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1 Introduction

The past two years have seen the development of some new application of conformal field

theory (CFT) methods to the study of critical models in dimension bigger than two and,

more specifically, close to their upper critical dimensions [1]. The simple requirement

that a theory is conformal invariant at a critical point, rather than simply scale invariant,

strongly constrains the form of its correlators [2] and allows to write several nontrivial
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relations among them [3]. The two key ideas behind this approach are to achieve consistency

between conformal symmetry and the equations of motion through the use of the operatorial

Schwinger-Dyson equations (SDE), and to ensure regularity with the Gaussian theory when

the dimension approaches its upper critical value in a limiting procedure. Such a method

has been able to reproduce the leading results for the ε-expansion of the Ising, Lee-Yang,

and Tricritical Ising universality classes. These results are very amusing in that none

of the standard methods of quantum field theory (QFT) are used, including perturbation

theory and the renormalization group, but just the knowledge of free (Gaussian) theory

results for the correlators given by the Wick contractions. These achievements thus point

at the idea that CFT might work as a fully consistent replacement of the standard methods

when critical properties are under investigation.

We will be interested in generalizing this idea to theories governed by the general φm

potential. In a Ginzburg-Landau description their action is

S[φ] =

∫
ddx

{
1

2
∂µφ∂

µφ+
g

m!
φm +

m−1∑
k=0

gk
k!
φk
}
, (1.1)

for m a natural number bigger than two. These models can be divided into two classes:

on the one hand if m = 2n, i.e. even, they are the so-called multi-critical models which are

protected by a Z2 parity (φ→ −φ) and include both the Ising (m = 4) and Tricritical

(m = 6) universality classes as the first special cases.1 In the Landau-Ginzburg approach

the φ2n effective potential describes a statistical system with a phase-transition that can be

reached by opportunely tuning the coupling g to a positive value, and in which n distinct

minima of the potential become degenerate [4]. On the other hand if m = 2n + 1, that is

odd, (1.1) represents a sequence of multi-critical non-unitary theories which are protected

by a generalization of parity and include the Lee-Yang universality class (m = 3) as first

example. The non-unitary nature manifests itself in that the critical value of the coupling

g must be a purely imaginary number for the odd potentials. We will see in more detail at

the beginning of the next section why, within a CFT approach, all the subleading couplings

gk of (1.1) do not play a significant role in tuning the action to criticality, therefore for the

moment we shall simply ignore them.

The upper critical dimension of (1.1) is defined as the dimension d at which the coupling

g is canonically dimensionless

dm =
2m

m− 2
. (1.2)

A simple application of the Ginzburg criterion confirms that above the upper critical di-

mension the statistical fluctuations are weak and the physics of (1.1) is Gaussian and

controlled by mean-field critical exponents, while below the upper critical dimension the

fluctuations are strong enough to change the scaling properties and to provide the field

φ with an anomalous dimension. In the latter case a consistent expansion for the crit-

ical exponents can be achieved by studying the system slightly below the upper critical

1We follow the convention that universality classes such as Ising’s are denoted with typeset font, there-

fore the spin ±1 Ising model at criticality is only one specific realization of the Ising universality class and

the two should not generally be confused. The paper will deal with universality classes to a greater extent.
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dimension

d = dm − ε , (1.3)

which for small ε tames the fluctuations and provides all the physically interesting critical

quantities in the form of a Taylor series in ε.2

The most important critical exponents of all the aforementioned special cases (Ising,

Tricritical and Lee-Yang) are known to high orders of the ε-expansion [5–9]. The leading

and next-to-leading contributions in the ε-expansion of (1.1) are known in general for all

the even potentials m = 2n thanks to the application of standard perturbation theory, MS-

methods and renormalization group analysis [10], while less is known for the odd potentials.

To underline how interesting and unexpected the results of [10] for the even potentials are,

let us point out that for n ≥ 3 the leading contributions arise from multiloop computations,

and that for n ≥ 4 the divergences are subtracted as poles of the fractional dimensions

d2n of (1.2)!

Another interesting property is that the even models are known to interpolate in

d = 2 with the unitary minimal CFTs M(p, p + 1) for p = 1 + m/2, which arise from

the representations of the infinite dimensional Virasoro algebra [11]. Similarly, there are

speculations [12] pointing at the fact that the non-unitary models might interpolate with

the sequence of minimal non-unitary multi-critical theories M(2,m + 2) studied in [13].

This is established for the Lee-Yang case m = 3 [14]. It is thus legitimate to generalize the

arguments made for m = 3 in [15, 16], for m = 4 in [1, 15, 17] and for m = 6 in [15, 18], and

assume that for each value of m the multi-critical models at the critical point are conformal

field theories for any dimension 2 ≤ d ≤ dm. The straightforward question that we will

dare to answer in this paper is: how proficient will the Dyson-Schwinger consistency be in

determining the critical properties of (1.1)?

The paper is organized as follows: in section 2 we briefly summarize the main features

of the Schwinger-Dyson consistency condition as well as some important property of CFT.

In sections 3 and 4 we treat the cases of even and odd potentials respectively. All the

results of these two sections are summarized in the subsections 3.4 and 4.4. In section 5

we attempt a unified conclusion and give some future prospects. The appendices collect

some formulas which are very useful for our manipulations, in particular appendix A deals

extensively with the free theory in arbitrary dimension and the counting of the Wick

theorem, while appendix B collects few relations involving the action of the Laplacian on

the CFT correlators.

2 Schwinger-Dyson consistency and CFT

We dedicate this section to a brief but more technical introduction to the application of the

Schwinger-Dyson consistency condition in CFT. Furthermore, some formulas of section 1

necessitate further clarifications for their application to CFT, therefore there will be some

2In the non unitary models, e.g. Lee-Yang universality class, the critical coupling and some structure

constants are actually expressed as series of integer powers of ε1/2.
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slight overlapping with the previous section. Let us begin by introducing the action of the

scalar φm-theory

S[φ] =

∫
ddx

{
1

2
(∂φ)2 + µ(m2 −1)ε g

m!
φm
}
, (2.1)

in d dimensions, for d sufficiently close to the upper critical dimension as in eqs. (1.2)

and (1.3). The careful reader should have noticed several important details in compar-

ing (2.1) with (1.1). In (2.1) we introduced a reference (mass) scale µ which makes the

almost marginal coupling g dimensionless for any d. The presence of the mass scale µ un-

derlies the fact that the action (2.1) is not conformal invariant for all values of g, which in

fact must be tuned to its critical value as will be done later in the paper. Nevertheless, we

could exclude all the strictly dimensionful couplings gk that appeared in (1.1) from (2.1).

The reason is that, since we are interested in the underlying conformal theory, which by

definition does not depend on external scales, all couplings with positive mass dimension

must vanish at criticality. This multi-critical tuning corresponds to the point in which, for

example, all the n different phases of a φ2n theory coexist.

Before diving more deeply into some technical details, it is worth noting that, with the

exception of the cases m = 3, 4 and 6, the upper critical dimension dm is a rational number.

More generally, after the displacement by ε all the theories will live in the arbitrarily

real dimension d = dm − ε. Theories living in continuous dimensions have already been

investigated as CFT with conformal bootstrap methods [19]: they are now believed to

violate unitarity through the appearance of complex conjugate pairs of scaling dimensions,

which are probably related to “evanescent” operators that couple to the spectrum only at

non-integer dimensionalities and are associated to states with negative norm [20]. While

this is a very interesting line of research which deserves further investigation, we shall not

deal with these aspects and assume that conformal symmetry, unitary or not unitary, is

realized for any value of the dimension d.3

The key idea of [1] is that all the CFT data of (2.1) must interpolate with that of

the Gaussian theory in the limit ε → 0. We set some notation by defining the scaling

dimensions for the field φ and the composite operators φm of an interacting scalar theory

in d dimensions. Let the canonical dimension of φ be

δ =
d

2
− 1 = δm −

ε

2
, with δm =

2

m− 2
, (2.2)

and the scaling dimensions of φ and φk be respectively

∆1 ≡ ∆φ = δ + γ1 and ∆k ≡ ∆φk = k δ + γk . (2.3)

The γ-terms represent the corrections from the canonical scaling dimensions δ and k δ,

and therefore must be proportional to some power of g or ε to ensure consistency of the

Gaussian limit.

3Scale invariance seems to imply conformal invariance for several physically interesting critical models,

especially in even dimensional cases. There is also a pragmatic evidence, due to the results from conformal

bootstrap program, that this is true for the d = 3 Ising universality class. This evidence has been recently

supported at theoretical level [21].
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The Schwinger-Dyson equations (SDE) generalize the notion of equations of motion

of (2.1) at a functional and at an operatorial level. Neglecting contact terms, any insertion

of the equations of motion in a correlator constructed with a string of operators returns

zero. In practice, for any state of the CFT and for any list of operators Oi the relation〈
δS

δφ
(x)O1(y)O2(z) . . .

〉
= 0 (2.4)

holds. In general the SDE are constructed with renormalized quantities where explicit ε-

dependences do appear through the renormalized coupling in S[φ]. However, at the lowest

order one can use the relation

〈2xφ(x)O1(y)O2(z) . . .〉 =
g

(m−1)!
〈φm−1(x)O1(y)O2(z) . . .〉 (2.5)

at tree level. Thanks to the Schwinger-Dyson equation one can deduce that in the in-

teracting CFT the operator φ and φk with k 6= m−1 are primaries, while the operator

φm−1 is a descendant.4 In other words, the interacting CFT enjoys one less independent

operator, that is φm−1, and a recombination of the conformal multiplets must take place.

In particular, the scaling dimensions of φ and φm−1 must be constrained

∆m−1 = ∆1 + 2 =⇒ γm−1 = γ1 + (m−2)
ε

2
. (2.6)

Furthermore, conformal symmetry greatly constrains the correlators appearing on both

sides of the SDE. It is possible to find a basis Oa of scalar primary operators with scaling

dimensions ∆a whose two point correlators are diagonal

〈Oa(x)Ob(y)〉 =
ca δab

|x− y|2∆a
, (2.7)

(no summation over a) where we denoted as ca the general non-negative normalization

factors which can in principle be set to one. However, for the moment, we will find it

more convenient to work with the natural normalization of the Gaussian theory, that is

induced by Wick counting. The tree-point correlator for scalar primary operators is even

more constrained by conformal symmetry and reads

〈Oa(x)Ob(y)Oc(z)〉 =
Cabc

|x− y|∆a+∆b−∆c |y − z|∆b+∆c−∆a |z − x|∆c+∆a−∆b
. (2.8)

where Cabc = Ca,b,c are known as the structure constants of the CFT (we will adopt the

notation with the commas whenever a potential notational ambiguity arises). Our CFTs

are completely and uniquely specified by providing the scaling dimensions ∆a and the

structure constants Cabc, which together are known as CFT data and which are for obvious

reasons paramount target of any computation.

Our goal is to extract the leading informations for a part of the conformal data of all

the multi-critical CFT (including scaling dimensions and structure constants). Our results

4A descendant operator in d > 2 is the derivative of a primary operator, which is annihilated by the

generator of the special conformal transformations. We shall not be concerned with the higher complexity

of the d = 2 case.
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can be seen as the first step before investigating such an infinite family of multi-critical

theories at an interacting fixed point in dm−ε dimensions as a power series in ε, eventually

with also conformal bootstrap techniques.

3 φ2n-theory in d = d2n − ε dimensions

This section is dedicated to the investigation of the even potentials φ2n in d = d2n − ε
dimensions which arise as the special case m = 2n of (2.1) and which are explicitly Z2

symmetric under parity. Throughout this section we will reserve the symbol n exclusively

for the natural number bigger than one, which is half of m whenever m is even. Naturally,

n is in one-to-one correspondence with the model and labels its criticality, which is the

number of degenerate ground states at the critical point. To give the results some context,

we find useful to explicitly list the first few critical dimensions: starting from the case n = 2

that corresponds to the Ising universality class, the upper critical dimensions are

d2n =
2n

n− 1
= 4 , 3 ,

8

3
,

5

2
,

12

5
, . . . , 2 . (3.1)

They become purely rational numbers starting from d8 = 8
3 , corresponding to the Tetra-

critical universality class, which in d = 2 describes the 3-states Potts model at criticality.

In the limit n→∞ the critical dimensions tend to two, that is the dimensionality for which

the canonical dimension of the field is zero and all couplings are canonically marginal. From

our point of view, the study of the even models is particularly interesting because it allows

for a direct and very general comparison of our results with those obtained in [10], and

serves as a testing ground for the entire method.

In the first part of this section, we will kickstart the computation by obtaining the

anomalous dimension for the field φ by using a constraint which comes from the consistency

of the two point function (2.7) with the SDE (2.5) in the limit ε→ 0. Then we will repeat

the process by requiring consistency of the three point function (2.8) to determine the

scaling dimensions of all the composite operators φk. We will see that γ2, which is related

to the anomalous scaling of the correlation length, requires a separate discussion for all

the theories with n > 2. In the second part of this section we will determine several of the

structure constants Cabc which appeared in (2.8). In particular, we will mostly concentrate

on those that are not present at zeroth order in ε and are thus generated at quantum level.

In the third part we will exploit the fact that the scaling dimension of the φ2n−1 descendant

operator can be computed in two different ways and use it to find a critical value for the

coupling g as a function of ε. We will also manifest some explicit relation with the standard

perturbation theory of [10]. All the results are summarized at the end of the section.

3.1 Anomalous dimensions

Our first goal is the computation of the leading order (LO) anomalous dimensions of the

field γ1 and of the composite operators γk with k ≥ 2. By LO we will generally mean

leading order in g and in ε. Only when an explicit relation g(ε) will be available (as for

even potentials in section 3.3), leading order will mean leading order in ε.
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We start with a simple analysis of the two point function that will directly uncover

a precise leading order relation between γ1 and the coupling g. The determination of γ2

requires the analysis of three point function 〈φφφ2〉 and is a bit more involved for n > 2.

Finally we shall be able to obtain the anomalous dimensions γk with k ≥ n from the

study of 〈φφkφk+1〉. In these first computations we will proceed step by step in order to

explain the details of the method we employ. We assume the knowledge of the free theory

correlators as detailed in appendix A.

3.1.1 Warm-up: γ1

Let us consider in d dimensions the propagator of the interacting theory

〈φ(x)φ(y)〉 =
C

|x− y|2∆1
. (3.2)

The renormalized result for the CFT (e.g. at the fixed point) is characterized by a normal-

ization which at lowest order is given by the free theory one C = c+O(g), where c is given

in eq. (A.2). Thus we will make the replacement C → c everywhere from now on.

On applying first the SDE in one point one shows that γ1 is at least of order g2. Then

applying the SDE also to the second point gives the leading expression for γ1 in terms of

g. Acting with a Laplacian in eq. (3.2) using 2x|x−y|−2∆1 = 2∆1(2∆1−2δ)|x−y|−2∆1−2

and recalling ∆1 = δ + γ1 gives

2x 〈φ(x)φ(y)〉 = 2x
c

|x− y|2∆1
= c

4(δ + γ1)γ1

|x− y|2(1+δ+γ1)

LO
=

4

n− 1
γ1

c

|x− y|2+ 2
n−1

. (3.3)

In this case the determination of the leading order contribution amounted to the substitu-

tions 4(δ+ γ1)γ1 → 4δ2nγ1 in the numerator and 1 + δ+ γ1 → 1 + δ2n in the denominator,

where δ2n = 1
n−1 is the upper critical dimension value of δ. Computing instead the above

expression using the SDE one finds

〈2xφ(x)φ(y)〉 =
gµ(n−1)ε

(2n−1)!
〈φ2n−1(x)φ(y)〉 = O(g2) . (3.4)

This is because the two point function on the right hand side vanishes in the free theory.

Therefore γ1 is at least of order g2. To obtain another useful relation one acts with a

Laplacian in y, computes explicitly the expression in terms of the anomalous dimensions

and compares the result to the one obtained applying the SDE. From the first computation

one gets

2x2y 〈φ(x)φ(y)〉 = 2x2y
c

|x− y|2∆1
= c

2∆1(2∆1+2)(2∆1−2δ)(2∆1+2−2δ)

|x− y|2∆1+4

LO
=

16n

(n−1)2
γ1

c

|x− y|4+ 2
n−1

, (3.5)

where to determine the LO contributions we used 2∆1(2∆1+2)(2∆1−2δ)(2∆1+2−2δ) =

16(δ+γ1)(δ+1+γ1)γ1(1+γ1)→ 16δ2n(δ2n+1)γ1 in the numerator and 2∆1 +4→ 2δ2n+4
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in the exponent in the denominator. Applying the SDE and using the free result for the

two point function of eq. (A.3) of appendix A gives instead

〈2xφ(x)2yφ(y)〉 =

(
gµ(n−1)ε

(2n−1)!

)2

〈φ2n−1(x)φ2n−1(y)〉 LO
=

g2

(2n−1)!

c2n−1

|x− y|4+ 2
n−1

. (3.6)

By comparing eq. (3.5) and eq. (3.6) one immediately finds the leading contribution to the

anomalous dimension

γ1 = c2(n−1) (n−1)2

8(2n)!
g2 +O(g3) . (3.7)

Using the fact that

c =
Γ(δ2n)

4π1+δ2n
(3.8)

we find the explicit formula

γ1 =
2(n−1)2

(2n)!
Γ
(

1
n−1

)2(n−1) g2

(4π)2n
+O(g3) , (3.9)

which agrees with the perturbative result [10].

3.1.2 Climbing up: γ2

To determine γ2 we need to consider the three point functions. The simplest correlator

where it appears is

〈φ(x)φ(y)φ2(z)〉 =
C112

|x− y|2∆1−∆2 |y − z|∆2 |z − x|∆2
. (3.10)

In this correlator the SDE can be used twice at the points x and y. The action of one

Laplacian can be easily obtained from eq. (B.3) given in appendix B by setting α1 =

2∆1−∆2 = 2γ1−γ2 and α2 = α3 = ∆2 = 2δ+γ2

2x
1

|x− y|2∆1−∆2 |y − z|∆2 |z − x|∆2
=

2(2γ1−γ2)γ1

|x− y|2+2γ1−γ2 |y − z|2δ+γ2 |x− z|2δ+γ2

+
2(2δ+γ2)γ1

|x− y|2γ1−γ2 |y − z|2δ+γ2 |x− z|2δ+γ2+2
− (2γ1−γ2)(2δ+γ2)

|x− y|2+2γ1−γ2 |y − z|2δ+γ2−2|x− z|2δ+γ2+2
.

From this expression we easily determine the leading order contributions

2x 〈φ(x)φ(y)φ2(z)〉 LO
=

8c2

n−1γ1

|y − z|
2

n−1 |z − x|
2n
n−1

−
4c2

n−1(2γ1−γ2)

|x− y|2|y − z|2
2−n
n−1 |z − x|

2n
n−1

, (3.11)

where we also made the leading order substitution C112 → C free
112 = 2c2. This expression

should match the one obtained by applying the SDE

〈2xφ(x)φ(y)φ2(z)〉 =
gµ(n−1)ε

(2n−1)!
〈φ2n−1(x)φ(y)φ2(z)〉 LO

= g
δn,2 c

3

|x− y|2|z − x|4
, (3.12)

– 8 –
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where we used C free
312 = 6c3. Therefore, comparison with eq. (3.11) shows that γ2 ∼ O(g2)

for n > 2 while it is of order O(g) only for n = 2, for which case it is determined by the

following expression

γ2 =
g

(4π)2
+O(g2) , n = 2 . (3.13)

In order to find the leading value of γ2 in the general case n > 2 we act with the second

Laplacian in y. Using eq. (B.4) from the appendix B and keeping the leading contributions

one finds (we skip the intermediate steps)

2x2y 〈φ(x)φ(y)φ2(z)〉 LO
=

16(n−2)c2

(n−1)2

γ2−2γ1

|x− y|4|y − z|
2

n−1 |z − x|
2

n−1

, (3.14)

which we should compare with the leading order result obtained applying the SDE,(
gµ(n−1)ε

(2n−1)!

)2

〈φ2n−1(x)φ2n−1(y)φ2(z)〉 LO
=

g2

(2n−1)!2
C free

2n−1,2n−1,2

|x− y|4|y − z|
2

n−1 |z − x|
2

n−1

, (3.15)

so that by comparison we obtain

γ2 − 2γ1 =
(n−1)2

16(n−2)(2n−1)!2
C free

2n−1,2n−1,2

c2
g2 +O(g3) . (3.16)

Using the explicit expression for γ1 given in eq. (3.9) we find

γ2 = 8
(n+1)(n−1)3

(n−2)(2n)!
Γ
(

1
n−1

)2(n−1) g2

(4π)2n
+O(g3) , n > 2 . (3.17)

This quantity has not been reported in the perturbative results given in [10].

3.1.3 The general case: γk

To determine γk at first we could think to consider 〈φφφk〉, but this correlator is zero in

the free theory whenever k > 2. To investigate all k ≥ 2 we instead consider the following

three point function

〈φ(x)φk(y)φk+1(z)〉 =
C1,k,k+1

|x− y|∆1+∆k−∆k+1 |y − z|∆k+∆k+1−∆1 |z − x|∆1+∆k+1−∆k
. (3.18)

The general expression on the right hand side is valid for primary operators, that is for

k 6= 2n − 2, 2n − 1. Indeed for k = 2n − 2, 2n − 1 other terms are present. Nevertheless,

if one restrict the analysis to the lowest order, these extra terms which are subleading can

be neglected and (3.18) can be used also for these two cases, as will be discussed in the

subsection 3.3.

The leading value for the normalization is obtained from the free theory approximation

from the general expression (A.8) and reads

C free
1,k,k+1 = (k+1)! ck+1 . (3.19)

The main recursion relation can then be derived for k ≥ n−1 applying a Laplacian in x

and exploiting the relation given by the SDE. Using the relation (B.3) in appendix B one

– 9 –
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can compute the action of a Laplacian in x on the correlator (3.18) for which, following

the same reasoning of the previous subsections, we find the following LO expression

2x 〈φ(x)φk(y)φk+1(z)〉 LO
=

4γ1

n−1

C1,k,k+1

|y − z|
2k
n−1 |z − x|

2n
n−1

+
2

n−1
(γk+1−γk−γ1)

C1,k,k+1

|x− y|2|y − z|
2k
n−1

−2|z − x|
2n
n−1

. (3.20)

On the other hand using the SDE one gets

〈2xφ(x)φk(y)φk+1(z)〉 =
gµ(n−1)ε

(2n−1)!
〈φ2n−1(x)φk(y)φk+1(z)〉

LO
=

g

(2n−1)!

C free
2n−1,k,k+1

|x− y|2|y − z|
2k
n−1

−2|z − x|
2n
n−1

, (3.21)

where

C free
2n−1,k,k+1 =

k!(k+1)!(2n−1)!

(k−n+1)!(n−1)!n!
ck+n , k ≥ n−1 . (3.22)

Vice versa when k ≤ n−2 the free correlator is zero and the the full correlator in eq. (3.21)

is at least of order O(g2). The expression obtained from the SDE in eq. (3.21) has a leading

term O(g), and recalling from eq. (3.9) that γ1 = O(g2), one is forced to conclude that

the first term in eq. (3.20) is negligible and that γk+1 − γk = O(g). Then by comparing

eqs. (3.20) and (3.21) one finds the recurrence relation

γk+1 − γk =
2

(n−2)!n!

k!

(k−n+1)!
Γ
(

1
n−1

)(n−1) g

(4π)n
+O(g2) , k ≥ n−1 . (3.23)

The recurrence relation for the anomalous dimensions associated to a difference of order

O(g) ceases to exists for k ≤ n−2 and is substituted by some relation involving O(g2)

corrections. Therefore we expect γk = O(g2) for k ≤ n−1. With this condition one can

solve the recurrence relation to obtain

γk =
2(n−1)

n!2
k!

(k−n)!
Γ
(

1
n−1

)n−1 g

(4π)n
+O(g2) , k ≥ n , (3.24)

which is in perfect agreement with the perturbative result [10]. Note that in the case n = 2

we correctly reproduce eq. (3.13).

The above relation says that for k ≥ n− 1 the leading contribution to the anomalous

dimensions is of O(ε). It is evident from our derivation of eq. (3.24), which is simply based

on CFT invariance and the SDE, that this equation is valid for any k. In fact at this

order, i.e. O(ε), one can also see from the point of view of perturbative renormalization

group that the anomalous dimensions (3.24) are not affected by the mixing with derivative

operators [22]. The contribution from mixing with derivative operators may start only at

next to leading order O(ε2), and for k ≥ 2n.
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3.2 Structure constants

Besides the scaling dimensions, a CFT is also characterized by the structure constants of

the three point correlators, which are related to the OPE coefficients. We explore here the

possibility to extract in the most generality some of them at leading order for the whole

family of even universality classes.

In order to get some information from the three point functions using the Schwinger-

Dyson equations we need to have one of the fields to appear with power one. The 〈φφkφk+1〉
are already explored and give information on the scaling dimensions ∆i. In the following

we therefore concentrate on the rest of these correlation functions.

3.2.1 Structure constants C1,2k,2l−1

The remaining correlation functions consist of 〈φφkφl〉, |k − l| 6= 1. These vanish in the

free theory, so they can give information on the structure constants C1kl and imply that

these are at least proportional to the coupling or smaller. Now if 〈φ2n−1φkφl〉 also vanishes

in the free theory it implies that C1kl are at least of order O(g2) and to find their value at

leading order we need to know 〈φ2n−1φkφl〉 beyond free theory. Therefore we will not be

able to extract the leading order information on C1kl this way, but for the case discussed

in the next subsection.

For 〈φ2n−1 φkφl〉 not to vanish in the free theory we must have the following conditions.

Since 2n− 1 is odd, either k or l must be even while the other must be odd, so we restrict

ourselves to 〈φ2n−1 φ2k φ2l−1〉, with k, l ≥ 1, n > 1. As previously discussed, the condition

for this to be nonzero is
k + l − n ≥ 0

l + n− k ≥ 1

k + n− l ≥ 0 .

(3.25)

These are equivalent to k+l ≥ n, −n ≤ k−l ≤ n−1. Furthermore we must have l 6= k, k+1

otherwise we will be back to the case 〈φφkφk+1〉 which is already studied. In summary,

for k, l satisfying the conditions

k + l ≥ n, 1−n≤ l − k ≤ n, l − k 6= 0 or 1 , (3.26)

we can find the leading order (O(g)) structure constants C1,2k,2l−1. One can use the SDE

to write

〈�xφ(x)φ2k(y) φ2l−1(z)〉 =
g

(2n−1)!
〈φ2n−1(x)φ2k(y) φ2l−1(z)〉 (3.27)

LO
=

g

(2n−1)!

C free
2n−1,2k,2l−1

|x− y|∆2n−1+∆2k−∆2l−1 |x− z|∆2n−1+∆2l−1−∆2k |y − z|∆2k+∆2l−1−∆2n−1
,

which has been evaluated in the second line at leading order. On the other hand, applying

the �x to the correlation function 〈φ(x)φ2k(y) φ2l−1(z)〉 one finds

�x〈φ(x)φ2k(y) φ2l−1(z)〉

= C1,2k,2l−1�x
1

|x− y|∆1+∆2k−∆2l−1 |x− z|∆1+∆2l−1−∆2k |y − z|∆2k+∆2l−1−∆1

LO
= C1,2k,2l−1

(k − l)(k − l + 1)(d2n−2)2

|x− y|∆1+∆2k−∆2l−1+2|x− z|∆1+∆2l−1−∆2k+2|y − z|∆2k+∆2l−1−∆1−2
, (3.28)
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where the operator dimensions in the third line are understood as their leading order values.

One readily sees, using the relation ∆2n−1 = ∆1 + 2, that the denominators in the above

two expressions are equal. Comparing the coefficients we find

C1,2k,2l−1
LO
=

g

(2n− 1)!

(n− 1)2C free
2n−1,2k,2l−1

4(k − l)(k − l + 1)
, (3.29)

where

C free
2n−1,2k,2l−1 =

(2n− 1)!(2l − 1)!(2k)!

(n+l−k−1)!(k+n−l)!(k+l−n)!
cn+k+l−1 (3.30)

and c is the normalization of the free propagator given in eq. (A.2).

3.2.2 Structure constants C1,1,2k

The previous relation (3.29) for l = 1 gives two possible coefficients C1,1,2k ∼ O(g) for

k = n−1, n. We shall show in the following that one can find the leading behaviour of the

other coefficients of the form C1,1,2k with k in the range 2 ≤ k ≤ 2n − 1, which turn out

to be of order O(g2). These can be extracted from the analysis of the family of correlators

considered in the previous subsection

〈φ(x)φ(y)φ2k(z)〉 =
C1,1,2k

|x− y|2∆1−∆2k |y − z|∆2k |x− z|∆2k
, (3.31)

where k > 1. Clearly the coefficients C1,1,2k for k > 1 vanish in the free theory. We proceed

as before by acting on the above correlation function with two Laplacian operators in x

and y and exploiting the SDE. Using the eq. (B.4) of the appendix we find at leading order

2x2y 〈φ(x)φ(y)φ2k(z)〉 LO
=

16k(k−1)(k−n)(k−n+1)

(n−1)4

×
C1,1,2k

|x−y|2(1−k)δ2n+4|y−z|2kδ2n |x−z|2kδ2n
. (3.32)

One can notice from this expression that the r.h.s. vanishes for k = 1, n−1, n. This means

that for these values of k the leading order expression will involve the anomalous dimensions

and the present analysis will give relations involving these quantities. Restricting to the

case k 6= 1, n−1, n, we compare the above equation with the one obtained from applying

the SDE

〈2xφ(x)2yφ(y)φ2k(z)〉 =
g2µ2(n−1)ε

(2n−1)!2
〈φ2n−1(x)φ2n−1(y)φ2k(z)〉

LO
=

g2

(2n−1)!2
C free

2n−1,2n−1,2k

|x− y|2(1−k)δ2n+4|y − z|2kδ2n |x− z|2kδ2n
, (3.33)

so that we obtain

C1,1,2k
LO
=

g2

(2n− 1)!2
(n−1)4C free

2n−1,2n−1,2k

16k(k−1)(k−n)(k−n+1)
. (3.34)
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The structure constant on the r.h.s. evaluated in the free theory is nonzero for k ≤ 2n−1

C free
2n−1,2n−1,2k =

(2k)!(2n−1)!2

k!2(2n−k−1)!
c2n+k−1 . (3.35)

This gives

C1,1,2k
LO
=

(2k)!(n−1)4 c2n+k−1

16k(k−1)(k−n)(k−n+1)k!2(2n−k−1)!
g2 . (3.36)

For higher values of k one needs to know the correlation function 〈φ2n−1φ2n−1φ2k〉 beyond

free theory, therefore it is not possible to extract the leading order C1,1,2k in this way. The

range of validity for this formula is therefore 2 ≤ k ≤ 2n−1 and k 6= n−1, n. As mentioned

before, 1, n−1, n were excluded from the possible values k can take in this subsection, and

will give information on the anomalous dimensions. The case k = 1 has already been

analysed in previous subsections and gives γ2. The other two cases k = n− 1, n provide a

different way to compute γ2(n−1), γ2n, which can be shown to be consistent with the results

of the previous subsections.

3.3 Critical coupling g(ε)

In this subsection we look for the interacting fixed point value of the coupling g at leading

order in ε. This can be found using the relation γ2n−1 = γ1 + (n−1)ε, only if we knew

the anomalous dimension γ2n−1. The general formula for the anomalous dimension γk was

derived at the beginning of this section. However, the values k = 2n − 2, 2n − 1, were

excluded there because the correlation function 〈φφkφ2n〉 in these cases would involve a

descendent operator, and this questions the use of formula (3.18) which is valid only for

primary operators. However, as we will now show by extending the argument used in [15],

at leading order this relation will continue to hold. Let us consider k = 2n−1. In this case

one notices that

〈φ(x)φ(y)2n−1φ2n(z)〉 =
(2n−1)!

gµ(n−1)ε
2y 〈φ(x)φ(y)φ2n(z)〉 (3.37)

=
(2n−1)!

gµ(n−1)ε
2y

C1,1,2n

|x− y|2∆1−∆2n |y − z|∆2n |x− z|∆2n

=
(2n−1)!

gµ(n−1)ε
C1,1,2n

{
− ∆2n(2∆1−∆2n)

|x− y|2∆1−∆2n+2|y − z|∆2n+2|x− z|∆2n−2

+
(2∆1+2−d)∆2n

|x− y|2∆1−∆2n |y − z|∆2n+2|x− z|∆2n
+

(2∆1+2−d)(2∆1−∆2n)

|x− y|2∆1−∆2n+2|y − z|∆2n |x− z|∆2n

}
LO
=

(2n−1)!

g
C1,1,2n 4

n

n− 1

1

|x− y|∆2n−1+∆1−∆2n |y − z|∆2n−1+∆2n−∆1 |x− z|∆1+∆2n−∆2n−1
,

since 2∆1+2−d = 2γ1 = O(g2), and ∆2n−1−∆1 = 2. Finally, we insert the leading value

of C1,1,2n = O(g) obtained from eq. (3.29) with l = 1 and k = n

C1,1,2n
LO
=

g

(2n−1)!

C free
1,2n−1,2n

n(n− 1)(d2n−2)2
. (3.38)
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Recalling that d2n−2 = 2/(n−1) we obtain the desired relation, which nevertheless involves

a non primary operator,

〈φ(x)φ(y)2n−1φ2n(z)〉 LO
=

C free
1,2n−1,2n

|x− y|∆2n−1+∆1−∆2n |y − z|∆2n−1+∆2n−∆1 |x− z|∆1+∆2n−∆2n−1
.

(3.39)

The same argument can be applied to the other case k = 2n− 2, i.e. 〈φφ2n−2φ2n−1〉. We

can therefore invoke the relation in eq. (2.6), γ2n−1 = γ1 +(n−1)ε, implied by the constraint

on the the scaling dimension of the descendant operator φ2n−1 from the equation of motion,

and write

(n−1)ε+O(g2) = γ2n−1 =
2(n−1)

n!2
(2n− 1)!

(n−1)!
Γ

(
1

n− 1

)n−1 g

(4π)n
+O(g2) , (3.40)

which gives the linear relation

g = 4 c1−n n!3

(2n)!
ε+O(ε2) =

n!3

(2n)!
(4π)nΓ

(
1

n−1

)1−n
ε+O(ε2) . (3.41)

It might be interesting to note that using the fixed point value one has access to some

features of the theory out of criticality, such as the beta functions. In fact this result is

giving the beta function of the dimensionless g for all the multi-critical minimal models at

leading order in the ε-expansion. Taking into account that the leading g at the fixed point

is linear in ε, it is possible to uniquely determine

βg = −(n− 1)ε g + (n−1)
(2n)!

n!3
Γ

(
1

n− 1

)n−1 g2

(4π)n
+O(g3) . (3.42)

which shows that the non trivial fixed point of the CFT is IR attractive (g > 0).

3.4 Collecting the results: even potentials

We summarize the results in this subsection and give the leading ε-dependence of the

anomalous dimensions and structure constants found for theories with even potential.

Anomalous dimensions. The anomalous dimensions γk for 1 ≤ k ≤ n− 1 are found to

be of O(g2) but only the first two, γ1 and γ2, are determined at leading order. The rest

are of O(g) and their leading values, together with γ1 and γ2 are summarized here

γ1 = 2(n−1)2 n!6

(2n)!3
ε2 +O(ε3) , (3.43)

γ2 = 8
(n−1)3(n+1)

n−2

n!6

(2n)!3
ε2 +O(ε3) , n > 2 (3.44)

γk = 2(n−1)
n!

(2n)!

k!

(k−n)!
ε+O(ε2) , k ≥ n . (3.45)

We notice that the expressions (3.43) and (3.45), for γ1 and γk, are in agreement with the

results obtained in [10] with a perturbative computation.
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One may write a generating function for the anomalous dimensions of all these multi-

critical theories obtained by ε-expansion around their critical dimensions. Such a generator

at O(ε), which gives γk for any k ≥ n in eq. (3.45), can be written as

F (even)
γ (x, y; ε) = ex (

√
xy sinh

√
xy − 2 cosh

√
xy) ε+O(ε2) , (3.46)

so that one has

γk(n; ε) =
∂n

∂yn
∂k

∂xk

∣∣∣∣
x,y=0

F (even)
γ . (3.47)

Structure constants. It is useful to write the structure constants as a function of ε.

Since they are defined modulo the normalization of the operator basis we choose to present

them in a scheme where the coefficient of the free propagator (at the critical dimension)

is normalized to unity and therefore the composite operators are rescaled according to

φk → φk/
√
ck, where c was defined in eq. (A.2).

We find

C1,2k,2l−1 =
n!3

(2n)!

(n−1)2

(k − l)(k − l + 1)

(2k)!(2l−1)!

(n+l−k−1)!(k+n−l)!(k+l−n)!
ε+O(ε2) , (3.48)

within the limits of eq. (3.26), namely k + l ≥ n, 1−n≤ (l − k) ≤ n, l − k 6= 0, 1, and

C1,1,2k =
(n−1)4

k(k−1)(k−n)(k−n+1)

n!6

(2n)!2
(2k)!

k!2(2n−k−1)!
ε2 +O(ε3) , (3.49)

for k 6= n−1, n and 2 ≤ k ≤ 2n − 1. In this scheme all the π factors are absent. We

note, however, that for comparison with results obtained from perturbation theory other

normalizations may prove more convenient.

Let us consider as few explicit examples the cases n = 2, 3, 4 which correspond respec-

tively to the Ising, Tricritical and Tetracritical universality classes, and from the

set of leading order structure constants that we have found we report all the ones of O(ε2)

and only a few of the infinite sequence of order O(ε). For the Ising universality class:

C114 =
2ε

3
, C125 =

10ε

3
, C136 = 20ε , C116 =

5ε2

27
. (3.50)

For the Tricritical universality class:

C114 =
3ε

5
, C116 =

6ε

5
, C125 = 6ε , C136 = 54ε ,

C118 =
21ε2

5
, C1,1,10 =

378ε2

125
. (3.51)

And finally for the Tetracritical universality class:

C116 =
18ε

35
, C118 =

72ε

35
, C136 =

972ε

35
, C127 =

36ε

5
, C125 =

54ε

35
,

C114 =
729ε2

6125
, C1,1,10 =

26244ε2

875
, C1,1,12 =

42768ε2

875
, C1,1,14 =

555984ε2

8575
. (3.52)
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4 φ2n+1-theory in d = d2n+1 − ε dimensions

This section is complementary to section 3 in that it is dedicated to the investigation of the

odd potentials φ2n+1 for n a natural number n ≥ 1 which arise as particular cases of (2.1)

by setting m = 2n + 1 for m an odd number. The odd potentials are not invariant under

parity, but are instead protected by a generalization of parity, which has been related to

PT -symmetry [23–25]. On a general action S[φ] as in (1.1) PT -symmetry acts as

PT : S[φ]→ S[−φ]? , (4.1)

where the star indicates complex conjugation. Invariance under this symmetry implies the

Z2 parity of the previous section as a special case for all even potentials, but extends the

possible symmetry to incorporate odd potentials, provided that the latter have a purely

imaginary critical coupling g. It has been argued that PT -symmetry is a valid symmetry,

in the sense that it suffices to ensure the stability of the corresponding theory [23–25] and

to have a spectrum bounded from below. On the more pragmatic side, it has been argued

that these models interpolate with a well known sequence of minimal non-unitary multi-

critical models which begins with the Lee-Yang universality class [14]. Starting from the

case n = 1 that corresponds to the Lee-Yang class, the upper critical dimensions are

d2n+1 = 2 +
4

2n− 1
= 6 ,

10

3
,

14

5
,

18

7
,

22

9
, . . . , 2 ; (4.2)

which similarly to d2n tend to two in the limit n→∞. In a Ginzburg-Landau description

these models mark a stark contrast with the even ones: in fact if the even models can be

tuned to criticality by changing their mass, the odd models must be tuned to criticality

by pushing the magnetic field to a critical purely imaginary value [13, 26]. As a matter of

fact these models seem to be non-unitary for all d ≥ 2.

The well-known upper critical dimension of the Lee-Yang universality class is six.

All other unversality classes have purely rational upper critical dimensions, starting from

n = 2, which corresponds to the quintic model φ5 and which has been named Blume-Capel

universality class in [12], where it has been argued to correspond to a tricritical phase for

a Blume-Capel spin system [27–29]. We want to draw the reader’s attention to this latter

universality class because its upper critical dimension is bigger than three; therefore the

model provides a less known, but potentially interesting, non-trivial universality class in

three dimensions, and potentially it represents a unique example of a theory that is realized

for ε < 1 in a physically interesting scenario. The models with odd potentials are much

less studied than the ones of section 3, thus there will be less room for comparison, but we

plan to complete their perturbative analysis in a future work [30]. On the other hand, the

Lee-Yang class is very well known [6–9, 31] and we will be able to confirm several CFT

quantities in the process.

As for the content of this section, it will mostly follow the development of section 3,

but there will be some important differences. In the first part we will obtain the explicit

leading expressions for the anomalous dimensions γ1 and γ2 and that γk = O(g2). In the

second part we will concentrate on the computation of the structure constants, including
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C1,1,1. In the third part we will show that the possibility to fix the coupling to its critical

value as a function of ε only occurs for the Lee-Yang universality class. All the results will

be summarized in the final part of this section.

4.1 Anomalous dimensions

One can follow exactly the same path of section 3 and find the leading relation between

γ1 and the coupling g by acting with two Laplacians on the propagator and using the

SDE, which now gives the operatorial relation φ2n ∼ 2φ so that φ2n is a descendant of φ.

Taking into account that the results of section 3 must be shifted as n → n + 1
2 , so that

ϕ2n → ϕ2n+1, we find

γ1 = c2n−1
odd

(2n−1)2

(2n+1)!

g2

32
+O(g3) =

(2n−1)2

2(2n+1)!

Γ
(

2
2n−1

)2n−1

(4π)2n+1
g2 +O(g3) , (4.3)

which for n = 1 gives the known relation for the Lee-Yang universality class [31]. Here

codd is obtained from (A.2) after the shift n→ n+ 1
2 ,

codd =
1

4π

Γ
(

2
2n−1

)
π

2
2n−1

. (4.4)

Also the derivation of γ2 is straightforward when n > 1, since it is based on the form of the

correlator 〈φφφ2〉 when all the operators are primary. Therefore from expression (3.17)

we can directly infer

γ2 = c2n−1
odd

(2n+ 3)(2n− 1)3

(2n− 3)(2n+ 1)!

g2

16
+O(g3) =

(2n+ 3)(2n− 1)3

(2n− 3)(2n+ 1)!

Γ
(

2
2n−1

)2n−1

(4π)2n+1
g2 +O(g3) ,

(4.5)

which is valid for n > 1. Thus Lee-Yang is excluded, but in this case the relation for the

first scalar descendant of φ, equation (2.6) with m = 2n+ 1

γ2n = γ1 +
2n−1

2
ε , (4.6)

comes to rescue and allows the determination of γ2 also when n = 1.

Unfortunately we are not able to find a closed expression for the other anomalous

dimensions. From the study of the correlator of primary operators

〈φ(x)φk(y)φk+1(z)〉 =
C1,k,k+1

|x− y|∆1+∆k−∆k+1 |y − z|∆k+∆k+1−∆1 |z − x|∆1+∆k+1−∆k
, (4.7)

we are now only able to prove that γk = O(g2). Using the SDE one can relate (4.7) to the

one which involves the descendant operator ϕ2n

〈φ2n(x)φk(y)φk+1(z)〉 =
(2n)!

g
〈2xφ(x)φk(y)φk+1(z)〉 . (4.8)
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Acting on (4.7) with a Laplacian in x and keeping only leading order terms gives

〈2xφ(x)φk(y)φk+1(z)〉 LO
= 2C free

1,k,k+1

{
γ1 (γ1+γk−γk+1)

|y − z|
4k

2n−1 |x− z|
4

2n−1

+
4

2n−1

γ1

|y − z|
4k

2n−1 |z − x|
4

2n−1
+2

+
2

2n−1

γ1+γk−γk+1

|x− y|2|y − z|
4k

2n−1
+2|z − x|

4
2n−1

+2

}
,

(4.9)

where C free
1,k,k+1 = (k+1)!ck+1

odd . Since the correlator 〈φ2nφkφk+1〉 is zero in the free theory we

can safely assume that it is at least O(g) or smaller. The bracket terms on the r.h.s. of (4.9)

are thus O(g2). Recalling from (4.3) that γ1 = O(g2) and considering that perturbative

corrections are expressed in terms of integer powers of g we conclude that γk+1 − γk is at

least of order O(g2) and thus

γk = O(g2) , k ≥ 1 . (4.10)

4.2 Structure constants

We will now move on to the analysis of the structure constants. As in the case of even

potentials, one can consider the correlation functions 〈φφkφl〉 and 〈φφφ2k〉 with the action

of one and two Laplacians respectively. Besides these, in the case of odd potentials the

correlation function 〈φφφ〉 with the action of a triple Laplacian also gives some leading

order information on the structure constants. Below, we consider each case in turn.

4.2.1 Structure constants C1,k,l

In subsection 3.2.1, for Z2 symmetric theories, we extracted the possible information on

C1,k,l, |k − l| 6= 1 from analysing the related correlation functions. The analysis in the

present case for odd potentials goes along the same lines, except that the condition on k, l

for the correlator 〈φ2nφkφl〉 to acquire a contribution in the free theory is different. Here

k, l have to be either both even or both odd. Furthermore they must satisfy

k + l − 2n ≥ 0

l + 2n− k ≥ 0

k + 2n− l ≥ 0 .

(4.11)

This is equivalent to k+l ≥ 2n and |l−k| ≤ 2n. In this case the correlator 〈φ2nφkφl〉 in the

free theory is

〈φ2n(x)φk(y)φl(z)〉 LO
=

C free
2n,k,l

|x− y|(2n+k−l)δ2n+1 |y − z|(k+l−2n)δ2n+1 |x− z|(2n+l−k)δ2n+1
, (4.12)

where

C free
2n,k,l =

(2n)!k!l! c
n+ k+l

2
odd

2n+k−l
2 !2n+l−k

2 !k+l−2n
2 !

. (4.13)
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Let us therefore consider for k, l 6= 2n

〈φ(x)φk(y)φl(z)〉 =
C1,k,l

|x− y|∆1+∆k−∆l |y − z|∆k+∆l−∆1 |x− z|∆1+∆l−∆k
. (4.14)

Using the SDE, one can relate this correlator of primary operators, whose form is con-

strained in a simple way by the conformal symmetry, to another one which involves a

descendant operator and is therefore less simple but can be defined through the relation

〈φ2n(x)φk(y)φl(z)〉 =
(2n)!

g
〈2xφ(x)φk(y)φl(z)〉 . (4.15)

This tells that the correlator involving the descendant operator φ2n gets three contributions

with different space-time dependence and three corresponding “structure constants” which

depends on the C1,k,l, the scaling dimensions ∆2n = ∆1 + 2, ∆k, ∆l and the dimension d.

In the following we shall restrict to few considerations based on this relation. Acting

with a Laplacian in x and approximating the exponents in the powers at leading order,

one finds

2x 〈φ(x)φk(y)φl(z)〉 = C1,k,l γ1
(d−2)(1+k−l) + 2(γ1+γk−γl)

|x− y|2
2n+k−l
2n−1 |y − z|2

l+k−1
2n−1 |x− z|2

l−k+1
2n−1

+ C1,k,l γ1
(d−2)(1+l−k) + 2(γ1+γl−γk)

|x− y|2
k−l+1
2n−1 |y − z|2

l+k−1
2n−1 |x− z|2

2n+l−k
2n−1

+
1

4
C1,k,l

[(d−2)(k+l−1) + 2(γk+γl−γ1)] [(d−2)(1+k−l) + 2(γ1+γk−γl)]

|x− y|2
2n+k−l
2n−1 |y − z|−2 2n−k−l

2n−1 |x− z|2
2n−k+l
2n−1

+ . . . (4.16)

One can easily see that the leading contribution comes from the last term, which has indeed

the same coordinate dependence of the expression in eq. (4.12), so that

C1,k,l
LO
=

k! l! c
n+ k+l

2
odd

2n+k−l
2 !2n+l−k

2 !k+l−2n
2 !

(2n−1)2

(k−l)2−1

g

4
. (4.17)

In particular this is valid for the special case k = l ≥ n and gives

C1,k,k
LO
= −k!2(2n−1)2

(k−n)!n!2
ck+n

odd

g

4
, k ≥ n . (4.18)

4.2.2 Structure constants C1,1,2k

Let us finally consider the correlator 〈φφφ2k〉. Again, the analysis in this case follows

closely that for the even potentials. Applying box twice to the correlator gives at lead-

ing order

2x2y 〈φ(x)φ(y)φ2k(z)〉 LO
=

26k(k−1)(4(k−n)2 − 1)

(2n−1)4

×
C1,1,2k

|x−y|(2n−k)δ2n+1 |y−z|kδ2n+1 |x−z|kδ2n+1
, (4.19)
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which has to be compared, as before, with the leading order expression of the correlation

function obtained using the SDE twice

g2

(2n)!2
〈φ2n(x)φ2n(y)φ2k(z)〉 LO

=
g2

(2n)!2
C free

2n,2n,2k

|x− y|(2n−k)δ2n+1 |y − z|kδ2n+1 |x− z|kδ2n+1
. (4.20)

This gives the structure constants

C1,1,2k
LO
= C free

2n,2n,2k

(2n−1)4

26k(k−1)(4(k−n)2 − 1)(2n)!2
g2

=
(2n−1)4

26k(k−1)(4(k−n)2 − 1)

(2k)!

k!2(2n− k)!
c2n+k

odd g2 , 2 ≤ k ≤ 2n . (4.21)

Of course the case k = 1 is excluded from this analysis, and the coefficient C free
2n,2n,2k is

nonzero if k ≤ 2n, therefore the range of validity of this equation is 2 ≤ k ≤ 2n. For k = n

the correlation function under study 〈φφφ2k〉 involves a descendent operator and therefore

does not have the simple scaling property that we have used above to define C1,1,2k. Instead

this includes several terms as can be seen by writing

〈φ(x)φ(y)φ2n(z)〉 =
(2n)!

g
2z 〈φ(x)φ(y)φ(z)〉 =

(2n)!

g
2z

C111

|x− y|∆1 |y − z|∆1 |z − x|∆1
.

(4.22)

Using eq. (B.3) of appendix B, the leading term in this expression can be shown to be

− (2n)!

g

∆2
1C111

|x− y|∆1−2|y − z|∆1+2|z − x|∆1+2
. (4.23)

It turns out that the coefficient of this leading term which we can now call C1,1,2n satisfies

eq. (4.21) for k = n. This can be seen explicitly by inserting into the above expression the

structure constant C111 which we compute in the next subsection.

4.2.3 The special case of C111 for n > 1

Let us now consider the action of a triple Laplacian on 〈φφφ〉 for n > 1, which lies outside

the region of validity of the relation (4.17). Following the usual argument, by applying the

box operator three times one finds the following leading contribution

2x2y2z 〈φ(x)φ(y)φ(z)〉 LO
=

28n(n−1)

(2n−1)6

C111

|x− y|δ2n+1+2|y − z|δ2n+1+2|x− z|δ2n+1+2
, (4.24)

which we can compare with the leading order expression of the same correlator in which

the SDE has been used three times

g3

(2n)!3
〈φ2n(x)φ2n(y)φ2n(z)〉 LO

=
g3

(2n)!3
C free

2n,2n,2n

|x− y|2nδ2n+1 |y − z|2nδ2n+1 |x− z|2nδ2n+1
. (4.25)

Comparing the two, we obtain the following expression of order O(g3) for the structure

constant

C111
LO
=

C free
2n,2n,2n

(2n)!3
(2n−1)6

28n(n−1)
g3 =

c3n
odd(2n−1)6

28n(n−1)n!3
g3 , n > 1 . (4.26)
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4.3 Critical coupling g(ε) for n = 1

If one tries to repeat the argument of the previous subsection for the case n = 1, which cor-

responds to the Lee-Yang universality class, the r.h.s. of (4.24) will involve the anomalous

dimension γ1. Following [15], one may evaluate at leading order

2x2y2z 〈φ(x)φ(y)φ(z)〉 LO
= 32(ε− 6γ1)

C111

|x− y|4|y − z|4|x− z|4
. (4.27)

On the other hand, in this case C111 is already known, because eq. (4.18) is still valid

for k = 1 and gives5 C111 = −c2
odd g/4 = −g/(2π)6. Therefore comparing this with the

corresponding equation found from the SDE

g3

2!3
〈φ2(x)φ2(y)φ2(z)〉 LO

=
g3

8

C222

|x− y|4|y − z|4|x− z|4
, (4.28)

we find the relation

6γ1 − ε = −g
3

8

C222

32C111
=
g2

8
codd =

g2

32π3
. (4.29)

Recalling from eq. (4.3) that γ1 = (codd/6)g2/32 = g2/(768π3) for n = 1, one has for the

Lee-Yang universality class

g2 = − 32

3 codd
ε = −2

3
(4π)3ε . (4.30)

Also here this result is giving the beta function of the dimensioneless g for the Lee-Yang

universality class at leading order in the ε-expansion. Taking into account that the leading

g at the fixed point is proportional to
√
−ε, we find that

βg = − ε
2
g − 3

4

g3

(4π)3
+O(g4) , (4.31)

which shows again that the interacting fixed point is IR attractive.

4.4 Collecting the results: odd potentials

Here we collect the various results of this section. We shall give again the structure con-

stants in the normalization obtained by rescaling the fields φ → φ c
−1/2
odd which normalizes

the propagator to unity.

4.4.1 Case n = 1, the Lee-Yang universality class

In the subsection 4.3 some relations specific to the Lee-Yang (n = 1 case) have been

derived. Inserting the result for the fixed point of eq. (4.30) back into eq. (4.3), one finds

γ1 in terms of ε, and finally using the relation (4.6), which links the anomalous scaling of

the descendant operator φ2 to the one of φ one obtains the leading ε-dependence of γ2. In

summary, for the Lee-Yang universality class we get

g2 = −2

3
(4π)3ε , γ1 = − 1

18
ε+O(ε2) , γ2 =

4

9
ε+O(ε2) . (4.32)

5This is also in agreement with the OPE coefficient found in [16].
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Moreover, the fact that γ1 + γk − γk+1 = O(g2), shown in section 4.1, implies that

γk = O(ε) . (4.33)

Moving to the structure constants, eq. (4.17) for n = 1 gives

C1,k,l =
k! l!

2+k−l
2 !2+l−k

2 !k+l−2
2 !

√
2/3

(k−l)2−1

√
−ε+O(ε) , |l − k| ≤ 2 . (4.34)

In fact one can restrict to l − k = 0, 2, because k, l must be either both even or both odd,

so |k − l| 6= 1, and the expression is symmetric in k, l, so one can take k < l to avoid

repetition. Some of these structure constants are listed as follows

C122 = −4

√
2

3

√
−ε , C111 = −

√
2

3

√
−ε , C113 =

√
2

3

√
−ε , C133 = −6

√
6
√
−ε . (4.35)

Instead eq. (4.21) for n = 1 gives only one structure constant

C114 = − ε
6
. (4.36)

4.4.2 Case n > 1

For the other models, labelled by n > 1, less information is available from the leading CFT

constraints. It is not possible to find the fixed point g(ε) so the results are expressed in

terms of the coupling g, which always appears through the combination g c
n−1/2
odd , with codd

given in eq. (4.4).

We start from the anomalous dimensions. The leading order constraints give

γ1 =
(2n−1)2

(2n+1)!

(c
n− 1

2
odd g)2

32
+O(g3) ,

γ2 =
(2n+3)(2n−1)3

(2n−3)(2n+1)!

(c
n− 1

2
odd g)2

16
+O(g3) , (4.37)

from which we can deduce a well determined leading order result for their ratio

γ2

γ1
= 2

(2n+3)(2n−1)

(2n−3)
+O(g) . (4.38)

While for k > 2, all one can get is

γk = O(g2) , k > 2 . (4.39)

Furthermore, from the relation between the scaling dimension of φ and φ2n one finds

γ2n = γ1 +
2n−1

2
ε . (4.40)

We note that because of the PT -symmetry we expect that these models have imaginary

fixed point coupling g(ε) and therefore we expect both negative γ1 and γ2 (which is instead

positive for the n = 1 case), at least in the vicinity of the critical dimensions.
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For the structure constants we have, at the leading order approximation:

C1kl =
k!l!

2n+k−l
2 !2n+l−k

2 !k+l−2n
2 !

(2n−1)2

(k−l)2−1

c
n− 1

2
odd g

4
+O(g2) , k+l ≥ 2n and |l−k| ≤ 2n ,

(4.41)

C1,1,2k =
(2n−1)4

26k(k−1)(4(k−n)2 − 1)

(2k)!

k!2(2n− k)!
(c
n− 1

2
odd g)2 +O(g3) , 2 ≤ k ≤ 2n , (4.42)

C111 =
(2n−1)6

28n(n−1)n!3
(c
n− 1

2
odd g)3 +O(g4) . (4.43)

5 Conclusions

We investigated the infinite family of self-interacting scalar theories characterized by a φm

potential using the recent idea proposed by Rychkov and Tan of requiring the compatibil-

ity between conformal invariance and the Schwinger-Dyson equations [1]. The technique,

which was developed further in [15, 18], allows to express some CFT data as a pertur-

bative expansion in the critical coupling and, for several multi-critical models, also as an

ε-expansion, where ε is the usual displacement of the dimensionality from its upper critical

value d = dm− ε. What renders our analysis unique is that for most values of m, the upper

critical dimension is a purely rational number, making our results more interesting and

potentially unexpected. Our computations agree with the results obtained by O’Dwyer

and Osborn through perturbation theory and the renormalization group for m even [10],

as well as with those obtained in the special cases of Ising (m = 4), Tricritical (m = 6)

and Lee-Yang (m = 3) for which the upper critical dimension is an integer [1, 15, 18, 32].

The sequence of models for m even enjoys Z2 parity and encodes the scale invariant

points for the Ginzburg-Landau description of multi-critical phase-transitions in which a

number m/2 of distinct ground states becomes degenerate. These are known to interpolate

with the unitary minimal models of CFT in d = 2. The sequence of models for m odd

enjoys a generalization of parity and is conjectured to interpolate with some non-unitary

minimal models in d = 2 [12, 13]. While there is no formal proof that scale-invariance

implies conformal invariance, we take our results as a pragmatic evidence that conformal

invariance could be realized at criticality for the entire sequence of scalar theories that we

investigated. In a future publication we will confirm several results of this paper with an

independent computation based on perturbation theory [22].

The extent of our results differs between even and odd models, and the strength of the

method seems to favour the even potentials. We dedicated section 3 to the even potentials

φ2n, for which we could obtain the anomalous dimensions γ1 and γ2 and γk≥n, two entire

families of structure constant C1,2k,2l−1 and C1,1,2k, as well as a relation between ε and the

critical coupling g(ε). In section 4 we studied the odd potentials φ2n+1, for which we could

determine γ1 and γ2 together with the structure constants C1,k,l, C1,1,2k and C1,1,1. Only

for the cubic potential φ3, corresponding to the Lee-Yang universality class, we could find

a relation for the critical coupling g(ε). For all other odd potentials it is however possible
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to re-express all critical quantities in terms of γ1, which yields some simplification. All

results are summarized in sections 3.4 and 4.4 for even and odd potentials respectively.

Our analysis is very encouraging in that it can be considered as a first step in the

perturbative investigation of the CFT data of these unitary and non-unitary multi-critical

theories. In a more general context, the multi-critical models are expected to provide a

bridge from criticality in dimension d ≥ 2 to the well known minimal models in CFT

in two dimensions [33, 34]. While our results could be compared to the leading results of

perturbation theory, the most interesting question that remains open is on how to generalize

our use of the CFT constraints to successfully reproduce higher orders of the ε-expansion.

It is possible that the correct path is to follow the conformal bootstrap program [35, 36]:

possibly using the Mellin space representation [37, 38] and ensuring that the non-unitarity

of some theories poses no obstacle [39, 40], or perhaps exploiting the idea of large spin

perturbation theory [41, 42], which may prove useful in this direction.

A special comment must be made on unitarity of the spectrum. In fact, the ε-expansion

probes the theory for continuous values of the dimensionality, but it has been recently shown

that families of evanescent operators (sometimes associated with total derivatives) appear

in the spectrum with negative norms whenever the dimensionality is not a natural number.

Furthermore, almost all the φm potentials have a purely rational upper critical dimension.

The role that evanescent operators have on our multi-critical models is still unknown and

the presence of negative norm states should be investigated.

The possible non-unitarity of the spectrum should be distinguished from the non-

unitarity of the odd potentials, which are characterized by complex values of the coupling

constant. These odd potentials seem to be protected by a generalization of parity that has

been linked to PT -symmetry [23–25]. This manifests in the fact that for all the n > 1

models one has leading negative γ1 and γ2 anomalous dimensions (the latter is positive in

the Lee-Yang universality class). It would be interesting to investigate whether this feature

is maintained at higher order in the ε-expansion or at the non pertubative level. Among

all odd models we would like to point out that the quintic model φ5 has upper critical

dimension dc = 10
3 > 3, implying that ε = 1

3 < 1 for d = 3. We plan to investigate this

model further in the future [30].

Note added. After the completion of this work we became aware of the two works [43, 44]

devoted to the study of generalized Wilson-Fisher critical theories. One class of models

considered there coincides with the multicritical models with even potentials analysed in

our section 3. With an alternative method based on the expansion of four point correlation

functions in conformal blocks, the Authors were able to provide some of the results found

here. In particular the leading anomalous dimensions γ1 and γk for k > n. Moreover

they find (the square of) a family of leading OPE coefficients (see eq. (4.36) of [44]) which

coincides with our eq. (3.48), once the composite operators φk are rescaled by
√
k! in order

to have their two point correlation function normalized to unity. In section 3, in addition

to these overlapping material, which are however obtained by different approaches, we have

provided the leading value of γ2 for n > 2, given in our eq. (3.44), as well as the independent

family of O(ε2) structure constants C1,1,2k that we have reported in eq. (3.49).
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A Free theory

Important inputs that have been used in the calculation are the expression of two and three

point correlators for a free theory, which are usually computed using the Wick theorem

(Gaussian path integrals). We give here some general relations that are used in the text.

The propagator of the free theory at the critical dimension dm = 2(1+δm) is given by

〈φ(x)φ(y)〉 free
=

c

|x− y|2δm
, (A.1)

where

c =
1

4π

Γ(δm)

πδm
=

1

(dm−2)Sdm
. (A.2)

Here Sdm is the area of the dm-dimensional sphere. A generic two point correlator for the

operators φk is given by

〈φk(x)φl(y)〉 free
= δkl k!

ck

|x− y|2kδm
, (A.3)

where the k! counts the numbers of possible contractions. As commonly done for a CFT

one can rescale the fields to obtain two point functions normalized to one.

We finally consider a generic three point correlator of the form

〈φn1(x1)φn2(x2)φn3(x3)〉 . (A.4)

The first constraint for a non zero correlator is that (n1 +n2 +n3) mod 2 = 0, i.e. the sum

of the powers must be even. The explicit form of the tree level correlator can be written

easily. One can visualise it as a three point diagram (see figure 1) with vertices of order

n1, n2 and n3 connected by l12, l23 and l31 propagators, in cyclic order respectively. One

has three constraints relating the nk and the lij for i 6= j 6= k:

ni = lij + lki ⇐⇒ lij =
1

2
(ni + nj − nk) , i 6= j 6= k . (A.5)

The correlator is non zero when there exists a solution such that lij are non negative

integers (lij ≥ 0). Then the number of all possible configurations (contractions) is given by

the possible splittings (combinations) of ni in pairs lij and lki, for each vertex, multiplied by

the possible permutations within each group lij of contractions. This leads to the counting

Nn1,n2,n3 =
n1! n2! n3!

l12! l23! l31!
(A.6)
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. . .

. . .

. . .

n2

n1

n3

l12 l31

l23

Figure 1. Wick contraction counting of a three point correlator. The vertices are labelled by

i = 1, 2, 3, the order of the i-th vertex is ni, and there are lij lines connecting two distinct vertices

i and j.

so that, with the above normalization, the explicit form of the correlator is given by

〈φn1(x1)φn2(x2)φn3(x3)〉

free
=

C free
n1,n2,n3

|x1−x2|δm(n1+n2−n3)|x2−x3|δm(n2+n3−n1)|x3−x1|δm(n3+n1−n2)
, (A.7)

where

C free
n1,n2,n3

=
n1! n2! n3!(

n1+n2−n3
2

)
!
(
n2+n3−n1

2

)
!
(
n3+n1−n2

2

)
!
c
n1+n2+n3

2 . (A.8)

B Action of the Laplacian

We give here few useful formulae for the action of one and two Laplacians on two and

three point correlators which are used several times in the computations. Starting from

the simple relations ∂xµ |x−y|−α = −α(x−y)µ|x−y|−α−2 and

2x
1

|x−y|α
=
α(α+2−d)

|x−y|2+α
, (B.1)

one first derives

2x2y
1

|x− y|α
=
α(α+2)(α+ 2−d)(α+4−d)

|x− y|α+4
. (B.2)

We can directly apply the above relations to the coordinate dependent form of three point

correlators and find some lengthy expressions. The action of one Laplacian 2x is:

2x
1

|x− y|α1 |y − z|α2 |x− z|α3
=

α1(α1+α3+2−d)

|x− y|α1+2|y − z|α2 |x− z|α3

+
α3(α1+α3+2−d)

|x− y|α1 |y − z|α2 |x− z|α3+2
− α1α3

|x− y|α1+2|y − z|α2−2|x− z|α3+2
. (B.3)
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The action of two Laplacians 2x2y is:

2x2y
1

|x− y|α1 |y − z|α2 |z − x|α3
=
α2α3(α1+α2+2−d)(α1+α3+2−d)

|x− y|α1 |y − z|α2+2|x− z|α3+2

+
α1α2(α1+α3+2−d)(α1+α2−α3+4−d)

|x− y|α1+2|y − z|α2+2|x− z|α3
+
α1α3(α1+α2+2−d)(α1+α3−α2+4−d)

|x− y|α1+2|y − z|α2 |x− z|α3+2

− α1α2(2 + α1)(α1+α3+2−d)

|x− y|α1+4|y − z|α2+2|x− z|α3−2
− α1α3(2 + α1)(α1+α2+2−d)

|x− y|α1+4|y − z|α2−2|x− z|α3+2

+
α1(2 + α1) (2α2α3 + (α1+2−d)(α1+α2+α3 +4−d))

|x− y|α1+4|y − z|α2 |x− z|α3
. (B.4)

A similar but much longer expression can be derived applying a third Laplacian to the

three point function at z and although it is used in sections 3 and 4 we will not report

it here.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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