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1 Introduction

An interesting class of quantum field theories with 3d N = 2 supersymmetry arises from

the twisted compactification of the 6d N = (2, 0) theory on three-manifolds. This leads

to a ‘3d-3d correspondence’ between the 3d N = 2 theory denoted by T (M3) and the

corresponding three-manifold M3 [1–3]. An important aspect of this correspondence is the

equality between supersymmetric vacua of T (M3) on S1×R2 and complex flat connections

on the three-manifold M3. Furthermore, the supersymmetric partition functions of T (M3),

for example on squashed S3 or S1 × S2, can be identified with the partition function of

Chern-Simons theory with complex gauge group on M3. A derivation of the appearance of

complex Chen-Simons theory using localization has appeared in [4–6]. For a recent review

of the 3d-3d correspondence we refer the reader to [7].

The purpose of this paper is to explore aspects of the 3d-3d correspondence for Seifert

manifolds [8–11]. Seifert manifolds are circle fibrations over a Riemann surface and there-

fore admit a locally-free circle action. The corresponding 3d N = 2 theory has a distin-

guished u(1)f flavour symmetry associated to this circle action, which can be incorporated

into partition functions on squashed S3 or S1 × S2 by turning on a mass parameter or

fugacity. Furthermore, the construction of Seifert manifolds via surgery on a torus is ex-

pected to have a counterpart in the construction of 3d N = 2 theories using boundary

conditions and interfaces implementing SL(2,Z) duality transformations in a 4d N = 2∗

gauge theory.

A natural question is how the additional parameter for the distinguished u(1)f flavour

symmetry manifests itself as a ‘refinement’ of complex Chern-Simons theory. Our goal

is therefore to develop a concrete dicionary between the partition function of T (M3) on

squashed S3 with mass parameter for the u(1)f symmetry turned on and computations

in Chern-Simons theory with complex gauge group. The mass parameter for the u(1)f
symmetry corresponds to the presence of a particular network of defects in M3, leading to

a refinement of complex Chern-Simons theory. In particular, we will reproduce an analytic

continuation of the S-matrix of refined Chern-Simons theory introduced in [12, 13] from

the partition functions of T (S3) in the presence of supersymmetric loop operators.

1.1 Summary

We will focus on twisted compactifications of the six-dimensional superconformal N = (2, 0)

theory of type g = su(N) on a compact Seifert manifold M3. This leads to a 3d N = 2

– 1 –
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M3

BM3

Figure 1. A three-manifold M3 with T 2 boundary and a codimension-2 defect intersecting the

boundary T 2 at a point corresponds to a boundary condition BM3
in the 4d N = 2∗ theory.

theory denoted by T (M3) with a distinguished u(1)f flavour symmetry corresponding to

the circle action on M3.

Seifert manifolds can be constructed by Dehn surgery. The main step of this process

takes a pair of 3-manifolds M±3 with torus boundary and constructs a new 3-manifold

M3 = M+
3 ∪φM−3 by identifying the torus boundaries through an element φ ∈ SL(2,Z) of

the mapping class group. In order to understand the analogue of Dehn surgery for T (M3),

it is therefore necessary to consider twisted compactifications of the N = (2, 0) theory on

3-manifolds with torus boundary.

As explained in [14], the twisted compactification on a 3-manifold with torus boundary

should be regarded as a boundary condition in 4d N = 4 gauge theory. Choosing a metric

on M3 such that the boundary region forms a semi-infinite cylinder R+×T 2 with complex

structure τ , compactification on T 2 in the asymptotic region leads to a 4d N = 4 theory

with gauge algebra g on a half-line R+ with holomorphic gauge coupling τ . The 3-manifold

M3 adjoined to this semi-infinite cylinder then defines a boundary condition in the 4d N = 4

theory preserving 3d N = 4 supersymmetry [15–17].

Turning on a mass parameter for the distinguished u(1)f flavour symmetry corresponds

to adding a codimension-2 defect supporting the u(1)f flavour symmetry wrapping a curve

in M3 that intersects the boundary at a point p ∈ T 2. In particular, in the cylindrical

region R+ × T 2 the codimension-2 defect is wrapping R+ × {pt}. This is illustrated in the

top of figure 1. This corresponds to turning on an N = 2∗ deformation of the 4d N = 4

gauge theory and the boundary condition now preserves 3d N = 2 supersymmetry and

flavour symmetry u(1)f .

In many cases, a genuinely three-dimensional theory can be obtained from a boundary

condition in the degeneration limit τ → +i∞, where the four-dimensional degrees of free-

dom are decoupled. In this limit, the boundary T 2 degenerates and we obtain a compact

3-manifold where the boundary is replaced by a maximal codimension-2 defect of the 6d

N = (2, 0) theory supporting a flavour symmetry g. This flavour symmetry is then gauged

in coupling to the 4d N = 2∗ theory when the gauge coupling is turned back on.

Extending the discussion above, a 3-manifold with a pair of torus boundaries corre-

sponds to an interface between 4d N = 2∗ theories. For example, in the Dehn surgery

M+
3 ∪φ M−3 , the mapping class element φ ∈ SL(2,Z) corresponds to a mapping cylinder

– 2 –
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Figure 2. The S generator corresponds to an S3 with a Hopf network of defects with flavour

symmetries as in the figure.

implementing the modular transformation on T 2. This corresponds to an interface imple-

menting the corresponding SL(2,Z) duality transformation of the 4d N = 2∗ theory. Such

interfaces can also viewed as 3d N = 2 theories in their own right associated to compact

3-manifolds with a pair of codimension-2 defects supporting g flavour symmetries. For ex-

ample, the generator φ = S corresponds to a Hopf network of codimension-2 defects in S3

supporting flavour symmetries g, g and u(1)f . This corresponds to the three-dimensional

theory T (g) introduced in [17]. This is illustrated in figure 2.

A large class of Seifert manifolds known as Lens spaces can be constructed by starting

from a mapping torus implementing an SL(2,Z) duality transformation and then capping

off the torus boundaries with solid tori D2 × S1. This corresponds to constructing the

corresponding theory T (M3) by compactification of a 4d N = 2∗ theory on an interval with

boundary conditions at each end corresponding to the solid tori D2 × S1 and a sequence

of SL(2,Z) duality interfaces inserted in the intermediate region. For more general Seifert

manifolds, one needs to consider boundary conditions and interfaces for a 4d N = 2∗ theory

with gauge algebra equal to a direct sum of several copies of g.

This setup can be further enriched by including codimension-4 defects of the 6d N =

(2, 0) theory labelled by a dominant integral weight of g. We will focus on the case of

codimension-4 defects labelled by the fundamental weights of g, or equivalently by the

anti-symmetric tensor representations of su(N). Adding a codimension-4 defect wrapping

a knot K ⊂M3 corresponds to adding a supersymmetric line defect in the 3d N = 2 theory

T (M3). This can be incorporated into the surgery prescription such that, in an intermediate

or asymptotic region where M3 ∼ R × T 2, the codimension-4 defects are supported at a

point in R and a cycle in T 2. This will correspond to inserting supersymmetric Wilson-’t

Hooft loops in the construction of T (M3) using boundary conditions and interfaces in the

4d N = 2∗ theory.

In the course of this paper, we will implement the construction outlined above to

compute the partition functions of theories T (M3) on the squashed three-sphere S3
b [18]

(generalizing the round sphere introduced in [19–21]) in the presence of a mass parameter

for the distinguished u(1)f flavour symmetry.

– 3 –
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1.2 Outline

We begin in section 2 by summarizing our conventions for the 4d N = 2∗ theory and

describing the class of 3d N = 2 boundary conditions and interfaces that will appear

throughout the paper.

In section 3, we consider the supersymmetric vacua of the 4d N = 2∗ theory on S1×R3

and therefore the supersymmetric vacua of the theories T (M3) on S1 ×R2. We recall how

the Coulomb branch has a description as the moduli space of SL(N,C) flat connections

on T 2/{p}, and describe the Coulomb branch images of the aforementioned 3d N = 2

boundary conditions and interfaces as holomorphic Lagrangian submanifolds.

In section 4, we consider boundary conditions and interfaces in the 4d N = 2∗ theory

on S3
b × R and how this is used to construct the partition functions of theories T (M3)

on S3
b . This corresponds to a quantization of the results in section 3, which are captured

by a Chern-Simons theory with complex gauge group SL(N,C). We discuss in detail

the implementation of the general framework of boundary conditions and interfaces using

results from localization of 3d N = 2 supersymmetric field theories on S3
b .

Having introduced the necessary tools, in section 5 we construct the partition function

of N = 2 theory T (S3) in a variety of ways from compactifying the 4d N = 2∗ theory

on an interval with appropriate boundary conditions. We then introduce codimension-4

defects labelled by anti-symmetric tensor representations of su(N) using supersymmetric

Wilson-’t Hooft loops in the 4d N = 2∗ theory, corresponding to the unknot and Hopf

link in S3. In this way, we recover an analytic continuation of the S-matrix of refined

Chern-Simons theory.

Finally, in section 6 we construct the partition functions of T (M3) for more general

Lens spaces and Seifert manifolds, and perform further checks of our proposal in various

limits. We conclude in section 7 with directions for further study. Appendices A–C provide

some conventions, background and further details of our computations.

2 Setup

2.1 The N = 2∗ theory

The 4d N = 2∗ theory consists of an N = 2 vectormultiplet together with a hypermultiplet

in the adjoint representation of the gauge algebra g, which we will assume to be su(N).1

In addition to the standard R-symmetry u(1)r ⊕ su(2)R, the theory has a u(1)f flavour

symmetry acting on the adjoint hypermultiplet. The mass parameter for the adjoint hy-

permultiplet is obtained by coupling to a background vectormultiplet for u(1)f and turning

on a background expectation value m for the scalar component.

We will denote the complex scalar in the dynamical vectormultiplet by φ and decom-

pose the adjoint hypermultiplet scalars into a pair of complex scalars (X,Y ). The charges

of these fields under the Cartan generators of the R- and flavour symmetries are given in

table 1.

1We use conventions where adjoint fields take the form Φ =
∑
A ΦAt

A, where tA are antihermitian

matrices and the covariant derivative is Dµ = ∂µ +Aµ.
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Tr TR Tf
φ +2 0 0

X 0 +1 +1

Y 0 +1 −1

Table 1. Charges of the complex scalars in the N = 2 vectormultiplet and hypermultiplet under

the Cartan generators of the R-symmetry u(1)r ⊕ su(2)R and flavour symmetry u(1)f .

2.2 Boundary conditions

We will consider boundary conditions preserving a 3d N = 2 supersymmetry with unbroken

R-symmetry and u(1)f flavour symmetry. We introduce a coordinate s normal to the

boundary and coordinates xj = {x1, x2, x3} parallel to the boundary. In general there is

an S1 × CP1 family of such boundary conditions corresponding to a choice of breaking

pattern u(1)r ⊕ su(2)R → {pt} ⊕ u(1)R. We choose the phase such that (Aj ,Re(φ)) and

(As, Im(φ)) transform as a 3d N = 2 vectormultiplet and chiral multiplet respectively, and

u(1)R is generated by TR from table 1 such that X and Y transform as chiral multiplets.

The basic boundary conditions for the vectormultiplet correspond to a choice of Neu-

mann boundary conditions for (Aj ,Re(φ)) and Dirichlet boundary conditions (As, Im(φ))

or vice versa [14]. In more detail, the boundary conditions are defined by

Neumann : Fsj | = 0 DsRe(φ)| = 0 Im(φ)| = 0 ,

Dirichlet : Fij | = 0 DsIm(φ)| = 0 Re(φ)| = a
(2.1)

and a is a valued in a Cartan subalgebra of g. Neumann boundary conditions preserve the

full gauge symmetry g, whereas Dirichlet boundary conditions break the gauge symmetry

but inherit a global symmetry equal to the subalgebra of g commuting with a. For Neumann

boundary conditions (Aj ,Re(φ)) transform as a 3d N = 2 vectormultiplet at the boundary,

whereas for Dirichlet boundary conditions (As, Im(φ)) transform as a chiral multiplet.

The boundary conditions for the N = 2 hypermultiplet correspond to a choice of

Neumann boundary conditions for X and Dirichlet for Y or vice versa. We will therefore

consider the following ‘Neumann’ boundary conditions

NX : Neumann + DsX| = 0 Y | = 0

NY : Neumann + DsY | = 0 X| = 0
(2.2)

and ‘Dirichlet’ boundary conditions

DX : Dirichlet + DsY | = 0 X| = 0

DY : Dirichlet + DsX| = 0 Y | = 0 .
(2.3)

Note that X has Neumann boundary conditions in NX and DY and becomes a chiral

multiplet on the boundary, whereas Y has Neumann boundary conditions in NY and DX

and becomes a chiral multiplet on the boundary, with charges as in table 1. If we want

to emphasize the dependence on the boundary expectation value a, we will write Dirichlet

boundary conditions as DX(a), DY (a).

– 5 –
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These basic boundary conditions can be modified by coupling to boundary degrees

of freedom [14]. For example, the Neumann boundary condition NX can be modified by

coupling to a 3d N = 2 theory with unbroken R-symmetry u(1)R and flavour symmetry

at least u(1)f ⊕ g by coupling to the dynamical vectormultiplet at the boundary. We can

also add a boundary superpotential W (X|,O) depending on additional boundary chiral

operators O, which modifies a right boundary condition to

Y | = ∂W

∂X| 0 =
∂W

∂O , (2.4)

and a left boundary condition to

|Y = − ∂W
∂|X 0 =

∂W

∂O . (2.5)

In the paper we use the notation · | and | · to denote the expectation values of bulk operators

at right and left boundary conditions respectively.

An important example is to deform the right Neumann boundary condition NX by

a boundary chiral multiplet OY with the same TR and Tf charges as Y and a boundary

superpotential

W = Tr(X|OY ) . (2.6)

From equations (2.4), it is straightforward to see that this boundary condition flows to NY

with Y | = OY , and similarly one can convert the boundary condition NY back to NX .

There is an essentially identical construction for Dirichlet boundary conditions. Follow-

ing [14, 22], we will refer to this operation as a ‘flip’.

2.3 Interfaces

We will also consider interfaces preserving a 3d N = 2 supersymmetry with unbroken

R-symmetry u(1)R and flavour symmetry u(1)f . A variety of such interfaces can be con-

structed by coupling the basic boundary conditions introduced above to additional three-

dimensional degrees of freedom by gauging and/or adding a boundary superpotential.

An important class of interfaces are those that flow to the identity interface. For

example, let us first impose Dirichlet boundary conditions DY (a) on the left and DY (a′) on

the right of the interface. We then identify the boundary flavour symmetry on each of these

boundary conditions and gauge it by coupling to a dynamical 3d N = 2 vectormultiplet.

Finally, we add a boundary chiral multiplet O and a boundary superpotential

W = Tr
(
X| O − O |X ′

)
W = Tr

(
X| O − O |X ′

)
. (2.7)

The boundary superpotential requires

Y | = ∂W

∂X| = O |Y ′ = − ∂W

∂|X ′ = O 0 =
∂W

∂O = X| − |X ′ , (2.8)

ensuring that the interface identifies the chiral multiplets on each side. There is an identical

construction starting from DX boundary conditions by exchanging the role of Y and X.

Such interfaces will be used to ‘cut’ the path integral in our computations in section 4.

– 6 –
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Figure 3. A 3d N = 2 quiver description of T (g) with mass parameters (a1, . . . , aN ) and FI

parameters
(
a′1 − a′2, . . . , a′N−1 − a′N

)
.

Another important class of interfaces are those that implement SL(2,Z) duality trans-

formations.2 SL(2,Z) duality transformations are generated by S and T satisfying

S2 = P , (ST )3 = P , (2.9)

where P is a central element such that P 2 = I. The corresponding interfaces were intro-

duced in [17].

The interface generating the action of T on boundary conditions is constructed by

adding an N = 2 supersymmetric Chern-Simons term at level +1. To construct an S-

duality interface at s = 0, we deform a right NX boundary condition on s ≤ 0 and a left

NY boundary condition on s ≥ 0 by coupling to the three-dimensional theory T (g) at s = 0

and gauging the flavour symmetry g⊕ g [17].

There is a description of T (g) as a triangular quiver with gauge algebras u(j) for

j = 1, . . . , N − 1. The g symmetry that rotates the N pairs of chiral at the final node is

manifest, while the second one is an enhancement of the u(1)N−1 topological symmetry in

the infrared. Sandwiching the S interface between Dirichlet boundary conditions DX(a)

on the left and DY (a′) on the right isolates the three-dimensional degrees of freedom

in T (g). In particular, a = (a1, . . . , aN ) are identified with the mass parameters and

a′ = (a′1, . . . , a
′
N ) with the FI parameters of T (g) — as shown in figure 3.

3 Supersymmetric vacua on S1 × R2

Upon compactification on a circle, the Coulomb branch of supersymmetric vacua of the 4d

N = 2∗ theory coincides with the Hitchin moduli space on a punctured torus T 2/{p} with

boundary conditions at p determined by the hypermultiplet mass m. This is a hyper-Kähler

moduli space M.

Our choice of boundary conditions and interfaces fixing a point {pt} ⊂ u(1)f are

compatible with a complex structure in which M is the moduli space of complex flat

connections on T 2/{p} with fixed monodromy around the puncture p determined by the

mass parameter m. The moduli space is then parameterized by the traces of the holonomy

2Provided it is simply-laced, SL(2,Z) transformations do not change the gauge algebra g. However,

there are distinct physical theories on R4 with the same g but different sets of mutually compatible line

operators, on which SL(2,Z) transformations act in an intricate way [23]. We will generally omit this

distinction, mentioning it explicitly when needed.

– 7 –
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around the cycles of T 2, which are the expectation values of supersymmetric loop operators

in the 4d N = 2∗ theory wrapping the circle.

The Coulomb branch image of a 3d N = 2 boundary condition is a holomorphic La-

grangian submanifold in M cut out by the additional ‘boundary Ward identities’ imposed

upon supersymmetric loop operators at the boundary. Similarly, interfaces determine holo-

morphic Lagrangian submanifolds in the product of Coulomb branch moduli spaces on each

side of the interface. Our task in this section is to determine the Coulomb branch images

of the 3d N = 2 boundary conditions and interfaces constructed in section 2.

3.1 SL(N,C) flat connections

For definiteness, let us compactify the 4d N = 2∗ theory on a circle by identifying x1 ∼
x1 + 2πR. As explained above, in the complex structure compatible with our choice of

3d N = 2 boundary conditions, the Coulomb branch moduli space M can be identified

with the moduli space of SL(N,C) flat connections on T 2/{p}. This is parameterized by

holonomy matrices W , H around the (1, 0), (0, 1) cycles which obey

WHW−1H−1 = E . (3.1)

modulo conjugation by SL(N,C) matrices. The holonomy E around the puncture at p

has fixed eigenvalues {t−1, . . . , t−1, tN−1}, where t = e2πRm and the hypermultiplet mass

parameter m is in this section complexified by a background Wilson loop for the u(1)f
flavour symmetry wrapping the circle

At a generic point on the moduli space M, the gauge symmetry is broken to a Cartan

subalgebra and the eigenvalues {w1, . . . , wN} of W can be identified with the expectation

values of abelian supersymmetric Wilson loops obeying
∏
j wj = 1. We have wj = e2πRaj ,

where a = (a1, . . . , aN ) is the expectation value of the scalar field Re(φ), complexified by

the holonomy of the gauge field around the circle.

By an SL(N,C) transformation, we can diagonalize the holonomy matrix W and in-

troduce the following convenient parameterization of the holonomy matrix H,

W i
j = δijwj H i

j =

∏
k 6=j(t

1/2wi − t−1/2wk)∏
k 6=i(wi − wk)

hj , (3.2)

where the coordinates {h1, . . . , hN} are the expectation values of supersymmetric abelian

’t Hooft loops, and obey
∏
j hj = 1. With these coordinates, the holomorphic symplectic

form is given by

Ω =
N∑
j=1

d logwj ∧ d log hj . (3.3)

Note that removing the puncture, t → 1, the holonomy matrix H also becomes diagonal

with eigenvalues {h1, . . . , hN}. However, we emphasize that the coordinates {h1, . . . , hN}
are not in general the eigenvalues of H.

The holonomy matrix H can be identified with the Lax matrix of the complex N -body

trigonometric Ruijsenaars-Schneider model [24, 25] and therefore methods from classical

– 8 –
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integrable systems are very useful. In particular, a convenient set of invariant functions on

M is obtained by expanding the Lax determinants

det(z −W ) =
N∑
r=1

(−1)rzN−rW (r)

det(z −H) =

N∑
r=1

(−1)rzN−rH(r) ,

(3.4)

where

W (r) =
∑
|I|=r

wI (3.5)

and

H(r) =
∑
|I|=r

hI
∏

i∈I,j /∈I

t1/2wi − t−1/2wj
wi − wj

(3.6)

are the traces of the holonomy matrices TrΛr(W ) and TrΛr(H) respectively in the antisym-

metric tensor representations Λr of SL(N,C) of rank r = 1, . . . , N−1. In these expressions,

we use the notation I = {i1, . . . , ir} ⊂ {1, . . . , N} and introduce the convenient shorthand

wI = wi1 . . . wir and hI = hi1 . . . hir . The functions (3.5) and (3.6) are the Coulomb branch

expectation values of non-abelian supersymmetric Wilson and ’t Hooft loops respectively

wrapping the circle.

Since the holonomy matrices are valued in SL(N,C), they have unit determinant and

traces in conjugate representations Λr and ΛN−r are obtained by inverting the holonomy

matrix. For example, we have H(N−r) = TrΛr(H
−1). Traces in conjugate representations

can be expressed nicely in terms of {h̃1, . . . , h̃N} defined by

hi h̃i =
∏
j 6=i

t−1/2wi − t1/2wj
t1/2wi − t−1/2wj

. (3.7)

For example,

TrΛr(H
−1) =

∑
|I|=r

h̃I
∏

i∈I,j /∈I

t1/2wi − t−1/2wj
wi − wj

. (3.8)

It is also straighforward to compute the trace of the holonomy around other cycles of

T 2/{p} in terms of these coordinates,

TrΛr(WH) =
∑
|I|=r

wIhI
∏

i∈I,j /∈I

t1/2wi − t−1/2wj
wi − wj

TrΛr(W
−1H) =

∑
|I|=r

hI
wI

∏
i∈I,j /∈I

t1/2wi − t−1/2wj
wi − wj

TrΛr(WH−1) =
∑
|I|=r

wI h̃I
∏

i∈I,j /∈I

t1/2wi − t−1/2wj
wi − wj

TrΛr(W
−1H−1) =

∑
|I|=r

h̃I
wI

∏
i∈I,j /∈I

t1/2wi − t−1/2wj
wi − wj

.

(3.9)
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M3

Figure 4. Three-manifold M3 with defect of monodromy eigenvalues {t−1, . . . , t−1, tN−1} ending

on the boundary T 2/{p}.

These expressions are identified with the Coulomb branch expectation values of supersym-

metric mixed Wilson-’t Hooft loops.

3.2 Boundary conditions

The image of a boundary condition preserving 3d N = 2 supersymmetry is a holomorphic

Lagrangian submanifold L ⊂ M encoding the boundary Ward identities for supersym-

metric loop operators brought to the boundary. This Lagrangian describes a choice of

three-manifold with boundary T 2/{p} and defect with holonomy {t−1, . . . , t−1, tN−1} - as

shown in figure 4. The holomorphic Lagrangian L consists of those SL(N,C) flat connec-

tions on the boundary that extend into the three-manifold.

In order to describe the holomorphic Lagrangians L ⊂ M associated to the basic

boundary conditions in section 2, it is convenient to introduce a new set of variables

h+
i = hi

∏
j 6=i

t1/2wi − t−1/2wj
wi − wj

h−i = h−1
i

∏
j 6=i

t−1/2wi − t1/2wj
wi − wj

(3.10)

with

h+
i h
−
i =

∏
j 6=i

(t1/2wi − t−1/2wj)

wi − wj
(t−1/2wi − t1/2wj)

wi − wj
. (3.11)

The parameters {h+
1 , . . . , h

+
N} and {h−1 , . . . , h−N} are the four-dimensional lift of the abelian

monopole operators introduced in [26] to describe the Coulomb branch of 3d N = 4 gauge

theories and further used in [27] to find the Coulomb branch images of 2d N = (2, 2)

boundary conditions. We can therefore uplift these results to compute the Coulomb branch

images of 3d N = 2 boundary conditions in the 4d N = 2∗ theory.

3.2.1 Neumann

Let us first consider Neumann boundary conditions. The holomorphic Lagrangians for

right Neumann boundary conditions NX and NY are

NX : h+
i | =

∏
j 6=i

t1/2wi − t−1/2wj
wi − wj

| h−i | =
∏
j 6=i

t−1/2wi − t1/2wj
wi − wj

|

NY : h+
i | =

∏
j 6=i

t−1/2wi − t1/2wj
wi − wj

| h−i | =
∏
j 6=i

t1/2wi − t−1/2wj
wi − wj

| .
(3.12)
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In terms of the original variables, the Neumann boundary condition NX is described by

hi = 1 whereas NY is described by h̃i = 1.

It is straightforward to check that both Neumann boundary conditions NX and NY in

fact describe the same holomorphic Lagrangian, which can be defined invariantly by fixing

the eigenvalues of the holonomy matrix H to be tρ, where

ρ =

(
N − 1

2
,
N − 3

2
, . . . ,

1−N
2

)
(3.13)

is the Weyl vector.

In terms of supersymmetric non-abelian ’t Hooft loops, the right NX boundary condi-

tion has the property that

H(r) | =
∑
|I|=r

∏
i∈I,j /∈I

t1/2wi − t−1/2wj
wi − wj

| . (3.14)

This expression is in fact independent of wj and sums to

dimt(Λ
r) = W (r)(w → tρ) , (3.15)

which is the quantum dimension of the representation Λr with quantum parameter t. Since

the quantum dimension is invariant under t→ t−1, we obtain the same result for NY . This

reproduces the localization computation of the S1 partition function of an N = 4 gauged

quantum mechanics that flows to a sigma model onto the Grassmannian Gr(r,N) [28].

This can be interpreted as the S1 partition function of the one-dimensional degrees of

freedom supported on the ’t Hooft loop.

It will also be important to note the expectation values of mixed Wilson-’t Hooft loops

at the Neumann boundary condition NX ,

TrΛr(WH) | = tr(N−r)/2W (r) |
TrΛr(W

−1H) | = t−r(N−r)/2W (N−r) |
TrΛr(WH−1) | = t−r(N−r)/2W (r) |

TrΛr(W
−1H−1) | = tr(N−r)/2W (N−r) | .

(3.16)

Removing the puncture by turning off the mass parameter for the u(1)f symmetry

sends t → 1, and therefore the holomorphic Lagrangian for a Neumann boundary condi-

tion becomes

TrΛr(H) | = dim(Λr) . (3.17)

This shows that the holonomy around the (0, 1) cycle becomes trivial. The 3-manifold

corresponding to this holomorphic Lagrangian is therefore a solid torus S1 ×D2 obtained

by contracting the (0, 1) cycle.

Turning back on the mass parameter for the u(1)f symmetry, the holomorphic La-

grangian still describes a solid torus S1 × D2 obtained by collapsing the (0, 1) cycle, but

now punctured by a monodromy defect at the origin of the disk D2 with fixed holonomy
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eigenvalues tρ. We will simply refer to this as the solid torus S1×D2 obtained by collapsing

the (0, 1) cycle, with the presence of the monodromy defect understood.

Finally, the boundary Ward identities for left Neumann boundary conditions are found

by exchanging the roles of h+
i and h−i in the above formulae, which define the same holo-

morphic Lagrangian in this example.

3.2.2 Generalized Neumann

We now briefly consider the generalized Neumann boundary conditions NX [T ] and NY [T ]

obtained by coupling Neumann boundary conditions NX or NY to a 3d N = 2 gauge

theory T with unbroken R-symmetry u(1)R and flavour symmetry at least g⊕ u(1)f .

Let us denote the effective twisted superpotential of the three-dimensional theory T

by W̃(wj , t, sa), where sa are the abelian Wilson loops for the three-dimensional gauge

symmetry.3 The boundary Ward identities generalizing those for pure Neumann boundary

conditions (3.12) are

NX [T ] : h+
i | = e

∂W̃
∂ logwi

∏
j 6=i

t1/2wi − t−1/2wj
wi − wj

| h−i | = e
− ∂W̃
∂ logwi

∏
j 6=i

t−1/2wi − t1/2wj
wi − wj

|

NY [T ] : h+
i | = e

∂W̃
∂ logwi

∏
j 6=i

t−1/2wi − t1/2wj
wi − wj

| h−i | = e
− ∂W̃
∂ logwi

∏
j 6=i

t1/2wi − t−1/2wj
wi − wj

| ,

(3.18)

which are supplemented by the vacuum equations

e
∂W̃

∂ log sa = 1 . (3.19)

As above, the boundary Ward identities for left boundary conditions are found by exchang-

ing h+
i and h−i in the above.

This result allows us to check the compatibility of the boundary Ward identities for

pure Neumann boundary conditions (3.12) with the flip. As explained in section 2.2, the

flip corresponds to coupling the Neumann boundary condition NX to a boundary chiral

multiplet OY with the same charges as Y with superpotential W = Tr(X|OY ). The

boundary chiral multiplet OY has effective twisted superpotential

W̃ =
∑
i 6=j

f(wi/twj) + const (3.20)

where the function f(w) satisfies

e
∂f

∂ logw = w1/2 − w−1/2 . (3.21)

It is straightforward to check using equation (3.18) that the boundary Ward identities for

NX(OY ) are equivalent to those for NY , up to a sign that can be absorbed in the definition

of the abelian ’t Hooft loop operators. A similar derivation shows that the boundary

condition NY (OX) is equivalent to NY .

3In order to simplify our notation, we multiply the effective twisted superpotential W̃ by a factor of

(2πR)2 compared to the standard conventions, for example [24].
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3.2.3 Dirichlet

Let us now consider the Dirichlet boundary conditions DX . The holomorphic La-

grangian is defined by setting the eigenvalues of W equal to fixed values {w0
1, . . . , w

0
N},

or equivalently by fixing the expectation values of supersymmetric Wilson loops W (r) for

all r = 1, . . . , N − 1.

The corresponding three-manifold is therefore the solid torus S1 × D2 obtained by

contracting the (1, 0) cycle, punctured by a monodromy defect at the origin of the disk D2

with eigenvalues {w0
1, . . . , w

0
N}.

3.3 Interfaces

An interface corresponds to a holomorphic Lagrangian submanifold in the productM×M′
of Coulomb branch moduli spaces on each side of the interface, with holomorphic symplectic

form Ω−Ω′. We now describe the holomorphic Lagrangians corresponding to the interfaces

generating SL(2,Z) transformations that were described in section 2.3.

In preparation for our discussion of the T interface, let us first consider a class of

interfaces generalizing NX [T ], which are constructed by coupling to a 3d N = 2 gauge

theory with unbroken R-symmetry u(1)R and flavour symmetry at least g ⊕ u(1)f . As

above, we denote the effective twisted superpotential of this theory by W̃(wj , t, sa). This

interface defines the holomorphic Lagrangian

wi | = |w′i , h+
i | = | e

∂W̃
∂ logw′

j h′−i , (3.22)

where in the second equation we have cancelled a factor of

∏
j 6=i

t1/2wi − t−1/2wj
wi − wj

(3.23)

on each side since wi| = |w′i from the first equation. This is again supplemented by the

vacuum condition

e
∂W̃

∂ log sa = 1 . (3.24)

The T interface is now a special case of the above construction where we couple to a

supersymmetric Chern-Simons term at level +1, with effective twisted superpotential

W̃(wj) = −1

2

N∑
j=1

(logwj)
2 . (3.25)

It therefore corresponds to the holomorphic Lagrangian

wi | = |w′i , h+
i | = |w′−1

i h′−i , (3.26)

which can be written more invariantly as

TrΛr(W ) | = |TrΛr(W
′) , TrΛr(H) | = |TrΛr(W

′−1H ′−1) . (3.27)
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T TW (r) W (r)

=

T TH(r) (W−1H)(r)

=

Figure 5. A Wilson loop commutes with the T interface, whereas an ’t Hooft loop becomes a

mixed Wilson-’t Hooft loop.

In what follows, we will introduce a graphical notation where supersymmetric loop oper-

ators are always denoted acting on right boundary conditions. With this convention, the

translation of supersymmetric loop operators through the T interface is shown in figure 5.

Let us now consider the S transformation. Recall that in the construction of sec-

tion 2.3, the 3d N = 2 theory T (g) is isolated by sandwiching the S interface in between

Dirichlet boundary conditions DX(a) and DY (a′). This has the inconvenient feature that

it interpolates between flat connections on T 2/{p} with the monodromy eigenvalues at

the puncture inverted, t → t−1. It is therefore convenient to combine this interface with

a flip and denote by W̃(wj , w
′
j , sa) the effective twisted superpotential of the degrees of

freedom obtained by sandwiching the S interface between boundary conditions DX(a) and

DX(a′). With this understood, the holomorphic Lagrangian is a generalization of that for

the boundary condition NX [T ] to

h+
i | = e

∂W̃
∂ logwi

∏
j 6=i

t1/2wi − t−1/2wj
wi − wj

|

|h′−i = |e
∂W̃

∂ logw′
i

∏
j 6=i

t1/2w′i − t−1/2w′j
w′i − w′j

,

(3.28)

together with

e
∂W̃

∂ log sa = 1 . (3.29)

From the detailed computations in [24, 25], this holomorphic Lagrangian can be written

invariantly as

H(r) | = |W (r) W (r) | = |H(r) . (3.30)

In diagrammatic conventions, with the understanding that all operators act on right bound-

ary conditions, the action of the S interface on supersymmetric loop operators is shown in

figure 6.

The S-dual of the Neumann boundary conditions NX and NY will play an important

rôle later. We denote them by Nahm pole boundary conditions NPX and NPY . Given

that Neumann boundary conditions of all types correspond to setting the eigenvalues of

H equal to tρ, the Nahm pole boundary conditions correspond to setting the eigenvalues
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S SH(r) W (r)

=

S SW (r) H(N−r)

=

Figure 6. Under S duality, a Wilson loop becomes an ’t Hooft loop.

{wi, . . . , wi} of W to tρ. Equivalently, we have

W (r)| = dimt(Λ
r) |W (r) = dimt(Λ

r) (3.31)

for Nahm pole boundary conditions.

4 Squashed S3 partition function

In this section, we will replace S1×R2 parallel to the boundary conditions and interfaces by

a squashed three-sphere S3
b . This will lead to a quantization of the Coulomb branch moduli

space M of SL(N,C) flat connections on T 2/{p}, which is captured by a Chern-Simons

theory with complex gauge group SL(N,C). Such a quantization is specified by a pair of

levels (k, σ) where k ∈ Z is quantized and σ ∈ C is continuous [29]. From supersymmetric

localization of the six-simensional N = (2, 0) theory [5], the expected levels for the complex

Chern-Simons theory corresponding to S3
b partition functions are

k = 1 , σ =
1− b2
1 + b2

. (4.1)

Our approach will be to utilize results from supersymmetric localization of 3d N = 2

theories on S3
b to construct partition functions of SL(N,C) Chern-Simons theory on Seifert

manifolds by surgery on T 2/{p}.

4.1 Setup

A 4d N = 2 theory on R × S3
b can be viewed as an infinite-dimensional supersymmet-

ric quantum mechanics on R with a pair of supercharges Q,Q†, which coincide with the

supercharges used in the localization of 3d N = 2 theories on S3
b . A compatible bound-

ary condition that preserves 3d N = 2 supersymmetry in flat space can be represented

as a ‘boundary state’ in the space of supersymmetric ground states annihilated by Q,Q†.

Instead of attempting to describe this supersymmetric quantum mechanics directly, for

example as in [30], we will perform computations using known localization results for 3d

N = 2 theories on S3
b .

Our conventions regarding contributions to the S3
b partition functions are summarized

in appendix A. In particular, we have imaginary mass parameters (a1, . . . , aN ) obeying∑
j aj = 0, in keeping with our choice of anti-hermitian Lie algebra generators, and an
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imaginary hypermultiplet mass parameter m associated to the Tf symmetry. It will also

be convenient to also introduce the combination ε = Q
2 −m, where Q = b+ b−1, such that

ε∗ = Q
2 +m.

With this notation, the contribution of a 3d N = 2 vectormultiplet is

ν(a) =
N∏

i,j=1
i 6=j

1

Sb(ai − aj)
(4.2)

The contributions from chiral multiplets in the adjoint representation with the same TR
and Tf charges charges as X and Y (shown in table 1) are

KX(a) =
1

Sb(ε)

N∏
i,j=1

Sb(ε+ ai − aj)

KY (a) =
1

Sb(ε∗)

N∏
i,j=1

Sb(ε
∗ + ai − aj)

(4.3)

respectively. An important consequence of the identity Sb(x)Sb(Q − x) = 1 is that these

partition functions obey KX(a)KY (a) = 1. The physical reason is the existence of the

superpotential Tr(XY ) allowing both chiral multiplets to be integrated out. As we will see

momentarily, it also ensures consistency of the flip.

It is also convenient to introduce the notation

νX(a) = ν(a)KX(a) , νY (a) = ν(a)KY (a) , (4.4)

which combine a 3d N = 2 vectormultiplet and an adjoint chiral multiplet with the same

charges as X or Y . These combinations correspond to the contributions from 3d N = 4

vectormultiplets or twisted vectormultiplets, deformed to 3d N = 2 supersymmetry by the

mass parameter m associated to Tf .

4.2 Basic overlaps

The basic computation we want to perform is the parition function of the 4d N = 2∗ theory

on S3
b times an interval with 3d N = 2 boundary conditions at each end. This corresponds

to the overlap of boundary states in the putative supersymmetric quantum mechanics.

A standard but crucial observation is that the momentum generator Ps ∝ {Q,Q†} is

exact with respect to both supercharges, and therefore acts trivially on the boundary

states that are annihilated by Q,Q†. The correlation functions of boundary conditions are

therefore independent of the position on the s-axis, and we can perform computations by

reducing the distance between boundary conditions to zero and applying known localization

computations for 3d supersymmetric gauge theories on S3
b . To gain some familiarity with

such computations, we will compute the correlation functions of the Neumann and Dirichlet

boundary conditions introduced in section 2.2.

Let us first consider the overlap of a Neumann boundary condition and a Dirichlet

boundary condition. For the overlap of DX(a) with NX or DY (a) with NY , after sending
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the distance between the boundary conditions to zero, it is straightforward to see from the

definitions (2.2) and (2.3) that there are no fluctuating degrees of freedom remaining on

S3
b and therefore the partition functions are ‘1’. We write this as

〈DX(a), NX〉 = 1 , 〈DY (a), NY 〉 = 1 . (4.5)

However, for the boundary conditions DY (a) and NX , the chiral multiplet X has Neumann

boundary conditions at both ends and therefore contributes to the correlation function.

Similarly, Y contributes to the correlation function of DX(a) and NY . We therefore have

〈DY (a), NX〉 = KX(a) , 〈DX(a), NY 〉 = KY (a) . (4.6)

This is summarized in figure 7.

Next consider the correlation function a pair of Dirichlet boundary conditions DX(a)

and DY (a′). If a 6= a′, the boundary conditions are incompatible and the partition function

should vanish. If a = a′, from equation (2.3) we expect to get contributions from an adjoint

3d N = 2 chiral multiplet of TR charge 0 and Tf charge 0, which has Neumann boundary

conditions at both ends. This would lead to the contribution

Sb(0)N−1
N∏
i 6=j

Sb(ai − aj). (4.7)

However, this expression is singular with a pole of order N − 1 from the contribution

Sb(0)N−1 of the neutral scalars, indicating that a more careful analysis is needed. Note

that there is a simple pole for each independent parameter, since
∑

j aj = 0. Further,

recall that the aj are imaginary: aj = irj , and that the residue of Sb(ir) at r = 0 is 1
2πi .

We therefore replace the singular contribution by a Weyl invariant delta function,

∆(a, a′) =
1

N !

∑
σ∈SN

N∏
j=1

δ(aj − aσ(j)) , (4.8)

where SN is the set of permutations of {1, . . . , N}. This delta function should be considered

as a contour prescription around the aforementioned pole. Using the identity Sb(x) =

1/Sb(Q− x), we therefore find

〈DX(a), DY (a′)〉 =
1

ν(a)
∆(a, a′) . (4.9)

This argument extends immediately to

〈DX(a), DX(a′)〉 =
1

νX(a)
∆(a, a′) , 〈DY (a), DY (a′)〉 =

1

νY (a)
∆(a, a′) , (4.10)

where the additional contributions come respectively from the chiral multiplets Y and

X. It is straightforward to check that equations (4.9) and (4.10) are compatible with the

partition functions of other boundary conditions and the ‘cutting’ construction introduced

in section 4.3.
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DX NX

= 1

DY NX

= KX(a)

DX DX

=
∆(a, a′)

νX(a)

NX NX

=

∫
dN−1a

iN−1N !
νX(a)

Figure 7. A sampling of the correlation functions of Neumann and Dirichlet boundary conditions.

There is an isomorphic set of functions obtained by interchanging X ↔ Y .

Finally, let us consider the correlation function of a pair of Neumann boundary

conditions. For NX with NY we have a dynamical 3d N = 2 vectormultiplet with

partition function

〈NX , NY 〉 =

∫
dN−1a

iN−1N !
ν(a) , (4.11)

where we defined dN−1a ≡ da1 · · · daN δ(a1 + · · ·+ aN ). For a pair of NX or NY boundary

conditions we have additional adjoint chiral multiplets X and Y on the boundary, so that

〈NX , NX〉 =

∫
dN−1a

iN−1N !
νX(a) , 〈NX , NX〉 =

∫
dN−1a

iN−1N !
νY (a) . (4.12)

These correspond to the partition functions of ‘bad’ theories in the terminology of [17]

and therefore formally diverge due to the presence of unitarity violating monopole opera-

tors [31]. They can nevertheless be defined by analytic continuation, as explained in [32].

Finally, we note that these correlation functions are compatible with the ‘flip’. For

example, the Dirichlet boundary condition DX is obtained from DY coupled to a bound-

ary chiral multiplet OY with the same charges as Y with the boundary superpotential

W = Tr(X|OY ). Since the partition functions are independent of boundary superpotential

couplings, we would therefore expect correlation functions of DX(a) to be obtained from

those of DY (a) by multiplying by the contribution KY (a) from OY . Using the identity

KX(a)KY (a) = 1, it is straightforward to verify that this is the case in the above examples.

4.3 Cutting the interval

Our strategy for computing a general correlation function 〈B1, B2〉 is to ‘cut’ the path

integral at an intermediate point and express the result in terms of the ‘wave functions’
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〈B1, DX(a)〉 and 〈DX(a), B2〉 associated to the boundary conditions B1 and B2. It is

therefore convenient to introduce a shorthand notation

ZX,B(a) = 〈DX(a), B〉 ZY,B(a) = 〈DY (a), B〉 . (4.13)

The cutting construction can be performed using DX(a) or DY (a) or a mixture of both,

leading to considerable flexibility in notation.

Let us briefly recall the construction of the ‘identity’ interface from section 2.3. First,

cut the interval at some intermediate point and impose the boundary condition DX(a)

on the left and the boundary condition DX(a′) on the right of the cut. Next, identify

the boundary flavour symmetry on each side of the cut, forcing a = a′, and introduce

a dynamical 3d N = 2 vectormultiplet, together with a chiral multiplet OX and the

boundary superpotential

W = Tr
(
Y | OX −OX |Y ′

)
(4.14)

which identifies the chiral multiplets X and Y across the interface.

This construction is straightforward to implement at the level of partition functions:

the boundary superpotential is exact and therefore makes no contribution. Hence, the

result is ∫
dνX(a)ZX,B1(a)ZX,B2(a) (4.15)

where we introduce the shorthand notation

dνX(a) =
dN−1a

iN−1N !
νX(a) (4.16)

for the measure of integration. This is illustrated in figure 8.

Although we will mostly concentrate on cutting the path integral using DX(a) bound-

ary conditions, it is straightforward to provide a similar construction using DY (a) boundary

conditions, leading to the following equivalent expressions

〈B1, B2〉 =

∫
dν(a)ZX,B1(a)ZY,B2(a)

=

∫
dνY (a)ZY,B1(a)ZY,B2(a) ,

(4.17)

where we introduce shorthand notations for the measures analogous to equation (4.16).

These expressions are of course compatible since

ZX,B(a) = KY (a)ZY,B(a) , ZY,B(a) = KX(a)ZX,B(a) (4.18)

by performing a flip.

Finally, it is straightforward to check that all of the correlation functions of Neumann

and Dirichlet boundary conditions in section (4.2) are compatible with this procedure.
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B− B+

=

∫
dνX(a)

B1 DX DX B2

Figure 8. The construction of a general correlation function 〈B1, B2〉 by inserting cutting the path

integral and expressing the result in terms of the wave functions ZX,B1
(a) and ZX,B2

(a).

W (r)DX B

= W (r)(a)ZX,B(a)

W (r)DY B

= W (r)(a)ZY,B(a)

Figure 9. Correlation functions with supersymmetric Wilson loops inserted.

4.4 Loop operators

Supersymmetric Wilson-’t Hooft operators can be inserted at points in the interval and

on Hopf linked circles S1 and S̃1 of length 2πb and 2π/b in the squashed three-sphere S3
b .

This corresponds to the insertion of operators in the putative supersymmetric quantum

mechanics annihilated by Q or Q†. As before, their correlation functions are independent

of the position on the s-axis. We will focus on supersymmetric loop operators wrapping S1.

It will be sufficient to determine the correlation function of a supersymmetric loop

operator inserted between a Dirichlet boundary condition DX(a) or DY (a) and a general

boundary condition B. Results from supersymmetric localization imply this will act as

a difference operator on the wave functions ZX,B(a) or ZY,B(a). From these ingredients,

more general correlation functions can be computed by cutting the path integral.

4.4.1 Wilson loops

Let us first consider a supersymmetric Wilson loop in the representation Λr inserted be-

tween a Dirichlet boundary condition DX(a) or DY (a) and another boundary condition B.

Moving the supersymmetric Wilson loop operator to the Dirichlet boundary condition, it

is evaluated on the vacuum expectation value Aj = 0 and Re(φ) = a. We therefore find

W (r)(a)ZX,B(a) W (r)(a)ZY,B(a) (4.19)

where

W (r)(a) =
∑
|I|=r

e2πibaI (4.20)

is the character of the representation Λr and we write aI =
∑

i∈I ai. Note that if we define

exponentiated variables wj = e2πibaj this contribution concides with the expectation value

of a supersymmetric Wilson loop from section 3.1. This is summarized in figure 9.
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The correlation function of a supersymmetric Wilson loop between any pair of bound-

ary conditions B1 and B2 is then∫
dνX(a) ZX,B1(a)W (r)(a)ZX,B2(a) , (4.21)

by cutting the path integral on either side of the supersymmetric Wilson loop insertion. As

in equation (4.17), there are equivalent expressions involving DY (a) boundary conditions

using dν(a) and dνY (a).

4.4.2 ’t Hooft loops

Let us now move to supersymmetric ’t Hooft loops. We first consider an ’t Hooft loop in

the antisymmetric tensor representation Λr inserted between DX(a) or DY (a) on the left

and a boundary condition B on the right. This correlation function is given by a difference

operator acting on the original wave function,

H
(r)
X (a)〈DX(a), B〉 , H

(r)
Y (a)〈DY (a), B〉 . (4.22)

The form of these difference operators can be determined from supersymmetric localiza-

tion [33]. The result takes the following form4

H
(r)
X (a) =

∑
|I|=r

∏
i∈I,j /∈I

sinπb(ε+ ai − aj)
sinπb(ai − aj)

hI ,

H
(r)
Y (a) =

∑
|I|=r

∏
i∈I,j /∈I

sinπb(ε∗ + ai − aj)
sinπb(ai − aj)

hI ,

(4.23)

where

hi : aj 7→ aj + b

(
δij −

1

N

)
(4.24)

are elementary difference operators preserving the constraint
∑

j aj = 0 and we have used

the shorthand notation hI = hi1 · · ·hir for I = {i1, . . . , ir}. The contributions in the

numerators of these difference operators arise from 1-loop contributions from the chiral

fields X and Y in the background of an ’t Hooft loop, explaining the relative dependence

on the combinations ε and ε∗.

If we define exponentiated parameters

wj = e2πibaj t = e2πibε q = e2πib2 , (4.25)

the difference operators become

H
(r)
X (a) =

∑
|I|=r

∏
i∈I,j /∈I

t1/2wi − t−1/2wj
wi − wj

hI ,

H
(r)
Y (a) =

∑
|I|=r

∏
i∈I,j /∈I

(q/t)1/2wi − (q/t)−1/2wj
wi − wj

hI .

(4.26)

4The localization results in [33] are for supersymmetric ’t Hooft loops on S4 supported on a circle S1 ⊂ S3

where S3 is the equator. In the neighbourhood of the equator, the background looks like our R×S3. Since

the contributions to the difference operator arise from 1-loop contributions localized at the equator, we

expect these expressions to be correct also for our computation. A further conjugation is required to bring

these operators into the form shown here [34, 35].
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H(r)DX B

= H
(r)
X (a)ZX,B(a)

H(r)DY B

= H
(r)
Y (a)ZY,B(a)

Figure 10. The insertion of a supersymmetric ’t Hooft loop between a boundary conditions DX(a)

and B acts as a difference operator on the wave function ZX,B(a).

In the ‘classical’ limit b → 0, the difference operators H
(r)
X (a) coincide with the Coulomb

branch expectation values of supersymmetric ’t Hooft loops in section 3.1, where the eigen-

values of the holonomy around the puncture are {t−1, . . . , t−1, tN−1}. On the other hand,

the difference operators H
(r)
Y (a) coincide with the expectations values of supersymmetric

’t Hooft loops in a setup where the eigenvalues of the holonomy around the puncture are

inverted to {t, . . . , t, t1−N}.
This means that choosing to construct wave functions with DX(a) or DY (a) correspond

to quantizations of SL(2,Z) flat connections on T 2/{p} with the holonomy eigenvalues at

p inverted. In what follow, we focus on constructing wave functions with DX(a), so that

our formulae reduce directly to those in section 3.1 in the ‘classical’ limit b2 → 0.

Let us now compute the partition function of a supersymmetric ’t Hooft loop between

any pair of boundary conditions B1 and B2 by cutting the interval to the left of the

supersymmetric ’t Hooft loop with DX(a) boundary conditions,∫
dνX(a) ZX,B1(a)

[
H

(r)
X (a)ZX,B2(a)

]
. (4.27)

Provided the wave functions ZX,B1(a) and ZX,B2(a) have no poles inside the region

|Re(aj)| < b(1− 1
N ), the difference operators obey the following conjugation property,∫

dνX(a) ZX,B1(a)
[
H

(r)
X (a)ZX,B2(a)

]
=∫

dνX(a)
[
H

(r)
X (−a)ZX,B1(a)

]
ZX,B2(a) ,

(4.28)

which can be shown by suitably deforming the contour of integration and using the func-

tional properties of the double sine function [25]. The difference operator appearing on the

right coincides with that of the ’t Hooft loop in the conjugate representation,

H
(r)
X (−a) = H

(N−r)
X (a) . (4.29)

Compatibility with the freedom to cut the path integral at any point now requires

that the partition function of an ’t Hooft loop in the representation Λr between a general

boundary condition B on the left and a Dirichlet boundary condition DX(a) or DY (a) on

the right is

H
(r)
X (−a)〈B,DX(a)〉 , H

(r)
Y (−a)〈B,DY (a)〉 . (4.30)
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In other words, the ’t Hooft loop acts on a left boundary condition by the difference

operator for the conjugate representation. This is compatible with the prescription for left

/ right boundary conditions in the limit b→ 0 in section 3.2.

Finally, the difference operators acting on wave functions constructed using DX(a) and

DY (a) are intertwined by the contribution from chiral multiplets X and Y ,

H
(r)
X (a)KY (a) = KY (a)H

(r)
Y (a) H

(r)
Y (a)KX(a) = KX(a)H

(r)
X (a) , (4.31)

which is a consequence of the identity

KY (a) [hiKX(a)] =
N∏
j=1
j 6=i

sinπb(ε+ ai − aj)
sinπb(ε∗ + ai − aj)

. (4.32)

This ensures compatibility of the action of the difference operators with the flip: we can

consistently cut the path integral using DX(a), DY (a) or a mixture of both, even in the

presence of supersymmetric ’t Hooft loop insertions.

It is interesting to compute the correlation function of an ’t Hooft loop between DX(a)

and NY . In the absence of the ’t Hooft loop, we have the wave function 〈DX(a), NX〉 = 1.

Therefore, we expect to reproduce the partition function of a supersymmetric quantum

mechanics on S1 for the degrees of freedom supported on the ’t Hooft loop. Indeed, by the

same computation as in equation (3.14), we find

H
(r)
X (a) · 1 =

∑
I⊂{1,...,N}
|I|=r

∏
i∈I
j /∈I

sinπb(ε+ ai − aj)
sinπb(ai − aj)

= W (r)(ρε) .
(4.33)

As in section 3.2, this coincides with the partition function of a gauged N = 4 supersymmet-

ric quantum mechanics on S1 that flows to a sigma model to the Grassmannian Gr(r,N),

and gives the quantum dimension dimt(Λ
r) of the representation Λr, where now t = e2πibε.

4.5 SL(2,Z) interfaces

Let us first consider the T transformation. As discussed in section 2.3, this corresponds to

the addition of a supersymmetric Chern-Simons term at level +1. Moving the T interface

onto a Dirichlet boundary condition DX(a) of DY (a) evaluates the supersymmetric Chern-

Simons term at the expectation value Aj = 0 and Re(φ) = a, leading to an insertion of

T (a) = exp

(
− iπ

∑
j

a2
j

)
. (4.34)

The insertion of the T interface between a pair of Dirichlet boundary conditions DX(a)

and DX(a′) is summarized in figure 11.

As in section 3.3, this interface is characterized by Ward identities for supersymmetric

loop operators, which translate into difference equations for the function T (a). Wilson

loops act multiplicatively and therefore commute with the interface. On the other hand,
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TDX DX

=
∆(a, a′)

νX(a)
T (a)

Figure 11. The correlation function of the T duality interface between a pair of Dirichlet boundary

conditions DX(a) and DX(a′).

T TH(r) (W−1H)(r)

= q−
r(N−r)

2N

T TW (r) W (r)

=

Figure 12. Translation of a supersymmetric ’t Hooft loop through a T interface generates a

supersymmetric mixed Wilson-’t Hooft loop.

an ’t Hooft loop becomes a mixed Wilson-’t Hooft loop upon translation through the

interface. For the supersymmetric ’t Hooft loop in the representation Λr, we find

H
(r)
X (a) T (a) = q−

r(N−r)
2N T (a)(W−1H)

(r)
X (a) (4.35)

where

(W−1H)
(r)
X =

∑
I⊂{1,...,N}
|I|=r

 ∏
i∈I,j /∈I

sinπb(ε+ ai − aj)
sinπb(ai − aj)

 e−2iπbaIhI . (4.36)

This difference operator corresponds to the expectation value of the mixed Wilson-’t Hooft

loop given by TrΛr(W
−1H) from section 3.1. The extra factor in (4.35) can be written as

q−(ωr,ωr)/2, where ωr is the highest weight of the representation Λr.

Analogously, we find

H
(r)
X (a) T−1(a) = q

r(N−r)
2N T−1(a)(WH)

(r)
X (a) (4.37)

where

(WH)
(r)
X =

∑
I⊂{1,...,N}
|I|=r

 ∏
i∈I,j /∈I

sinπb(ε+ ai − aj)
sinπb(ai − aj)

 e2iπbaIhI . (4.38)

We now consider the interface implementing the S transformation. As discussed in

section 2.3, this is done by coupling to the theory T (g) at the interface. Since the overlap

between Neumann and Dirichlet boundary conditions is ‘1’, the definition in section 2.3

makes it clear that the correlation function of the interface between Dirichlet boundary

conditions DX(a) and DY (a′) reproduces the S3
b partition function Z(a, a′, ε) of the theory

T (g) — as shown in figure 15.
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N

a1, . . . , aN

a0N�1 � a0N a02 � a03 a01 � a02

12N�1

Figure 13. A quiver description of T (g) with hypermultiplet mass parameters (a1, . . . , aN ) and FI

parameters labelled
(
a

′

1 − a′2, . . . , a′N−1 − a′N
)

.

The partition function Z(a, a′, ε) can be constructed from the Lagrangian description

of T (g) shown in figure 13. This leads to the following integral formula,

Z(a, a′, ε) =

∫ N−1∏
n=1

dνX

(
a(n)

)
Qn+1,n

(
a(n+1), a(n)

)
e

2πi(a′n−a′n+1)
(
a
(n)
1 +···+a(n)n

)
. (4.39)

Here we have introduced parameters {a(n)
1 , . . . , a

(n)
n } valued in the Cartan subalgebra of

u(n) for n = 0, . . . , N − 1, and by convention we define {a1, . . . , aN} = {a(N)
1 , . . . , a

(N)
N } to

be mass parameters at the final node. The FI parameter at the n-th node is a′n − a′n+1.

Finally

Qn+1,n

(
a(n+1), a(n)

)
=

n+1∏
i=1

n∏
j=1

Sb

(
ε∗

2
+ a

(n+1)
i − a(n)

j

)
Sb

(
ε∗

2
− a(n+1)

i + a
(n)
j

)
(4.40)

is the one-loop contribution to the partition function from the hypermultiplet in the bifun-

damental representation of u(n+ 1)⊕ u(n).

The integral (4.39) may be evaluated as a series expansion in e2πi(a′n−a′n−1) by summing

the contributions from the poles of the hypermultiplet contributions, see for example [25].

However, the resulting expression is rather unwieldy. An exception is the limit b = 1

and ε = 1, in which the partition function reduces to a product of simple trigonometric

functions [36]. Nevertheless, using the integral representation (4.39), it is possible to show

that the partition function obeys the following properties:

• Mirror symmetry

Z(a, a′, ε) = Z(a′, a, ε∗) . (4.41)

• It has an analytic continuation away from imaginary a, a′ with simple poles at

ai − aj = −
(
ε∗ + n1b+ n2b

−1
)
,

a′i − a′j = −
(
ε + n1b+ n2b

−1
)
,

(4.42)

for all i < j and n1, n2 ∈ Z≥0.

• It is a simultaneous eigenfunction of ’t Hooft loop difference operators

H
(r)
X (a) · Z(a, a′, ε) = W (r)(a′)Z(a, a′, ε) ,

H
(r)
Y (a′) · Z(a, a′, ε) = W (r)(a)Z(a, a′, ε) ,

(4.43)

with identical equations for supersymmetric loop operators wrapping the circle of

length 2π/b.
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S SH(r) W (r)

=

S SW (r) H(N−r)

=

Figure 14. Under S duality, a Wilson loop becomes an ’t Hooft loop.

The first symmetry property (4.41) reflects the expectation that T (g) is self-dual under

three-dimensional mirror symmetry. This property has been proved in the case N = 2 using

the integral representation in reference [37].

The analytic structure (4.42) in the mass parameters (a1, . . . , aN ) can be determined

from the integral representation (4.39) by analysing where the poles from the hypermulti-

plet contributions to the integrand collide and pinch the contour. The analytic structure

in the FI parameters (a′1, . . . , a
′
N ) is not simple to determine directly from the integral

representation (4.39) but can be determined from the analytic structure in (a1, . . . , aN )

using the mirror symmetry property (4.41).

Finally, the difference equations encode the transformation properties of supersymmet-

ric Wilson and ’t Hooft loops under S-duality. This property can be proved by induction on

N using the various properties of the ’t Hooft loop difference operators as shown in [25, 34].

4.6 SL(2,Z) relations

We now want to check that above interfaces generate an action of SL(2,Z) on the wave

functions associated to boundary conditions.

For this purpose, it is convenient to choose a uniform convention for cutting the path

integral using the Dirichlet boundary conditions DX(a) and integrating using the mea-

sure dνX(a). The partition function Z(a, a′, ε) obtained from sandwiching S between the

boundary conditions DX(a) and DY (a) is therefore inconvenient with this choice. Instead,

we will work with the partition function

SX(a, a′) := Z(a, a′, ε)KY (a′) (4.44)

obtained from sandwiching the interface S between boundary conditions DX(a) and DX(a).

(For consistency, we could also define a function SY (a, a′) by sandwiching the interface in

between boundary conditions DY (a) and DY (a′), although we will not need it.) The origin

of the two functions is summarized in figure 15.

Using the analytic properties of the functions KX(a), KY (a) and their intertwining

property with respect to the difference operators H
(r)
X (a), H

(r)
Y (a), we find that the function

SX(a, a′) has the following properties:

• Mirror symmetry

SX(a, a′) = SX(a′, a) . (4.45)
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SDX DY

= Z(a, a′, ε)

SDX DX

= SX(a, a′)

Figure 15. The partition function of S duality interface between a pair of Dirichlet boundary

conditions DX(a) and DY (a′).

• It has an analytic continuation away from imaginary a, a′ with simple poles at

ai − aj = −
(
ε∗ + n1b+ n2b

−1
)
,

a′i − a′j = −
(
ε∗ + n1b+ n2b

−1
)
,

(4.46)

for all i < j and n1, n2 ∈ Z≥0.

• Simultaneous eigenfunction of ’t Hooft loop difference operators

H
(r)
X (a) · SX(a, a′) = W (r)(a′)SX(a, a′) ,

H
(r)
X (a′) · SX(a, a′) = W (r)(a)SX(a, a′) ,

(4.47)

with identical equations for supersymmetric loop operators wrapping the circle of

length 2π/b.

We now want to show that the concatenation of our kernels SX(a, a′) and T (a) with

respect to the measure νX(a) defines a representation of SL(2,Z). The standard relations

S2 = P and (ST )3 = P correspond to the following equations∫
dνX(a)SX(a, a′)SX(a′, a′′) =

1

N

∆(a,−a′′)
νX(a)

(4.48)

and ∫
dνX(a′)SX(a, a′)T (a′)SX(a′, a′′) = ζT−1(a)SX(a, a′′)T−1(a′′) . (4.49)

At the level of partition functions, P corresponds to the replacement a → −a. Note that

there are additional constant contributions 1/N in (4.48) and

ζ =
1√
N
e

iπ
4

((N−1)+N(N−1)εε∗) , (4.50)

in (4.49), which are expected to be the contributions of decoupled topological sectors. This

is a familiar feature from the SL(2,Z) action of three-dimensional quantum field theories

with abelian flavour symmetries [38].

We can prove the relation S2 = P by inserting a supersymmetric ’t Hooft loop in

between the S transformation interfaces. Using the eigenfunction property (4.47) and the

conjugation property (4.28) we find that(
W (r)(a)−W (r)(−a′′)

)∫
dνX(a)SX(a, a′)SX(a′, a′′) = 0. (4.51)

– 27 –



J
H
E
P
0
4
(
2
0
1
7
)
1
7
0

A similar equations applies for supersymmetric Wilson loops wrapping the circle of radius

2π/b. This implies that the integral vanishes unless a = −a′′ and is therefore proportional

to a Weyl-invariant delta function. A simple way to determine the particular normaliza-

tion in (4.48) is to examine the limit b → 1 and m → 0, where everything reduces to

trigonometric functions [36].

In section 5.1, we will perform an explicit check of the relation (ST )3 = P for the

specific values a = ρε and a′ = ρε by equating two different ways to compute the partition

function associated to the 3-manifold M3 = S3 by surgery. In particular, by analysing the

asymptotics of this formula as ε → ∞ with Imε > 0, this will allow us to determine the

additional factor ζ.

The extraneous factors of ζ and
√
N can always be removed from the formulae (4.48)–

(4.49) by rescaling the transformation functions T (a) and SX(a, a′). In particular, we can

define the ‘dressed’ functions

T (a) = e−
iπ
12

(N−1+N(N+1)εε∗)T (a) SX(a, a′) =
√
NSX(a, a′) (4.52)

such that ∫
dνX(a)SX(a, a′)SX(a′, a′′) =

∆(a,−a′′)
νX(a)

(4.53)

and ∫
dνX(a′)SX(a, a′)T (a′)SX(a′, a′′) = T −1(a)SX(a, a′′)T −1(a′′) . (4.54)

We will work in the rest of the paper with the functions SX(a, a′) and T (a), which satisfy

the SL(2,Z) relations exactly.

In particular, the dressed transformation T (a) can be written in terms of quantities

that are particularly natural in Toda conformal field theory of type AN−1,

T (a) = exp

(
∆(α)− c

24
− ∆ε

12

)
(4.55)

where

• ∆(α) = (α, 2Qρ−α)/2 is the conformal dimension of a non-degenerate representation

of the WN -algebra corresponding to momentum α = Qρ − a around the (1, 0) cycle

of T 2/{p}.

• ∆ε = ∆(NεωN−1) is the conformal dimension of a semi-degenerate representation

of the WN -algebra associated to the puncture on T 2/{p} with momentum NεωN−1

where ωj are the fundamental weights of g = su(N).

• c = (N − 1) + N(N2 − 1)Q2 is the standard parameterization of the central charge

of the WN -algebra.

The appearance of AN−1 Toda conformal field theory is consistent with the proposal that

we are constructing partition functions of Chern-Simons theory with complex gauge group

SL(N,C) on 3-manifolds with boundary. It would be interesting to understand how to
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provide a concrete justification for the addition of these factors from the viewpoint of

correlation functions of 3d N = 2 boundary conditions and interfaces.

The SL(2,Z) relations allow us to derive how mixed Wilson-’t Hooft loops de-

fined in (4.36) and (4.38) transform under S transformations. An ’t Hooft loop H(r)

through the combination of interfaces SPT−1ST−1 becomes q
r(N−r)

2N (WH)(r). On the

other hand, the combination of interfaces above simply corresponds to TS, which leads

to q
−r(N−r)

2N (W−1H)(r) acting on S. The relation just found corresponds to the follow-

ing equation

(W−1H)(r)(a)SX(a, a′) = SX(a, a′)(WH)(r)(a′)q
r(N−r)
N . (4.56)

Similarly, moving an ’t Hooft loop H(r) through the SL(2,Z) interface STST = T−1S, we

find the following relation

(WH)(r)(a)SX(a, a′) = SX(a, a′)(W−1H)(N−r)(a′)q−
r(N−r)
N . (4.57)

These formulae will be important for computing the parition function associated to an

unkot and Hopf link in S3 in section 5.

4.7 Boundary conditions revisited

Now that we have constructed the partition functions of interfaces generating SL(2,Z)

duality transformations, we can in principle compute the partition functions involving

boundary conditions in the SL(2,Z) orbits of the basic Neumann and Dirichlet boundary

conditions introduced in section 2.1.

In particular, we will define the Nahm pole boundary condition such that the Neumann

boundary condition NX is the S transformation of NPX . The wave functions ZX,NPX (a) =

〈DX(a), NPX〉 for the Nahm pole boundary condition and ZX,NX (a) = 1 are then related by

1 =

∫
dνX(a)SX(a′, a)ZX,NPX (a) , (4.58)

and its inverse

ZX,NPX (a) =

∫
dνX(a′)SX(−a, a′) . (4.59)

We will not need an explicit expression for the Nahm pole wave function ZX,NPX , as we

can rely the following property. By inserting a supersymmetric ’t Hooft loop between the

interface and the Neumann boundary condition and using the conjugation property (4.28),

the eigenfunction equation (4.47) and H
(r)
X (a′) · 1 = W (r)(ρε), we find

(W (r)(a)−W (r)(ρε))ZX,NPX (a) = 0 , (4.60)

with an identical equation for supersymmetric loop operators wrapping the circle of length

2π/b. This implies ZX,NPX (a) vanishes in the physical regime where a is imaginary. We

can define the wave function by analytic continuation, although its detailed form will not

be needed. The important point is that, due to (4.60), we can replace a → ρε in any

invariant function f(a) multiplying the wave function ZX,NPX (a).
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5 Case study: T (S3)

We will now apply the results of the previous section to the computation of the S3
b partition

function of the 3d N = 2 theory associated to S3, T
(
S3
)
. In addition, we compute the

partition function of T (S3) in the presence of loop operators corresponding to the unknot

and the Hopf link in S3 labelled by antisymmetric tensor representations of SL(N,C) by

adding supersymmetric Wilson-’t Hooft loops in the surgery construction. In this way,

we will recover an analytic continuation of the S-matrix of refined Chern-Simons theory

introduced in [12, 13].

5.1 S3 partition function

The simplest way to construct the three-manifold S3 by surgery is to identify the boundaries

of two solid tori D2 × S1 by an SL(2,Z) transformation φ = S. Using solid tori obtained

by contracting the (1, 0) cycle of the boundary T 2, this corresponds to computing the

correlation function of the S interface between a pair of Nahm pole boundary conditions

NPX . Equivalently, it corresponds to the correlation function of a Nahm pole boundary

condition NPX and a Neumann boundary condition NX . The partition function of T (S3)

can therefore be expressed as

ZT (S3) =

∫
dνX(a)dνX(a′) ZX,NPX (a)SX(a, a′)ZX,NPX (a′)

=

∫
dνX(a)ZX,NPX (a) .

(5.1)

We can evaluate the integral in the second line without requiring the form of the

Nahm pole wave function ZX,NPX (a). We start from the relation between the Neumann

and Nahm pole wave functions (4.58) and consider the limit as a′ → ρε. We claim that the

function SX(a′, a) remains finite in this limit and is independent of a. In particular, from

the eigenfunction equation (4.47), we find

H
(r)
X (a)SX(ρε, a) = W (r)(ρε)SX(ρε, a) . (5.2)

for all r = 1, . . . , N−1 with a similar equation for supersymmetric loop operators wrapping

the circle of length 2π/b. This implies that the function SX(ρε, a) is independent of a. An

explicit computation using the perturbative expansion of the function SX(a, a′) in powers

of e2πi(a′n−a′n−1) is consistent with this argument and demonstrates that in fact

SX(ρε, a) =
√
N

N∏
j=2

Sb(jε)
−1 . (5.3)

The computation is performed in appendix C. Therefore, we find

ZT (S3) =
1√
N

N∏
j=2

Sb(jε) . (5.4)

Apart from the 1/
√
N factor out front, this expression coincides with the partition function

of (N − 1) chiral multiplets with TR charges 2, . . . , N and Tf charges 2, . . . , N .
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= T (ρε)2

S STNPX NPX

= T (ρε)2

TNX NX

Figure 16. The sequence of moves relating the different surgery constructions of T
(
S3
)
.

There is an alternative surgery construction of the partition function of T (S3), which

is related to the computation above by following the sequence of operations shown in

figure 16. The starting point for this computation is the correlation function of the S

interface between a pair of Nahm poles NPX . The next step is to note that the interface

T acts on the Nahm pole wave function ZX,NPX (a) by multiplying by

T (ρε) = exp

(
−πi

12
N(N2 − 1)ε2 − πi

12
(N − 1)(1 +Nε∗ε)

)
(5.5)

as a consequence of equation (4.60). We can therefore insert a pair of T−1 interfaces at

the expense of a framing factor T (ρε)2. Next, applying the relation (4.54) and using the

resulting S interfaces to convert the Nahm pole boundary condition to Neumann boundary

conditions, we arrive at the final line in figure 16.

Therefore, modulo framing, T (S3) can also be constructed from the T interface sand-

wiched between a pair of Neumann boundary conditions NX , leading to a description in

terms of a supersymmetric Chern-Simons theory at level +1 and a chiral multiplet with

the same charges as X. The sequence of moves shown in figure 16 translates into concrete

expressions at the level of partition functions,

ZT (S3) = T (ρε)2Z ′T (S3) Z ′T (S3) =

∫
dνX(a) T (a) . (5.6)

In appendix C, we check agreement of the asymptotic behaviour of both sides of this

equation in the limit ε→∞ with Im(ε) > 0. In particular, this asymptotic analysis deter-

mines the framing factor T (ρε)2 in equation (5.6) exactly, which furthermore determines

the coefficient ζ in the SL(2,Z) relations (4.49).

We therefore find that T (S3) is a supersymmetric SU(N) Chern-Simons theory at level

+1 together with an a chiral multiplet in the adjoint representation, as proposed in [39]. In

our construction, the adjoint chiral multiplet comes naturally with the same TR charge as

X, namely +1. However, at the level of partition functions this can be modified by analytic

continuation in the mass parameter m for the Tf symmetry. The equivalence with (N − 1)

chiral multiplets together with a decoupled topological sector is a known three-dimensional

duality [40, 41].

Let us briefly consider the special case N = 2. The equivalence between the super-

symmetric Chern-Simons and (N − 1) chiral multiplet descriptions (5.6) is equivalent to
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H(N−r)SNPX NPX

=

W (r) SNPX NPX

Figure 17. The computations leading to an unknot in S3.

the following integral identity,∫
γε

da

2i
Sb(ε)

Sb(ε+ 2a)Sb(ε− 2a)

Sb(2a)Sb(−2a)
e−2πia2 =

1√
2
e
πi
4 e

πi
2
ε(Q+ε)Sb(2ε) (5.7)

where γε is a suitably deformed contour from supersymmetric localization, which satisfies

γε = iR in the physical region, where Re(ε) > 0, Im(ε) > 0. In the limit b → 1 of a round

three-sphere, this reproduces the result checked numerically in [40], with ε analytically

continued from ∆ ∈ (0,∞).

Finally, in the limit that we remove the mass parameter m→ 0 for u(1)f and set the

TR charge r to an even integer, the partition function (5.6) vanishes. This supports the ex-

pectation that, due to the absence of SL(N,C) flat connections on S3 without monodromy

defects, supersymmetry is spontaneously broken in T
(
S3
)
.

5.2 Unknot in S3

Let us now consider adding a single codimension-4 defect of the N = (2, 0) theory, labelled

by an antisymmetric tensor representation of rank r, wrapping S1 ⊂ S3. In the construction

of S3 by gluing two solid tori S1×D2 with an S transformation, this corresponds to adding

a codimension-4 defect at the origin of D2 in one of the solid tori.

This corresponds to the correlation function of a supersymmetric ’t Hooft loop in the

representation ΛN−r in between a Neumann boundary condition NX and a Nahm pole

boundary condition NPX . This can be evaluated by moving the supersymmetric ’t Hooft

loop through the S interface to become a supersymmetric Wilson loop, as shown on the

right of figure 17. This contributes W (r)(a) to the integrand, which should be evaluated at

a = ρε since it multiplies the Nahm pole wave function:

ZT (S3)(ωr)

ZT (S3)
= W (r)(ρε) = W (N−r)(ρε) . (5.8)

In terms of the exponentiated variable, t = e2πibε, we have

ZS3(ωr)

ZS3

= dimt(Λ
r) = dimt(Λ

N−r) , (5.9)

which is the quantum dimension of the representation Λr or ΛN−r, with quantum parameter

t. We also recognize this result as an analytic continuation of Sr,0, where Sr,s is the S-

matrix of the refined Chern-Simons theory from [13].

As before, we can express the same result in the alternative framing of S3 by performing

the sequence of operations shown in figure 18. At the final stage, modulo a factor q−
r(N−r)

2N
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SW (r)NPX NPX

= T (ρε)2

W (r) T −1 S T −1NPX NPX

= T (ρε)2

W (r) S T S NPXNPX

= T (ρε)2

H(N−r) TNX NX

= T (ρε)2 q−
r(N−r)

2N

T (W−1H)(N−r) NXNX

= T (ρε)2 q−
r(N−r)

2N t−
r(N−r)

2

W (r)TNX NX

Figure 18. Sequence of moves to evaluate ZS3(ωr).

from equation (4.35) from translating a supersymmetric ’t Hooft loop through T , we find

the correlation function of T and (W−1H)(N−r) in between a pair of Neumann boundary

conditions NX . The action of the mixed Wilson-’t Hooft loop on NX is(
W−1H

)(N−r)
(a) · 1 = t−

r(N−r)
2 W (r)(a) . (5.10)

Thus we conclude that

ZS3(ωr) = θ−1
r T (ρε)2Z ′S3(ωr) = T (ρε)T (ρε+ bωr)Z

′
S3(ωr) (5.11)

where

Z ′S3(ωr) =

∫
dνX(a)W (r)(a)T (a) , (5.12)

and

θr = θN−r = q
r(N−r)

2N t
r(N−r)

2 , (5.13)

which satisfies

θ−1
r T (ερ) = T (ερ+ bωr) . (5.14)

The insertion of the defect can therefore be interpreted as the insertion of a Wilson loop

in the representation Λr in the supersymmetric Chern-Simons description of T (S3).

5.3 Hopf link in S3

We now consider two codimension-4 defects labelled by anti-symmetric tensor representa-

tions of rank r and s wrapping two Hopf-linked circles in S3. In the first surgery construc-

tion of S3 by gluing two solid tori S1 ×D2 with an S transformation, this corresponds to

inserting a pair of codimension-4 defects at the origin of each D2.

This corresponds to inserting two supersymmetric ’t Hooft loops on the two sides of

the interface, as depicted in figure 19. By cutting the path integral at both sides of the S
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H(r) H(N−s)SNPX NPX

Figure 19. The partition function for T
(
S3
)

with two defects corresponds to the insertion of ’t

Hooft loop operators. This partition function is symmetric in r and s because in our conventions

operators in diagrams act to the right.

interface, we find the following integral representation of this correlation function,

ZT (S3)(ωr, ωs) =

∫
dνX(a)dνX(a′) ZX,NPX (a)ZX,NPX (a′)H

(s)
X (a′) ·

(
H

(r)
X (a)SX(a, a′)

)
.

(5.15)

The evaluation of the ’t Hooft loop difference operators on the S interface kernel yields the

following expression,

H
(s)
X (a′) ·

(
H

(r)
X (a)SX(a, a′)

)
=
∑
|I|=s

BI(a
′)W (r)(a′ + bδI)SX(a, a′ + bδI) , (5.16)

where

BI(a) =
∏
i∈I
j /∈I

sinπb(ε+ ai − aj)
sinπb(ai − aj)

, (5.17)

and by a slight abuse of notation, we have defined δI to be the vector whose elements

satisfy (δI)j = χI(j) − |I|N , with χI the indicator function of I. Now we make use of the

results for the Nahm pole in section 4.7 to see that we need to evaluate equation (5.16) at

a, a′ = ρε. In this case, the only contribution in the sum in equation (5.16) is from the set

I = {1, . . . , s}. Since

SX(ρε, a′) = 1/ZT (S3) (5.18)

we therefore find that

H
(s)
X (a′) ·

(
H

(r)
X (a)SX(a, a′)

)∣∣∣
(a,a′)=(ρε,ρε)

=
1

ZT (S3)
W (s)(ρε)W (r) (ρε+ bωs) , (5.19)

where ωs = δ{1,...,s} is the highest weight of the rank s fundamental representation of su(N).

Finally, we evaluate∫
dνX(a)dνX(a′) ZX,NPX (a)ZX,NPX (a′) =

(
1

SX(ρε, ρε)

)2

=
(
ZT (S3)

)2
. (5.20)

Putting everything together, we find that

ZT (S3)(ωr, ωs)

ZT (S3)
= W (s)(ρε)W (r) (ρε+ bωs) , (5.21)

or in terms of the exponentiated variables t = e2πibε, q = e2πib2 :

ZT (S3) (ωr, ωs)

ZT (S3)
= W (r) (tρ)W (s) (tρqωr) . (5.22)
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SH(r) H(N−s)NPX NPX

= T (ρε)2

T −1 H(r) S H(N−s) T −1NPX NPX

= T (ρε)2 q−
r(N−r)

2N q
s(N−s)

2N

(W−1H)(r) T −1 S T −1 (WH)(N−s)NPX NPX

= T (ρε)2 q−
r(N−r)

2N q
s(N−s)

2N

(W−1H)(r) S T S (WH)(N−s)NPX NPX

= T (ρε)2 q
r(N−r)

2N q−
s(N−s)

2N

T(WH)(r) (W−1H)(N−s)NX NX

TW (r) W (s)NX NX

= T (ρε)2 θ−1
r θ−1

s

Figure 20. An evaluation of ZT (S3)(ωr, ωs).

This precisely reproduces an analytic continuation of the S-matrix Sr,s for a pair of anti-

symmetric tensor representations Λr and Λs in refined Chern-Simons theory [12, 13].

Again, we can make contact with the alternative framing of S3 by the sequence of

operations shown in figure 20. We begin with the same setup as before and treat sym-

metrically the operators on either sides of the interface, using the property that T acts as

multiplication by a constant on a Nahm pole boundary condition to insert a T interface,

as represented in the first step of figure 20. Then, we move the T interfaces towards the

center using (4.37) and the relation

(W−1H)
(r)
X (a)T −1(a) = q

r(N−r)
2N T −1(a)H(r)(a) . (5.23)

Now we use the SL(2,Z) relations to get to the third line to figure 20. Recalling the

transformation of supersymmetric Wilson-’t Hooft loops (4.56), we end up at the fourth

line. For the supersymmetric Wilson-’t Hooft loop on the right of the T interface, the

action of the difference operator on the Neumann boundary condition is

(
W−1H

)(N−s)
(a) · 1 = t−

s(N−s)
2 W (s)(a) . (5.24)

However, for the supersymmetric Wilson-’t Hooft loop on the left of the T interface, we

first need to use the conjugation property∫
dνX(a)f(a)

[
(WH)(r)(a′)g(a′)

]
= q−

r(N−r)
N

∫
dνX(a)

[
(W−1H)(N−r)(a)f(a)

]
g(a′) .

(5.25)
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This allows us to conclude that

ZT (S3)(ωr, ωs) = θ−1
r θ−1

s T (ρε)2Z ′T (S3)(ωr, ωs)

= T (ρε+ bωr)T (ρε+ bωs)Z
′
T (S3)(ωr, ωs) ,

(5.26)

where

Z ′T (S3)(ωr, ωs) =

∫
dνX(a)W (r)(a)W (s)(a)T (a) . (5.27)

This corresponds to the insertion of a pair of supersymmetric Wilson loops in the anti-

symmetric tensor representations Λr and Λs in the supersymmetric Chern-Simons descrip-

tion of T (S3). This can be interpreted as a complex version of the Cherednik-Macdonald-

Mehta identity [42].

6 Surgery

Closed orientable three-manifolds have the property that they can be constructed by Dehn

surgery along links in S3. This is determined by an element of the mapping class group

SL(2,Z) of the torus boundaries of both the knot exterior in S3 and the tubular neigh-

bourhood of the knot. In this section we consider the Dehn surgery construction of Seifert

manifolds M3, and the corresponding construction of the partition function of the theory

T (M3).

6.1 Lens spaces

The Lens space L(p, 1) can be constructed by gluing a pair of (1, 0) solid tori by the SL(2,Z)

transformation ST−pS, or equivalently two (0, 1) solid tori by the SL(2,Z) transformation

T−p. This corresponds to the partition function of the interface T−p in between a pair of

Neumann boundary conditions NX or NY . Sending the size of the interval to zero, this

leaves a supersymmetric Chern-Simons theory for g at level −p together with an adjoint

chiral multiplet.5 Applying our considerations from section 4, the partition function is

given by the following integral

ZT (L(p,1)) =

∫
dνX(a) T −p(a) . (6.1)

For a general Lens space L(p, q), we expand −p/q as a continued fraction

− p/q = [r1, . . . , rm] = r1 −
1

r2 − 1
r3−...

. (6.2)

The Lens space L(p, q) is then constructed using rational surgery by gluing two solid tori

(0, 1) with the SL(2,Z) transformation T r1ST r2S . . . ST rm . This corresponds to a series

of SL(2,Z) duality interfaces between a pair of Neumann boundary conditions NX . The

partition function of T (L(p, q)) is

ZT (L(p,q)) =

∫
dνX(a1) · · · dνX(am) T r1(a1)SX (a1, a2) T r2(a2)SX (a2, a3)

· · · T rm−1(am−1)SX (am−1, am) T rm(am) .

(6.3)

5The choice of supersymmetric Chern-Simons term at level p and −p correspond to the Lens spaces

L(−p, 1) and L(p, 1), which differ only by a change of orientation.
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Note that continued fraction expansions are not unique, for instance 1 = [1] = [0,−1] =

[2, 1] = [0, 0, 2, 1] = . . . . The difference in the constructions of the same Lens space L(p, q)

through different continued fraction expansions for −p/q is the resulting framing of the

manifold. However, the framing only affects the partition function by an overall constant

factor, and we indeed find that different choices of continued fraction expansions in (6.3)

yield partition functions that only differ by a framing factor.

Furthermore, equation (6.3) respects known homeomorphisms of Lens spaces, namely if

qq′ ≡ 1 mod p, then L(p, q) ∼= L(p, q′). The continued fraction expansions of the two pairs

of coefficients are in 1-1 correspondence: if −p/q = [ρ1, . . . , ρk], then −p/q′ = [ρk, . . . , ρ1]

(and vice versa). Since the expression for the partition function is explicitly invariant under

reversal of the sequence (ρ1, . . . , ρk), it indeed respects this homeomorphism.

6.2 Seifert manifolds

Seifert manifolds are S1-orbibundles; they can be realized using surgery on various solid

tori and they are described by a collection of pairs of integer numbers (pi, qi) ∈ Z ⊕ Z,

as described in appendix B. To compute the partition function of the 3d N = 2 theory

associated to a general Seifert manifold M ((m1, n1), . . . , (mk, nk)) we must now consider

the 4d N = 2∗ theory with gauge algebra g⊕k.

The boundary condition on the right is ‘unentangled’: it is a product of (mj , nj) type

boundary conditions for each factor of the gauge group separately. After expanding each

mj/nj as a continued fraction: mj/nj =
[
rj1, . . . , r

j
lj

]
, the wave function associated to this

boundary condition is given by

φ(a1, . . . , ak) = φ1(a1) · · ·φk(ak) . (6.4)

where

φi(ai) =

∫
dνX

(
a

(2)
i

)
. . . dνX

(
a

(li)
i

)
T ri1 (ai)SX

(
ai, a

(2)
i

)
T ri2

(
a

(2)
i

)
· · · SX

(
a

(li−1)
i , a

(li)
i

)
T r

i
li

(
a

(li)
i

)
(6.5)

encodes all the information down each fibre of the plumbing tree.

However, on the left we must introduce an ‘entangled’ boundary condition correspond-

ing to the manifold S2 × S1 \
(
∪ki=1Ni

)
, where the Ni are k unlinked solid tori. This is

defined by starting from Neumann boundary conditions NX for each factor g in the gauge

algebra, and deforming it by coupling to the dimensional reduction of the class S theory

corresponding to S2 with k full punctures and flavour symmetry g⊕k. This has a mirror

description as a star-shaped quiver [43], leading to the wave function

ψ(a1, . . . , ak) =

∫
dνX(a)SX(a, a1) . . .SX(a, ak) . (6.6)

The partition function corresponding to the Seifert manifold is now

ZT (M) =

∫
dνX(a1) · · · dνX(ak)ψ(a1, . . . , ak)φ(a1, . . . , ak)

=

∫
dνX(a)

k∏
i=1

dνX(ai)SX(a, ai)φi(ai) .

(6.7)
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Figure 21. Plumbing tree for a general Seifert manifold.

This expression mirrors the standard surgery construction for Seifert manifolds in regular

Chern-Simons theory.

The structure of the result (6.7) is manifest in the plumbing diagram for the Seifert

manifold, represented in figure 21, where to each node we associate an integral and a

T -function, and to each edge we associate an SX -function:

node j with label rj ↔
∫

dνX(aj) T rj (aj) , (6.8)

edge joining nodes i and j ↔ SX(ai, aj) . (6.9)

We can check that this reproduces the result (6.3) for a Lens space in two different

ways, First, using the representation of the Lens space L(p, q) as M ((q, p)), we write

q/p = [r1, . . . , rl]. Then L(p, q) has the following partition function,

ZT (L(p,q)) =

∫
dνX(a) dνX(a1) . . . dνX(al) SX(a, a1)T r1(a1) · · · SX(al−1, al)T rl(al).

=

∫
dνX(a1) . . . dνX(ak) T ρ1(a1)SX(a1, a2)T ρ2(a2) · · · SX(ak−1, ak)T ρk(ak) ,

(6.10)

where in the second line we have trivially re-written the partition function in terms of the

expansion −p/q = [0, q/p] = [0, r1, . . . , rl] = [ρ1, . . . , ρk], where k = l + 1. This reproduces

the result (6.3).

We can alternatively construct the Lens space L(p, q) as the Seifert manifold M =

M((m1, n1), (m2, n2)), with p = m1n2 + m2n1 and q = am1 + bn1, where a, b ∈ Z satisfy

am2 − bn2 = 1. Expanding m1/n1 = [r1, . . . , rl] and m2/n2 = [ρ1, . . . , ρk], we find that

ZT (M) =

∫
dνX(a−k) · · · dνX(al) T ρk(a−k)SX(a−k, a−k+1)T ρ−k+1(a−k+1) · · · T ρ1(a−1)×

× SX(a−1, a0)SX(a0, a1)T r1(a1) · · · SX(al−1, al)T rl(al), (6.11)

which we recognize as the partition function for the Lens space L(p̃, q̃), where −p̃/q̃ =

[ρk, . . . ρ1, 0, r1, . . . , rl]. This is indeed homeomorphic to the Lens space L(p, q) de-

scribed above.
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6.3 Special limits and topological invariance

We are currently not able to compute the Seifert manifold partition function for general ε.

Nevertheless, in certain limits the general formula (6.7) reduces to a simpler form and we

are able to calculate the partition function explicitly.

By analytic continuation, we will consider the limits ε → 0 and ε → Q which are

expected to correspond to removing the puncture from T 2. First, in both limits ∆ε → 0

and therefore

T (a)→ exp
(

2πi
(

∆(α)− c

24

))
, (6.12)

where c = (N − 1) + N(N2 − 1)Q2. Second, up to a numerical factor we find that in the

limit ε→ 0 [44]

Sb(ε)
N−1SX(a, a′) −→

∑
σ∈SN e

−2πi
∑
j aσ(j)a

′
j∏

i<j 2 sin(πb±(ai − aj))
. (6.13)

This reproduces the modular S- and T -matrices for characters of non-degenerate represen-

tations of the WN -algebra with momentum α = Qρ − a [45], as expected once we remove

the puncture from T 2.

However, we find that the two limits are different at the level of partition functions.

In the case N = 2, this is reminiscent of Liouville theory where the vertex operators with

momentum ε and ε∗ are proportional and related by a non-trivial reflection amplitude,

which makes the limits ε→ 0 and ε→ Q subtly different.

In this section, we will simply consider the case g = su(2) and discuss the limits ε→ 0

and ε → Q. In the limit ε → 0, we can fully determine the partition function, while for

ε → Q, we can expresse the integrals in terms of trigonometric functions, which can then

be used to get some analytic and numerical results.

In these limits, we test the statement that the partition function of T (M3) on S3
b is a

topological invariant of Seifert manifolds M3. We have tested in both limits the equality

of partition functions of the manifolds satisfying the following homeomorphisms [46]:

• L(p, q) ∼= L(p, q′) if and only if q′ ≡ ±q±1 mod p. Note that we had already estab-

lished invariance when qq′ ≡ 1 mod p in section 6.1.

• L(5, 4) ∼=M((−2, 1), (3, 1), (1, 1)).

• L(7, 2) ∼=M((−2, 1), (3, 1), (−1, 1)).

Furthermore, we will investigate the following homeomorphism:

M =M((0, 1), (−p1, q1), . . . , (−pn, qn)) ∼=
n

#
j=1

L(pj , qj) , (6.14)

where # denotes the connected sum, and show that the relevant partition functions satisfy

ZM =

∏n
j=1 ZL(pj ,qj)

Zn−1
S3

, (6.15)

– 39 –



J
H
E
P
0
4
(
2
0
1
7
)
1
7
0

with M and each L(pj , qj) in Seifert framing and S3 in canonical framing. This suggests

that the following formula from regular Chern-Simons theory [47]

Z#n

j=1Mj
=

∏n
j=1 ZMj

Zn−1
S3

, (6.16)

is valid in our construction.

In these limits, all partition functions become either 0 or infinite due to the contribution

from an adjoint multiplet of TR and Tf charge 0. In fact we find that the combination

1

Sb(ε)
ZT (M)(ε) (6.17)

is regular, with an overall factor of Sb(ε) in ZT (M)(ε) from the contribution of such an

adjoint chiral at the central node of the plumbing tree. In principle, one should first

compute the partition function ZT (M)(ε) explicitly for general ε, and then take a limit

after removing the Sb(ε) factor. However, since we cannot perform the relevant integrals

in closed form for general ε, we shall assume that we can push the limits through integrals.

We find that this leads to consistent results.

6.3.1 The limit ε→ Q

Let us first consider the limit ε → Q. This limit of the partition function SX(a, a′) has

been considered previously in [37]. We find that

1

Sb(ε)
νX(a)→ ν(a)2 , Sb(ε)SX(a, a′)→ 2

√
2

cos(4πaa′)

ν(a)ν(a′)
. (6.18)

Specifically, note that the product νX(a)SX(a, a′) is regular. Evaluating the integrals (6.7)

in closed form for a general Seifert manifold is beyond our current capabilities. However,

we checked numerically that the expression (6.3) for Lens spaces is invariant under the

homeomorphism L(p, q) ∼= L(p, q′) whenever q′ = −q mod p.

Moreover, we can check exactly that the integrals (6.3) and (6.7) coincide for the

following exceptional pairs of homeomorphic 3-manifolds:

L(5, 4) ∼=M((−2, 1), (3, 1), (1, 1)) , L(7, 2) ∼=M((−2, 1), (3, 1), (−1, 1)) . (6.19)

Furthermore, we consider the homeomorphism

M((0, 1), (−p1, q1), . . . , (−pn, qn)) ∼=
n

#
j=1

L(pj , qj) . (6.20)

Let −pi/qi = [ri1, . . . , r
i
mi ] in the general formula (6.7). In the limit ε → Q, the partition

function simplifies to

1

Sb(ε)
ZT (M) =

∫
R

dx

2

1

ν(ix)n−1

∫
R

dt

2
ν(it)2

√
2 cos(4πxt)

×
n∏
j=1

∫
R

dxj
2
ν(ixj)2

√
2 cos(4πxxj)φj(ixj),

(6.21)
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Consider the singular fibre (0, 1), represented above by the t integral. The integration

of
√

2 ν(it) cos(4πxt) yields a sum of delta functions∫
dt
√

2 ν(it) cos(4πxt) =
∑
k

akδ(x− x0
k) . (6.22)

This simplifies the integral to

1

Sb(ε)
ZT (M) =

1[
−2
√

2 sin(πb2) sin(πb−2)
]n−1

n∏
j=1

∫
R

dxj
2
νX(xj)φj(ixj) . (6.23)

Now recognize the remaining integrals as the partition functions ZT (L(pj ,qj)), and notice

the following limit of ZT (S3),

lim
ε→Q

1

Sb(ε)
ZT (S3)(ε) = −2

√
2 sin(πb2) sin(πb−2) . (6.24)

Therefore the connected sum formula (6.15) holds, with M and L(pj , qj) both in Seifert

framing and S3 in canonical framing.

6.3.2 The limit ε→ 0

In the limit ε→ 0, it is straightforward to check that

1

Sb(ε)
νX(a)→ 1 , Sb(ε)SX(a, a′)→ 2

√
2 cos

(
4πaa′

)
. (6.25)

Again, we note that the product νX(a)SX(a, a′) is regular in the limit.

Now consider a general Seifert manifold M = M ((p1, q1), . . . , (pn, qn)). Assume that

each pi 6= 0 and, as before, write pi/qi = [ri1, . . . , r
i
mi ]. Each fibre in the plumbing diagram

contributes

φi(ai) =

∫
dνX(ai1) . . . dνX(aimi)SX

(
ai, a

i
1

)
T ri1

(
ai1
)
. . .SX

(
aimi−1

, aimi

)
T rim

(
aimi
)

=

∫
iRmi−1

dai1
2i
· · · da

i
mi

2i
2
√

2 cos(4πaai1)T ri1(ai1) . . . 2
√

2 cos(4πaimi−1a
i
mi)T

rimi (aimi) .

(6.26)

Unlike the limit ε→ Q, this integral has a nice recursive structure, namely:∫
iR

daj+1

2i
e−2πirja

2
j2
√

2 cos(4πajaj+1)e−2πirj+1a
2
j+1 =

e
πi
4

sign(rj+1)√
|rj+1|

e−2πi[rj ,rj+1]a2j , (6.27)

whence

φ̃i(a) :=

∫
dνX(ai)SX (a, ai)φi(ai) = e

πi
4

∑mi
j=1 sign(rij)−

πi
12

∑mi
j=1 r

i
j |pi|−1/2e

2πi
qi
pi
a2i , (6.28)

where we used that
mi∏
j=1

|[rij , . . . , rimi ]| = |pi| , (6.29)

and that sign
(
[rij , . . . , r

i
mi ]
)

= sign(rij).
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Performing the final integration over a, we then find that

1

Sb(ε)
ZT (M) =

∫
dνX(a)

Sb(ε)

n∏
i=1

φ̃i(a) =
e−

πi
12(3 sign(

∑n
i=1 qi/pi)+

∑n
i=1

∑mi
j=1(−3 sign(rij)+rij))

2
∣∣∣2∑n

j=1
qj
pj

∏n
i=1 pi

∣∣∣1/2 .

(6.30)

Observe that

− πi

12

−3 sign

(
−

n∑
i=1

qi
pi

)
+

n∑
i=1

mi∑
j=1

(
−3 sign

(
rij
)

+ rij
) = −πi

12
φL , (6.31)

where φL = −3σ(QL) +
∑n

i=1

∑mi
j=1 r

i
j is the framing of the manifold, with σ(QL) the

signature of the linking matrix QL of the plumbing tree. Furthermore, recognize that [8]

| detQL| =

∣∣∣∣∣∣
n∑
j=1

qj
pj

n∏
i=1

pi

∣∣∣∣∣∣ , (6.32)

to get the result

lim
ε→0

1

Sb(ε)
ZT (M)(ε) =

e−
πi
12
φL

2
√

2| detQL|
. (6.33)

This expression gives the partition function in Seifert framing; this suggests that to move

to canonical framing we multiply by exp(πiφL/12) and find

lim
ε→0

1

Sb(ε)
ZT (M)(ε) =

1

2
√

2| detQL|
, (6.34)

which is a topological invariant.

Finally, consider again the homeomorphism:

M =M((0, 1), (−p1, q1), . . . , (−pn, qn)) ∼=
n

#
j=1

L(pj , qj) , (6.35)

which is not covered by our previous computation due to the appearance of the (0, 1).

Again, let −pj/qj = [rj1, . . . , r
j
mj ]. Then

1

Sb(ε)
ZT (M) =

1

Sb(ε)

∫
dνX(x) φ̃0(x)

n∏
j=1

dνX(aj)SX(a, aj)φj(aj) , (6.36)

where

φ̃0(x) =

∫
dνX(t) SX(a, t) =

∫
dt
√

2 cos(4πat) =
1√
2

∆(a), (6.37)

where ∆(a) = 1
2 (δ(a) + δ(−a)) is a Weyl-invariant delta function on the Cartan subalgebra

of su(2). Furthermore Sb(ε)SX(0, a′) = 2
√

2, so that, using the definition of φ̃j(a) and

φj(aj), (6.36) simplifies to

1

Sb(ε)
ZT (M) = (2

√
2)n−1

n∏
j=1

1

Sb(ε)

∫
dνX(aj) φj(aj) . (6.38)
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By the definition of φj(aj), the latter integrals are precisely the partition functions of the

Lens spaces L(pj , qj) in Seifert framing:

ZT (L(pj ,qj)) =

∫
dνX(aj) φj(aj) . (6.39)

Moreover, using the general result (6.34), we see that S3 has the following partition function

in canonical framing:

lim
ε→0

1

Sb(ε)
ZT (S3)(ε) =

1

2
√

2
(6.40)

Lastly, observe that M and all L(pj , qj) are both in Seifert framing. Thus it is again true

in this limit that the connected sum formula (6.15) holds.

7 Discussion

We have given a prescription for computing the partition functions of 3d N = 2 theories

T (M3) associated to Seifert manifolds M3 by compactification of a 4d N = 2∗ theory on

an interval with appropriate boundary conditions and a set of SL(2,Z) duality interfaces.

Throughout, we have turned on a mass parameter for the distinguished u(1)f flavour sym-

metry associated to the circle action on Seifert manifolds. This construction is the analogue

of Dehn surgery on the supersymmetric side of the 3d-3d correspondence.

We expect the partition functions of 3d N = 2 theories T (M3) to correspond to

computations in SL(N,C) Chern-Simons theory on M3 with a network of defects supporting

the mass parameter for the flavour symmetry u(1)f . In particular, we recovered an analytic

continuation of the S-matrix of refined Chern-Simons theory [12, 13] from the study of

supersymmetric line defects in T (S3). Our analysis therefore provides an insight into the

structure of refined Chern-Simons with complex gauge group SL(N,C).

To develop the full 3d-3d correspondence with complex Chern-Simons theory, it is

important to consider the complete spectrum of supersymmetric defects of the 6d N = (2, 0)

theory. In the case g = su(N), we could consider general combinations of codimension-2

and codimension-4 defects of the 6d N = (2, 0) theory wrapping a curve C in M3 labelled

by data Λ = (ρ, λ, λ̃) with

• An embedding ρ : su(2)→ g, or equivalently a partition of N .

• A pair of dominant integral weights (λ, λ̃) of the stabilizer Im(ρ) ⊂ g.

Here, λ and λ̃ correspond to codimension-4 defects wrapping respectively the circles S1

and S̃1 inside the squashed sphere S3
b on the supersymmetric side of the correspondence.

In terms of SL(N,C) Chern-Simons theory, ρ specifies a monodromy defect on C, while

the weights λ, λ̃ correspond to Wilson loops in irreducible representations of the subgroup

of SL(N,C) left unbroken by the monodromy defect [48, 49].

It would be interesting to map out the full dictionary with the supersymmetric side

of the correspondence. For example, it seems reasonable to construct an S-matrix SΛ1,Λ2

element corresponding to the correlation function of any combinations of defects labelled

by data Λ1 and Λ2 supported on Hopf linked circles in S3. Here, we have considered only

particular combinations:
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1. Λ = ([1N ], 0, 0): maximal codimension-2 defects supporting a flavour symmetry g,

2. Λ = ([N ], ωr, 0): codimension-4 defects labelled by the fundamental weights of g,

where the partition [1N ] corresponds to the principal embedding and the partition [N ]

corresponds to the trivial embedding.

The S-matrix for a pair of maximal codimension-2 defects is the normalized partition

function SX(a, a′) of T (g). This should have a natural extension to a pair of general

codimension-2 defects Λ = (ρ, 0, 0) and Λ = (ρ′, 0, 0): it is the partition function of the

theory T ρρ′(g) introduced in [17]. The S-matrix for a pair of codimension-4 defects labelled

by fundamental weights ωr and ωs is an analytic continuation of the S-matrix Sr,s of

refined Chern-Simons theory, constructed as the partition function of the T (S3) in the

presence of a pair of supersymmetric loop operators. Extending this computation to general

weights λ1 and λ2 will require a better understanding of monopole bubbling effects for

supersymmetric ’t Hooft loops. Clearly we have only scratched the surface of the spectrum

of such correlation functions.

We should note that the minimal codimension-2 defect with Λ = ([N − 1, 1], 0, 0) has

played a ubiquitous background role in supporting the distinguished flavour symmetry

u(1)f .

Finally, we have focussed on computing the partition functions of T (M3) on squashed

S3
b , which is expected to correspond to SL(N,C) Chern-Simons theory at level (k, σ) with

k = 1 , σ =
1− b2
1 + b2

. (7.1)

It would clearly be very interesting to perform the analogous computations for the super-

conformal index and Lens space partition functions, which should allow access to complex

Chern-Simons theory at other values of the levels [50].
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A Conventions

We work with the ‘double-sine’ function

Sb(z) :=
1

S2 (z | b, b−1)
, (A.1)

where S2(x |ω) is defined in [51]. It has the following properties:
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1. Sb(z + b±) = 2 sin(πb±z)Sb(z),

2. Sb(z)Sb(Q− z) = 1,

3. Sb−1(z) = Sb(z),

4. Sb(z)∗ = Sb(z
∗) ,

5. Sb(z) is pure phase for z = Q/2 + ir with r ∈ R,

6. Sb

(
Q
2

)
= 1, Sb

(
b
2

)
= 1√

2
.

where Q = b+ b−1.

In addition, it has simple zeroes at

z = Q+ nb+mb−1, n,m ∈ Z≥0, (A.2)

and simple poles at

z = −nb−mb−1, n,m ∈ Z≥0 (A.3)

with residue

Rn,m = Res
(
Sb(z); z = −nb−mb−1

)
=

1

2π

(−1)nm+n+m∏n
j=1 2 sinπjb2

∏m
j=1 2 sinπjb−2

. (A.4)

The following useful formula for any n,m ∈ Z≥0,

Sb(x+nb+mb−1) = (−1)nmSb(x)

n−1∏
j=0

2 sin (πb(x+ jb))

m−1∏
l=0

2 sin
(
πb−1(x+ lb−1)

)
, (A.5)

is a consequence of the functional equations for the double sine function.

The asymptotics of the double sine function are given by

lim
z→∞

Sb(z) =

{
e−

πi
2
B(z) Im z > 0

e
πi
2
B(z) Im z < 0 ,

(A.6)

where

B(z) = B2,2

(
z | b, b−1

)
= z2 −Qz +

1

6
(Q2 + 1) . (A.7)

Let us now summarize the contributions to the partition function of three-dimensional

theories on S3
b with these conventions:

1. N = 2 Chiral multiplet with R-charge R : Sb

(
QR

2 + x
)

2. N = 2 U(N) vectormultiplet:
N∏

i,j=1
i<j

2 sin(πb (ai − aj))2 sin(πb−1(ai − aj))
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B Surgery on three-manifolds

In this appendix we review some of the ideas in three-dimensional topology that are rele-

vant to our constructions, specifically those relating to surgery. Excellent reviews are [52]

and [53].

Consider two compact n-manifolds with boundary M1 and M2, with homeomorphic

boundaries, and a homeomorphism f : ∂M2 → ∂M1 between the latter. The operation

of surgery between the two consists in the construction of a new manifold by gluing the

boundaries with f . More precisely, we define

M1 ∪f M2 := (M1 tM2) / ∼, (B.1)

where the equivalence relation is between points of the boundaries:

x ∼ y ⇔ y = f(x) ∀x ∈ ∂M1, ∀y ∈ ∂M2 . (B.2)

Recall that a knot K in a closed orientable 3-manifold M is a smooth embedding of S1 in

M . A link L is a disjoint union of a finite collection of knots in M .

A knot K ⊂ M can be thickened to a tubular neighbourhood N(K), a smoothly

embedded disjoint solid torus (D2×S1), whose core {0}×S1 forms the knot K. Consider

now the knot exterior M1 = M\N(K) and tubular neighbourhood M2 = N(K), which both

have a T 2 boundary, and an arbitrary homeomorphism f : (∂M2
∼= T 2) → (∂M1

∼= T 2).

We perform surgery between the two using f , gluing the knot exterior and the tubular

neighbourhood using f . This results in a new closed orientable 3-manifold

M̃ ≡M1 ∪f M2 (B.3)

We say that M̃ is obtained from M via surgery along the knot K, and refer to the process

as Dehn surgery.

The gluing process above depends on the boundary homeomorphism f ; in fact it is

completely determined by the image of a meridian ∂D2 × {x}, with x ∈ S1, in ∂M1. If

M = S3, then, after picking bases for H1(∂M1,Z) ∼= Z ⊕ Z, a curve on ∂M1 is given up

to isotopy by a pair of relatively prime integers (p, q). This pair describes in a basis of

H1(∂M1,Z) to what curve the meridian (1, 0) ∈ Z ⊕ Z ∼= H1(∂M2,Z) gets mapped. Such

surgeries are called rational surgery, with a surgery called integral if q = ±1. In the latter

case, the surgery along K is determined by both K and the choice of an integer, which is

called a framing of the knot.

Another way we can describe a Dehn surgery is by determining the knot K along which

it is performed and the homeomorphism up to isotopy, that is, by an element of the mapping

class group of the boundary. In this specific case, the boundaries are homeomorphic to

tori, and the mapping class group is

Homeo(T 2)/Homeo0(T 2) ∼= SL(2,Z) , (B.4)

therefore we can decompose the homeomorphism in terms of the generators S, T of SL(2,Z).
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The Lickorish-Wallace theorem states that any closed orientable connected 3-manifold

can be obtained from S3 through an integral Dehn surgery on a link in S3 [54, 55].

Seifert manifolds are a special class of 3-manifolds that are S1-bundles over two-

dimensional orbifolds. They can also be described using surgery in the following way.

Let M = F × S1, where F = S2 \ int
(
D2

1 ∪ . . . D2
n

)
is a two-sphere with n discs re-

moved. Then ∂M =
⋃n
i=1Ni is a disjoint union of n solid tori. We can glue in solid

tori by identifying the meridian on the i-th solid torus boundary to a curve on Ni,

whose isotopy class is described by (pi, qi) ∈ Z ⊕ Z. This forms the Seifert manifold

M(0; (p1, q1), . . . , (pn, qn)) ≡ M((p1, q1), . . . , (pn, qn)), where the 0 refers to the fact that

the construction used S2, a genus 0 surface. The construction can be generalized by using

Fg = Σg \ int
(
D2

1 ∪ . . . D2
n

)
instead of F , where Σg is a closed orientable surface of genus g.

Lens spaces are Seifert manifolds with 2 singular fibres. Specifically, M(0; (q, p)) ∼=
L(p, q), andM(0; (a1, b1), (a2, b2)) ∼= L(p, q),with p = a1b2 +a2b1 and q = ma1 +nb1, where

m,n ∈ Z satisfy ma2 − nb2 = 1 [52].6

For a general Seifert manifold M((p1, q1), . . . , (pn, qn)), obtained as above, the i-th

component of the link was glued back in after twisting the boundary using Mi ∈ SL(2,Z),

where Mi =
( pi ri
qi si

)
. Such an Mi is not unique: the choice of ri, si determines the framing

of the manifold [46]. We would like to obtain Mi from the SL(2,Z)-generators, which in

our conventions are taken to be

S =

(
0 −1

1 0

)
T =

(
1 1

0 1

)
. (B.5)

This can be achieved by noting that TnS =
(
n −1
1 0

)
and that if A =

( p r
q s

)
∈ SL(2,Z) then

TnSA =

(
np− q nr − s
p r

)
∈ SL(2,Z). (B.6)

Hence, by induction on m:

Mi = T a
i
1S . . . T a

i
mS (B.7)

where

pi/qi = [ai1, . . . , a
i
m] = ai1 −

1

ai2 − 1
ai3−...

. (B.8)

Seifert manifolds can also be described in terms of surgery diagrams, which encode

how the surgery on links in S3 has taken place. The simplest such diagram is that of a

Lens space L(p, 1):

−p

6Note an early edition of [53] claims in section 1.6 that M(0; (a1, b1), (a2, b2)) = L(a1b2 + a2b1, a1a2).

This seems to be an error and has been removed in later editions.
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This indicates the surgery happened over a single unknot, with framing −p. For a general

Lens space L(p, q) with −p/q = [a1, . . . , am], we have the following diagram:

a1 a2 a3 am

Alternatively, we can represent these as plumbing graphs, or plumbing trees, which are

weighted graphs with each vertex representing an unknot, and each edge representing that

two unknots are linked. For example, the diagram above translates into the plumbing tree

a1 a2 a3 am

A general Seifert manifold M((p1, q1), . . . , (pn, qn)) with the rational surgery coefficients

pi/qi = [ai1, . . . , a
i
mi ] can be described diagrammatically as

p1
q1

p2
q2

pk
qk

0

Alternatively, one can draw this as a plumbing tree

0

a11

a21

an1

a12

a22

an2

a1m1

a2m2

anmn

To a manifold M described by a surgery diagram with knots {Li} and surgery coefficients

{ai}, we can associate the intersection form, or linking matrix, Q defined by

Qij =

{
ai if i = j

lk(Ki,Kj) if i 6= j
(B.9)

where lk(Ki,Kj) is the linking number of knots Ki and Kj . The intersection form is

particularly simple given a plumbing graph with weights ai at vertex i, namely

Qij =


ai if i = j,

1 if i and j are connected by an edge,

0 else.

(B.10)
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The above prescription constructs a Seifert manifold as a framed manifold in ‘Seifert

framing’, which differs from the ‘canonical framing’ by φ units, where

φL = −3σ(Q) +

n∑
i=1

mi∑
j=1

rij , (B.11)

with σ(QL) the signature of the linking matrix Q [46]:

σ(Q) = sign

(
−

n∑
i=1

qi
pi

)
+

n∑
i=1

mi∑
j=1

sign
(
rij
)
. (B.12)

Finally, we use the following formula for the determinant of the intersection form

describing a Seifert manifold M((p1, q1), . . . , (pn, qn)) [8]:

detQ =

(∑
i

qi
pi

)∏
j

pj . (B.13)

C Details of T (S3)

In this appendix we provide some details on computations used in section 5.

S3 integral. In our conventions explained in the main body of the paper, the partition

function for TAN
(
S3
)

is given by (5.6). For the first non-trivial case A1 we have

Z
su(2)
S3 =

∫
γε

dx

2i
Sb(ε)

Sb(ε+ 2x)Sb(ε− 2x)

Sb(2x)Sb(−2x)
e−2πix2 ≡ I(ε) (C.1)

where γε is a suitably deformed contour coming from the localization computation, such

that I(ε) with Im(ε) < 0 is the analytic continuation of I(ε) in the physical region, where

Re(ε) > 0, Im(ε) > 0 and γε = iR. Due to the asymptotics of the Sb functions (A.6), the

contour needs to close in either the second or fourth quadrant of the complex plane, and as

such our integral is only defined for arg(ε) ∈ [0, π), i.e. we can think of our integral defined

on the half-open disk in CP1.

We claim that the integral above evaluates to

I(ε) =
1√
2
e
πi
4 e

πi
2
ε(Q+ε)Sb(2ε) . (C.2)

We will check that the asymptotics and the analytic structures match as functions of ε.

The poles are all located at arg (ε) = π, and as such the residues should be interpreted as

the coefficient of ε−1 of the Laurent expansion of I(ε), for ε near the pole with arg (ε) < π.

We start by considering the asymptotics at ε→∞ of the two sides of the equation in

the region Im(ε) > 0. For the right-hand side, we immediately find that

1√
2
e
πi
4

+πi
2
ε(Q+ε)Sb(2ε) ∼

1√
2

exp

[
πi

12

(
5 + 2Q2 − 18B(ε)

)]
. (C.3)
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On the other hand, we assume that we can exchange limit and integral in I(ε) and thus

obtain the following expression for the integrand

Sb(ε)Sb(ε+ 2x)Sb(ε− 2x) ∼ exp

(
−4πix2 − 3πi

2
B(ε)

)
. (C.4)

By closing a contour in the second quadrant, it is then easy to see that

I(ε) ∼ −2ie−
3πi
2
B(ε)

∫
R

dx sin(2πbx) sin(2πb−1x)e−6πix2

=
1√
2

exp

[
πi

12

(
5 + 2Q2 − 18B(ε)

)]
,

(C.5)

which matches the behaviour of the left-hand side in the physical region of Im(ε) > 0.

Another immediate check that we can perform is considering the behaviour near ε = 0.

Both sides of the equality have a simple pole there, and we can compute the residues, which

should match. For the right-hand side, using (A.4), we immediately find

Res

[
1√
2
e
πi
4

+πi
2
ε(Q+ε)Sb(2ε) ; ε = 0

]
=

e
πi
4

4π
√

2
. (C.6)

On the other side, we have

Res [I(ε); ε = 0] =
1

4πi

∫
γε

dx e−2πix2 =
e
πi
4

4π
√

2
, (C.7)

thus obtaining a match.

In the same way, performing the integrals on the left-hand side using a computer, we

can check consistency of equation (5.6). More specifically we check the matching of the

asymptotic behaviour for ε→∞ in the region Imε > 0 of both sides of

∫
dνX(a) e−πi

∑
j a

2
j =

1√
N

exp

[
πi

6
N(N2 − 1)ε2 +

πi

4
(N − 1)(1 +Nε∗ε)

] N∏
k=2

Sb(kε) ,

(C.8)

which is equivalent to (5.6). This was done for N = 3, 4, as for larger N it becomes too

challenging from the computational point of view.

Value of SX(ρε, a′). We would like to show that SX(ρε, a′) = SX(a′, ρε) is independent

of a′, and that it is proportional to
[∏N

k=2 Sb(kε)
]−1

.

To show independence of SX(ρε, a′) from a′, recall equation (4.43), evaluated

at a′ = ρε:7

H(r)(a) · Z(a, ρε, ε) = W (r)(ρε)Z(a, ρε, ε) , (C.9)

H̃(r)(a) · Z(a, ρε, ε) = W̃ (r)(ρε)Z(a, ρε, ε) . (C.10)

7The operators with the tilde indicate that we are considering loops of length 2πb−1.
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Furthermore, recall equation (4.33), so that

H(r)(a) · 1 = W (r)(ρε) , (C.11)

H̃(r)(a) · 1 = W̃ (r)(ρε) . (C.12)

Since the space of simultaneous eigenfunctions of the difference operators
(
H(r)(a), H̃(r)(a)

)
with the respective eigenvalues

(
W (r)(ρε), W̃ (r)(ρε)

)
is one-dimensional [56], this shows that

Z(a, ρε, ε) is constant, so independent of a.

To find the value of SX(ρε, a′), we shall evaluate Z(a, a′, ε) at the symmetric point

a = a′ = ρε and use the explicit evaluation of Z(a, a′, ε) in [25], equation (3.37).8

Let σ ∈ W ∼= Sym(N). Firstly, we find

KY (ρε) = KY (εσ(ρ)) =

[
Sb(ε)

N−1
∏

1≤i 6=j≤N
Sb(ε(1 + ρσi − ρσj ))

]−1

=

[
Sb(ε)

N−1
∏

1≤i 6=j≤N
Sb(ε(1 + σj − σi))

]−1

. (C.13)

Then we use mirror symmetry to write Z(ρε, ρε, ε) = Z(ρε, ρε, ε∗). Using the explicit form

in [25], we see that this contains the following product:

Aσ :=
∏

1≤i<j≤N

Sb(ε(ρσi − ρσj ))
Sb(ε∗ − ε(ρσi − ρσj ))

=
∏

1≤i<j≤N
Sb(ε(σj − σi))Sb(ε(1 + σi − σj)) , (C.14)

using properties of the Sb function.

Consider now the combination

AσKY (ρε) =
1

Sb(ε)N−1

∏
1≤i<j≤N Sb(ε(σj − σi))Sb(ε(1 + σi − σj))∏

1≤i 6=j≤N Sb(ε(1 + σi − σj))

=
1

Sb(ε)N−1

∏
1≤i<j≤N

Sb(ε(σj − σi))
Sb(ε(1 + σj − σi))

. (C.15)

Note that the numerator in the product is never 0 or infinite. The denominator however

causes the expression to vanish whenever 1 + σj − σi = 0 for some i < j, by introducing a

factor of 1
Sb(0) = 0. This happens for every σ ∈ Sym(N) except σ = id, in which case this

product simplifies to give

AidKY (ρε) =
1∏N

k=2 Sb(kε)
. (C.16)

Furthermore, when im = ρε, and σ = id, the vortex and anti-vortex partition functions

become 1. To see this, firstly note that (in our language) η2 = t, so that we can rewrite in

our language

η2 µσ(i)

µσ(j)
= t1+ρσ(j)−ρσ(i) = t1+σi−σj . (C.17)

8After correcting a small error in this formula to restore Weyl invariance in the variable t.
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In the Weyl sum over σ ∈ Sym(N), the only contribution to Z(a, a′, ε) is from σ = id, and

there is always a pair (i, j) with 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1 with 1 ≤ n ≤ N − 1 such that

1 + i− j = 0. Therefore, there is always such a pair (i, j) for which(
η2 µi
µj

; q

)
k
(n)
i −k

(n+1)
j

= (1; q)
k
(n)
i −k

(n+1)
j

= 0 , (C.18)

making any contribution to the vortex partition function with n ≥ 1 vanish, as claimed.

An isomorphic calculation shows that the anti-vortex partition function becomes 1.

Putting this together, we find the result

SX(ρε, ρε) =
e−πiεN(ρεN )+2π

∑N
j=1(ρεj)(−iρεj)∏N

k=2 Sb(kε)
=
e−πiε2(NρN+2

∑N
j=1 ρjρj)∏N

k=2 Sb(kε)

=
e−

πi
6
ε2N(N−1)(N−2)∏N
k=2 Sb(kε)

,

(C.19)

which is the required form. Multiplying by
√
N gives SX(ρε, ρε).
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