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1 Introduction

In light of the lack of clear signals for new physics at the Large Hadron Collider (LHC),

alternatives to the most popular extensions of the Standard Model (SM) have experienced

a recent revival. Asymptotic safety [1, 2] is one of the ideas that have been brought back,

to be adapted, for example, to the framework of four-dimensional gauge theories [3]. In the

context of asymptotic safety, very recently renewed attention has been paid [4–7] to the

large-NF expansion of the gauge coupling beta function, which was calculated in closed

analytical form a few decades ago [8, 9] (see also [10]). Assuming the presence of NF

vector-like heavy fermions charged under an abelian or non-abelian group with coupling

α, corrections to the gauge boson propagator by chain-diagrams with an ever increasing

number of vacuum-polarization bubbles can be systematically collected in a power series

of K = αNF /π. At the leading order in 1/NF the momentum-independent series admits

an analytical limit in the MS scheme, with a finite radius of convergence, thus providing

a closed expression for the beta function when NF →∞ (see [11] for a review).

The fact that the analytical form of the gauge beta function constructed in this way

presents a negative pole at K = 15/2 has been used in [4, 11] to remove the Landau pole

in the running of the SM U(1) gauge coupling, and thus give rise to an asymptotically

safe extension characterized by an interacting UV fixed point. On the other hand, as

is mentioned in passing in [4], but not pursued, one also expects an impact on the beta

function of eventually present Yukawa couplings, as these will be affected by the same

chain-diagram NF fermion contributions to the gauge boson propagator.

In particular, since one observes [7, 8] that the anomalous dimension of the fermion

mass presents a pole in the same position as for the U(1) gauge beta function, because they

are similarly affected by the NF resummation, one should also expect the presence of a pole

at K = 15/2 for the Yukawa coupling beta function, since the same chain contributions

appear in the renormalization of the Yukawa vertex. Note, however, that it is important
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to map correctly the analytical behavior of the corresponding beta function close to the

singularity to actually determine whether the full theory could be considered safe around

the gauge coupling fixed point.

In this paper we fill a gap in the relative literature and calculate the beta function of

a generic Yukawa coupling at order 1/NF in the presence of NF heavy vector-like pairs of

fermions, all of which are charged under the gauge group, but of which only a small subset

couples to the scalar field. We provide a closed form solution similar to the one derived for

the gauge couplings in [8, 9] and illustrate the effects of this calculation on the running of

the SM and new physics Yukawa couplings, which remain asymptotically free for a broad

range of low-scale boundary conditions.

We point out that this result could have interesting phenomenological consequences,

in particular in scenarios where sizable Yukawa couplings between the SM and an extra

sector are required to accommodate some experimental anomalies. (Recent cases of this

type include, e.g., loop-induced explanations of the LHCb flavor anomalies [12–16], or some

of the proposed explanations for the muon g−2 discrepancy [17, 18].) In phenomenological

models of this kind the fact that new Yukawa couplings usually become non-perturbative

for scales as low as few hundred TeV is often considered a symptom of pathology. This does

not need to be the case if the renormalization group (RG) evolution of the new couplings

remains under control. It is important to be aware, however, that the full asymptotic safety

of the theory is not yet at this level guaranteed, as one should then proceed to calculate

the resummed contributions to scalar quartic coupling.

The structure of the paper is as follows. In section 2 we outline the calculation tech-

niques and obtain the Yukawa coupling beta function in the limit of large NF . In section 3

we discuss the properties of the solution and show its impact on the running of the Yukawa

couplings. We summarize our findings in section 4.

2 The large-NF expansion of beta functions

We start this section by briefly reviewing the form of the large-NF expansion of the U(1)

gauge beta function, which was first derived in [8]. This allows us to set the tone for the

Yukawa coupling calculation and introduce the notation we use throughout the paper.

2.1 Abelian gauge coupling

Consider a generic quantum field theory with an abelian gauge symmetry U(1), whose

interaction strength is given by α1 = g21/4π, and assume that the theory contains NF

vector-like fermions, whose charge under the gauge symmetry is given by q. It is formally

possible to expand the perturbation theory in the parameter K = α1q
2NF /π, which, for

the remainder of this section, will play the role of a rescaled coupling constant kept fixed

in the limit of large NF .

In d = 4− ε space-time dimensions the renormalized coupling constant is then related

to the bare coupling constant K0 by K = Z3 µ
−εK0, where µ is the renormalization scale.

The renormalization constant Z3, can then be formally expanded at all orders in 1/NF as

Z3 = 1− 2

3

K

ε
− 1

NF

∞∑
n=2

Kn
n−1∑
i=0

B
(n)
i

εn−i
− 1

N2
F

∞∑
n=3

Kn
n−1∑
i=0

C
(n)
i

εn−i
+ . . . , (2.1)
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Figure 1. An example of loop diagram contributions to the large-NF expansion of the gauge boson

vacuum polarization at order 1/NF . Each bubble produces a term proportional to K ∼ α1NF .

in terms of appropriate coefficients B
(n)
i , C

(n)
i . Ideally, for sufficiently large NF one just

needs to retain the first order in 1/NF .

It is straightforward to show [8] that the gauge beta function equivalently admits the

expansion

β1(K) ≡ d logK

d log µ
=

2

3
K +

1

NF

∞∑
n=2

nKnB
(n)
n−1 + . . .

=
2

3
K

(
1 +

∞∑
i=1

Fi(K)

N i
F

)
, (2.2)

at all orders in perturbation theory. Again, in the limit of large NF , one would just

like to retain the dominant contribution in 1/NF , which is entirely parameterized by the

function F1(K).

The function F1(K) emerges from resummation of the infinite number of loop contri-

butions to the gauge boson self-energy, an example of which is depicted in figure 1. Refer-

ence [8] first showed that this admits a closed analytical form. For Q.E.D. it is given by

F1(K) =

∫ K/3

0
dx

(1 + x) (2x− 1)2 (2x− 3)3 sin (πx)3 Γ (x− 1)2 Γ (−2x)

(x− 2)π3
. (2.3)

Closed forms for the 1/NF term of the large-NF expansion have also been calculated for

the beta function of Q.C.D. [9], and for the renormalization group γ function in the abelian

and non-abelian case [8, 10].1

It is important to point out that each fermion loop introduces an enhancement factor

NF , so that the validity of the perturbation theory expansion in K ∼ α1NF can be called

into question and the convergence of the infinite series of loop-diagrams must be checked.

It was pointed out in [11] that the 1/NF expansion of eq. (2.2) is under control if NF ≥ 16,

as order by order in K the term in 1/Nn+1
F becomes suppressed with respect to the corre-

sponding term in 1/Nn
F . This requirement provides a lower bound on the allowed number

of vector-like fermions.

1The anomalous dimension of the 3-point vertex, in a theory with U(1)-charged fermions and a Yukawa

interaction, was calculated in finite form at orders 1/NF , 1/N2
F in [19–21] using the self-consistency technique

of critical exponents.
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Figure 2. Dominant contributions to the Yukawa vertex in the limit of large NF .

2.2 Yukawa coupling

We now extend the gauge theory introduced in section 2.1 by a generic Yukawa interaction

between a scalar field φ and a pair of fermions ψL, ψR:

LYuk = −y ψ̄L φψR + h.c. (2.4)

All the participating fields can be charged under the U(1), and we denote the respective

charges as qS , qL, and qR. We also define αy = y2/4π. Fermions ψL, ψR may either belong

to the set of NF vector-like fermions, or they may simply represent additional degrees of

freedom, for example quarks and leptons of the Standard Model.

From the above setting one can easily see that the self-energy corrections to the scalar

field are not enhanced by bubbles of NF fermions, unlike the vacuum polarization of the

gauge boson, as only one pair of fermions couples to the scalar field. The latter assumption

thus considerably simplifies the calculation of the Yukawa beta function and we adopt

it throughout this paper. Whether relaxing this assumption may still lead to a closed

analytical form for the Yukawa beta function remains a non-trivial and open question, and

we reserve it for future investigation.

In a fashion analogous to eq. (2.2), one can formally expand the Yukawa beta

function as

βy(K) ≡ d lnαy
d lnµ

=
∞∑
i=1

Yi(K)

N i
F

, (2.5)

where we neglect to explicitly write additional finite terms that at one loop include the

standard fermion-scalar-fermion vertex correction and, if relevant, contributions from other

gauge groups. Our goal is to derive a closed analytical form for the first-order coefficient

Y1(K) of the expansion (2.5). As pertains to higher orders in 1/NF , the K2 term of Y2(K)

was derived in ref. [22]. We have checked that for NF ≥ 16 it is much smaller than the

K2 term of Y1(K), see the end of section 2.3 for its explicit form. We assume here that all

other higher-order terms are negligible for NF ≥ 16.

In order to derive the gauge contribution to βy, one needs to calculate the loop diagrams

shown in figure 2. We adopt in this paper the MS renormalization scheme. We also choose

the Feynman gauge for the gauge boson propagator, as in the MS scheme the beta functions

are gauge-parameter independent [23].
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In terms of renormalized quantities, the Lagrangian of the theory is given by

L ⊃ iZ2Lψ̄L/∂ψL + iZ2Rψ̄R /∂ψR +
1

2
Zφ(∂µφ)2 − y Z1ψ̄LφψR + h.c. , (2.6)

where we neglect to explicitly write the mass terms. In d = 4 − ε dimensions the renor-

malization constants, which relate renormalized and bare quantities (the latter indicated

in what follows by the subscript 0), are defined so that

ψL,0 =
(
Z2L µ

−ε)1/2 ψL , (2.7)

ψR,0 =
(
Z2R µ

−ε)1/2 ψR , (2.8)

φ0 =
(
Zφ µ

−ε)1/2 φ , (2.9)

αy,0 = Z−1φ Z−12L Z
−1
2R Z

2
1 µ

ε αy . (2.10)

We define the counterterms needed to cancel the divergent parts of the loop contribu-

tions to the fermion self-energies, Σ2(/p)L,R, the scalar self-energy, S(p2), and the Yukawa

coupling vertex function, ΛY (p, p′), as

Z2L,R−1=
d

d/p
Σ2(/p)L,R

∣∣∣
poles in ε

Zφ−1=
d

dp2
S(p2)

∣∣∣
poles in ε

Z1−1=−ΛY (p, p′)
∣∣∣
poles in ε

,

(2.11)

and the corresponding quantities, which emerge from resumming an infinite series of

fermion loops as in figure 2, are given by

−iΣ2(/p)L,R =

∞∑
n=0

[
−iΣ(n)

2 (/p)L,R

]
, −iS(p2) =

∞∑
n=0

[
−iS(n)(p2)

]
,

ΛY (p, p′) =
∞∑
n=0

Λ
(n)
Y (p, p′) , (2.12)

where it is understood that the amplitude for the general self-energy diagrams of the Dirac-

type fermions is given by −iΣ2 = −i (Σ2LPL + Σ2RPR). We repeat that in (2.12) we do

not explicitly consider direct contributions from fermion bubbles to the scalar propagator,

which are well known and not modified by NF in our setup.

At the n-th order, the quantities of eq. (2.12) are then obtained by calculating the

following integrals:

−iΣ(n)
2

(
/p
)
L,R

= (−ig1,0 qL,R)2 µεΠn(0)

∫
ddk

(2π)d
γµ
i
(
/p−/k+m0

)
(p−k)2−m2

0

γµ
−i
(
µ2
)nε

2

(k2)1+
nε
2

, (2.13)

−iS(n)
(
p2
)

= (−ig1,0 qS)2µεΠn(0)

∫
ddk

(2π)d
i(2p−k)µ (2p−k)µ

(p−k)2−M2
0

−i
(
µ2
)nε

2

(k2)1+
nε
2

, (2.14)

Λ
(n)
Y

(
p,p′

)
= (−ig1,0)2 qLqRµεΠn(0)

∫
ddk

(2π)d
γν
i
(
/p−/k+m0

)
(p−k)2−m2

0

y
i
(
/p′−/k+m0

)
(p′−k)2−m2

0

γν
−i
(
µ2
)nε

2

(k2)1+
nε
2

+q2S (−ig1,0)2µεΠn(0)

∫
ddk

(2π)d
γν
i
(
/p′−/k+m0

)
(p′−k)2−m2

0

y
i(2l−k)ν

(l−k)2−M2
0

−i
(
µ2
)nε

2

(k2)1+
nε
2

,

(2.15)
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where l = p′−p, m0 is the mass of the fermions ψL,R, and M0 is the mass of the scalar field

φ. In eqs. (2.13)–(2.15), Π(0) gives the momentum-independent part of the 1PI one-loop

contribution to the photon propagator (see appendix A):

Π(k2) =

(
µ2

k2

) ε
2

Π(0) = −2K0

(
−4πµ2

k2

) ε
2 Γ
(
ε
2

)
Γ
(
2− ε

2

)2
Γ (4− ε)

. (2.16)

Since the MS scheme is mass-independent, we can take the limit m2
0,M

2
0 � p2 in

eqs. (2.13)–(2.14) to simplify the calculation. For the same reason, we work in the limit

p = p′ = 0 to evaluate eq. (2.15), since its divergent part does not depend on the external

momenta. The integrals can thus be easily reduced using standard techniques.

By performing the substitution g21,0 → 4π2K0/(NF q
2), and rescaling n → n − 1, one

can arrive to the final 1/NF expansions of eqs. (2.11)–(2.12),

dΣ2(/p)L,R

d/p
=

3

4NF

q2L,R
q2

∞∑
n=1

(
−2

3
K0

)n 1

nεn
H2(n, ε) , (2.17)

dS(p2)

dp2
= − 3

2NF

q2S
q2

∞∑
n=1

(
−2

3
K0

)n 1

nεn
Hφ(n, ε) , (2.18)

ΛY (0, 0) = − 3y

NF

∞∑
n=1

(
−2

3
K0

)n 1

nεn

[
qLqR
q2

Y1 (n, ε) +
1

4

q2S
q2
Y2 (n, ε)

]
, (2.19)

where the functions H2(n, ε), Hφ(n, ε), Y1(n, ε), and Y2(n, ε) are finite and given by

H2(n,ε) =

(
−4πµ2

p2

)nε
2

[
Γ
(
1+ ε

2

)
Γ
(
1− ε

2

)2 (
1− ε

2

)
Γ(1−ε)(1−ε)

(
1− ε

3

) ]n
Γ(1−ε)

Γ
(
1+ ε

2

)
Γ
(
1− ε

2

)
×

Γ
(
1+ nε

2

)
Γ
(
1− nε

2

)
Γ
(
1+ nε

2 −
ε
2

)
Γ
(
1− nε

2 −
ε
2

) (1−ε)
(
1− ε

3

)[
1−ε(1−3n)+ ε2

4

(
1−4n−4n2

)
+ n2ε3

4

]
(
1− ε

2

)(
1− ε

4−
nε
4

)(
1− ε

2−
nε
2

) ,

(2.20)

Hφ(n,ε) =

(
−4πµ2

p2

)nε
2

[
Γ
(
1+ ε

2

)
Γ
(
1− ε

2

)2 (
1− ε

2

)
Γ(1−ε)(1−ε)

(
1− ε

3

) ]n
Γ(1−ε)

Γ
(
1+ ε

2

)
Γ
(
1− ε

2

)
×

Γ
(
1+ nε

2

)
Γ
(
1− nε

2

)
Γ
(
1+ nε

2 −
ε
2

)
Γ
(
1− nε

2 −
ε
2

) (1− nε
2

)
(1−ε)

(
1− ε

3

)(
1− 3ε

8 −
nε
8

)(
1− ε

2

)(
1− ε

2−
nε
2

)(
1− ε

4−
nε
4

) , (2.21)

Y1(n,ε) =

(
−4πµ2

m2
0

)nε
2

[
Γ
(
1− ε

2

)2
Γ
(
ε
2 +1

)(
1− ε

2

)
Γ(1−ε)(1−ε)

(
1− ε

3

) ]n

×
Γ
(
1+ nε

2

)
Γ
(
1− nε

2

)
Γ(1−ε)

Γ
(
1− ε

2

)3
Γ
(
1+ ε

2

) (
1− nε

2

)
(1−ε)

(
1− ε

3

)(
1− ε

4

)(
1− ε

2

)2 , (2.22)

Y2(n,ε) =

(
−4πµ2

m2
0

)nε
2

1−
(
M2

0

m2
0

)1−nε
2

1−M2
0

m2
0

[Γ
(
1− ε

2

)2
Γ
(
ε
2 +1

)(
1− ε

2

)
Γ(1−ε)(1−ε)

(
1− ε

3

) ]n

×
Γ
(
1+ nε

2

)
Γ
(
1− nε

2

)
Γ(1−ε)

Γ
(
1− ε

2

)3
Γ
(
1+ ε

2

) (1−ε)
(
1− ε

3

)(
1− ε

2

)2 . (2.23)
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Following the approach of ref. [8], we formally expand the functions produced in (2.20)–

(2.23) as polynomials in n and ε:

H2(n, ε) =

∞∑
j=0

H
(j)
2 (ε)(nε)j , (2.24)

with analogous series applying to the Hφ(n, ε), Y1(n, ε), and Y2(n, ε) functions.

Inserting eq. (2.24) into eq. (2.17) and keeping only the poles one obtains the following

expansion for the fermion self-energy:

dΣ2(/p)L,R

d/p
=

3

4NF

q2L,R
q2

∞∑
n=1

(
−2

3
K0

)n n−1∑
j=0

H
(j)
2 (ε)

nj−1

εn−j
, (2.25)

and analogous expressions apply to dS(p2)/dp2 and ΛY (0, 0).

We now renormalize the coupling constant, K0 = Z−13 K, by making use of eq. (2.1)

and the binomial series:

Kn
0 = Z−n3 Kn =

(
1− 2

3

K

ε

)−n
Kn = Kn

∞∑
i=0

(
−n
i

)(
−2

3

K

ε

)i
. (2.26)

Substituting the above into eq. (2.25) we recast the latter in a useful form:

dΣ2(/p)L,R

d/p
=

3

4NF

q2L,R
q2

∞∑
n=1

(−1)n
(

2K

3

)n n−1∑
j=0

H
(j)
2 (ε)

nj−1

εn−j

∞∑
i=0

(−1)i
(
n+i−1

i

)(
−2

3

K

ε

)i
.

(2.27)

Finally, after performing a redefinition of the sum parameter, n→ n−i, which also indicates

that the sum over i is truncated at i = n− 1, one gets for eq. (2.27)

dΣ2(/p)L,R

d/p
=

3

4NF

q2L,R
q2

∞∑
n=1

(−1)n
(

2K

3

)n n−1∑
j=0

H
(j)
2 (ε)

εn−j

n−1∑
i=0

(
n−1

i

)
(−1)i(n−i)j−1 , (2.28)

and analogous expressions can be derived for dS(p2)/dp2 and ΛY (0, 0).

The crucial observation of ref. [8] is that the last sum on the right of eq. (2.28), over

the index i, is identically zero for all j > 0. For j = 0 it yields −1/n · (−1)n. Since the

only term that gives a non-trivial contribution to eq. (2.25) is then H
(0)
2 (ε), we get

dΣ2(/p)L,R

d/p
= − 3

4NF

q2L,R
q2

∞∑
n=1

(
2K

3

)n H(0)
2 (ε)

nεn
, (2.29)

with analogous expressions for dS(p2)/dp2 and ΛY (0, 0). The ε-dependent functions H
(0)
2 (ε),

– 7 –
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H
(0)
φ (ε), Y

(0)
1 (ε), and Y

(0)
2 (ε) can be obtained from eqs. (2.20)–(2.23) by setting n = 0:

H
(0)
2 (ε) =

Γ (1− ε)
Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)3 (1− ε)
(
1− ε

3

)(
1− ε

4

) , (2.30)

H
(0)
φ (ε) =

Γ (1− ε)
Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)3 (1− ε)
(
1− ε

3

) (
1− 3ε

8

)(
1− ε

2

)2 (
1− ε

4

) , (2.31)

Y
(0)
1 (ε) =

Γ (1− ε)
Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)3 (1− ε)
(
1− ε

3

) (
1− ε

4

)(
1− ε

2

)2 , (2.32)

Y
(0)
2 (ε) =

Γ (1− ε)
Γ
(
1 + ε

2

)
Γ
(
1− ε

2

)3 (1− ε)
(
1− ε

3

)(
1− ε

2

)2 . (2.33)

One can expand H
(0)
2 (ε) in powers of ε,

H
(0)
2 (ε) =

∞∑
i=0

H̃
(i)
2 εi , H̃

(0)
2 = 1 , (2.34)

and obtain equivalent formulas for H
(0)
φ (ε), Y

(0)
1 (ε), and Y

(0)
2 (ε). By retaining exclusively

the pole terms in 1/ε after substituting eq. (2.34) into eq. (2.29), we produce the final form

of the renormalized quantities (2.17)–(2.19):

dΣ2(/p)L,R

d/p
= − 3

4NF

q2L,R
q2

∞∑
n=1

(
2K

3

)n H̃(n−1)
2

nε
, (2.35)

dS(p2)

dp2
=

3

2NF

q2S
q2

∞∑
n=1

(
2K

3

)n H̃(n−1)
φ

nε
, (2.36)

ΛY (0, 0) =
3 y

NF

∞∑
n=1

(
2K

3

)n 1

nε

(
qLqR
q2

Ỹ
(n−1)
1 +

1

4

q2S
q2
Ỹ

(n−1)
2

)
. (2.37)

We are now ready to calculate the 1/NF gauge contribution to the Yukawa coupling

beta function, eq. (2.5). The coupled Callan-Symanzik equations for the Yukawa coupling

of eq. (2.10) and gauge coupling K0 = Z−13 µεK read

0 =

(
− 1

Zφ

∂Zφ
∂K
− 1

Z2L

∂Z2L

∂K
− 1

Z2R

∂Z2R

∂K
+

2

Z1

∂Z1

∂K

)
β1(K)K + ε+

d lnαy
d lnµ

0 = Kε+ β1(K)K

(
1− K

Z3

∂Z3

∂K

)
, (2.38)

which lead to the explicit form of the Yukawa coupling beta function,

βy(K) = Kε

(
2

Z1

dZ1

dK
− 1

Z2L

dZ2L

dK
− 1

Z2R

dZ2R

dK
− 1

Zφ

dZφ
dK

)
. (2.39)
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The derivatives of eqs. (2.35)–(2.37) read

ε
∂Z2L,R

∂K
= − 1

2NF

q2L,R
q2

∞∑
n=0

H̃
(n)
2 ·

(
2K

3

)n
= − 1

2NF

q2L,R
q2

H
(0)
2

(
2K

3

)
, (2.40)

ε
∂Zφ
∂K

=
1

NF

q2S
q2

∞∑
n=0

H̃
(n)
φ ·

(
2K

3

)n
=

1

NF

q2S
q2
H

(0)
φ

(
2K

3

)
, (2.41)

ε
∂Z1

∂K
= − 2 y

NF

∞∑
n=0

(
2K

3

)n(qLqR
q2

Ỹ
(n−1)
1 +

1

4

q2S
q2
Ỹ

(n−1)
2

)
= − 2 y

NF

[
qLqR
q2

Y
(0)
1

(
2K

3

)
+

1

4

q2S
q2
Y

(0)
2

(
2K

3

)]
, (2.42)

where the r.h.s. equalities are a direct consequence of eq. (2.34).

As the functions H
(0)
2 (x), H

(0)
φ (x), Y

(0)
1 (x), and Y

(0)
2 (x) are given in eqs. (2.30)–(2.33),

we can finally write the first order term in the 1/NF expansion of eq. (2.5) in closed form:

Y1(K)K−1 = −4
qLqR
q2

Y
(0)
1

(
2

3
K

)
−
q2S
q2
Y

(0)
2

(
2

3
K

)
+

1

2

q2L + q2R
q2

H
(0)
2

(
2

3
K

)
−
q2S
q2
H

(0)
φ

(
2

3
K

)
. (2.43)

2.3 Generalization to the non-abelian case

The findings of section 2.2 can be straightforwardly extended to the case of a non-abelian

gauge symmetry with interaction strength g (αg = g2/4π), by introducing the appropriate

group-theoretical factors.

We denote by S2(RVL) the Dynkin index of the representation RVL of the NF vector-

like fermions, and we redefine the coupling constant as K = αgS2(RVL)NF /π.

In the non-abelian case, then, eqs. (2.17)–(2.19) will have to be modified as

dΣ2(/p)L,R

d/p
=

3

4NF

C2(RFL,R)

S2(RVL)

∞∑
n=1

(
−2

3
K0

)n 1

nεn
H2(n, ε) , (2.44)

dS(p2)

dp2
= − 3

2NF

C2(RS)

S2(RVL)

∞∑
n=1

(
−2

3
K0

)n 1

nεn
Hφ(n, ε) , (2.45)

ΛY (0, 0) = − 3y

NF

∞∑
n=1

(
−2

3
K0

)n 1

nεn

[
C2(RFL) + C2(RFR)− C2(RS)

2S2(RVL)
Y1 (n, ε)

+
1

4

C2(RS)

S2(RVL)
Y2 (n, ε)

]
, (2.46)

where C2(R) is the quadratic Casimir invariant of a generic representation R. Represen-

tations RS and RFL,R apply to the scalar φ and fermions ψL,R of the Yukawa interaction,

eq. (2.4). The representation of the NF vector-like fermions, RVL, can in principle be

different from any of these, but does not have to.
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Y 1 (K ) / K - top

Y 1 (K ) / K -NP

F1 (K )

0 2 4 6 8
-2.0

-1.5

-1.0

-0.5

0.0

0.5

K

Figure 3. A plot of the function Y1(K)/K defined in eq. (2.43) for the case of the top quark Yukawa

coupling (solid blue) and a model of new physics defined in the text (solid red). The dashed gray

line shows the function F1(K), given in eq. (2.3), for comparison.

Following step by step the computation outlined in section 2.2, we derive the following

1/NF gauge contribution to the Yukawa beta function,

Y1(K)K−1 = −2
C2(RFL) + C2(RFR)− C2(RS)

S2(RVL)
Y

(0)
1

(
2

3
K

)
− C2(RS)

S2(RVL)
Y

(0)
2

(
2

3
K

)
+
C2(RFL) + C2(RFR)

2S2(RVL)
H

(0)
2

(
2

3
K

)
− C2(RS)

S2(RVL)
H

(0)
φ

(
2

3
K

)
. (2.47)

By Taylor expanding Y1(K) around 2K/3 = 0, we are now in the position to check

that at 1 loop and 2 loops the above formula reduces to

Y
(1 loop)
1 =

K

S2(RVL)

{
−3

2
[C2(RFL) + C2(RFR)]

}
,

Y
(2 loop)
1 =

K2

S2(RVL)

{
5

12
[C2(RFL) + C2(RFR)]− 1

4
C2(RS)

}
, (2.48)

which lead, after explicitly expressing K in terms of g, to the well known forms of ref. [22].

3 Properties and applications

To illustrate the properties of the resummed gauge contributions to the gauge and Yukawa

beta functions, we plot in figure 3 the dependence of Y1(K)/K on the value of the rescaled

gauge coupling K. We limit ourselves here to the abelian case, eq. (2.43). In other words,

we assume that the new NF vector-like fermions responsible for the tower of resummed

bubble diagrams are charged under the U(1) gauge group only, with q = 1.

We show with a solid blue line the case of the SM top quark Yukawa, and with a

solid red line an example case for a model of new physics (indicated with NP), in which

we assume there exist a new Yukawa coupling between the SM muon (with U(1) charge

qL = −1/2), a new inert SU(2) scalar doublet with qS = 1/2, and an SU(2)-singlet fermion

with U(1) charge qR = −1, all of them color-neutral. This model has been chosen for

illustrative purposes, but it was shown in several papers, e.g., [12, 14, 18], that such a

– 10 –
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α1

αyt

αy NP

N F = 16

10 4 10 7 1010 10 13 10 1610 - 3

10 - 2

0.1

1

μ [GeV ]

Figure 4. Modified running of the hypercharge U(1) coupling α1 (gray solid), top Yukawa coupling

αyt
(blue solid), and the Yukawa coupling αyNP

of a model of new physics defined in the text (red

solid) in the presence of NF = 16 vector-like fermions charged under U(1). The common mass

of the vector-like fermions is set at 2 TeV. For each coupling, the corresponding 1-loop running

without the large NF enhancement is shown with a dashed line of the same color.

construction can be used to provide a good fit, through loop contributions, to the muon

g−2 measurement and, with addition of an appropriate colored sector, to the LHCb b→ s

anomalies, for reasonable choices of the mass of the new particles, as long as the new

Yukawa coupling is substantial, yNP ∼> 1− 2.

The dashed gray line shows the behavior of the function F1(K), defined in eq. (2.3).

It was first observed in [8] that F1(K) exhibits a singularity for K = 15/2, which then

determines the radius of convergence for the β1(K) expansion. As anticipated, Y1(K)/K

presents a pole at the same value of K.

A straightforward consequence of the pole structure of F1(K) is the possibility of

generating a non-trivial UV fixed point in the RG flow of the gauge coupling [11]. Indeed, in

the vicinity of the singularity at K = 15/2, F1(K) becomes negative and the beta function

β1 eventually vanishes. As a result, the gauge coupling asymptotically approaches the value

α∗1 =
15

2

π

NF q2
. (3.1)

This idea was brought forward in [4] as a mechanism for avoiding the Landau pole in the

running of the hypercharge gauge coupling of the SM. Interestingly, we find that Y1(K)/K

is also negative as K approaches the pole, which has consequences of crucial importance

for the asymptotic UV behavior of the theory.

We illustrate the behavior of the beta functions in figure 4. Solid lines of different colors

show the running of the different beta functions in the presence of NF = 16 vector-like

fermions with charge q = 1 and a common mass mVL ≈ 2 TeV.

In gray, we present the running of α1. The NF vector-like fermions modify the SM

one-loop beta function (dashed line) by introducing extra contributions,

dα1

d lnµ
=
α2
1

4π

[
41

3
+

8

3
NF +

8

3
F1

(
α1NF

π

)]
, (3.2)

which push the coupling to the UV fixed point appearing in the solid line.
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Under the same assumptions, Yukawa couplings are also modified. For instance, for

the top quark we get

dαyt
d lnµ

=
αyt
4π

[
9αyt − 16α3 −

9

2
α2 +

4π

NF
Y1

(
α1NF

π

)]
, (3.3)

which changes the running of the coupling from its familiar SM path, shown in dashed blue

in figure 4, to the solid blue line. One can observe that since the Y1 function introduces

a large negative contribution, the renormalized value of the Yukawa coupling begins to

decrease much more rapidly when the gauge coupling approaches its fixed point.

This fact can have interesting consequences for those new physics models in which

large Yukawa couplings are desirable to better accommodate experimental anomalies. In

that case, the presence of high-scale vector-like fermions can make the gauge and Yukawa

sectors of the theory asymptotically safe. For instance, one can consider again the model

introduced above, in figure 3, featuring a new physics Yukawa coupling between the SM

muon and two new fields, L ⊃ yNP ψ̄µ,L φψR. We choose in figure 4 an initial value of yNP

that leads to the Landau pole being below the Planck scale (dashed red line) if only 1-loop

contributions to the beta function were taken into account. However, in the large-NF limit,

the Yukawa coupling beta function is modified as

dαyNP

d lnµ
=
αyNP

4π

[
5αyNP −

9

2
α2 +

4π

NF
Y1

(
α1NF

π

)]
, (3.4)

and the model does not suffer from a Landau pole any longer (solid red line).

Before we conclude, we would like to recall an important point of difference between the

abelian case discussed above and its non-abelian counterpart, introduced in section 2.3. As

was pointed out in [11], following the calculation of [9], the non-abelian gauge coupling beta

function, βg, features a logarithmic singularity at K = 3 (where K = αgS2(RVL)NF /π).

Thus, in the non-abelian case the gauge beta function reaches its fixed point well before the

function Y1(K) has the chance of approaching its drastic drop at K → 15/2, see figure 3.

As a consequence, the running of the Yukawa coupling beta function in the non-abelian

case continues along a path similar to the one defined by the standard 1-loop contributions,

and it is not much affected by the resummation. Note that the discrepancy between the

position of the pole in the non-abelian gauge beta function and the one in the anomalous

dimension of the fermion mass was also discussed in ref. [7].

4 Conclusions

In this paper we calculated the gauge contributions to the 1/NF expansion of the beta func-

tion of a generic Yukawa coupling. To this end, we summed an infinite series of diagrams

with ever increasing number of vacuum-polarization bubbles to obtain an analytical closed

form. The resummed contribution exhibits a simple pole, which in the abelian case sits at

the same value of the gauge coupling for which a logarithmic singularity in the gauge beta

function has been long known to exist. As a direct consequence, close to the singularity the

RG evolution of the Yukawa coupling is strongly affected. In the abelian case, in particular,
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it can become asymptotically free even for low-energy boundary conditions that would lead

to a Landau pole close to the TeV-scale if only the standard finite-loop contributions were

taken into account.

This feature could have important phenomenological consequences. Many new physics

scenarios require non-perturbative Yukawa couplings to maximally enhance loop contribu-

tions to various low-energy measurements, like the muon g− 2 discrepancy or LHCb flavor

anomalies. The resummed impact of NF vector-like fermions on the evolution of both the

gauge and Yukawa couplings offers a way to construct a UV-completion in which these two

sectors of the theory remain asymptotically safe. In the purely non-abelian case, however,

this mechanism is not effective, due to a mismatch between the position of the pole for

the gauge and Yukawa coupling beta functions, which mirrors the equivalent mismatch

of the pole position in the fermion anomalous mass dimension with respect to the gauge

beta function.

The necessary next step to prove the full asymptotic safety of the gauge-Yukawa the-

ory should be to consider the impact of the same infinite series of vacuum-polarization

diagrams on the scalar quartic coupling. Incidentally, this might also be an issue of high

importance for the stability of the scalar potential. Additionally, the calculation could be

extended to accommodate other assumptions, one of which could be that the scalar field

coupled uniformly to all NF vector-like fermions. In such a case, one expects an NF en-

hancement of the scalar propagator, in analogy to what was discussed here for the gauge

bosons, and additional combinatorial factors. These ramifications notwithstanding, we find

it encouraging that already at the level of the pure gauge coupling contributions presented

here, the resummation can possibly lead to novel phenomenological applications.
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A Vacuum polarization

We recall in this appendix a few notions on the gauge dependence of the photon propa-

gator and briefly sketch the steps leading to the photon self-energy 1-particle irreducible

(1PI) correction presented in eq. (2.16), as the integrals of eqs. (2.13)–(2.15) are calculated

following similar lines.

The bare photon propagator, ∆B µν , in a general Lorentz invariant gauge reads,

∆B µν =
gµν − ξ(k2)kµkν/k2

k2 − iε
, (A.1)

in terms of a gauge-fixing parameter ξ(k2). On the other hand, the complete photon

propagator, obtained after resummation of 1PI graphs,

∆′µν = ∆B µν + ∆B µρΠ
ρσ(k)∆B σν + . . . , (A.2)
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where the sum of all 1PI insertions is parameterized as

iΠρσ(k) = i
(
gρσk2 − kρkσ

)
Π(k2) , (A.3)

is given by (see, e.g., Chapter 10 of [24])

∆′µν =
gµν − ξ̃(k2)kµkν/k2

(k2 − iε) [1−Π(k2)]
. (A.4)

Equation (A.4) is expressed in terms of the renormalized gauge fixing term,

ξ̃(k2) = ξ(k2)
[
1−Π(k2)

]
+ Π(k2) , (A.5)

where, as we shall see shortly, Π(k2) takes at one loop the explicit form presented in

eq. (2.16).

In the Feynman gauge, which we adopt in this work, ξ(k2) = 0, so that ξ̃(k2) = Π(k2).

Equation (A.4) can then be expanded back in a power series of Π(k2) to yield

∆′µν =
gµν
k2

∞∑
n=0

Πn(k2)− kµkν
k4

∞∑
n=0

Πn+1(k2) . (A.6)

Note that at the n-th order in perturbation theory, in dimensional regularization Πn(k2)

assigns to the loop integral a pole contribution of the order of 1/εn, whereas Πn+1(k2)

produces a higher order term, in 1/εn+1, which therefore does not contribute to the beta

function, see eqs. (2.35)–(2.37). Thus, we can safely neglect the second term of eq. (A.6)

when calculating the integrals of eqs. (2.13)–(2.15).

We conclude this appendix by explicitly calculating eq. (2.16). In d = 4−ε dimensions,

we write at one loop

iΠρσ(k) = −(−ig1,0 q)2NFµ
ε

∫
ddl

(2π)d
Tr

[
γρ
i(/l +m0)

l2 −m2
0

γσ
i(/l − /k +m0)

(l − k)2 −m2
0

]
. (A.7)

After reducing the numerator in eq. (A.7) by making use of Dirac matrix identities,

and simplifying the denominator with the usual Feynman parameter x,

1

AαBβ
=

Γ (α+ β)

Γ (α) Γ (β)

∫ 1

0
dx

xα−1 (1− x)β−1

[Ax+B (1− x)]α+β
, (A.8)

one gets

iΠρσ(k) = 4(−ig1,0 q)2NFµ
ε

∫ 1

0
dx

∫
ddl

(2π)d
lρ(lσ−kσ)+lσ(lρ−kρ)−gρσ

[
l·(l−k)−m2

0

][
l2−2l·kx+k2x−m2

0

]2 .

(A.9)

By redefining l̃ = l − x k and ∆ = m2
0 − x(1 − x)k2, and neglecting terms linear in l̃,

one modifies eq. (A.9) into

iΠρσ(k) = 4(−ig1,0 q)2NFµ
ε

∫ 1

0
dx

∫
dd l̃

(2π)d

2 l̃ρ l̃σ − gρσ l̃2(
l̃2 −∆

)2
+
x (x− 1)

(
2 kρkσ − gρσk2

)
+ gρσm2

0(
l̃2 −∆

)2
 . (A.10)
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Finally, after recalling that l̃ρ l̃σ = l̃2 gρσ/d, the two pieces of eq. (A.10) can be Wick-

rotated and easily integrated to give

4i(−ig1,0 q)2NFµ
ε −gρσ

(4π)2−
ε
2

Γ
( ε

2

)∫ 1

0
dx

(
1

∆

)−1+ ε
2

(A.11)

for the first, and

4i(−ig1,0 q)2NFµ
ε

(
2kρkσ − gρσk2

)
(4π)2−

ε
2

Γ
( ε

2

)∫ 1

0
dxx (x− 1)

(
1

∆

) ε
2

(A.12)

for the second, where in the latter we only considered the limit m2
0 � k2.

It is now straightforward to perform the integrations in x, which yield, again in the

limit m2
0 � k2, ∫ 1

0
dx

(
1

∆

)−1+ ε
2

= −k2
(
−k2

)− ε
2

Γ
(
2− ε

2

)2
Γ (4− ε)

(A.13)∫ 1

0
dxx (x− 1)

(
1

∆

) ε
2

= −
(
−k2

)− ε
2

Γ
(
2− ε

2

)2
Γ (4− ε)

, (A.14)

and lead to the final form for iΠρσ(k):

iΠρσ(k) = i
(
gρσk2 − kρkσ

)
(−ig1,0 q)2NF

8

(4π)2

(
−4πµ2

k2

) ε
2 Γ
(
ε
2

)
Γ
(
2− ε

2

)2
Γ (4− ε)

. (A.15)

After a redefinition of K0 = α1,0 q
2NF /π, eq. (A.15) is easily recast into eq. (2.16).

Open Access. This article is distributed under the terms of the Creative Commons
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