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1 Introduction

Six-dimensional superconformal theories provide a framework to understand various fea-

tures of lower-dimensional supersymmetric dynamics. By themselves, they are difficult to

study by traditional quantum field theory techniques. All known examples of interacting

CFTs in six dimensions are supersymmetric. The (2, 0) theories should be the simplest

ones [1–3]. A large class of interacting (1, 0) fixed points have been constructed in string

theory or brane constructions [4–8]. Recently, F-theory provides a way to classify the

known and new (1, 0) fixed points [9–11].

Since all the known interacting fixed points are supersymmetric, it is expected that

supersymmetry constraints are important in computing their physical characteristic quan-

tities, such as Weyl anomalies. Indeed, the a-anomaly in (1, 0) superconformal theories

has been recently determined in terms of their ’t Hooft anomaly coefficients [12, 13] for

the R-symmetry and gravitational anomalies [14] by analyzing supersymmetric RG flows
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on the tensor branch [15]1

ā =
a

au(1)
=

16

7
(α− β + γ) +

6

7
δ , (1.1)

where α , β , γ , δ are the coefficients appearing in the anomaly polynomial

I8 =
1

4!

(
α c22(R) + β c2(R)p1(T ) + γ p21(T ) + δ p2(T )

)
. (1.2)

Here c2(R) is the second Chern class of the R-symmetry bundle and p1,2 are the Pontryagin

classes of the tangent bundle. The relation (1.1) is analogous to the known relation [18]

in four-dimensional N = 1 SCFTs, ad=4 = 9
32kRRR − 3

32kR, where kRRR and kR are the

TrU(1)3R and TrU(1)R ’t Hooft anomalies. Although the anomaly multiplet in six dimen-

sions has not yet been constructed, such linear relations are believed to follow from the

anomaly supermultiplets which include ’t Hooft anomalies as well as the anomalous trace

of the stress tensor. The Weyl anomaly coefficients in 6d are defined from the latter [19–22]

〈T µ
µ 〉 ∼ aE6 +

3∑

i=1

ci Ii , (1.3)

where E6 is the Euler density and Ii=1,2,3 are three Weyl invariants. In the presence of

(1, 0) supersymmetry, ci=1,2,3, satisfying a constraint c1 − 2c2 + 6c3 = 0 [23–25], are also

believed to be linearly related to the ’t Hooft anomaly coefficients [26–28]. Assuming

that the linear relation indeed exist, one could determine its coefficients by considering

the known values of the corresponding Weyl and ’t Hooft anomalies in four independent

examples. Unfortunately only three are known, i.e. the free hyper multiplet, the free tensor

multiplet and supergravity [23, 29]. The naive vector multiplet is not conformal and the

conformal version [30] involves higher derivatives. Evaluating the anomalies via the heat

kernel method will involve higher powers of the Laplacian operator in curved space and,

hence, difficult to compute. We will, therefore, consider another approach.

In even dimensions, it is known that the a-anomaly determines both the universal log

divergence of the round-sphere partition function2 and the universal log divergence in the

vacuum state entanglement entropy associated with a ball in flat space [31]. On the other

hand, by the conformal Ward identities, the 2-point and 3-point functions of the stress

tensor in the vacuum in flat space can be determined up to 3 coefficients [32, 33], which are

linearly related to c-type Weyl anomalies c1,2,3. In the presence of (1, 0) supersymmetry,

only two of them are independent as mentioned before.

Because the round sphere is conformally flat, one expects that the nearly-round sphere

partition function, which includes the response to a small deviation of the metric from

the round sphere, is determined by the flat space stress tensor correlators. Due to these

intrinsic relations and supersymmetric constraints, it is therefore tempting to ask whether

1The subscript u(1) means an Abelian (2, 0) tensor multiplet. See [16] for the result in (2, 0) theories

and [17] for earlier investigation.
2The a-anomaly is proportional to the coefficient of the log divergence.
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one can fully determine the partition function on a q-branched sphere,3 which is directly

related to the supersymmetric Rényi entropy Sq.

Supersymmetric Rényi entropy was first introduced in three dimensions [34–36], and

later studied in four dimensions [37–39], in five dimensions [40, 41], in six dimensions

((2, 0) theories) [42, 43] and also in two dimensions ((2, 2) SCFTs) [44, 45]. By turning

on a certain R-symmetry background field µ(q), one can calculate the supersymmetric

partition function Zq[µ(q)] on a q-branched sphere S
d
q ,

ds2
Sdq
/ℓ2 = q2 sin2 θdτ2 + dθ2 + cos2 θdΩ2

d−2 , (1.4)

where θ ∈ [0, π/2] and τ ∈ [0, 2π). The supersymmetric Rényi entropy is defined as

Sq =
qI1 − Iq
1− q

, Iq := − logZq[µ(q)] . (1.5)

The quantities defined in (1.5) are UV divergent in general but one can extract universal

parts free of ambiguities. Notice that the ordinary Rényi entropy is not supersymmetric

because of the conical singularity.4

1.1 Summary of results

The main result of this paper is the exact universal part of the supersymmetric Rényi

entropy in 6d (1, 0) SCFTs. We show that, for theories characterized by the anomaly

polynomial (1.2), it is given by a cubic polynomial of ν = 1/q

S(1,0)
ν =

3∑

n=0

sn(ν − 1)n , (1.6)

with four coefficients

s0 =
1

6
(8α− 8β + 8γ + 3δ) ,

s1 =
1

4
(2α− 3β + 4γ + δ) ,

s2 =
1

24
(2α− 5β + 8γ) ,

s3 =
1

192
(α− 4β + 16γ) . (1.7)

where α , β , γ , δ are the ’t Hooft anomaly coefficients defined in (1.2). The basic ingredients

in our arguments are the following:

3A q-branched sphere is a sphere with a conical singularity with the deformation parameter q − 1,

see (1.4).
4Consider CFTs in flat space with the metric, ds2

Rd = dτ2
E +dr2 + r2dΩ2

d−2. The entangling surface Σ is

(τE = 0, r = R). In the replica trick approach, the Rényi entropy can be computed from the path integral

on the conic space with Σ the fixed sphere. After the transformations τE = ℓ sin τ
cosh η+cos τ

, r = ℓ sinh η

cosh η+cos τ
,

the conic space becomes a hyperbolic space S
1
q × H

d−1 up to a warp factor ds2
Rd/ℓ

2 = Ω2(dτ2 + dη2 +

sinh2 ηdΩ2
d−2), where θ ∈ [0, π/2], τ ∈ [0, 2π] and Ω = 1

cosh η+cos τ
. A further Weyl transformation with

cot θ = sinh η maps S
1
q × H

d−1 to the branched sphere S
d
q (1.4), where Σ is mapped to θ = 0. Throughout

this work we take the same boundary condition as the “smooth cone” boundary condition in [46], which

means that we smooth out the cone.

– 3 –
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(A) Sν of (1, 0) free hyper multiplet and free tensor multiplet can be computed by the

heat kernel method closely following [43]. The results are given by

Sh
ν =

7

2880
(ν − 1)3 +

7

720
(ν − 1)2 +

1

40
(ν − 1) +

11

360
, (1.8)

St
ν =

1

360
(ν − 1)3 +

1

90
(ν − 1)2 +

1

10
(ν − 1) +

199

360
. (1.9)

These are the main results of section 2.

(B) Sν of AN−1 type (2, 0) theories (which are of course (1, 0) conformal theories) in the

large N has been computed in [43]. The result is given by

Sν [AN→∞]

N3
=

1

192
(ν − 1)3 +

1

12
(ν − 1)2 +

1

2
(ν − 1) +

4

3
. (1.10)

(C) Based on (A)(B) and (F) below, a reasonable assumption is that the general form of

Sν for (1, 0) SCFTs is a cubic polynomial in ν − 1. However, so far we do not have a

sharp argument for this assumption.5 Furthermore, based on (D)(E)(F) below, the

four coefficients of the cubic polynomial are linear combinations of α, β, γ, δ.

(D) The value of Sν at ν = 1 is the entanglement entropy associated with a spherical

entangling surface, which is proportional to the a-anomaly (1.1).

(E) The first and second derivatives of Sν at ν = 1 can be written as linear combinations

of integrated two- and three-point functions of operators in supersymmetric stress

tensor multiplet. Because of this, one can relate the first and second derivatives at

ν = 1 to c1 and c2,

∂νSν

∣∣
ν=1

=
3

2
c2 −

3

4
c1 , ∂2

νSν

∣∣
ν=1

= c2 −
5

16
c1 , (1.11)

where c1 and c2 are believed to be given by linear combinations of ’t Hooft anomaly

coefficients α, β, γ, δ.

(F) The large ν behavior of Sν is controlled by the “supersymmetric Casimir energy” [47].

This gives

lim
ν→∞

Sν

ν3
=

1

192
(α− 4β + 16γ) . (1.12)

(G) In the large ν expansion, the second Pontryagin class (with coefficient δ) will not

contribute to the ν3 term (as we see from (F)) and the ν2 term. Because of the

latter, one has

∂δ
(
∂2
νSν

∣∣
ν=1

)
= 0 . (1.13)

5We are interested only in the universal part, i.e. the coefficient of the UV log divergent part. This

part should be given by a finite number of counter-terms, each of them an integral of local functions of the

supersymmetric background including the metric (squashed sphere). Unfortunately the supersymmetric

smooth squashed sphere in 6d has not yet been constructed.
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(H) For the conformal non-unitary (1, 0) vector multiplet, a constraint for the c-type Weyl

anomalies, c1+4c2 =
62
45 , can be obtained by studying the higher-derivative operators

on the Ricci flat background [26].6 Together with (E), one has

16
(
∂2
νS

“Vector”
ν

∣∣
ν=1

)
− 8

(
∂νS

“Vector”
ν

∣∣
ν=1

)
= (c1 + 4c2)

∣∣
“Vector”

=
62

45
. (1.14)

From (A)(B)(C)(D)(E)(F)(G)(H), one can uniquely find the general expression of the su-

persymmetric Rényi entropy given in (1.6)(1.7). We emphasize that among all these ingre-

dients (C) is an assumption, all the rest are derived results. The results (A),(D),(E),(F),(G)

are new as far as we know. The precise agreement between (F) and (A)(B) can be con-

sidered as a nontrivial test of (F). Independently, we conjecture a relation between the

supersymmetric Rényi entropy and the anomaly polynomial in any even dimension, which

perfectly agrees with (A)-(H). We consider this precise agreement as a strong support of

our result (1.6), (1.7). Note that (E) and (1.7) also establish the linear relations between

c-type Weyl anomalies and the ’t Hooft anomaly coefficients,7

c1 = −2

9
(6α− 7β + 8γ + 4δ) ,

c2 = − 1

18
(6α− 5β + 4γ + 5δ) ,

c3 =
1

18
(2α− 3β + 4γ + δ) . (1.15)

This paper is organized as follows. In section 2 we employ heat kernel method to study

the supersymmetric Rényi entropy of free (1, 0) multiplets. In section 3 we propose a form

of the universal supersymmetric Rényi entropy with four non-trivial coefficients, which

works for general 6d (1, 0) SCFTs. We determine the coefficients one by one. We study

the relation between the supersymmetric Rényi entropy and the supersymmetric Casimir

energy in section 4, which is used to determine one of the coefficients in the previous section.

In section 5 we conjecture a relation between the supersymmetric Rényi entropy and the

anomaly polynomial for SCFTs in even dimensions and test this conjecture in 6d and 4d.

In section 6, we discuss some open questions, further applications of our results and some

future directions of research.

2 Free 6d (1,0) multiplets

We begin by studying the supersymmetric Rényi entropy of free (1, 0) multiplets, follow-

ing [42]. For free fields, the Rényi entropy associated with a spherical entangling surface

in flat space can be computed by conformally mapping the conic space to a hyperbolic

6We thank Matteo Beccaria for explaining us this result first presented in [26].
7The numerical coefficients for the c-anomalies here are different from those presented in [26], where

an assumption concerning the structure of the linear combinations was made. We thank Matteo Beccaria

for discussion on this issue. After our paper appeared on the arXiv the authors of [26] clarified to us that

the data they used did not allow them to fix c1,2,3 unambiguously. There was still a 1-parameter freedom

consistent with our result. They fixed this freedom by another assumption/conjecture relating anomalies

in 4d and 6d.
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space S1β ×H
5 and using the heat kernel method.8 A six-dimensional (1, 0) hyper multiplet

includes 4 real scalars, 1 Weyl fermion and a tensor multiplet includes 1 real scalar, 1

Weyl fermion and a 2-form field with self-dual strength. The 2-form field has a self-duality

constraint which reduces the number of degrees of freedom by half.

2.1 Heat kernel and Rényi entropy

The partition function of free fields on S
1
β ×H

5 can be computed by the heat kernel9

logZ(β) =
1

2

∫ ∞

0

dt

t
KS1

β
×H5(t) , (2.1)

whereKS1
β
×H5(t) is the heat kernel of the associated conformal Laplacian and β is the length

of the unit circle 2πq. The kernel factorizes because the spacetime is a direct product,

KS1
β
×H5(t) = KS1

β
(t)KH5(t) . (2.2)

On a circle, the kernel is given by

KS1
β
(t) =

β√
4πt

∑

n 6=0,∈Z

e
−β2n2

4t . (2.3)

In the presence of a chemical potential µ, it will be twisted [48]

K̃S1
β
(t) =

β√
4πt

∑

n 6=0,∈Z

e
−β2n2

4t
+i2πnµ+iπnf , (2.4)

where f controls the periodic/anti-periodic boundary conditions, namely f = 0 for bosons

and f = 1 for fermions. The volume factor can be factorized in the kernels on the hyperbolic

space, because H5 is homogeneous. Thus KH5(t) can be written in terms of the equal-point

kernel,

KH5(t) =

∫
d5x

√
g KH5(x, x, t) = V5KH5(0, t) . (2.5)

The regularized volume is given by V5 = π2 log(ℓ/ǫ), where ǫ is actually the UV cutoff in

the original flat space before the conformal mapping10 and ℓ is the curvature radius of H5.

For the KH5(0, t) of free fields with different spins we refer to [42] and references there in.

The Rényi entropy of a hyper multiplet can be obtained by summing up the contribu-

tions of 4 real scalars, 1 Weyl fermion and the Rényi entropy of a tensor multiplet can be

obtained by summing up the contributions of 1 real scalar, 1 Weyl fermion and a self-dual

2-form,

Shyper
q = 4×

Ss
q

2
+ Sf

q , (2.6)

Stensor
q =

Ss
q

2
+ Sf

q +
Sv
q

2
. (2.7)

8In this section we use β = 1/T as the inverse temperature and hopefully this will not be confusing with

the anomaly coefficient β.
9For Rényi entropy of free fields in other dimensions less than six, see for instance [49–52].

10In flat space with entangling region bounded by Σ, there is a UV divergence at Σ and so we need

to introduce a short distance cut-off, which eventually becomes an IR cut-off by the conformal mapping

between the two spaces. See footnote 4 for more details.
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where the Rényi entropy for free fields with different spins can be computed by using the

corresponding heat kernels.11 The final results for the Rényi entropy of a 6d complex scalar,

a 6d Weyl fermion and a 6d 2-form field are

Ss
q =

(q + 1)
(
3q2 + 1

) (
3q2 + 2

)

15120q5
V5

π2
, (2.8)

Sf
q =

(q + 1)
(
1221q4 + 276q2 + 31

)

120960q5
V5

π2
, (2.9)

Sv
q =

(q + 1)
(
37q2 + 2

)
+ 877q4 + 4349q5

5040q5
V5

π2
, (2.10)

respectively. Note that, to obtain the correct Rényi entropy for the two form field, we

have taken a q-independent constant shift which is associated with possible boundary

contributions [42]. Before moving on, let us represent Sq in terms of

Sν =
π2

V5
Sq , with ν = 1/q .

The Rényi entropy of free (1, 0) multiplets are given by

Shyper
ν =

(ν − 1)5

1920
+

(ν − 1)4

320
+

31(ν − 1)3

2880
+

(ν − 1)2

45
+

ν − 1

30
+

11

360
, (2.11)

Stensor
ν =

(ν − 1)5

1920
+

(ν − 1)4

320
+

13(ν − 1)3

960
+

(ν − 1)2

30
+

2(ν − 1)

15
+

199

360
. (2.12)

The reason why Sν is convenient is obvious, the series expansion near ν = 1 has finite

terms while the expansion of Sq near q = 1 has infinite number of terms. We will use Sν

instead of Sq to express Rényi entropy and supersymmetric Rényi entropy from now on.

It is worth to remember the relations between the derivatives with respect to q and the

derivatives with respect to ν at q = 1/ν = 1,

∂νSν

∣∣
ν=1

= −∂qSq

∣∣
q=1

· π
2

V5
, ∂2

νSν

∣∣
ν=1

=
(
2∂qSq + ∂2

qSq

) ∣∣
q=1

· π
2

V5
, (2.13)

which will be useful later. Finally, one can check that ∂0
q=1, ∂

1
q=1 and ∂2

q=1 of both Shyper
q

and Stensor
q are consistent with the previous results about the free (1, 0) multiplets [23, 29].

By “consistent”, we refer to the relations between the first and the second derivatives of

the Rényi entropy at q = 1 and the two- and three-point functions of the stress tensor

derived in [53, 54].

2.2 Supersymmetric Rényi entropy

The supersymmetric Rényi entropy of free multiplets can be computed by the twisted ker-

nel (2.4) on the supersymmetric background. The R-symmetry group of 6d (1, 0) theories

is SU(2)R, which has a single U(1) Cartan subgroup. Therefore one can turn on a single

R-symmetry background gauge field (chemical potential) to twist the boundary conditions

11For some relevant details of this computation we refer to [42].
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for scalars and fermions along the replica circle S
1
β [48]. The R-symmetry chemical po-

tential can be solved by studying the Killing spinor equation on the conic space (S6q or

S
1
β=2πq ×H

5),12

µ(q) := k Aτ =
q − 1

2
, (2.14)

with k being the R-charge of the Killing spinor under the Cartan U(1). We choose k = 1/2

and the background field turns out to be

Aτ = (q − 1) . (2.15)

For each component field in the free multiplets, one has to first figure out the associated

Cartan charge ki and then compute the chemical potential by kiAτ . After that one can

compute the free energy on S
1
β×H

5 using the twisted heat kernel with the chemical potential

µ = kiAτ and obtain the supersymmetric Rényi entropy.

After summing up the component fields, the supersymmetric Rényi entropy of a free

(1, 0) hyper multiplet and a free (1, 0) tensor multiplet are

Sh
ν =

7

2880
(ν − 1)3 +

7

720
(ν − 1)2 +

1

40
(ν − 1) +

11

360
, (2.16)

St
ν =

1

360
(ν − 1)3 +

1

90
(ν − 1)2 +

1

10
(ν − 1) +

199

360
, (2.17)

respectively.

3 Interacting 6d (1,0) SCFTs

Having obtained the free multiplet results (2.16), (2.17), we will use them to rewrite S
(1,0)
ν

in a general form which, we hope, works for general interacting 6d (1, 0) SCFTs,

S(1,0)
ν = A (ν − 1)3 +B (ν − 1)2 + C (ν − 1) +D , (3.1)

where the coefficients A ,B ,C ,D will depend on the specific theories.13

Before determining A ,B ,C ,D for general (1, 0) fixed points, let us summarize what

we have learned so far for the existing examples. These are free (1, 0) hyper multiplet,

free (1, 0) tensor multiplet, AN−1 type (2, 0) theories in the large N limit and non-unitary

conformal (1, 0) vector multiplet [26, 30]. We list A ,B ,C ,D and the relevant anomaly

data for them in table 1.14 The anomaly data are from [14, 21, 23].

The coefficient D in (3.1) can be determined by using the fact that, the entanglement

entropy associated with a spherical entangling surface, which is nothing but Sν=1, is pro-

portional to the Weyl anomaly a. This is true for general CFTs in even dimensions as

shown in [31]. Therefore

S
(1,0)
ν=1

S
(2,0)
ν=1

=
a

au(1)
=: ā . (3.2)

12See the appendix in [42].
13This structure is not true for the ordinary (non-supersymmetric) Rényi entropy [55].
14We denote the conformal non-unitary vector multiplet by “Vector”.
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A B C D α β γ δ c1 c2 c3

Hyper 7
2880

7
720

1
40

11
360 0 0 7

240 − 1
60 − 1

27 − 1
540

1
180

Tensor 1
360

1
90

1
10

199
360 1 1

2
23
240 −29

60 − 8
27 − 11

135
1
45

AN−1
1
N3

1
192

1
12

1
2

4
3 1 0 0 0 −4

3 −1
3

1
9

“Vector” − − − − −1 −1
2 − 7

240
1
60 − − −

Table 1. Supersymmetric Rényi entropy and anomalies of known (1, 0) fixed points.

By studying supersymmetric RG flows on the tensor branch, a/au(1) has been computed

in [15], see (1.1). This allows us to fix

D = S
(1,0)
ν=1 =

7

12

(
16

7
(α− β + γ) +

6

7
δ

)
=

4

3
(α− β + γ) +

δ

2
. (3.3)

The coefficients C and B in (3.1) are the first and the second ν-derivatives of S
(1,0)
ν at

ν = 1, respectively. The transformations between the ν-derivatives and the q-derivatives

are given by (2.13). The relations between the q-derivatives and the integrated correlators

are given in appendix A. Namely, the first q-derivative at q = 1 is given by a linear

combinations of integrated 〈TT 〉 and integrated 〈JJ〉 in (A.23),

S′
q=1 = −Vd−1

(
π

d
2
+1Γ(d2)(d− 1)

(d+ 1)!
CT − g2

π
d+3

2

2d−3(d− 1)Γ(d−1
2 )

CJ

)
. (3.4)

This relation holds for general SCFTs with conserved R-symmetry in d-dimensions. Sim-

ilarly the second q-derivative at q = 1 is given by a linear combination of the integrated

stress tensor 3-point function, the integrated R-current 3-point function and some mixed

3-point functions. This is given explicitly in (A.27)

S′′
q=1 =

1

6
I ′′′q=1 =

4π3

3

[
〈ÊÊÊ〉c − g3〈Q̂Q̂Q̂〉c − 3g〈ÊÊQ̂〉c + 3g2〈ÊQ̂Q̂〉c

]

S1q=1
×Hd−1

. (3.5)

In 6d (1, 0) SCFTs, by the conformal Ward identities, the two- and three-point func-

tions of the stress tensor multiplet (including R-current) may be determined in terms of

two independent coefficients, which are linearly related to c1 and c2. Because of this, C

and B in (3.1) are also linear combinations of c1 and c2. These relations can be obtained

by fitting to the free hyper multiplet and the free tensor multiplet in table 1,

B = c2 −
5

16
c1 , C =

3

2
c2 −

3

4
c1 . (3.6)

Assuming B and C are linear combinations of α , β , γ , δ, we shall establish the explicit

relations. Because the second Pontryagin class p2(T ) does not contribute to the ν2 term,

we get

∂δB = 0 . (3.7)

To see that the ν2 term is independent of p2(T ), let us consider the free energy on S
5
q ×H

1,

which can be used to compute Sq because S
5
q × H

1 is conformally equivalent to S
6
q or
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S
1
q × H

5. S
5
q × H

1 is similar to S
5
q × S

1
β→∞, but they are not the same due to different

boundary conditions on H
1 and S

1
β . The latter background preserving supersymmetry is

used to compute the supersymmetric Casimir energy in 6d. One can formally define a

supersymmetric Rényi entropy on S
5
q × S

1
β→∞ with the Rényi parameter q by using the

free energy βEc[S
5
q ]. As we will see in the next section, p2(T ) will not contribute to the

1/q2 term in this supersymmetric Rényi entropy, because p2(T ) contributes to Ec in the

following way (4.7)

p2(T )

ω1ω2ω3
→ 1

ω1ω2ω3

3∑

i<j

ω2
i ω

2
j , ω1 = ω2 = 1 , ω3 = 1/q . (3.8)

The different boundary conditions on S
5
q × H

1 will not change the property that the 1/q2

term is independent of δ. We further confirm this fact by establishing a concrete relation

between Sq and the anomaly polynomial in section 5.

Since B depends only on α , β , γ , it can be fixed by fitting to the three independent

examples, the free hyper multiplet, the free tensor multiplet and the AN−1 type theories

in the large N ,

B =
1

24
(2α− 5β + 8γ) . (3.9)

The same fitting method can be used to determine the α , β , γ , δ dependence of C, but

since C depends on all four of them, one free parameter is left. We fix the remaining free

parameter by making use of the result of c1+4c2 for the conformal non-unitary (1, 0) vector

multiplet in [26] (obtained by the heat kernel computation on the Ricci flat background)

(c1 + 4c2)
∣∣
“Vector”

=
62

45
. (3.10)

Thus, the coefficient C as a linear combination of α , β , γ , δ is determined

C =
1

4
(2α− 3β + 4γ + δ) . (3.11)

Eqs. (3.6), (3.9), (3.11) also establish the linear relations between c1,2,3 and α , β , γ , δ

c1 = −2

9
(6α− 7β + 8γ + 4δ) ,

c2 = − 1

18
(6α− 5β + 4γ + 5δ) ,

c3 = −1

6
(c1 − 2c2) =

1

18
(2α− 3β + 4γ + δ) . (3.12)

The remaining coefficient A will be fixed as

A =
1

192
(α− 4β + 16γ) . (3.13)

in the next section by studying the large ν behavior of the supersymmetric Rényi entropy.

Obviously, the leading contribution in the limit ν → ∞ is determined only by A.
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3.1 A closed formula

As a summary, we can completely determine a closed formula for the universal part of

supersymmetric Rényi entropy for 6d (1, 0) SCFTs,

S(1,0)
ν =

1

192
(α− 4β + 16γ)(ν − 1)3 +

1

24
(2α− 5β + 8γ) (ν − 1)2

+
1

4
(2α− 3β + 4γ + δ)(ν − 1) +

1

6
(8α− 8β + 8γ + 3δ) . (3.14)

Given that ’t Hooft anomalies for general 6d (1, 0) SCFTs can be computed [13], the above

formula tells us the universal supersymmetric Rényi entropy for any (1, 0) SCFT.

For (2, 0) theories labeled by a simply-laced Lie algebra g, (3.14) reduces to [43]

S(2,0)
ν = (c̄− ā)

7

12
Hν + (7ā− 4c̄)

1

3
Tν , (3.15)

where ā and c̄ are determined by the rank, dimension and dual Coxeter number of g,

ā =
16

7
dgh

∨
g + rg , c̄ = 4 dgh

∨
g + rg . (3.16)

Tν and Hν are the supersymmetric Rényi entropy of the (2, 0) tensor multiplet and that of

the (2, 0) supergravity (large N), respectively

Tν =
1

192
(ν − 1)3 +

1

48
(ν − 1)2 +

1

8
(ν − 1) +

7

12
, (3.17)

Hν =
1

192
(ν − 1)3 +

1

12
(ν − 1)2 +

1

2
(ν − 1) +

4

3
. (3.18)

4 Relation with supersymmetric Casimir energy

In this section we clarify the relation between the supersymmetric Rényi entropy and the

supersymmetric Casimir energy in 6d. Similar relation in 4d has been obtained in [38].

Recall that the partition function Z on MD−1 × S
1
β̃
is determined by the Casimir energy

on the compact space MD−1 in the limit β̃ → ∞

Ec := − lim
β̃→∞

∂
β̃
logZ(β̃) , (4.1)

which is equivalent to the statement15

lim
β̃→∞

logZ(β̃) = −β̃Ec . (4.2)

We consider the cases with supersymmetry. In even-dimensional superconformal theories,

the supersymmetric Casimir energy on S
1 × S

D−1 has been conjectured to be equal to

the equivariant integral of the anomaly polynomial in [47], where the authors provided

strong supports for this conjecture by examining a number of SCFTs in two, four and six

15In this section we use β̃ = 1/T for the inverse temperature in order to distinguish it from the ’t Hooft

anomaly β.
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dimensions.16 The equivariant integration is defined with respect to the Cartan subalgebra

of the global symmetries (that commute with a given supercharge) and one can write this as

ED(µj) =

∫

µj

ID+2 , (4.3)

where the equivariant parameters µj are the chemical potentials corresponding to the Car-

tan generators. In equivariant cohomology, doing the integration (4.3) in 6d is equivalent

to the replacement rules (4.7).17

Let us consider 6d (1, 0) SCFTs on S
1
β̃
×S

5
~ω with squashing parameters ~ω = (ω1, ω2, ω3).

The squashing parameters are defined by coefficients appearing in the Killing vector

K = ω1
∂

∂φ1
+ ω2

∂

∂φ2
+ ω3

∂

∂φ3
, (4.4)

where φ1, φ2, φ3 are three circles representing the U(1)3 isometries of the 5-sphere. The

supersymmetric Casimir energy of superconformal (1, 0) theories is given by the equivariant

integral (4.3)

E
(1,0)
6 (µj) = −

∫

µj

I8 , (4.5)

where the 8-form anomaly polynomial is18

I8 =
1

4!

(
α c22(R) + β c2(R)p1(T ) + γ p21(T ) + δ p2(T )

)
(4.6)

as introduced in the introduction. The integration (4.5) is equivalent to the following

replacement rules [47]

c2(R) → −σ2 , p1(T ) →
3∑

i=1

ω2
i , p2(T ) →

3∑

i<j

ω2
i ω

2
j , (4.7)

where σ is the chemical potential for the R-symmetry Cartan and ω1,2,3 are the chemi-

cal potentials for the rotation generators (commuting with the supercharge). After the

replacement, the result should be divided by the equivariant Euler class,

e(T ) = ω1ω2ω3 . (4.8)

In the particular background of S5q ×S
1
β̃
, where S5q is a q-deformed 5-sphere with the metric

ds2 = (sin2 θ + q2 cos2 θ)dθ2 + q2 sin2 θdτ2 + cos2 θdΩ2
3 , (4.9)

one should identify the shape parameters as

ω1 = ω2 = 1 , ω3 =
1

q
. (4.10)

16For 6d superconformal index, see [56–58].
17See the appendix in [47] for details on the equivalence.
18We consider the minimal set of global symmetries without extra flavor symmetries.
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Note that there is a supersymmetric constraint for the chemical potentials, σ = 1
2

∑
j ωj .

Evaluating (4.5) one obtains

E
(1,0)
6 = − 1

24ω1ω2ω3


ασ4 − β σ2

3∑

j=1

ω2
j + γ




3∑

j=1

ω2
j




2

+ δ




3∑

i<j

ω2
i ω

2
j




 . (4.11)

Therefore the free energy in the q → 0 limit19

f [S5q→0 × S
1
β̃→∞

] =
1

β̃π2/2
β̃Ec

∣∣∣∣
q→0

= − 1

192π2

α− 4β + 16γ

q3
, (4.12)

where we have divided by a q-independent volume factor Vol [D4 × S
1
β̃
] = β̃π2/2. Because

of the conformal equivalence between S
5
q ×H

1 and S
1
q ×H

5, we have

f [S5q→0 × S
1
β→∞] = f [S5q→0 ×H

1] = f [S1q→0 ×H
5] , (4.13)

where the first equality follows from the background coincidence and the second one follows

from the conformal invariance of (supersymmetric) Rényi entropy and

Sq→0 = −Iq→0 , Iq := − logZq . (4.14)

From (4.13) we obtain the asymptotic supersymmetric Rényi entropy on S
1
q ×H

5

Sq→0 = −Iq→0 =
1

192

α− 4β + 16γ

q3
. (4.15)

This fixes the undetermined coefficient A in (3.1) as

A =
1

192
(α− 4β + 16γ) . (4.16)

Notice that this result perfectly agrees with the supersymmetric Rényi entropy of the known

(1, 0) fixed points listed in table 1.

5 Relation with anomaly polynomial

Inspired by the relation between the supersymmetric Casimir energy and the anomaly

polynomial [47], we conjecture in this section a relation between the supersymmetric Rényi

entropy and the anomaly polynomial. Following this relation, the supersymmetric Rényi

entropy in even dimensions can be extracted directly from the anomaly polynomial of the

theory. We conjecture that Sq is determined by an equivariant integral of the anomaly poly-

nomial ID+2 with respect to the subalgebra formed by generators (r, hj=1,...D/2, h[D
2
+1]),

where r is the R-symmetry Cartan generator and hj is the j-th orthogonal rotation gen-

erator in R
D, while h[D

2
+1] generates an additional U(1) rotation. We emphasize that we

do not have yet a physical understanding of the extra U(1), but just employ it in the same

way as the other rotational U(1)’s. We will check our conjecture against existing data in

19f := I
V
, I := − logZ.
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6d and 4d. To simplify the notation, we will use h̃ = h[D
2
+1] from now on. The Cartan gen-

erators commuting with a given supercharge Q have the corresponding chemical potentials

denoted by σ, ~ω, ω̃. Define an equivariant integral20

F (σ, ~ω, ω̃) =

∫

(σ,~ω,ω̃)
ID+2 (5.1)

with the corresponding chemical potentials as the equivariant parameters. The supersym-

metric Rényi entropy can be determined as follow

Sq = VH1

qF1 − Fq

1− q
, Fq = F (σ, ~ω, ω̃)

∣∣∣∣
~ω=~1,ω̃=1/q

. (5.2)

Note that in the second equation in (5.2), the supersymmetric constraint for the chemical

potentials was implicitly assumed. A volume VH1 = 2 log(ℓ/ǫ) was factorized in Sq because

we work effectively on S
D−1
q ×H

1. We will test this conjecture for SCFTs in 4d and 6d in

the following subsections. We have not been able, so far, to prove this conjecture. The fact

that an equivariant integral appears in this conjecture may hint towards some localization.

5.1 Six dimensions

In R
6, there is a U(1)3 subalgebra in the rotation symmetries. The generators commuting

with the supercharge have the corresponding chemical potentials, ω1,2,3. The additional

chemical potential is ω̃ = ω4. Consider superconformal theories with SU(2)R R-symmetry.

For the 8-form anomaly polynomial given in (4.6), the replacement rule in carrying out the

equivariant integration (5.1) should be

c2(R) → −σ2 , p1(T ) →
4∑

i=1

ω2
i , p2(T ) →

4∑

i<j

ω2
i ω

2
j . (5.3)

After these replacements in the anomaly polynomial, we divide it by ẽ(T ) = ω1ω2ω3ω4.

The result is given by

F (σ, ω1,2,3,4) = − 1

24ω1ω2ω3ω4


ασ4 − β σ2

4∑

j=1

ω2
j + γ




4∑

j=1

ω2
j




2

+ δ




4∑

i<j

ω2
i ω

2
j




 .

(5.4)

Upon plugging in

σ =
1

2

4∑

i=1

ωi , ω1 = ω2 = ω3 = 1 , ω4 = 1/q , (5.5)

one obtains

Sq

VH1

=
qF1 − Fq

1− q
=

α− 4β + 16γ

384q3
+

13α− 28β + 16γ

384q2
(5.6)

+
67α− 76β + 112γ + 48δ

384q
+

1

384
(175α− 148β + 112γ + 48δ).

20One can come up, for now, with some loose arguments that this equivariant integral gives the coefficient

of the universal log divergence in the free energy on a general D-dimensional squashed sphere.
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The above result can be rewritten as Sν ,

Sν =
1

192
(ν − 1)3(α− 4β + 16γ) +

1

24
(ν − 1)2(2α− 5β + 8γ)

+
1

4
(ν − 1)(2α− 3β + 4γ + δ) +

1

6
(8α− 8β + 8γ + 3δ) . (5.7)

This agrees precisely with (3.14). Remarkably, a single conjectured formula by the equiv-

ariant integral (5.2) can give the a-anomaly, c1,2,3-anomalies and also a certain part of the

supersymmetric Casimir energy simultaneously and precisely. We consider these agree-

ments as a strong support of both our results (1.6) and the conjecture itself.

5.2 Four dimensions

In R
4, there is a U(1)2 subalgebra in the rotation symmetries. The generators commuting

with the supercharge have the corresponding chemical potentials, ω1,2. The additional

chemical potential is ω̃ = ω3. Consider superconformal theories with U(1)R R-symmetry.

The 6-form anomaly polynomial is

I6 =
1

3!
(kRRRc1(R)3 + kRc1(R)p1(T )) . (5.8)

The supersymmetric Casimir energy is given by the equivariant integral of I6 [47]

E4 =

∫
I6 =

kRRR

6ω1ω2
σ3 − kR

24ω1ω2
(ω2

1 + ω2
2)σ , (5.9)

where the chemical potentials satisfy a supersymmetric constraint σ = 1
2(ω1 + ω2). Note

that the relation between the conformal and the ’t Hooft anomalies in a 4d N = 1 theory is

kRRR =
16

9
(5a− 3c) , kR = 16 (a− c) . (5.10)

Plugging this in (5.9), one reproduces the familiar result [59, 60]

E4 =
2

3
(a− c)(ω1 + ω2) +

2

27
(3c− 2a)

(ω1 + ω2)
3

ω1ω2
. (5.11)

For our purpose, the equivariant parameters have been generalized to σ, ω1, ω2, ω3. The

equivariant integration (5.9) now becomes

F (σ, ω1,2,3) =
kRRR

6ω1ω2ω3
σ3 − kR

24ω1ω2ω3
(ω2

1 + ω2
2 + ω2

3)σ , (5.12)

with a constraint σ = 1
2(ω1+ω2+ω3). Evaluating the supersymmetric Rényi entropy (5.2),

one obtains

Sν =
3

8
(kR − 3kRRR) +

(
5

24
kR − 3

8
kRRR

)
(ν − 1) +

1

24
(kR − kRRR)(ν − 1)2 , (5.13)

= −4 a− 4

3
c (ν − 1)− 4

27
(3c− 2a) (ν − 1)2 . (5.14)
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This is precisely the universal supersymmetric Rényi entropy in 4d N = 1. A few remarks

are in order. The leading coefficient in large ν, −4(3c − 2a)/27, precisely agrees with the

result in [38]. The first ν-derivative at ν = 1, −4c/3, agrees with (A.23).21 The constant

term, −4a, agrees with the linear relation between the a-anomaly and the entanglement

entropy in [31]. From (5.13) to (5.14), we have used the relations (5.10). Demanding

the equivalence between (5.13) and (5.14), one can reproduce the famous known relations

between the conformal and the ’t Hooft anomalies.

6 Discussion

In this paper we proposed a closed formula for the universal log term of the six-dimensional

supersymmetric Rényi entropy and made a conjecture that the supersymmetric Rényi

entropy in even dimensions is equal to an equivariant integral of the anomaly polynomial.

It remains a challenging problem to understand the extra U(1) and to prove this conjecture.

We leave it for future work.

Let us mention a few other open question and further directions of research that are

related to this work.

1. Proving our assumption that the expansion of the supersymmetric Rényi entropy

in 1/q terminates (it is just a polynomial of 1/q with degree 3 in 6d). For this we

need the dependence of possible counter-terms on 1/q. Hence, we have to construct

the six-dimensional supersymmetric curved background and in particular the smooth

squashed six-sphere. The super-Weyl anomalies constructed on this background will

give the universal part of the supersymmetric Rényi entropy. This approach will,

hopefully, allow us to prove our assumption (C) in the introduction.

2. A generalization of the discussion in appendix A implies that the third derivative of

the supersymmetric Rényi entropy is related to a specific linear combination of 4-point

functions of the stress tensor and other operators in its multiplet. On the other hand,

according to our result (1.6), (1.7) it is related to s3 and hence via (1.1) and (1.15)

to the Weyl anomalies. In 6d, this is indeed consistent with a long time expectation

that the a-anomaly should determine some specific term in the 4-point function of the

stress tensor. This consistency becomes manifest for (2, 0) theories (3.15). It would be

nice to demonstrate the relation between S′′′
ν |ν=1 and the integrated 4-point functions

of operators in the stress tensor multiplet in a straight forward way.

3. The supersymmetric Rényi entropy has been proven to satisfy the four inequali-

ties [61],

∂qSq ≤ 0 , ∂q

(
q − 1

q
Sq

)
≥ 0 , ∂q((q − 1)Sq) ≥ 0 , ∂2

q ((q − 1)Sq) ≤ 0 . (6.1)

Imposing these information theory inequalities for the supersymmetric Rényi entropy,

one can get bounds on the ’t Hooft anomaly coefficients. For 4d N = 1 supercon-

formal theories, plugging (5.14) into (6.1) one obtains 3
7 ≤ a

c ≤ 3
2 . Notice that the

21In the sense that ∂νSν=1 is a particular linear combination of CT and CJ , therefore proportional to c.
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lower bound is not as tight as the 4d N = 1 Hofman-Maldacena bounds. For 6d (1, 0)

superconformal theories, plugging (3.14) into (6.1) one obtains22

P1 := α− 4(β − 4γ) ≥ 0 , (6.2)

P2 := 3α− 2β ≥ 0 , (6.3)

67α− 76β + 16(7γ + 3δ) ≥ 0 , (6.4)

9α− 8(β − 2γ − δ) ≥ 0 . (6.5)

It is interesting to clarify the relations among different bounds in 6d: the information

theory bounds shown above, the unitary bound CT ∝ c3 ≥ 0 which reads

2α− 3β + 4γ + δ ≥ 0 , (6.6)

and the 6d supersymmetric Hofman-Maldacena bounds (obtained by free-multiplet

estimaiton) in terms of α, β, γ, δ,23

P3 := 8α− 6β + 4γ + 7δ ≥ 0 (6.7)

P4 := 2α− 9β + 16γ − 2δ ≥ 0 . (6.8)

It is interesting to notice that, P1 is equal to s3 in (1.7) and, from P3 ≥ 0 and P4 ≥ 0

one can derive both CT ∝ c3 ∝ s1 ≥ 0 and s2 ≥ 0. This indicates that the inequalities

P1 ≥ 0, P2 ≥ 0, P3 ≥ 0, P4 ≥ 0 are more fundamental than the others. Moreover,

combining the information theory bounds (6.2), (6.3) and the Hofman-Maldacena

bounds (6.7), (6.8), one obtains

s0 =
7

12
ā =

1

6
(8α− 8β + 8γ + 3δ) =

1

48
(P1 + 9P2 + 4P3 + 2P4) ≥ 0 , (6.9)

which gives a proof of the positivity of the a-anomaly. We leave further investigation

on different bounds for future work.
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A Perturbative expansion around q = 1

We review the perturbative expansion of supersymmetric Rényi entropy (associated with

spherical entangling surface) around q = 1. The great details have been given in [43] and we

will be brief. Although our main concern will be 6d (1, 0) SCFTs, we keep the discussions

valid for any SCFT with conserved R-symmetry in d-dimensions.

Consider the supersymmetric partition function on S
1
β=2πq × H

d−1 with R-symmetry

background fields (chemical potentials),

Z[β, µ] = Tr
(
e−β(Ê−µQ̂)

)
. (A.1)

which can be used to compute the supersymmetric Rényi entropy associated with a spher-

ical entangling surface in flat space. We work with the grand canonical ensemble. The

state variables can be computed as follows

E =

(
∂I

∂β

)

µ

− µ

β

(
∂I

∂µ

)

β

, (A.2)

S = β

(
∂I

∂β

)

µ

− I , (A.3)

Q = − 1

β

(
∂I

∂µ

)

β

, (A.4)

where I := − logZ. The energy expectation value is given by (A.2)

E =
Tr(ρÊ)

Tr(ρ)
, ρ = e−β(Ê−µQ̂) , (A.5)

and the charge expectation value is given by (A.4)

Q =
Tr(ρQ̂)

Tr(ρ)
. (A.6)

In the presence of supersymmetry, both β and µ are functions of a single variable q therefore

I is considered as

Iq := I[β(q), µ(q)] . (A.7)

The supersymmetric Rényi entropy is defined as

Sq =
qI1 − Iq
1− q

. (A.8)

Consider the Taylor expansion around q = 1, with δq := q − 1,

Sq = SEE +
∞∑

n=2

1

n!

∂nIq
∂qn

∣∣∣∣
q=1

δqn−1 . (A.9)

The first q-derivative of Iq is given by

I ′q =

(
∂I

∂β

)

µ

β′(q) +

(
∂I

∂µ

)

β

µ′(q) . (A.10)
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Using (A.2) and (A.4), one can rewrite it as

I ′q = (E − µQ)β′(q)− βQµ′(q) . (A.11)

Plugging in the supersymmetric background,

β(q) = 2πq , µ(q) = g
q − 1

q
, (A.12)

one finally has

I ′q = 2π(E − gQ) . (A.13)

Notice that µ(q) is solved from the Killing spinor equation. g is some number depending

on the R-charge of the preserved Killing spinor. In general both E and Q are functions of

q. Moreover, E and Q here are expectation values rather than operators.

A.1 S′
q=1 and I ′′q=1

From (A.9) we see that

S′
q=1 =

1

2
I ′′q=1 . (A.14)

Let us take one more q-derivative of (A.13) and make use of (A.5) and (A.6)

I ′′q = −4π2



Tr

(
ρ(Ê − gQ̂)2

)

Tr(ρ)
−

[
Tr

(
ρ(Ê − gQ̂)

)]2

[Tr(ρ)]2


 , (A.15)

which can be simplified by using ρ0 = ρ(µ = 0) at q = 1

S′
q=1 = −2π2



Tr

(
ρ0(Ê − gQ̂)2

)

Tr(ρ0)
−

[
Tr

(
ρ0(Ê − gQ̂)

)]2

[Tr(ρ0)]
2




q=1

. (A.16)

Eq. (A.16) can be written as connected correlators

S′
q=1 = −2π2

[
〈ÊÊ〉c + g2〈Q̂Q̂〉c − 2g〈ÊQ̂〉c

]

S1q=1
×Hd−1

, (A.17)

where we have used the fact that, Q̂ is a conserved charge, [Ê, Q̂] = 0, to flip the order of

Ê and Q̂. Given that 〈ÊQ̂〉c = 0 and 〈ÊÊ〉c has been computed in [53], we get

S′
q=1 = −Vd−1

πd/2+1Γ(d/2)(d− 1)

(d+ 1)!
CT − 2π2g2

∫

Hd−1

∫

Hd−1

〈Jτ (x)Jτ (y)〉cq=1 . (A.18)

CT is defined through the flat space correlator

〈Tab(x)Tcd(0)〉 =
CT

x2d
Iab,cd(x) , (A.19)

where

Iab,cd(x) =
1

2
(Iac(x)Ibd(x) + Iad(x)Ibc(x))−

1

d
δabδcd ,

Iab(x) = δab − 2
xaxb
x2

. (A.20)
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Now the task is to compute the second term in (A.18). Following the way of computing

〈TT 〉 on the hyperbolic space S
1
q=1 ×H

d−1, one can make use of the flat space correlators

in the CFT vacuum,

〈Q̂Q̂〉c = − π
d−1

2 Vd−1

2d−2(d− 1)Γ(d−1
2 )

CJ , (A.21)

where CJ is defined through the R-current correlator in flat space

〈Ja(x)Jb(0)〉 =
CJ

x2(d−1)
Iab(x) . (A.22)

Our final result of S′
q=1 becomes

S′
q=1 = −Vd−1

(
π

d
2
+1Γ(d2)(d− 1)

(d+ 1)!
CT − g2

π
d+3

2

2d−3(d− 1)Γ(d−1
2 )

CJ

)
, (A.23)

which shows that the first q-derivative of Sq at q = 1 is given by a linear combination of

CT and CJ . This is intuitively expected because in the presence of supersymmetry, taking

the derivative with respect to q is equivalent to taking the derivative with respect to gττ
and Aτ at the same time.

In the particular case of 6d (1, 0) SCFTs, the 2-point function of the stress tensor is

determined by the central charge c3. Therefore the integrated 2-point function is propor-

tional to c3. Moreover, S′
q=1 is also proportional to c3, because the stress tensor and the

R-current on the right hand side of (A.23) live in the same multiplet.

A.2 S′′
q=1 and I ′′′q=1

From (A.9) we see that

S′′
q=1 =

1

6
I ′′′q=1 . (A.24)

It is straightforward to compute I ′′′q by taking one more derivative on (A.15)

I ′′′q
8π3

=
Tr

(
ρ(Ê − gQ̂)3

)

Tr(ρ)
− 3

Tr
(
ρ(Ê − gQ̂)2

)
Tr

(
ρ(Ê − gQ̂)

)

[Tr(ρ)]2

+2

[
Tr

(
ρ(Ê − gQ̂)

)]3

[Tr(ρ)]3
, (A.25)

which may be simplified at q = 1 where µ = 0

I ′′′q=1

8π3
=

(
Tr

(
ρ0(Ê − gQ̂)3

)

Tr(ρ0)
− 3

Tr
(
ρ0(Ê − gQ̂)2

)
Tr

(
ρ0(Ê − gQ̂)

)

[Tr(ρ0)]
2

+2

[
Tr(ρ0(Ê − gQ̂))

]3

[Tr(ρ0)]
3

)

q=1

. (A.26)
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This can be further written in terms of connected correlation functions,

S′′
q=1 =

1

6
I ′′′q=1 =

4π3

3

[
〈ÊÊÊ〉c − g3〈Q̂Q̂Q̂〉c − 3g〈ÊÊQ̂〉c + 3g2〈ÊQ̂Q̂〉c

]

S1q=1
×Hd−1

,

(A.27)

where we have used [Ê, Q̂] = 0. The integrated correlators in (A.27) can be computed by

transforming the corresponding flat space correlators, 〈TTT 〉, 〈JJJ〉, 〈TTJ〉, 〈TJJ〉 in the

CFT vacuum. These correlators in flat space can be determined up to some coefficients for

d-dimensional CFTs by conformal Wald identities [32, 33]. In the case of 6d (1, 0) SCFTs,

both the 2- and 3-point functions of the stress tensor multiplet can be determined in terms

of three coefficients c1,2,3.
24 Therefore the right hand side of (A.27) should be proportional

to some linear combinations of c1,2,3, because the stress tensor and the R-current belong

to the same multiplet.

Open Access. This article is distributed under the terms of the Creative Commons
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[45] H. Mori, Supersymmetric Rényi entropy in two dimensions, JHEP 03 (2016) 058

[arXiv:1512.02829] [INSPIRE].

[46] A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy

radiated by a quark, JHEP 05 (2014) 025 [arXiv:1312.5682] [INSPIRE].

[47] N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir Energy and the Anomaly

Polynomial, JHEP 09 (2015) 142 [arXiv:1507.08553] [INSPIRE].

[48] A. Belin, L.-Y. Hung, A. Maloney, S. Matsuura, R.C. Myers and T. Sierens, Holographic
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