can see that:

ΞAA
−h = ΞAA

h , (4.35)

ΞSS
−h = ΞSS

h , (4.36)

ΞAS
−h = ΞSA

h . (4.37)

The transformation exchanges the T -even functions and leaves T -odd functions

invariant.

Since the SYKmodel is T -invariant, in what follows we are interested in the T -invariant

eigenfunctions, ΞAS
h and ΞSA

h . Moreover, because of the relation (4.37) we can focus our

attention on the ΞAS function only. For brevity, we call it ξh:

ξh (χ) ≡ ΞAS
h (χ) = h

(

ΨA
h (χ)−ΨS

h+1 (χ)
)

= h
(

ΨA
h (χ)−ΨS

−h (χ)
)

. (4.38)

For χ < 1 we can express the eigenfunctions in terms of ϕh defined in (4.11).

ξh = h

(

1 +
1

cosπh

)

ϕh (χ) + h

(

1− 1

cosπh

)

ϕ−h (χ) , χ < 1. (4.39)

For χ > 1, we have to do an analytical continuation. Using the results from the N = 0

SYK, we find:

ξh =
4√
π
Γ

(

1 +
h

2

)

Γ

(

1− h

2

)

(

2F1

(

h

2
,
1− h

2
;
1

2
;

(

2− χ

χ

)2
)

+ h
2− χ

χ
2F1

(

h

2
,
1− h

2
;
3

2
;

(

2− χ

χ

)2
))

. (4.40)
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Figure 2. N = 2 conformal kernel.

We can expand a supersymmetric conformal four-point function in terms of the ξh
functions. Schematically, the SYK four-point function looks as:

F =
F0

1−K
. (4.41)

The SYK kernel K commutes with the N = 2 Casimir and therefore is diagonalized by its

eigenfunctions ξh. As our next step, we find the eigenvalues of the kernel.

4.3 Kernel

Schematically, the N = 2 SYK kernel looks like figure 2. Unlike the non-supersymmetric

case, here chirality restricts us to only one form of the kernel operator. The kernel in the

integral form is as follows:

K = (q̂ − 1) bq̂J
sgn τ12

|〈12〉|2∆(q̂−2)

sgn τ1′2
|〈1′2〉|2∆

sgn τ12′

|〈12′〉|2∆ dτ1dτ2dθ̄1dθ2. (4.42)

The kernel can act either on the 12 or on the 34 channel of the four-point function. In the

shadow representation, we construct the four-point function as an integral of 12y and 34y

three-point function, where y is the arbitrary variable we integrate over. This means that

to find out how the kernel acts on a four-point function, it suffices to consider how it acts

on the three-point functions. We have fixed the form of the possible three-point functions

in (4.19), (4.20). These fA
h , fS

h functions diagonalize the kernel:
∫

K
(

1′, 2′|1, 2
)

fA
h (1, 2, 0) = kA(h)fA

h

(

1′, 2′, 0
)

,
∫

K
(

1′, 2′|1, 2
)

fS
h (1, 2, 0) = kS(h)fS

h

(

1′, 2′, 0
)

. (4.43)

To find the eigenvalues kA and kS conveniently, we first take τ0 in the three-point function

to infinity, and set:

1′ → (1, θ), (4.44)

2′ →
(

0, θ̄
)

. (4.45)

Then the eigenvalues are given by the integrals,

kA =
tanπ∆

4π

∫

dτ1dτ2dθ̄1dθ2
1

|〈12〉|1−2∆−h

sgn (1− τ2)

|〈1′2〉|2∆
sgn (τ1)

|〈12′〉|2∆ . (4.46)

kS =
tanπ∆

4π

∫

dτ1dτ2dθ̄1dθ2
sgn τ12

|〈12〉|1−2∆−h

sgn (1− τ2)

|〈1′2〉|2∆
sgn (τ1)

|〈12′〉|2∆ . (4.47)
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These integrals are of the same type we have encountered in the N = 0 SYK kernel. We can

make a change of variables and transform them into products of one-dimensional integrals.

The details of the computation can be found in appendix F. Explicitly, the answer reads:

kA=− 1

π2
Γ(−2∆)Γ(2−2∆)Γ(2∆−h)Γ(2∆+h)sin2π∆(sin2π∆−sinπh) , (4.48)

kS =− 1

π2
Γ(−2∆)Γ(2−2∆)Γ(2∆−h)Γ(2∆+h)sin2π∆(sin2π∆+sinπh) . (4.49)

These expressions coincide with the results of [7], up to renaming h → h+ 1/2.

We see that the eigenvalues satisfy:

kA (h) = kS (−h) . (4.50)

This allows for “mixed” four-point functions, i.e. those built from three-point functions with

opposite symmetries. The ΞAS eigenfunctions, which we are going to use to expand the full

four-point function, are constructed from three-point function of different types. Acting

with the kernel on the ΞAS eigenfunction from the left (in the 12 channel), we multiply it

by the kA eigenvalue; acting from the right, we multiply it by the kS eigenvalue. But if we

exchange h ↔ −h (transforming ΞAS to ΞSA), we exchange the two sides in the shadow

representation, and therefore exchange two channels. The condition (4.50) is needed to

allow this transformation.

For consistency, in what follows the kernel always acts on the four-point function from

the left, so that the kA eigenvalue corresponds to the ΞAS eigenfunction.

The eigenvalues of the N = 2 kernel look very much like the eigenvalues of the non-

supersymmetric kernel which we list in appendix B. The exact relation is:

kAN=2 (h) =
2∆ + h− 1

2∆− 2
kAN=0 (h) , (4.51)

kAN=2 (h) =
2∆− h− 1

2∆
kSN=0 (−h) . (4.52)

The symmetry (4.50) is a direct consequence of the symmetry h ↔ 1−h for the eigenvalues

of non-supersymmetric kernel.

The dimensions of the operators in the theory are given by the solutions to the equation

k = 1 (see figure 3). Generally these dimensions are irrational, given by an asymptotic

formula:

hA = 2n+ 1 + 2∆+O

(

1

n

)

, (4.53)

hS = 2n+ 2∆+O

(

1

n

)

, n > 0. (4.54)

There is also a mode with h = 1 in both channels (which is the same as the h = 3/2

mode of [7]. This mode represents the charge multiplet, consisting of the R-charge, the

supercharge and the stress tensor:

Q = R+ θQ̄+ θ̄Q+ θθ̄T. (4.55)
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Figure 3. Eigenvalues of the antisymmetric (red) and symmetric (blue) kernels at q̂ = 5.

Since the dimension of Q is one, the dimension of the R-charge operator is also one, and

the dimension of the stress tensor is two, just as in the non-supersymmetric complex SYK

model [18]. Notice also that like the U(1) charge in the non-supersymmetric model, the

R-charge, despite being conserved, has non-zero dimension in the infrared limit.

4.4 Inner product

To apply the formula (4.41) for the four-point function, we need to project the zero-rung

function F0 to the basis of the Casimir eigenfunctions. To this end, we first find an inner

product for the ξh eigenfunctions.

For the non-supersymmetric SYK model, the eigenstates of the Casimir form a Hilbert

space [11]. In the supersymmetric case, we should not expect this, since the eigenstates

are functions of a superspace and therefore the set of states may contain functions of odd

variables. Indeed, it has been found in [6], that the N = 1 eigenfunctions do not form a

Hilbert space. Nevertheless, we want to get as close to a Hilbert space as possible.

An invariant inner product of chiral-antichiral four-point functions looks as follows:

〈f, g〉 =
∫

dt1dt2dθ̄1dθ2
〈12〉

dt3dt4dθ̄3dθ4
〈34〉 f · g ≡

∫

dµ (1, 2) dµ (3, 4) f · g. (4.56)

Here we have defined the two-particle integration measure dµ (i, j), which is conformally

invariant but not real: dµ (i, j) 6= dµ̄ (i, j). Therefore we do not expect the inner product

to be real, and this is why we have f · g instead of f̄ · g in the inner product. For the same

reason, we do not expect the Casimir to be Hermitean with respect to this inner product.

Instead, we require it to be bilinear symmetric.

We have shown in the beginning of section 4 that we can fix the coordinates in the

four-point function, so that it does not depend on odd coordinates in the superspace. In

the same way, we can use the supergroup to make the measure a function of χ only. The

details of this calculation can be found in appendix D, the result being:

〈f, g〉 =
∫ ∞

−∞

dχ

χ (1− χ)
fg. (4.57)
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This inner product is clearly not positive-definite, so the N = 2 eigenstates do not form

a Hilbert space. It is easy to see that the Casimir (4.9) is symmetric with respect to

this norm:

〈Cf,g〉=
∫ ∞

−∞
dχf∂χ (χ∂χg)= (fχ∂χg−gχ∂χf)|∞−∞+

∫ ∞

−∞
f∂χ (χ∂χg)= 〈f,Cg〉, (4.58)

provided that a certain boundary condition at infinity is satisfied:

(fχ∂χg − gχ∂χf)|∞−∞ = 0. (4.59)

If the inner product (4.57) were positive definite, we would find a complete set of

functions by requiring that the eigenvalue of the Casimir h2 be positive and then looking

for normalizable (or continuum-normalizable) states. We are not in this situation here.

Nevertheless we can find a set of functions with non-negative norm. If we require that the

Casimir does not bring us out of this set,

〈ξh, ξh〉 ≥ 0, 〈Cξh, Cξh〉 ≥ 0 ⇒ h4 ≥ 0. (4.60)

then it implies that the eigenvalue of the Casimir has to be real:

h2 ∈ R. (4.61)

In what follows, we see that the condition (4.61) is enough to guarantee that the inner

product in the ξh basis is positive-(semi)definite.

The eigenvalue of the Casimir can be real if h is either purely imaginary or purely real.

In the latter case, the eigenstate is normalizable only if we further restrict to integer h:

h ∈ iR or h ∈ Z. (4.62)

The first case gives us a continuous series of states, and we expect them to be continuum-

normalizable, that is their inner product is proportional to a delta function:

〈ξis, ξis′〉 ∼ δ
(

s− s′
)

. (4.63)

This singular contribution comes from the vicinity of χ = 0:

〈ξis, ξis′〉 ∼
∫ ǫ

−ǫ

dχ

χ
ξisξis′ . (4.64)

For small positive χ, the Casimir eigenfunctions have a power-like behavior:

χ → +0 : ϕis ∼ χisB (is, is) . (4.65)

To find the asymptotic of the eigenfunction for negative χ, we once again represent ξh
via N = 0 eigenfunctions:

ξh = h
(

ΨA
h −ΨS

−h

)

. (4.66)

The function ΨA
h is symmetric under χ → χ

χ−1 , and ΨS
h is antisymmetric under the same

transformation. It means in particular that ΨA
h is an even function of χ in the vicinity
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of zero, and ΨS
h is odd. Since the measure dχ/χ is odd, only the terms odd in χ in the

integrand of (4.64) contribute to the final answer. So in terms of the N = 0 eigenfunctions,

the inner product is:

〈ξis, ξis′〉 =
∫ ǫ

−ǫ

dχ

χ
is · is′

(

−ΨA
isΨ

S
is′+1 −ΨS

is+1Ψ
A
is′
)

= 2ss′
∫ ǫ

0

dχ

χ

(

ΨA
isΨ

S
is′+1 +ΨS

is+1Ψ
A
is′
)

.

(4.67)

For small positive χ, the ΨA
h ,Ψ

S
h eigenfunctions behave as follows:

ΨA
h ∼

(

1+
1

cosπh

)

B (h,h)χh+

(

1− 1

cosπh

)

B (1−h,1−h)χ1−h, (4.68)

ΨS
h ∼

(

1− 1

cosπh

)

B (h,h)χh+

(

1+
1

cosπh

)

B (1−h,1−h)χ1−h, χ→+0. (4.69)

Bringing (4.67), (4.69) together, using the integral form of the delta-function:

∫ ǫ

0

dχ

χ

(

χi(s−s′) + χ−i(s−s′)
)

= 2πδ
(

s− s′
)

, (4.70)

and an identity for the Euler’s beta function:

B (is, is)B (−is,−is) =
4π

s
cothπs, (4.71)

we can find the norm for the continuous series as:

〈ξis, ξis′〉 = 4πs tanhπs · 2πδ
(

s− s′
)

. (4.72)

In particular, this norm is real and positive for real non-zero s, as expected.

The reader may be puzzled that the inner product of the basis states ξis is positive

definite, given that the inner product (4.57) is not. Indeed, we can easily find a function

which has a negative norm, for example one that is close to zero for positive χ and has a

bump at negative χ. How can it be expanded in the ξis basis?

The matter becomes clear if we recall that the ξis functions are generally complex, as

are the expansion coefficients, therefore the condition that the norm be non-negative is not

very restrictive. To see this, we can break the eigenfunction into a real and an imaginary

parts,

ξis = ζs + iηs. (4.73)

Its complex conjugate is also in the spectrum and has the same eigenvalue:

ξ̄is = ξ−is = ζs − iηs. (4.74)

From the inner products for ξh,

〈ξis, ξis′〉 = 4πs tanhπs · 2πδ
(

s− s′
)

, 〈ξis, ξ̄is〉 = 〈ξis, ξ−is〉 = 0, (4.75)

we can find the inner products for the real and imaginary parts separately:

〈ζs, ζs′〉 = −〈ηs, ηs′〉 = 2πs tanhπs · 2πδ
(

s− s′
)

, 〈ζs, ηs′〉 = 0. (4.76)
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Hence for each eigenvalue we have two real functions ζs and ηs, with positive and negative

norm, which are orthogonal to each other. A function that can be expanded in the (ζs, ηs)

basis, clearly can be expanded in the ξis basis too, possibly with complex coefficients.

Next we find the inner product of bound states, labeled by integer eigenvalues:

h ∈ Z. (4.77)

For a state to be normalizable, we have to further restrict h. For a negative integer h,

the eigenfunction ϕh diverges, so we have to make sure that the coefficient in front of it

vanishes. In other words, the ξh = ΞAS
h eigenfunction is normalizable at even positive or

odd negative h:

hAS ∈ 2Z+ or hAS ∈ 2Z− + 1. (4.78)

But the spectrum should be symmetric under h ↔ −h. So for the ΞSA
h eigenfunction, the

choice is exactly opposite:

hSA ∈ 2Z+ + 1 or hSA ∈ 2Z−. (4.79)

To find the norm of a bound state, we take the integral:

〈ξh, ξh〉 =
∫ ∞

−∞

dχ

χ (1− χ)
ξ2h (χ) . (4.80)

This integral is generally tricky, but we can express it via the norm for the bound state in

the non-supersymmetric model (details in appendix E). The result is:

〈ξh, ξh′〉 = δhh′4π2|h|. (4.81)

Again, we see that the norm is positive, except for the h = 0 mode which has a zero norm.

The continuous set ξis is orthogonal to the discrete series ξn since for these two cases

the eigenvalues of the Casimir are different.

If we were working in a true Hilbert space, the eigenstates of the Casimir with real

eigenvalues would form a complete set. If ξis formed a complete set, then naively, given

the inner products (4.72), (4.81), the following identity would hold:
∫ ∞

−∞

ds

2π

1

4πstanhπs
ξis (χ)ξis

(

χ′
)

+
∑

h∈Z+

1

4π2h
ξh (χ)ξh

(

χ′
) ?
=χ(1−χ)δ

(

χ−χ′
)

. (4.82)

Then we can integrate both sides of this relation with a function we want to expand in the

ξ basis.

However, this expression cannot be correct. The integral over the continuous states

has a double pole at s = 0 and therefore the left hand side diverges. The root of the

problem is that the our functions are not a complete set, because the constant function is

orthogonal to all of them. The constant function belongs to both the continuous and the

discrete series and is a limit of ξis at zero s:

ξ0 = lim
h→0

ξh = 4. (4.83)

From (4.72) and (4.81) we see that it is orthogonal to all the eigenstates.
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Figure 4. Zero-rung four-point function.

We do not know a general completeness relation for these functions, but for our ap-

plication it is sufficient to know the expansion of the zero-rung function, that is the rela-

tion (4.82), convolved with F0. In section 4.5, we find that the relation (4.82) convolved

with F0 is true, provided the integration contour goes to the right of the double pole at

s = 0.

Another function which is orthogonal to our set is:

d

ds
ξis

∣

∣

∣

∣

s=0

= 4 logχ. (4.84)

We see that a constant and a logarithmic function lie outside of our basis. As we have

already mentioned before, we should not a priori expect the eigenfunctions of the Casimir

to be a complete set of functions if the inner product is not positive-definite.

4.5 Zero-rung four-point function and the h = 0 mode

To find the full four-point function, we project the zero-rung function F0 (see figure 4) to the

basis of the Casimir eigenfunctions ξh using the completeness relation (4.82). Schematically,

this expansion is written as:

F0 =
∑

h

〈ξh,F0〉
〈ξh, ξh〉

ξh. (4.85)

The “sum” over h includes the discrete sum over the bound states as well as the integral

over the continuous series of states. But with the latter, we run into a problem. The

integration measure in the completeness relation (4.82) has a double pole at s = 0. To

make the integral meaningful, we have to deform the integration contour away from the

origin. The result might depend on this deformation. To see whether the procedure makes

sense, we will consider the expansion of the zero-rung four-point function near χ = 0.

The zero-rung four-point function is a (conformally invariant) combination of conformal

propagators. Chirality restricts its form to be (see figure 4):

F0 ≡
G (〈14〉)G (〈32〉)
G (〈12〉)G (〈34〉) = sgnχ · |χ|2∆. (4.86)

The zero-rung function has a finite norm and therefore belongs to our pseudo-Hilbert space:

〈F0,F0〉 = p.v.

∫

dχ

χ (1− χ)
|χ|4∆ < ∞. (4.87)
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The inner product of an eigenfunction with the zero-rung propagator is related to the

eigenvalue of the kernel, in full analogy with the non-supersymmetric case:

〈ξh,F0〉 =
1

2
αkA(h), (4.88)

where α is similar to the α0 coefficient in the non-supersymmetric model:

1

α
= bq̂J (q̂ − 1) =

1− 2∆

8π∆
tanπ∆. (4.89)

The computation can be found in appendix G.

To expand the zero-rung four-point function, we have to first determine whether it has

the symmetry of AS or SA type. If it has the symmetry of the AS type, it expands in the

ΞAS = ξh basis:

FAS
0 (χ) = α

∫ ∞

−∞

ds

2π

1

4πh tanπh
kA (h)ΞAS

h (χ)

+ α
∑

h∈2Z+

1

4π2|h|k
A (h) ΞAS

h (χ) + α
∑

h∈1−2Z+

1

4π2|h|k
A (h) ΞAS

h (χ) . (4.90)

Here in the integral we take h = is. For integer h, we can use an identity:

kA(h) = kA(−h), h ∈ Z, (4.91)

and rewrite (4.90) as:

FAS
0 (χ) = α

∫ ∞

−∞

ds

2π

1

4πh tanπh
kA (h)ξh (χ) + α

∑

h∈Z+

1

4π2h
kA (h) ξh (χ) . (4.92)

If however the zero-rung four-point function has the symmetry of the SA type, it expands

in terms of ΞSA functions:

FSA
0 (χ) = α

∫ ∞

−∞

ds

2π

1

4πh tanπh
kS (h)ΞSA

h (χ)

+ α
∑

h∈−2Z+

1

4π2|h|k
S (h) ΞSA

h (χ) + α
∑

h∈2Z+−1

1

4π2|h|k
S (h) ΞSA

h (χ) . (4.93)

However, using the fact that ΞAS
h = ΞSA

−h and (4.91), we can see that these two expansions

give exactly the same result:

F0 = FAS
0 = FSA

0 . (4.94)

The expression (4.92) is a more explicit version of (4.85). As we discussed before,

the integration measure has a double pole at h = 0. To resolve this problem, we deform

the contour so that it avoids zero as in figure 5. But this deformation might add to the

zero-rung four-point function a contribution of the form:

Ress=0
1

s tanhπs
ξis ∼

d

ds
ξis (χ)

∣

∣

∣

∣

s=0

∼ logχ. (4.95)
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- 2 - 1 1 2 3

Figure 5. The integration contour for the N = 2 SYK model avoids the double pole at zero.

To see if this is the case, we look at the four-point function near χ = 0. In this limit,

ξh ∼ hB (h, h)

(

1 +
1

cosπh

)

χh + hB(−h,−h)

(

1− 1

cosπh

)

χ−h, χ ∼ +0. (4.96)

Using the simple identity,

kA(h)ξh+kA(−h)ξ−h=
1

2

(

kA(h)+kA(−h)
)

(ξh+ξ−h)+
1

2

(

kA(h)−kA(−h)
)

(ξh−ξ−h) ,

(4.97)

we can recast (4.92) in the form:

F0=

∫

C

ds

2π

1

8π tanπh

16∆

tanπ∆
B(h,h)B(2∆−h,2∆+h)B(4∆,−2∆)

(

sinπh− sin2π∆

cosπh

)

χh

+
∑

h∈Z+

(. . .) , (4.98)

where the sum in parentheses is the sum over residues of the integrand at positive integer

h, and the contour C goes as in figure 5, crossing the horizontal axis between the origin

and 2∆. Closing the integration contour to the right, we find that F0 is given by a sum of

residues of the integrand at the points where the kernel is singular:

F0=−Resh∈Z++2∆
1

8π tanπh

16∆

tanπ∆

Γ2(h)Γ(2∆−h)Γ(2∆+h)Γ(−2∆)

Γ(2h)Γ(2∆)

(

sinπh− sin2π∆

cosπh

)

χh.

(4.99)

In the leading order, this reduces exactly to the zero-rung four-point function:

F0 = χ2∆ +O
(

χ1+2∆
)

. (4.100)

If instead we had deformed the contour to lie to the left of the origin, we would have picked

up a contribution proportional to ∼ logχ. We have also checked (4.99) numerically for

any χ.
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- 1 1 2 3 - 1 1 2 3

Figure 6. Integration contours in the non-supersymmetric SYK model. The anti-symmetric chan-

nel is on the left, the symmetric one is on the right.

It is instructive to see how the integration contour is deformed in the non-super-

symmetric SYK. Its continuous series is at h = 1
2 + is, so the naive integration contour is

parallel to the y axis and intersects the horizontal axis at h = 1
2 . If fermions are complex,

there are two distinct channels and two distinct zero-rung four-point functions. In the anti-

symmetric channel (where the usual SYK with real fermions lives), the zero-rung four-point

function is:

FA
0 (N = 0) = − sgn (χ) |χ|2∆ + sgnχ sgn (1− χ)

∣

∣

∣

∣

χ

χ− 1

∣

∣

∣

∣

2∆

. (4.101)

This function has a finite norm in the N = 0 inner product. Near zero, this reduces to:

FA
0 (N = 0) ∼ −χ2∆+1, χ ∼ +0. (4.102)

Then, for the expansion in the Casimir eigenfunctions to work, we should make sure that

the pole at h = 2∆+1 is inside the contour. And for the naive contour at h = 1
2 + is, this

is automatically satisfied.

The four-point function in the symmetric channel, however,

FS
0 (N = 0) = − sgn (χ) |χ|2∆ − sgnχ sgn (1− χ)

∣

∣

∣

∣

χ

χ− 1

∣

∣

∣

∣

2∆

, (4.103)

has infinite norm and therefore does not belong to the Hilbert space. Therefore to find a

sensible expansion, we have to deform the contour. Near zero, the symmetric zero-rung

function behaves as:

FS
0 (N = 0) ∼ −χ2∆, χ ∼ +0. (4.104)

So to find it in the expansion, we have to make the contour go around the h = 2∆ pole.

We deform it as in figure 6, making it intersect the horizontal axis between zero and 2∆.

Note that for the N = 0 SYK, 2∆ is always smaller than 1
2 . So in the symmetric

channel, we need to shift the contour by a finite distance. This reflects the fact that the
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symmetric zero-rung function is outside the Hilbert space. In the N = 2 model, the zero-

rung function belong to the pseudo-Hilbert space “marginally”, that is the integral (4.87)

is convergent only in the principal value prescription. Accordingly, the N = 2 integration

contour also gets displaced by an infinitesimally small amount, to avoid the origin.

4.6 General form of the four-point function

Now we have all the ingredients needed to expand the SYK four-point function. Formally,

it is represented as:

F (χ) =
∑

h

F0

1−K
=

∑

h

1

1− kA (h)

〈ξh,F0〉
〈ξh, ξh〉

ξh (χ) . (4.105)

Using the expansion of the zero-rung function (4.92) allows us to write it in the form:

F (χ) = −α

∫

C

dh

2πi

1

4πh tanπh

kA (h)

1− kA (h)
ξh (χ)+α

∑

h∈Z+

1

4π2h

kA (h)

1− kA (h)
ξh (χ) , (4.106)

with the integration contour C being deformed as in figure 5 to avoid the double pole at

the origin. The integral in this expression is given by the sum of the poles in the integrand.

The poles coming from the measure are at the integer values of h, and are cancelled out by

the sum in (4.106). The only poles left are the ones coming from the solutions of k(h) = 1:

F (χ) = −
∑

m

Resh=hm>0 α
1

4πh tanπh

1

1− kA (h)
ξh (χ) , kA(hm) = 1. (4.107)

These solutions correspond to the dimensions of the physical operators in the model. There

is also an h = 1 subspace which produces a divergence in the four-point function, since

h = 1 corresponds to the physical operator of supercharge. This subspace should be treated

separately by considering the theory outside the conformal limit. We hope to discuss this

matter elsewhere.

5 Retarded kernel

The next question we address is the Lyapunov exponents of the modes. To find them

we introduce the retarded kernel. We make time τ periodic with period β = 2π and then

continue to the complex plane. We take the left rail of the ladder diagram to be at complex

time it and the right rail at (it+ π), so that there is a phase difference of half a period

between them.

Generally, the propagator in complex time is:

Gc (1|2) =
b sgn (τ1 − τ2)

|〈12〉|2∆ → Gc (1|2) =
b (sgnℜ (τ1 − τ2))

2∆+1

〈12〉2∆ . (5.1)

The kernel is constructed of the propagators of two types (see figure 7). One is the

conventional retarded propagator, which goes along a rail of the ladder:

GR

(

1|1′
)

= Θ(t1 − t1′) (G (−ǫ+ it1, it1′)− G (ǫ+ it1, it1′)) = Θ (t1 − t1′)
2b cosπ∆

〈11′〉2∆ll
. (5.2)
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Figure 7. The retarded kernel. Retarded propagators go along rails, and the left-right propagator

goes between rails.

Here 〈11′〉 is the supersymmetric invariant distance between two points on the left rail of

the ladder. The other goes between the two rails of the ladder:

Glr (1|2) =
b

〈12〉2∆lr
, (5.3)

where 〈12〉lr is the invariant distance between two points on the left and on the right rail.

To make time periodic, we do a conformal transformation which takes t → exp(−t).

Keeping in mind that the odd variables θ have conformal weight 1/2, we write the new

transformed super-coordinates as follows:

τ1 = e−t1 , τ2 = e−t2−iπ = −e−t2 ,

θ1 = e−
t1
2 ϑ1, (left rail) θ2 = e−

t2+iπ

2 = −ie−
t2
2 ϑ2, (right rail)

θ̄1 = e−
t1
2 ϑ̄1, θ̄2 = e−

t2−iπ

2 = ie−
t2
2 ϑ̄2.

(5.4)

In these new coordinates, the invariant distances are as follows:

〈11′〉ll = e−
t1+t′1

2

(

2 sinh
t1 − t′1

2
− 2ϑ̄1ϑ

′
1 − ϑ1ϑ̄1 − ϑ′

1ϑ̄
′
1

)

, (5.5)

for the left-left invariant, and:

〈12〉lr = τ1 − τ2 − 2θ̄1θ2 − θ1θ̄1 − θ2θ̄2

= e−
t1+t2

2

(

2 cosh
t1 − t2

2
+ 2iϑ̄1ϑ2 − e−

t1−t2
2 ϑ1ϑ̄1 − e

t1−t2
2 ϑ2ϑ̄2

)

, (5.6)

for the left-right invariant. The reparameterization invariance of the propagator:

G (t1, t2) = G (τ1, τ2)

(

dτ1
dt1

dτ2
dt2

)∆

, (5.7)

allows us to write the retarded and the left-right propagators in the following form:

GR

(

1|1′
)

= Θ(t1 − t1′)
2b cosπ∆

(

2 sinh
t1−t1′

2 − 2ϑ̄1ϑ1′ − ϑ1ϑ̄1 − ϑ1′ ϑ̄1′

)2∆
, (5.8)

Glr (1|2) =
b

(

2 cosh t1−t2
2 + 2iϑ̄1ϑ2 − e−

t1−t2
2 ϑ1ϑ̄1 − e

t1−t2
2 ϑ2ϑ̄2

)2∆
. (5.9)
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The retarded kernel is constructed out of retarded and left-right propagators:

Kr

(

1′, 2′|1, 2
)

= (q̂ − 1) JGR

(

1|1′
)

GR

(

2′|2
)

G q̂−2
lr (1|2) ie 1

2
(t1+t2)dt1dt2dϑ̄1dϑ2. (5.10)

The factor of ie
1

2
(t1+t2) comes from the transformation of the measure. Using the propa-

gators (5.8), (5.9), we can write the kernel as follows:

Kr

(

1′,2′|1,2
)

=4cos2π∆(q̂−1)Jbq̂ie∆(t1+t2)e−∆(t1′+t2′ )
Θ(t1−t1′)Θ(t2−t2′)

〈11′〉2∆〈2′2〉2∆〈12〉1−4∆
. (5.11)

Now we diagonalize the retarded kernel, essentially in the same way we did the confor-

mal kernel in section 4.3. The eigenfunctions of the retarded kernel are the same three-point

functions of the model (4.19), (4.20). In complex time, there is no difference between sym-

metric and antisymmetric eigenfunctions. Taking the third coordinate of the three-point

function to infinity, we write the kernel eigenfunction as:

fA
r (1, 2,∞) = fS

r (1, 2,∞) = e−∆(t1+t2)
1

〈12〉2∆−h
. (5.12)

Integrating over the odd variables in the expression:

∫

Kr

(

1′, 2′|1, 2
)

fr (1, 2,∞) = krfr (1, 2,∞) , (5.13)

and fixing τ ′1 = 0, τ ′2 = 1, we find that the eigenvalue is given by the integral of the same

kind as for the conformal kernel:

kr = (q̂ − 1) Jbq̂2 (1− 2∆− h) (2 cosπ∆)2
∫

dτ1dτ2
θ (−τ1) θ (τ2 − 1)

|τ12|2−2∆−h|τ1|2∆|τ2|2∆
. (5.14)

Taking the integral, we find:

kr =
Γ (−2∆)

Γ (2∆− 1)

Γ (−h+ 2∆)

Γ (1− h− 2∆)
. (5.15)

This eigenvalue is plotted in figure 8. The modes potentially contributing to chaos

satisfy kr = 1. The minimal weight h that satisfies this constraint is h = −1:

kr|h=−1 = 1 for all ∆. (5.16)

At large times, the three-point function fr (1, 2,∞) grows (or decays) exponentially:

fr (1, 2,∞) ∼ e−ht, (5.17)

therefore the h = −1 mode shows maximally chaotic behavior. All the other modes have

positive h and do not contribute to the exponential growth.
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Figure 8. Eigenvalues of the retarded kernel at q̂ = 5.

6 Generalization to two dimensions

We can readily generalize our results to two-dimensional spacetime. We work in the N = 2

superspace, parameterized by a set of holomorphic and anti-holomorphic coordinates:

(

z, θ, θ̃
)

,
(

z̄, θ̄,
¯̃
θ
)

. (6.1)

The two-dimensional superconformal group is a product of two one-dimensional supercon-

formal groups for the left- and right-moving modes. In particular, the N = 2 superconfor-

mal symmetry is realized by the su(1, 1|1)⊕ su(1, 1|1) superalgebra. As in one dimension,

here we can use the superconformal symmetry to make the correlators depend only on

bosonic coordinates.

The superalgebra has two commuting Casimir operators which are complex conjugates

of each other. We can write them in terms of bosonic cross-ratios as differential operators:

C = χ2 (1− χ) ∂2
χ + χ (1− χ) ∂χ, C̄ = χ̄2 (1− χ̄) ∂2

χ̄ + χ̄ (1− χ̄) ∂χ̄, (6.2)

where χ, χ̄ are holomorphic and anti-holomorphic cross-ratios:

χ ≡ z12z34
z14z32

=
〈12〉 〈34〉
〈14〉 〈32〉 , χ̄ ≡ z̄12z̄34

z̄14z̄32
=

〈1̄2̄〉 〈3̄4̄〉
〈1̄4̄〉 〈3̄2̄〉 . (6.3)

Angle brackets 〈ij〉, 〈̄ij̄〉 denote the supersymmetric invariants, completely analogous to

the ones we have seen in one dimension:

〈12〉 = z1 − z2 − 2θ̃1θ2 − θ1θ̃1 − θ2θ̃2, 〈1̄2̄〉 = z̄1 − z̄2 − 2
¯̃
θ1θ̄2 − θ̄1

¯̃
θ1 − θ̄2

¯̃
θ2. (6.4)

Knowing the eigenfunctions of the one-dimensional Casimir (4.10), we can easily guess the

eigenfunctions and eigenvalues in two dimensions:

C
(

ϕh (χ)ϕh̃ (χ̄)
)

= h2ϕh (χ)ϕh̃ (χ̄) , C̄
(

ϕh (χ)ϕh̃ (χ̄)
)

= h̃2ϕh (χ)ϕh̃ (χ̄) . (6.5)
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The ϕh eigenfunction was defined in (4.11). In what follows, we find a more convenient

basis of the Casimir eigenfunctions using the shadow formalism.

On physical states, the Casimirs should be Hermitean conjugates, which gives us a

condition:

(h2) = h̃2 ⇒ h̄ = h̃ or h̄ = −h̃. (6.6)

Another restriction comes from the fact that the spin of a bosonic physical state has to be

real and in particular integer:

l = h− h̃ ∈ Z, (6.7)

which implies that either spin is zero and both the dimensions h = h̃ are purely real, or

the dimensions have the following form:

h =
l

2
+ is, h̃ = − l

2
+ is, s ∈ R. (6.8)

To make the discussion more concrete, let’s consider the N = 2 SYK model in two

dimensions with complex scalar superfield and random superpotential. Our goal is to find

the conformal four-point function of the model:

W (χ, χ̄) =

〈

Φ̃ (1, 1̄) Φ (2, 2̄) Φ̃ (3, 3̄) Φ (4, 4̄)
〉

〈

Φ̃ (1, 1̄) Φ (2, 2̄)
〉〈

Φ̃ (3, 3̄) Φ (4, 4̄)
〉 . (6.9)

Here Φ, Φ̃ are chiral superfields with zero spin. In a two-dimensional spacetime, a fermionic

field has scaling dimension 1
2 , so a q-fermion interaction is generally irrelevant. To make a

q-particle interaction marginal, we consider scalar fields which have zero scaling dimension

in the UV. The chiral superfields are annihilated by superderivatives,

DΦ̃ = D̄Φ̃ = 0, (6.10)

defined as:

D =
∂

∂θ
+ θ̃

∂

∂z
, D̄ =

∂

∂θ̄
+

¯̃
θ
∂

∂z
. (6.11)

The Lagrangian of the model consists of a kinetic D-term and a superpotential F -term

with random coupling:

L =

∫

d2θd2θ̃ΦΦ̃ + i

∫

d2θCi1i2...iq̂Φi1 . . .Φiq̂ + i

∫

d2θ̃C̄i1i2...iq̂ Φ̃i1 . . . Φ̃iq̂ , d2θ ≡ dθdθ̄.

(6.12)

Here q̂ can be any integer, and C is a Gaussian coupling:

〈

Ci1...iq̂ C̄i1...iq̂

〉

= (q̂ − 1)!
J

N q̂−1
. (6.13)

We assume that the F -term is not renormalized, perturbatively or non-perturbatively [12].

As an N = 2 superconformal theory with a holomorphic superpotential, we expect this

model to flow to a conformal fixed point in the infrared. The D-term gets renormalized

and becomes irrelevant, so the infrared behavior of the model is determined exclusively by

the superpotential.

Next we follow the same steps as for the one-dimensional model, finding first the two-

point function, then the basis of the four-point functions in the shadow representation and

finally eigenvalues of the kernel.
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6.1 Two-point function in two dimensions

First we look for the chiral-anti-chiral two-point function:

G (1|2) ≡ 〈Φ̃ (1, 1̄) Φ (2, 2̄)〉. (6.14)

The Lagrangian (6.12) implies the supersymmetric Schwinger-Dyson equation:

D1D̄1G (1|3)+J

∫

d2z2d
2θ2G (1|2)G q̂−1 (3|2)=

(

θ̃1−θ̃3

)(

¯̃
θ1− ¯̃

θ3

)

δ (〈13〉)δ (〈1̄3̄〉) . (6.15)

The D2G term in the Schwinger-Dyson equation (6.15) comes from differentiating the

D-term. In the usual non-supersymmetric SYK model, the conformal limit is identified

with the large coupling limit, so in the conformal point we can neglect such a term. When

considering corrections to the conformal limit however, we have to restore it, and it gives

a correction to the two-point function of order (βJ)−1.

In our case, the infrared behavior of the model should be completely determined by

the superpotential, therefore the D-term should not affect the Schwinger-Dyson equation.

Hence we expect the integral equation (6.15) to be true without the first term in the exact

conformal limit.

It is easy to see that the Schwinger-Dyson equation without the first term is satisfied

by a conformal propagator of the form:

G (1|2) = b

〈12〉∆〈1̄2̄〉∆ . (6.16)

Here ∆ is the scaling dimension of the superconformal primary Φ. Dimensional consider-

ations allow us to fix it:

q̂∆ = 1. (6.17)

The integral in (6.15) can be taken in the momentum space. We use the ansatz (6.16),

integrate over the odd variables, and doing the Fourier transformation of the propagators

with the help of an integral:

∫

d2z

|z|2∆ eip·z = |p|2∆−2 · π

22∆−2

Γ (1−∆)

Γ (∆)
. (6.18)

Then the ansatz for the propagator works if we fix the b constant to:

bq̂J =
1

4π2
. (6.19)

6.2 Eigenfunctions of the Casimir operators

Next we proceed to find the basis for the four-point function. Just as in one-dimension, the

eigenfunctions of the kernel can be found in the shadow representation. These eigenfunc-

tions are labeled by the eigenvalues of the Casimirs
(

h, h̃
)

. We formally add an interaction

term for fictitious superoperators Vh,h̃:

ε

∫

d2z0d
2θ0d

2θ̃0Vh,h̃ (0, 0̄)V ′
−h,−h̃

(0, 0̄) . (6.20)
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Note that here we integrate over the full superspace, i.e. this is a D-term. The Casimir

eigenfunction is given by an integral:

Fh,h̃ ∼
∫

d2z0d
2θ0d

2θ̃0
〈Φ̃ (1, 1̄) Φ (2, 2̄)Vh,h̃ (0, 0̄)〉〈Φ̃ (3, 3̄) Φ (4, 4̄)V ′

−h,−h̃
(0, 0̄)〉

G(1|2)G(3|4) . (6.21)

The interaction term (6.20) makes it clear that eigenfunctions should remain in-

variant if we reverse the signs of both holomorphic and anti-holomorphic dimensions
(

h, h̃
)

↔
(

−h,−h̃
)

:

Fh,h̃ = F−h,−h̃. (6.22)

Unlike in one dimension, here we can fix the three-point function uniquely, as a product

of a holomorphic and an anti-holomorphic parts:

〈Φ̃ (1, 1̄) Φ (2, 2̄)Vh,h̃ (0, 0̄)〉 =
1

〈12〉∆−h〈02〉h〈10〉h
1

〈1̄2̄〉∆−h̃〈0̄2̄〉h̃〈1̄0̄〉h̃
. (6.23)

These three-point functions diagonalize both Casimirs C, C̄, with eigenvalues h2, h̃2 corre-

spondingly. Dividing by propagators and integrating over the odd coordinates, we find the

conformal block for the four-point function in the integral form, similar to (4.24):

Ξh,h̃=(−1)h+h̃
∫

dydȳ
hχh(1−y)h

yh(χ−y)h

(

1

y
+

1

χ−y
− 1

1−y

)

h̃χ̄h̃(1−ȳ)h̃

ȳh̃(χ̄−ȳ)h̃

(

1

ȳ
+

1

χ̄−ȳ
− 1

1−ȳ

)

.

(6.24)

Here we have added a (−1)h+h̃ factor to make our later expressions somewhat simpler.

Just as in one dimension, here we see that the N = 2 four-point function does not depend

on odd variables, unlike the N = 1 four-point function discussed in [6].

The integral (6.24) is tricky, but luckily we can use the results of [6] for a two-

dimensional bosonic SYK model. The eigenbasis of the non-supersymmetric conformal

Casimirs consists of the Ψh,h̃ functions, where:

Ψh,h̃ (χ, χ̄) ≡
∫

dydȳ
χh(1− y)h−1

yh (y − χ)h
χ̄h̃ (1− y)h̃−1

ȳh̃ (ȳ − χ̄)h̃
. (6.25)

Explicitly, Ψh,h̃ is a combination of the eigenfunctions Fh (χ) (B.2) of the non-super-

symmetric one-dimensional conformal Casimir:

Ψh,h̃ (χ, χ̄) =
1

2

sinπh

cosπh̃

(

Fh (χ)Fh̃ (χ̄)− F1−h (χ)F1−h̃ (χ̄)
)

. (6.26)

Comparing the integral (6.24) with the definition of Ψh,h̃ (6.25), we see that the N = 2

eigenfunction is a linear combination of N = 0 eigenfunctions:

Ξh,h̃ = hh̃
(

Ψh+1,h̃+1 +Ψh,h̃ +Ψh+1,h̃ +Ψh,h̃+1

)

. (6.27)

The Ξh,h̃ eigenfunction is also a linear combination of the Casimir eigenfunctions (6.5):

Ξh,h̃ (χ, χ̄) = hh̃
1

2

sinπh

cosπh̃

(

ϕh(χ)ϕh̃ (χ̄)− ϕ−h(χ)ϕ−h̃ (χ̄)
)

. (6.28)
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The eigenvalues of the Casimirs are:

CΞh,h̃ = h2Ξh,h̃, C̄Ξh,h̃ = h̃2Ξh,h̃. (6.29)

From this, it is clear that the spectrum of the Casimirs is symmetric under sign reversal:

Ξ−h,−h̃ = Ξh,h̃. (6.30)

6.3 Two-dimensional kernel

The next step is to diagonalize the two-dimensional SYK kernel. The N = 2 kernel is given

by the same diagram 2 as before, and it reads as follows:

K
(

1′, 2′|1, 2
)

= (q̂ − 1) bq̂J
1

|〈11′〉|2∆|〈2′2〉|2∆|〈12〉|2−4∆
d2θ̃1d

2θ2d
2z1d

2z2. (6.31)

Note that here, as well as in the one-dimensional case, we integrate only over half of the

odd variables.

The kernel acts on the three-point function (6.23). To simplify the calculations, we can

take the coordinate of the Vh,h̃ field to infinity, so that the three-point function becomes:

f (1, 2,∞; 1̄, 2̄,∞) =
1

〈12〉∆−h〈1̄2̄〉∆−h̃
. (6.32)

We can also conveniently fix the coordinates of the 1 and 2 points to be:

1 →
(

0, ϑ̃1,
¯̃
ϑ1

)

, 2 →
(

1, ϑ2, ϑ̄2

)

, (6.33)

(the rest of the odd coordinates being zero) so that the corresponding invariants simplify:

〈11′〉 = z1 − θ1θ̃1, 〈2′2〉 = 1− z2 − θ2θ̃2, 〈2′1′〉 = 1. (6.34)

Then the eigenvalue of the kernel is:

k
(

h, h̃
)

=

∫

K
(

1′, 2′
∣

∣ 1, 2
)

f (1, 2,∞; 1̄, 2̄,∞)

=
1−∆

4π2∆

∫ 〈12〉h〈1̄2̄〉h̃
|〈11′〉|2∆|〈2′2〉|2∆|〈12〉|2−2∆

d2θ̃1d
2θ2d

2z1d
2z2. (6.35)

In the integral over the odd variables, a non-zero contribution comes from the term con-

taining θ̃1
¯̃
θ1θ2θ̄2. It comes from the expansion of 〈12〉h+∆−1 and 〈1̄2̄〉h̃+∆−1. Then after

the integration, the eigenvalue becomes:

k
(

h, h̃
)

=−(1−∆)

π2∆
(−1+h+∆)

(

−1+h̃+∆
)

∫

d2z1d
2z2

(z1−z2)
h (z̄1−z̄2)

h̃

|z1|2∆|z2−1|2∆|z1−z2|4−2∆
.

(6.36)

This expression can be evaluated explicitly with the help of the KLT integral (the calcula-

tion is completely analogous to what we did in appendix F for the one-dimensional case):

∫

d2xxax̄ã (1− x)b (1− x̄)b̃ =
π

−1− a− b

B
(

1 + ã, 1 + b̃
)

B (−a,−b)
, (6.37)
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the final answer being:

k
(

h, h̃
)

= ∆(1−∆)
Γ2 (−∆)

Γ2 (∆)

Γ (−h+∆)Γ
(

h̃+∆
)

Γ (1− h−∆)Γ
(

1 + h̃−∆
) . (6.38)

This is the same as kBB in the N = 1 case [6], up to a sign:

k
(

h, h̃
)

= −kBB
(

h, h̃
)

. (6.39)

This eigenvalue has to be symmetric under h ↔ h̃, and it is if we restrict to physical

states with either both dimensions real, or dimensions of the form (6.8). Also, for physical

states the eigenvalue of the kernel is real. So the condition on the operator spectrum

k
(

h, h̃
)

= 1 is a single real condition, therefore it is satisfied by a finite number of states

for each spin.

As a check to our formula, we notice that there is a solution for (h, h̃) = (1, 0), which

corresponds to the N = 2 multiplet of the holomorphic superconformal current:

J = R+ θS + θ̃S̃ + θθ̃T, (6.40)

which contains R-charge, supercurrent and stress tensor. But unlike in one dimension, here

the mode corresponding to the supercurrent is not in the Hilbert space (because neither of

the conditions (6.6) holds for the supercurrent), so it does not give rise to a divergence in

the four-point function.

6.4 Normalizable states and the full four-point function

As in the one-dimensional case, the next step towards finding the four-point function

is to compute the norm of a state. The inner product has to be invariant under the

superconformal group, and the two-dimensional Casimir operators have to be Hermitean

with respect to it. Following the same logic as in section 4.4, we define the inner product as:

〈f (χ, χ̄) , g (χ, χ̄)〉 =
∫

d2χ

|χ|2|1− χ|2 f̄ (χ, χ̄) g (χ, χ̄) . (6.41)

Unlike the one-dimensional inner product (4.57), this one is real and the whole inner prod-

uct is Hermitian. Therefore we expect the eigenfunctions of the Casimir to form a usual

Hilbert space, and be a complete set of functions (subject to a boundary condition analo-

gous to (4.58)).

We expect the norm of an eigenfunction Ξh,h̃ to be proportional to δ-function of a

combination of
(

h, h̃
)

. This singular contribution comes from the vicinity of zero. Near

χ ∼ 0, the eigenfunction behaves as a power of χ:

Ξh,h̃ (χ)∼hh̃
sinπh

2cosπh̃

(

B (h,h)B
(

h̃, h̃
)

χhχ̄h̃−B (−h,−h)B
(

−h̃,−h̃
)

χ−hχ̄−h̃
)

, χ∼ 0.

(6.42)
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It is convenient to make a change of variables:

χ = eρ+iϕ, χ̄ = eρ−iϕ. (6.43)

In these variables and near zero, the integration measure in (6.41) becomes:

d2χ

|χ|2|1− χ|2 → dρdϕ, ρ → −∞, (6.44)

and the eigenfunction is:

Ξh,h̃(χ)∼hh̃
sinπh

2cosπh̃

(

B(h,h)B
(

h̃, h̃
)

eρ(h+h̃)+iϕ(h−h̃)−B(−h,−h)B
(

−h̃,−h̃
)

e−ρ(h+h̃)−iϕ(h−h̃)
)

.

(6.45)

To make this function single-valued, we have to restrict the difference between eigenvalues

to be integer:

l ≡ h− h̃ ∈ Z. (6.46)

This is natural since the operator Vh,h̃ in the shadow representation has a bosonic lower

component, and l is its spin. In particular, this means that we take the N = 0 eigenfunc-

tions Ψh,h̃ which can be either even or odd under χ → χ
χ−1 :

Ψh,h̃

(

χ

χ− 1
,

χ̄

χ̄− 1

)

= (−1)h−h̃Ψh,h̃ (χ, χ̄) . (6.47)

This is in contrast with the non-supersymmetric case, where χ → χ
χ−1 is a symmetry of the

model and therefore the eigenfunction is even under this transformation. In our case, spin

can be odd as well as even. As in the one-dimensional case, the full N = 2 eigenfunction

Ξh,h̃ is neither even nor odd under the χ → χ
χ−1 transformation, as is clear from (6.27).

We have seen in (6.6) that the dimensions of the states in the Hilbert space have to

either both be real,

h = h̃ ∈ R, (6.48)

or be of the form:

h =
l

2
+ is, h̃ = − l

2
+ is, s ∈ R. (6.49)

In the former case, the eigenfunction (6.45) always diverges near zero, and the state is not

normalizable. In the latter, the product of two states is proportional to a delta function as

desired. If we further denote:

A (l, s) ≡ hh̃
sinπh

2 cosπh̃
B (h, h)B

(

h̃, h̃
)

, (6.50)

then the product of two states is:

〈

Ξs′,l′ ,Ξs,l

〉

∼
∫ 2π

0
dϕ

∫ 0

−∞
dρ

(

A
(

l′,−s′
)

e−iρs′−iϕl′ +A
(

−l′, s′
)

eiρs
′+iϕl′

)

(

A (l, s) eiρs+iϕl +A (−l,−s) e−iρs−iϕl
)

, (6.51)
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which gives after integration:
〈

Ξs′,l′ ,Ξs,l

〉

∼ 2π2δll′δ
(

s− s′
)

(A (l,−s)A (l, s) +A (−l, s)A (−l,−s))

+ 2π2δl,−l′δ
(

s+ s′
)

(A (l,−s)A (l, s) +A (−l, s)A (−l,−s)) . (6.52)

The second line in (6.52) reflects the symmetry of the model under
(

h, h̃
)

↔
(

−h,−h̃
)

.

Using once again the Beta function identity (4.71) and the fact that h̄ = −h̃, we finally

arrive at:
〈

Ξs′,l′ ,Ξs,l

〉

= 4π4
(

l2 + s2
) (

δll′δ
(

s− s′
)

+ δl,−l′δ
(

s+ s′
))

. (6.53)

The norm is real and positive-definite for real s and integer l, as expected of a norm in a

Hilbert space.

This inner product gives rise to a completeness relation:

∞
∑

l=−∞

∫ ∞

0

ds

2π

1

2π3 (l2 + s2)
Ξh,h̃ (χ, χ̄) Ξh,h̃

(

χ′, χ̄′
)

= |χ|2|1− χ|2δ2
(

χ− χ′
)

. (6.54)

There is a double pole in this expression, since the norm of a state with l = s = 0 vanishes.

We avoid this pole by infinitesimally deforming the integration contour to avoid the origin,

as in figure 5.

6.5 Four-point function in two dimensions

As the Ξh,h̃ eigenfunctions form a basis, we can find the full four-point function as an

expansion:

F =
1

1−K
F0 =

∑

h,h̃

1

1− k
(

h, h̃
)

〈Ξh,h̃,F0〉
〈Ξh,h̃,Ξh,h̃〉

Ξh,h̃. (6.55)

Here F0 is the zero-rung four-point function:

F0 = χ∆χ̄∆. (6.56)

To make use of the expansion (6.55), we have to find the inner product between a Casimir

eigenfunction and the zero-rung four-point function 〈Ξh,h̃,F0〉. We can simplify the integral

by acting on the eigenfunction with the Casimirs:

〈CC̄Ξh,h̃, |χ|2∆〉 =
(

hh̃
)2

〈Ξh,h̃, |χ|2∆〉 = 〈Ξh,h̃, CC̄|χ|2∆〉 = ∆4

∫

d2χΞh,h̃ (χ, χ̄) |χ|2∆−2.

(6.57)

This expression looks similar to the N = 0 inner product:

(f, g) ≡
∫

d2χ

|χ|4 f̄ g. (6.58)

Since the eigenfunction Ξh,h̃ is a linear combination of theN = 0 eigenfunctions Ψh,h̃ (6.27),

we can express the N = 2 inner product via the non-supersymmetric one:

〈Ξh,h̃, |χ|2∆〉 =
∆4

hh̃

((

Ψh,h̃, |χ|2∆+2
)

+
(

Ψh+1,h̃+1, |χ|2∆+2
)

+
(

Ψh+1,h̃, |χ|2∆+2
)

+
(

Ψh,h̃+1, |χ|2∆+2
))

. (6.59)
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Now we can apply the results of [6] about the N = 0 inner product:

(

Ψh,h̃, |χ|2∆
)

=
π2∆

(2−∆)(1−∆)2
kN=0

(

h, h̃
)

=
π2∆

1−∆

k
(

h, h̃
)

(−1+h+∆)
(

−1+h̃+∆
) , (6.60)

where k
(

h, h̃
)

is the eigenvalue of the N = 2 kernel (6.38). Explicitly, it is:

(

Ψh,h̃, |χ|2∆
)

= −π2Γ
2 (1−∆)

Γ2 (∆)

Γ (−h+∆)Γ
(

h̃+∆− 1
)

Γ (2− h−∆)Γ
(

h̃−∆+ 1
) . (6.61)

Plugging this in the sum (6.59), we finally get:

〈Ξh,h̃,F0〉 =
4π2∆

1−∆
k
(

h, h̃
)

. (6.62)

As in all versions of the SYK model we’ve been discussing so far, the inner product with

the zero-rung four-point function is proportional to the eigenvalue of the kernel.

Using this answer in (6.55), together with the norm of an eigenfunction (6.53), we

write the full four-point function as follows:

F (χ, χ̄) = − 2

π

∆

1−∆

∑

l∈Z

∫ ∞

0

ds

2π

1

l2 + s2

k
(

h, h̃
)

1− k
(

h, h̃
)Ξh,h̃ (χ, χ̄) . (6.63)

The symmetry of the eigenfunctions under
(

h, h̃
)

↔
(

−h,−h̃
)

allows us to put it in

the form:

F (χ, χ̄) =
1

4π

∆

1−∆

∑

l∈Z

∫ ∞

−∞

ds

2π

k
(

h, h̃
)

1− k
(

h, h̃
)

sinπh

cosπh̃
ϕh (χ)ϕh̃ (χ̄) . (6.64)

From this, we can find the central charge of the model. On general grounds, the central

charge of an N = 2 two-dimensional CFT of N superfields and with a superpotential of

degree q is [12]:

c =
N
∑

i=1

6

(

1

2
− 1

q

)

= 3N (1− 2∆) . (6.65)

Now let us confirm this central charge from the four-point function (6.64). As was found

in [6], the stress tensor contributes to the χ2 term of the four-point function, so this term

depends on the central charge:

F = · · ·+ N∆2

2c
χ2 +O

(

χ2
)

. (6.66)

The stress tensor lives in the supercurrent multiplet, which is a (1, 0) primary. At
(

h, h̃
)

= (1, 0), or equivalently at (l, s) = (1, i) the integrand in (6.63) has a pole. Taking
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h = 1 + h̃ = 1 + ε and expanding everything in ε, we find:

ϕε (χ̄) =
2

ε
+O(ε), (6.67)

ϕ1+ε (χ) = χ+
χ2

3
+O(ε), (6.68)

k (1 + ε, ε) = 1 +
1− 2∆

∆(1−∆)
ε+O

(

ε2
)

. (6.69)

(The expressions for ϕh can be derived e.g. from (C.5).) Bringing everything together, we

find the central charge:

c = 3N (1− 2∆) . (6.70)

This is exactly twice the central charge of the N = 1 model found in [6]:

cN=2 = 2cN=1. (6.71)

6.6 Retarded kernel in two dimensions

We can now generalize the analysis of section 5 to the two-dimensional system, to find

the chaos exponent and identify the modes contributing to it. To do that, we construct

the kernel out of retarded and left-right propagators (see figure 7). We proceed in the

same fashion as before, doing an analytical continuation and putting one rail of the ladder

diagram at τl = it and the other at τr = it + π. We also transform the coordinates from
(

z, θ, θ̃
)

to the periodic
(

w, ϑ, ϑ̃
)

, where:

w = x+ iτ = x− t, w̄ = x− iτ = x+ t. (6.72)

The coordinate transformation differs for the left and the right rails:

z1 = ew1 z2 = ew2+iπ = −ew2 ,

θ1 = e
w1
2 ϑ1, (left rail) θ2 = e

w2+iπ

2 = ie
w2
2 ϑ2, (right rail)

θ̃1 = e
w1
2 ϑ̃1, θ̃2 = e

w2−iπ

2 = −ie
w2
2 ϑ̃2.

(6.73)

To make the expressions more symmetrical, we take a different transformation for the

anti-holomorphic coordinates:

z̄1 = e−w̄1 z2 = e−w̄2+iπ = −e−w̄2 ,

θ̄1 = e−
w̄1
2 ϑ̄1, (left rail) θ̄2 = e

−w̄2+iπ

2 = ie−
w̄2
2 ϑ̄2, (right rail)

¯̃
θ1 = e−

w̄1
2
¯̃
ϑ1,

¯̃
θ2 = e−

w̄2−iπ

2 = −ie−
w̄2
2
¯̃
ϑ2.

(6.74)

Then the supersymmetry-invariant distance between two points belonging to the same

rail is:

〈11′〉ll = e
w1+w

1′

2

(

2 sinh
w1 − w1′

2
− 2ϑ̃1ϑ1′ − ϑ1ϑ̃1′ − ϑ1′ ϑ̃1′

)

, (6.75)

and the invariant distance between the rails is:

〈12〉lr = e
w1+w2

2

(

2 cosh
w1 − w2

2
− 2iϑ̃1ϑ2 − e

w1−w2
2 ϑ1ϑ̃1 − e

w2−w1
2 ϑ2ϑ̃2

)

. (6.76)
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For the anti-holomorphic invariants, the exponents in (6.75), (6.76) are negative:

〈1̄1̄′〉ll = e−
w̄1+w̄

1′

2

(

2 sinh
w̄1 − w̄1′

2
− 2

¯̃
ϑ1ϑ̄1′ − ϑ̄1

¯̃
ϑ1′ − ϑ̄1′

¯̃
ϑ1′

)

, (6.77)

〈1̄2̄〉lr = e−
w̄1+w̄2

2

(

2 cosh
w̄1 − w̄2

2
− 2i

¯̃
ϑ1ϑ̄2 − e

w̄1−w̄2
2 ϑ̄1

¯̃
ϑ1 − e

w̄2−w̄1
2 ϑ̄2

¯̃
ϑ2

)

. (6.78)

Knowing these supersymmetric invariants, we can construct retarded propagators. To

do that, we once again add an infinitesimal imaginary part to t,

t → t± iǫ, (6.79)

and compute the difference:

GR

(

1|1′
)

= Θ(t1 − t1′) (G (w1 + iǫ, w̄1 − iǫ|w1′ , w̄1′)− G (w1 − iǫ, w̄1 + iǫ|w1′ , w̄1′)) ,

(6.80)

where we have omitted the Grassmann coordinates for brevity. Taking into account the

Jacobian of the transformation, we find:

GR

(

1|1′
)

= Θ(t11′ − |x11′ |)
−2ib sinπ∆

〈11′〉∆ll 〈1̄1̄′〉∆ll
e

∆

2
(w1−w̄1)e

∆

2
(w1′−w̄1′ ). (6.81)

The left-right propagator is simply:

Glr (1|2) =
b

〈12〉∆lr〈1̄2̄〉∆lr
e

∆

2
(w1−w̄1)e

∆

2
(w2−w̄2). (6.82)

From these propagators, we can build the two-dimensional retarded kernel:

KR

(

1, 2|1′, 2′
)

=
1

4
J (q̂ − 1)GR

(

1′|1
)

GR

(

2|2′
)

G q̂−2
lr

(

1′|2′
)

× e
1

2
(w1′−w̄1′ )e

1

2
(w2′−w̄2′ )d2w1′d

2w2′dϑ̃1′d
¯̃
ϑ1′dϑ2′dϑ̄2′ . (6.83)

Using the explicit form of the propagators, we find for the kernel:

KR

(

1,2|1′,2′
)

=sin2π∆
(

Jbq̂
)

(q̂−1)e−∆(t1+t2)e∆(t1′+t2′ )·
Θ(t11′−|x11′ |)Θ(t22′−|x22′ |)

〈1′1〉∆ll 〈1̄′1̄〉∆ll 〈22′〉∆ll 〈2̄2̄′〉∆ll 〈1′2′〉1−2∆
lr 〈1̄′2̄′〉1−2∆

lr

d2w1′d
2w2′dϑ̃1′d

¯̃
ϑ1′dϑ2′dϑ̄2′ .

(6.84)

This kernel is diagonalized by three-point functions. We take the coordinate of one of the

operator insertions to infinity, and write the eigenfunction of (6.84) as:

fR (1, 2,∞) = e−∆(w1+w2)e∆(w̄1+w̄2) 1

〈12〉∆−h
lr 〈1̄2̄〉∆−h̃

lr

. (6.85)

To see if this three-point function grows with time, consider its bosonic part at w1 = w2.

Then, using (6.76), we reduce the retarded three-point function to:

fR ∼ e(h−h̃)xe−(h+h̃)t. (6.86)
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We want to find a mode which exhibits exponential growth in time, and no growth in space.

Therefore, we restrict:

h− h̃ ∈ iR, (6.87)

and look for a mode with negative h + h̃ and the eigenvalue of the retarded kernel equal

to one.

Fixing the variables in (6.85) and (6.84):

1 =
(

0, ϑ1 = ϑ̄1 = 0
)

, 2 =
(

0, ϑ̃2 =
¯̃
ϑ2 = 0

)

, (6.88)

we write the eigenvalue of the kernel as an integral:

kR

(

h, h̃
)

=

∫

K
(

1, 2|1′, 2′
)

fR
(

1′, 2′,∞
)

. (6.89)

In this expression, the left- and right-moving modes are completely decoupled. We can

integrate over odd variables and then use the same integral as for the one-dimensional

kernel (5.14) to find:

kR

(

h, h̃
)

= − Γ2 (1−∆)

Γ (∆ + 1)Γ (∆− 1)

Γ (∆− h) Γ
(

∆− h̃
)

Γ (1−∆− h) Γ
(

1−∆− h̃
) , (6.90)

which exactly coincides with the kernel of the N = 1 two-dimensional model.

If the difference h− h̃ is imaginary, this eigenvalue of the kernel is real. Therefore the

kR = 1 condition has a continuous family of solutions for different h, h̃. As has already

been discussed in [6], the chaos exponents found in this model are below ≈ 0.6, thus not

saturating the maximal chaos bound.

7 Conclusion

In this paper, we present a technical computation of the four-point function of an SYK-

inspired model with N = 2 symmetry. We follow the outline of [11], finding first the eigen-

basis of the superconformal Casimir and then the action of the SYK kernel on the eigenfunc-

tions. We find the two-particle Casimir of the N = 2 superconformal group as a differential

operator (4.9) and then compute its eigenfunctions, first directly solving the eigenvalue

equation and then using the shadow representation. Then we expand the four-point func-

tion of the N = 2 SYK model in this basis, with the result being (4.106). We can also

write the four-point function as a sum over the positive solutions to the k(h) = 1 equation.

We find the N = 2 SYK model very similar to the non-supersymmetric model with

complex fermions. The eigenfunctions of the two-particle Casimir are linear combinations

of the N = 0 eigenfunctions, and the supergroup can be used to make the four-point

function depend only on the bosonic coordinates. The N = 2 eigenfunctions with the

conformally invariant inner product do not form a Hilbert space, and the norm is positive

semi-definite in that case. Nevertheless, we can expand the zero-rung four-point function

in the eigenfunctions of the Casimir and use this expansion to find the full four-point func-

tion. This four-point function has a pole at h = 1, which corresponds to the supercharge
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multiplet, containing the R-charge, the stress tensor and two supercharges. To resolve this

pole, we would have to consider the model away from the conformal limit, which is beyond

the scope of this paper. A discussion of such a resolution can be found in [5]. We also find

that the h = −1 mode is maximally chaotic in the out-of-time order four-point function,

just as in the non-supersymmetric case.

Since the two-dimensional N = 2 superalgebra is a direct sum of holomorphic and anti-

holomorphic copies of one-dimensional su(1, 1|1) superalgebras, our results can be easily

generalized to the two-dimensional space. We consider a model containing chiral superfields

with random holomorphic superpotential and find the expansion of the four-point function

in terms of eigenfunctions of the two-dimensional Casimir (6.63). We also check that

the equation k(h) = 1 is satisfied for the supercurrent multiplet with (h, h̃) = (1, 0). The

retarded kernel for this model exactly coincides with the one for the N = 1 two-dimensional

SYK model, which has been found in [6] to be non-maximally chaotic. We also find the

central charge of the N = 2 model to be twice that of an N = 1 model.

There are numerous broad questions one can ask about the N = 2 SYK model. They

include the existence of true RG fixed points outside the large N limit; the realization of

this model without random potential in spirit of [8]; a possible holographic dual or further

extension to higher dimensions. We hope to address some of these questions elsewhere.

A N = 2 Casimir

The generators of the SU(1, 1|1) superconformal algebra can be presented in the differential

form:

L0 = −τ∂τ −
1

2
θ∂θ −

1

2
θ̄∂θ̄ −∆, (A.1)

L1 = −∂τ , (A.2)

L−1 = −τ2∂τ − τθ∂θ − τ θ̄∂θ̄ − 2τ∆− Q

2
θθ̄, (A.3)

J0 = −θ∂θ + θ̄∂θ̄ +Q, (A.4)

G+1/2 = τ∂θ̄ − τθ∂τ − (2∆ +Q/2) θ − θθ̄∂θ̄, (A.5)

G−1/2 = ∂θ̄ − θ∂τ , (A.6)

Ḡ+1/2 = τ∂θ − τ θ̄∂τ − (2∆−Q/2) θ̄ + θθ̄∂θ, (A.7)

Ḡ−1/2 = ∂θ − θ̄∂τ . (A.8)

A one-particle quadratic Casimir then is:

C2 = L0L0 −
1

4
J0J0 − L1L−1 +

1

2
G+1/2Ḡ−1/2 +

1

2
Ḡ+1/2G−1/2. (A.9)

It commutes with all the other generators of the algebra. It acts on bosonic functions as:

C2f(τ) =

(

∆2 − Q2

4

)

f(τ), (A.10)
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and on fermionic coordinates as:

C2θ =

(

∆2 − Q2

4
+

Q

4

)

θ, (A.11)

C2θ̄ =

(

∆2 − Q2

4
− Q

4

)

θ̄. (A.12)

A two-particle operator is defined as a sum of one-particle operators:

L2p
0 = L

(1)
0 + L

(2)
0 , (A.13)

and so on. The two-particle Casimir is the same expression (A.9), written in terms of

two-particle operators:

C2p = L2p
0 L2p

0 − 1

4
J2p
0 J2p

0 − L2p
1 L2p

−1 +
1

2
G2p

+1/2Ḡ
2p
−1/2 +

1

2
Ḡ2p

+1/2G
2p
−1/2. (A.14)

The Casimir acts on chiral-antichiral correlation functions, so we take the R-charge to

be zero:

Q = 0. (A.15)

Then the eigenvalue of one-particle Casimir is ∆2. The two-particle Casimir acts on

the functions of the cross-ratio χ, conjugated with a two-point function:

C2p

(

sgn τ12
|〈12〉|2∆ f (χ)

)

=
sgn τ12
|〈12〉|2∆C (χ) f (χ) , (A.16)

where C is a second-order differential operator:

C = χ2 (1− χ) ∂2
χ + χ (1− χ) ∂χ. (A.17)

B N = 0 SYK with complex fermions

Here we list the eigenfunctions of the N = 0 Casimir. In terms of the cross-ratio, the

Casimir reads:

CN=0 = χ2 (1− χ) ∂2
χ − χ2∂χ. (B.1)

The eigenvalues of the Casimir are h (h− 1) and the eigenfunctions Fh, F1−h:

Fh (χ) ≡
Γ2(h)

Γ(2h)
χh

2F1 (h, h; 2h;χ) , χ < 1, (B.2)

CN=0Fh = h (h− 1)Fh. (B.3)

The eigenfunctions of the Casimir can be T -even and T -odd. The T -even eigenfunc-

tions can be either anti-symmetric or symmetric under exchange of fermions. Explicitly,

they are:

ΨA
h (χ) =



















2

cosπh

(

cos2
πh

2
Fh(χ)− sin2

πh

2
F1−h(χ)

)

, χ < 1,

2√
π
Γ

(

h

2

)

Γ

(

1− h

2

)

2F1

(

h

2
,
1− h

2
;
1

2
;
(2− χ)2

χ2

)

, χ > 1.

(B.4)
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and:

ΨS
h (χ)=



















2

cosπh

(

−sin2
πh

2
Fh(χ)+cos2

πh

2
F1−h(χ)

)

, χ< 1,

− 4√
π

(

2−χ

χ

)

Γ

(

1−h

2

)

Γ

(

1+h

2

)

2F1

(

1−h

2
,
1+h

2
;
3

2
;
(2−χ)2

χ2

)

, χ> 1.

(B.5)

The T -breaking eigenfunctions have mixed symmetry: they are odd under exchange

of one pair of fermions and odd under exchange of the other. They can also be written in

terms of Fh:

ΨAS
h (χ) =







1

π
sin2

πh

2
tanπh (Fh (χ)− F1−h (χ)) , χ < 1,

0, χ > 1.
(B.6)

ΨSA
h (χ) =







1

π
cos2

πh

2
tanπh sgn (χ) (Fh (χ)− F1−h (χ)) , χ < 1,

0, χ > 1.
(B.7)

The T -even eigenfunctions have bound states. The anti-symmetric eigenfunction is

normalizable at even positive h, and the symmetric one is normalizable at odd positive h,

with the spectrum of course being symmetric under h ↔ 1− h.

The eigenvalues of the kernel in non-supersymmetric model are also of two types:

kAN=0 (h,∆) =
1

π

Γ (−2∆)

Γ (2∆− 2)
Γ (2∆− h) Γ (2∆ + h− 1) (sinπh− sin 2π∆) . (B.8)

kSN=0 (h,∆) =
1

π

Γ (1− 2∆)

Γ (2∆− 1)
Γ (2∆− h) Γ (2∆ + h− 1) (sinπh+ sin 2π∆) . (B.9)

C Eigenfunctions of the N = 0 and N = 2 superconformal Casimirs

Here we show the relation between eigenfunctions:

ϕh (χ) = Fh (χ)− Fh+1 (χ) . (C.1)

Given the relation between the Casimir operators:

CN=2 = CN=0 + χ∂χ, (C.2)

we find that the N = 2 Casimir acts on the combination (C.1) as:

(CN=0+χ∂χ)(Fh−Fh+1)=h(h−1)Fh−h(h+1)Fh+1+χ∂χ (Fh−Fh+1)=h2 (Fh−Fh+1) .

(C.3)

This relies on the following first-order differential relation:

χ∂χ (Fh − Fh+1) = h (Fh + Fh+1) . (C.4)

Representing Fh (χ) as a series for χ < 1,

Fh (χ) =
∞
∑

k=0

Γ2 (h+ k)

Γ (2h+ k) Γ (k + 1)
χh+k, (C.5)

we can show that (C.4) indeed holds.
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D SU(1, 1|1)-invariant norm

In this section we find the SU(1, 1|1)-invariant measure on four-point functions in terms of

the χ cross-ratio. We start with the chiral measure:

〈f, g〉 =
∫

dτ1dθ̄1dτ2dθ2
〈12〉

dτ3dθ̄3dτ4dθ4
〈34〉 f∗g =

∫

dµf∗g, (D.1)

for f, g satisfying (anti)chirality conditions:

D1,3f = D̄2,4f = D1,3g = D̄2,4g. (D.2)

With the SU(1, 1|1) group, we can apply a superconformal transformation to all four su-

percoordinates. The infinitesimal generators of a generic transformation are:

V1 = L
(1)
0 + L

(2)
0 + L

(3)
0 + L

(4)
0 , (D.3)

V2 = L
(1)
1 + L

(2)
1 + L

(3)
1 + L

(4)
1 , (D.4)

· · ·
V7 = Ḡ

(1)
−1/2 + Ḡ

(2)
−1/2 + Ḡ

(3)
−1/2 + Ḡ

(4)
−1/2, (D.5)

the generators being listed in the appendix A. With seven generators, we can fix seven

coordinates τ2,3,4, θ̄1,3, θ2,4, leaving only τ1 = χ. (The final answer won’t depend on θ̄2,4 or

θ1,3, so we are not fixing those.) We wish to find the invariant measure as a function of χ.

In other words, the group action allows us to define a map:

ϕ : R4|4 → R, (D.6)

and we are looking for the invariant measure dµ (χ) on R which is a pushforward of the

measure dµ on R
4|4. This measure can be found as a contraction of the infinitesimal

generators Vi with the original measure dµ:

dµ (χ) = ıV1
ıV2

. . . ıV7
| ∂
∂τ1

=0 dµ, (D.7)

with the generator of transformation along τ1 not acting, so that we can keep the τ1
coordinate. This contraction is given by a superdeterminant:

ıV1
ıV2

. . . ıV7
| ∂
∂τ1

=0 dµ

∣

∣

∣

∣

θ̄1,3=θ2,4=0

=
1

τ1−τ2

1

τ3−τ4
Ber

























−1 −1 −1

−τ2 −τ3 −τ4
−τ22 −τ23 −τ24
0 −τ3θ3 0 0 0 τ1 τ3
0 −θ3 0 0 0 1 1

−τ2θ̄2 0 −τ4θ̄4 τ2 τ4 0 0

−θ̄2 0 −θ̄4 1 1 0 0

























,

(D.8)

which gives:

dµ(τ1, τ2, τ3, τ4)=
(τ2−τ3)(τ3−τ4)(τ2−τ4)

(τ2−τ4)(τ1−τ3)(τ1−τ2)(τ3−τ4)
dτ1=

τ2−τ3
(τ1−τ3)(τ1−τ2)

dτ1. (D.9)
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Fixing further the even coordinates to be:

τ1 = χ, τ2 = 0, τ3 = 1, τ4 = ∞, (D.10)

we find:

dµ (χ) =
dχ

χ (1− χ)
. (D.11)

E Normalization of bound states

In this appendix we prove the relation (4.81). To do that, we first consider the norm of

non-supersymmetric SYK model. Let’s take the expression:

〈CN=0Ψ
A
h′ ,ΨA

h 〉0 − 〈ΨA
h′ , CN=0Ψ

A
h 〉0. (E.1)

Zero subscript signifies the N = 0 norm:

〈f, g〉0 =
∫ ∞

−∞

dχ

χ2
f∗g. (E.2)

For distinct h, h′ this expression should be zero to ensure hermiticity; however if we take

h, h′,

h′ = h+ ǫ, (E.3)

it should be proportional to ǫ:

〈CN=0Ψ
A
h′ ,ΨA

h 〉0 − 〈ΨA
h′ , CN=0Ψ

A
h 〉0 = ǫ (2h− 1) 〈ΨA

h ,Ψ
A
h 〉0. (E.4)

On the other hand, using the explicit form of the Casimir (4.12) and the norm (E.2),

we find:

〈CN=0Ψ
A
h′ ,ΨA

h 〉0 − 〈ΨA
h′ , CN=0Ψ

A
h 〉0 = ΨA

h′ (1− χ) ∂χΨ
A
h −ΨA

h (1− χ) ∂χΨ
A
h′

∣

∣

∞

−∞
. (E.5)

The eigenfunction ΨA
h (χ) behaves as a logarithm at infinity:

χ → ∞ : ΨA
h ∼ a(h) + b(h) logχ+O

(

1

χ

)

, (E.6)

which implies that:

ΨA
h′∂χΨ

A
h −ΨA

h ∂χΨ
A
h′

∣

∣

∞

−∞
= 0. (E.7)

Using formula for the norm of an N = 0 bound state in the right-hand side of (E.4),

〈ΨA
h ,Ψ

A
h 〉0 =

4π2

|2h− 1| , (E.8)

we find the relation:

4π2ǫ · sgn
(

h− 1

2

)

= ΨA
hχ∂χΨ

A
h′ −ΨA

h′χ∂χΨ
A
h

∣

∣

∞

−∞
, h′ = h+ ǫ. (E.9)
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Luckily, this relation allows us to find the norm of the N = 2 eigenstates as well. Indeed,

consider two N = 2 eigenfunctions for close values of h. By the same token as before,

we have:

〈Cξh′ , ξh〉 − 〈ξh′ , Cξh〉 = 2hǫ〈ξh, ξh〉 = ξh′χ∂χξh − ξhχ∂χξh′ |∞−∞ , h′ = h+ ǫ. (E.10)

Since the N = 2 eigenfunction is a linear combination of the non-supersymmetric ones,

ξh = h
(

ΨA
h −ΨS

h+1

)

, (E.11)

and the non-supersymmetric functions of different types are orthogonal,

〈ΨA
h ,Ψ

S
h′〉0 ≡ 0, (E.12)

we can rewrite (E.10) as:

2hǫ〈ξh, ξh〉=h2
(

ΨA
h′χ∂χΨ

A
h −ΨA

hχ∂χΨ
A
h′+ΨS

h′+1χ∂χΨ
S
h+1−ΨS

h+1χ∂χΨ
S
h′+1

)∣

∣

∞

−∞
. (E.13)

Using the relation we have found in the non-supersymmetric model (E.9) (and an analogous

relation for the ΨS
h eigenfunctions), we finally find:

〈ξh, ξh〉 = 4π2|h|. (E.14)

F Eigenvalues of the kernel

Let’s compute the integral:

∫

KfA (1,2,∞)=
tanπ∆

4π

∫

dτ1dτ2dθ̄1dθ2
1

|〈12〉|1−2∆−h

sgn(τ ′1−τ2)

|〈1′2〉|2∆
sgn(τ1−τ ′2)

|〈12′〉|2∆ , (F.1)

where we take three-point function in the form:

fA (1, 2,∞) =
sgn (τ1 − τ2)

|〈12〉|2∆−h
. (F.2)

We can fix the odd coordinates of the points 1′, 2′ to be (θ′1, 0), (0, θ̄2) and then take

the Grassmann integral. The result is:

∫

KfA (1,2,0)= 2(−1+h+2∆)
tanπ∆

4π

∫

dτ1dτ2
sgn(τ2−τ1)

|τ1−τ2|2−2∆−h

sgn(τ ′1−τ2)

|τ ′1−τ2|2∆
sgn(τ1−τ ′2)

|τ1−τ ′2|2∆
.

(F.3)

Changing variables:

τ1 =
(

τ ′2 − τ ′1
)

v + τ ′1, (F.4)

τ2 =
(

τ ′2 − τ ′1
)

u+ τ ′1, (F.5)

we see that the anti-symmetric three-point function is indeed an eigenvector of the kernel:

∫

KfA (1, 2, 0) =
sgn (τ ′1 − τ ′2)

|τ ′1 − τ ′2|2∆−h
· kA, (F.6)
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where the eigenvalue is:

kA = 2 (−1 + h+ 2∆)
tanπ∆

4π

∫

dudv
sgn (u− v) sgn (1− v) sgnu

|u− v|2−2∆−h|u|2∆|v − 1|2∆ . (F.7)

Changing variables further:

u = vw, (F.8)

we see that the integral splits into two of the same type:

kA = −2 (−1 + h+ 2∆)
tanπ∆

4π

∫

dv
sgn v sgn (v − 1)

|v|1−h|v − 1|2∆
∫

dw
sgnw sgn (w − 1)

|w|2∆|w − 1|2−2∆−h
. (F.9)

Using the integral definition of the beta-function, we find:

∫

dt
sgn tsgn(t−1)

|t|a|t−1|b =B (1−a,−1+a+b)−B (1−a,1−b)+B (1−b,−1+a+b) . (F.10)

Using various identities, we arrive at the answer (4.48). The symmetric eigenvalue is

recovered from h ↔ −h symmetry:

kS (h) = kA (−h) . (F.11)

G Zero-rung propagator

In this appendix, we find the inner product of an eigenfunction with a zero-rung

propagator:

〈ξh(χ), χ2∆〉. (G.1)

As before, it is instructive to consider the same problem in the non-supersymmetric model.

Let’s denote the corresponding product by n0 (h,∆):

nA
0 (h,∆) ≡ 〈ΨA

h , χ
2∆〉0 =

1

2
α0k

A
0 (h), α0 =

2π∆

(1−∆) (1− 2∆)
cotπ∆. (G.2)

Applying the Casimir to the functions inside the product and using the hermiticity, we find:

〈CN=0Ψ
A
h , χ

2∆〉0 = h(h− 1)〈ΨA
h , χ

2∆〉0 = 〈ΨA
h , CN=0χ

2∆〉0
= 2∆(2∆− 1) 〈ΨA

h , χ
2∆〉0 − 4∆2〈ΨA

h , χ
2∆+1〉0. (G.3)

This gives us the following identity:

nA
0

(

h,∆+
1

2

)

=
(2∆− h) (2∆ + h− 1)

4∆2
nA
0 (h,∆) . (G.4)

Now we can follow the same line of reasoning for the N = 2 eigenfunctions. Acting with

the Casimir on the inner product (G.1), we get:

〈Cξh, χ2∆〉 = h2〈ξh, χ2∆〉 = 〈ξh, Cχ2∆〉 = 4∆2〈ξh, χ2∆+1〉0. (G.5)
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Using again the relation (4.38) between N = 0 and N = 2 eigenfunctions, we find:

〈ξh, χ2∆〉 = 4∆2

h

(

nA
0

(

h,∆+
1

2

)

− nS
0

(

h+ 1,∆+
1

2

))

. (G.6)

We need two more identities: the relation between symmetric and antisymmetric eigenval-

ues (following from (B.8), (B.9),

kS0
(

h+ 1,∆+ 1
2

)

kA0
(

h,∆+ 1
2

) =
2∆+ h

2∆− h
, (G.7)

and the relation between N = 0 and N = 2 eigenvalues (4.52):

kA (h,∆) =
2∆+ h− 1

2∆− 2
kA0 (h,∆) . (G.8)

Bringing together (G.4), (G.6), (G.7), (G.8), we finally find:

〈ξh, χ2∆〉 = 1

2
αkA (h) . (G.9)
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