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Av. V. Balaguer 1, Vilanova i la Geltrú, E-08808 Spain
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1 Introduction

The action describing a free non-relativistic point particle is Galilean invariant with the

particle’s mass appearing as a central charge in the Poisson bracket algebra of the corre-

sponding Noether charges; this enlarged algebra is called the Bargmann algebra. A strictly

Galilean dynamical system that realizes the Galilei algebra without this central charge is

a “massless Galilean” system; the concept and terminology are due to Souriau [1], who

also provided a simple example, which has applications to spinoptics [2, 3]: the massless

Galilean particle of “colour” k and spin s.

It was recently shown that the Nambu-Goto string admits a strictly Galilean limit, and

the same is true for any Dirac-type p-brane for p > 0, so these provide further examples of

massless Galilean systems [4]. It has also been shown that the Green-Schwarz superstring

admits a super-Galilean limit in which the Galilei algebra is enlarged to a superalgebra [5].

Although this superalgebra does have a central charge, the Galilei subalgebra does not, so

the Galilean superstring provides an example of a “massless super-Galilean” system.

Curiously, the limiting procedure that leads to the Galilean p-brane does not apply

for p = 0. The Galilean massless particle is not the Galilean p-brane for p = 0; in other

words, it is not a Galilean limit of the massive relativistic particle. Could it be a limit

of the massless relativistic particle? In paragraph 14.54 of the English edition of his

book, Souriau affirms that it is, but he says that the limit is “of a different kind” that

“gives rise to a family of distinct non-relativistic particles, each one labeled by a color

k” [1]. Unfortunately, Souriau does not give details, and this is also true of a statement of

relevance here that he makes in the very next paragraph of his book: “as for tachyons, it

does not seem that one can obtain a non-relativistic limit for them”.

In this paper we show that the massless Galilean particle of colour k is a limit of the

relativistic tachyon of imaginary mass m = ik/c (where c is the speed of light). This

explains why the massless Galilean particle action cannot be obtained by choosing p = 0

in the Galilean p-brane action of [4]: the relativistic starting point for the former is not the
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p = 0 case of the relativistic starting point of the latter. The massless Galilean particle and

the Gailean p-brane for p > 0 are two quite different massless Galilean systems. Further

differences become apparent when one considers the extension to massless super-Galilean

systems, but we postpone this discussion to the end of the paper.

We begin with a brief review of the massless Galilean particle in a notation that is

convenient for our purposes, comparing and contrasting it with the Galilean string. We

then review the massive relativistic particle with spin incorporated via the manifestly

Lorentz invariant “Souriau 2-form”, before discusing its tachyonic version and taking the

Galilean limit to recover the massless Galilean particle. We comment on the incorporation

of spacetime supersymmetry in our concluding discussion.

2 Galilean massless particle

The phase space of the massless Galilean particle is parametrized by position 3-vector

x and time scalar t, and their conjugate momenta p and E, subject to one phase-space

constraint. The phase-space action is1

S =

∫

dτ

{

p · ẋ− Eṫ−
1

2
e
(

|p|2 − k2
)

}

− sSWZ , (2.1)

where the overdot indicates a derivative with respect to the arbitrary worldline parameter

τ , and SWZ is what we now customarily call a Wess-Zumino action; it is derived from the

phase-space 2-form (the exterior product of forms is implicit)

ΩWZ =
1

2k3
p · dp× dp . (2.2)

This 2-form is closed (dΩWZ = 0) as a consequence of the phase-space constraint imposed

by a Lagrange multiplier e:

|p|2 = k2 . (2.3)

Souriau did not write down this action as he preferred to work directly with the symplectic

2-form

Ω = dp · dx− dE dt−
s

2k3
p · dp× dp . (2.4)

Inversion of Ω on the constraint surface yields the canonical Poisson brackets

{E, t}PB = 1 ,
{

xi, pj
}

PB
= δij ,

{

xi, xj
}

PB
= −

1

k3
sεijkpk , (2.5)

where {xi, pi; i = 1, 2, 3} are the cartesian components of x and p. Notice that these

relations imply, for non-zero s, that the space coordinates become non-commuting operators

in the quantum theory.

1The constraint is that of the relativistic massless particle with p0 = k, which is the classical analog of

the restriction of solutions of the wave equation to those of frequency k, hence the “colour” terminology

for k.
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The manifest Galilean invariance of Ω shows that the action (2.1) is Galilean invari-

ant up to a surface term, despite the fact that there is no manifestly Galilean invariant

expression for SWZ. The corresponding Noether charges are

H = E , P = p , G = pt , J = x× p+
s

k
p . (2.6)

A simple way to verify the expression for J is to consider the variation of Ω induced by an

infinitesimal rotation with parameter ω (i.e. δx = ω × x etc.). One finds that

δΩ = d(dω · J) , (2.7)

where J is as given. This confirms2 that s represents spin.3 We remark that the same WZ

term, but with p replaced by an SO(1, 2) vector, was used in [6] to incorporate spin in the

action for a relativistic particle in a 3-dimensional Minkowski spacetime.

Using the Poisson bracket relations (2.5), it may be verified that the Noether

charges (2.6) span the Galilei algebra. In particular, one finds that

{Pi, Gj}PB = 0 , (2.8)

which implies that the total momentum is boost-invariant! Compare this state of affairs

with that of the standard non-relativistic point particle: its mass m appears as a central

charge in this Poisson bracket relation, implying that the total momentum is not boost

invariant, as one would expect. The absence of this central charge is the characteristic

feature of a massless Galilean system.

2.1 Comparison with the Galilean string

Let us pause to make a comparison (for zero spin) with the (closed) Galilean string [4]. In

this case all canonical variables are periodic functions of the string coordinate σ, and the

Galilean Noether charges are

H =

∮

dσE , P =

∮

dσ p , G =

∮

dσ pt , J =

∮

dσ x× p . (2.9)

The phase space constraint is found from a Galilean limit of the string mass-shell constraint

p2 + (Tx′)2 = 0, where the prime indicates a derivative with respect to σ, and this limit

yields

|p|2 = (Tt′)2 . (2.10)

If the string is wound n times around the “time direction”, thus allowing the gauge choice

t′ = n, one can show that the total momentum P satisfies the bound [5]

|P|2 ≤ n2 . (2.11)

2The variation of the Lagrangian 1-form is a total derivative for constant ω, and we read off the corre-

sponding Noether charge from the derivative of ω.
3What we are calling spin is decomposed by Souriau into a magnitude that he calls spin and a sign that

he calls “helicity”.
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This has non-trivial solutions if n 6= 0, but there is no particle analog of this possibility.

The mass-shell constraint for a particle of mass m is p2 + (mc)2 = 0 (we use the “mostly

plus” Minkowski metric signature) and the same limit yields

|p|2 = −(mc)2 , (2.12)

which has no solutions for real non-zero m (and only the trivial solution p = 0 for m = 0).

However, it does have solutions if we allow m to be imaginary, in which case the relativistic

particle is a tachyon.

We shall now pursue this idea for a relativistic progenitor of the massless Galilean

particle in the context of a classical description, again due to Souriau [1], of a relativistic

particle of mass m and spin s in a 4-dimensional Minkowski background.

3 The Souriau spinning particle

Souriau’s Lorentz covariant description of the massive spinning particle requires the intro-

duction of an independent “polarization” 4-vector (w) in addition to the particle’s position

4-vector (x) and momentum 4-vector (p). These are subject to the three constraints

p2 = −(mc)2 , p · w = 0 , w2 = (mc)2s2 . (3.1)

Now we introduce the 2-form

Ω = dpµdxµ +ΩS , (3.2)

where the second term is the spin times the “Souriau 2-form”

ΩS =
1

2p2
εµνρσwρpσ

(

1

p2
dpµdpν +

1

w2
dwµdwν

)

. (3.3)

This 2-form is closed (and hence so is Ω) as a consequence of the constraints, as follows

from the following lemma:

• Lemma. Given two 4-vectors (u, v), the 2-form

ω = εµνρσvρuσ(duµuν − dvµdvν) (3.4)

is closed if

u2 = −1 , v2 = 1 , u · v = 0 . (3.5)

To prove this lemma, we first observe that these constraints imply

u · du = 0 , v · dv = 0 , u · dv + v · du = 0 . (3.6)

We now choose a Lorentz frame for which

uµ
∣

∣ = (1; 0, 0, 0) , vµ
∣

∣ = (0; 0, 0, 1) , (3.7)

where the
∣

∣ notation indicates that this choice is made at one point; i.e. it is not as-

sumed to hold for du and dv. However, the derived constraints (3.6) in this frame are

du0 = 0 , dv3 = 0 , dv0 = du3 . (3.8)

Using both (3.7) and (3.8), a straightforward calculation yields dω = 0. By observing

that ΩS = sω for (p, w) = mc(u, sv), we conclude that dΩS = 0.
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It is important to appreciate that Ω is not a “symplectic” 2-form for the 12-dimensional

space parametrized by the components of the three 4-vectors (x, p, w). This is because it

is not invertible on this space; it is block diagonal in the basis {dx, dp, dw} but the 4 × 4

(dw, dw) block has p and w as two zero-eigenvalue eigenvectors. However, within the 4-

dimensional Minkowski subspace of fixed (x, p) the two w-dependent constraints determine

a (p-dependent) 2-sphere whose tangent vectors are orthogonal to both p and w. To see this

it suffices to choose the frame for which p = 0; then w = (0,w) with |w|2 = (mcs)2. The

pull-back of Ω to the 10-dimensional submanifold of topology R8 × S2 defined by the w-

dependent constraints is invertible. Its inversion yields a set of canonical Poisson brackets

for this phase space, with respect to which the remaining w-independent constraint is first-

class, so the physical phase-space is 8-dimensional; in fact it is topologically R6×S2, where

the first factor is the phase space for a free particle in the Euclidean 3-space and the second

factor is the spin phase space (as becomes manifest in a bi-twistor formulation [7, 8]).

Finally, to see why the parameter s is the particle’s spin, we observe that the infinites-

imal Lorentz transformations

δxµ = Λµ
νx

ν , δpµ = Λµ
νpν , δwµ = Λµ

νw
ν , (3.9)

induce the following variation of Ω:

δΩ = −d

[

1

2
dΛµνJ

µν

]

, (3.10)

where

Jµν = 2x[µpν] −
1

(mc)2
εµνρσpρwσ . (3.11)

If we use this (and Pµ = pµ) to compute the Pauli-Lubanski pseudo-vector L we find that

Lµ :=
1

2
εµνρσPνJρσ = wµ , (3.12)

and hence that

L2 = w2 = (mc)2s2 . (3.13)

3.1 The tachyonic spinning particle and its Galilean limit

Now we consider the tachyonic version of Souriau’s relativistic spinning particle model

obtained by settingmc = ik for some real number k. This yields the phase-space constraints

p2 = k2 , w2 = −(ks)2 , p · w = 0 . (3.14)

Now p is spacelike and w is timelike, but the Souriau 2-form is still closed, by an application

of the above lemma but with a reversed identification of (u, v) with multiples of (p, w).

It is again true that Ω is not invertible on the 12-dimensional space parametrized by

the components of the three 4-vectors (x, p, w) but is invertible on the 10-dimensional

submanifold determined by the w-dependent constraints. However, the surface that these

constraints define within the Minkowski subspace of fixed (x, p) is now a hyperboloid rather

than a sphere. To see this we may choose a frame for which p ∝ (0,n) for unit 3-vector n;
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then w is a timelike vector of fixed interval in the 3D Minkowski subspace orthogonal to n

and hence lies on a 2-dimensional hyperboloid.

To take the Galilean limit of the spinning tachyon, we first rescale x0, p0 and w as

follows

x0 → λx0 , p0 → p0/λ , w → w/λ , (3.15)

where λ is positive, and then we take λ → ∞. As x0 = ct and p0 = E/c (for dimensionless

Minkowski metric) this is equivalent to the c → ∞ limit but with an additional specification

of how to take this limit for the components of w. One finds that the constraints (3.14)

reduce to

|p|2 = k2 , w2
0 = (ks)2 , p0w0 = p ·w . (3.16)

Assuming, for simplicity, that both w0 and ks are positive, the second of these constraints

tells us that w0 = ks. The third constraint can be solved for the component of w parallel

to p, but this leaves two components of w undetermined. This is as expected because the

w-dependent constraints initially restricted w to a 2-dimensional hyperboloid. However,

when we perform the rescaling (3.15) in the action, and take the λ → ∞ limit, these

unrestricted variables drop out. If we use w0 = ks to eliminate w0, the Souriau 2-form

reduces to the 2-form ΩWZ of (2.2), and the net result is that we recover the action (2.1)

for the Galilean massless particle of colour k and spin s.

A peculiar feature of this limit is that the physical phase space is only 6-dimensional

in the limit whereas it was 8-dimensional initially. We suspect that this was the source of

Souriau’s reservations about the non-relativistic limit of a spinning tachyon.

4 Discussion

We have shown that the massless Galilean particle of colour k is a non-relativistic limit of

a tachyon of mass m = ik/c. Although tachyons are usually considered to be unphysical,

there are unitary irreducible tachyonic representations of the Poincaré group [9] and the

possibility that these may have some physical realization has been explored in many pa-

pers; see e.g. [10] for a recent review with references to the literature. Consequently, one

cannot conclude from its tachyonic origin that the massless Galilean particle is intrinsically

unphysical.

However, this conclusion changes when we consider the supersymmetric extension of

massless Galilean systems because there are no unitary irreducible tachyonic representa-

tions of the super-Poincaré group. The tachyonic superparticle is intrinsically non-unitary,

and we should therefore expect the same of any attempt at a supersymmetrization of the

massless Galilean particle. This argument does not apply to the Galilean superstring, for

which unitarity simply requires the same bound (2.11) on the total momentum that is

already implied by the classical phase-space constraints [5]. Inspection of the details [5]

shows that this is due to the intrinsically “stringy” topological charge in the super-Galilean

algebra of Noether charges.

As a final comment, inspired by the idea expounded in [11] of a “duality” relating the

Galilean to the Caroll limit [12], we observe that the status of a tachyon in the Galilean
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limit is analogous to that of a bradyon in the Caroll limit [12]. In the former case, the

superluminal velocity is forced to go to infinity. In the latter case the subluminal velocity

must go to zero. In both cases, the mass (real or imaginary) corresponds to a property of

the resulting system.

Note added. Another massles Galilean system, in the Souriau sense, is provided by the

particle with Lagrangian

L =
µ

2
|ẍ|2 . (4.1)

Because this Lagrangian is strictly Galilean invariant (its variation is not a total time

derivative) there is no central charge in the algebra of Galilei Noether charges [13]; this

also follows from dimensional analysis because the only parameter, µ, has dimensions of

mass × time-squared rather than mass. The corresponding phase-space Lagrangian is

L = p · ẋ+ q · ẏ −H , H = p · y +
1

2µ
|q|2 , (4.2)

where we use a rescaled version of the phase-space coordinates of [13]. By taking the

µ → ∞ limit we get the phase-space Lagrangian

LSZ = p · (ẋ− y) + q · ẏ , (4.3)

which was the basis for a dynamical alternative to dark energy proposed by Stichel and

Zakrzewski [14]. These authors also considered a relativistic analog, which they interpreted

as a tachyon. In order to elucidate the relation of this result to the results reported here,

we present a brief analysis of the Stichel-Zakrzewski Lagrangian.

The equations of motion for y and p are jointly equivalent to

y = ẋ , p = q̇ , (4.4)

so we may consistently eliminate these variables to get an equivalent Lagrangian for x and

q alone. In terms of the linear combinations

z± =

(

x∓
1

2m
q

)

, (4.5)

where m is an arbitrary non-zero constant mass parameter, this equivalent Lagrangian is

LNR =
m

2

[

|ż+|
2 − |ż−|

2
]

+
d

dt
(· · · ) . (4.6)

Each term is separately Galilean invariant, with Noether charges {P±,G±,J±} and central

charges ±m. The linear combinations

P = P+ +P− , G = G+ +G− , J = J+ + J− , (4.7)

span a Galilei algebra with zero central charge because the total central charge ism−m = 0.

So we indeed have a massless Galilean system, but at the cost of a non-unitary quantum

theory.
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The relativistic analog of LSZ considered in [14] was presented as a set of equations

to be satisfied by phase-space variables that were assumed to be functions of an arbitrary

worldline time parameter, although the constraint generating time reparametrizations was

not given. We can proceed more systematically now that we have established the equiva-

lence of LSZ to LNR; the latter is obviously the Galilean limit of the relativistic mechanics

model with Lorentz invariant Lagrangian

LRel = −mc2
[

√

1− |u+|2 −
√

1− |u−|2
]

, (u± = ż±/c) . (4.8)

Each term is separately Lorentz invariant (although not manifestly so because the trans-

formations are non-linear) and the c → ∞ limit yields LNR directly because the rest-mass

energy cancels between the two terms. We also have two sets of Lorentz generators, in

particular two conserved 4-momenta P± and the Lorentz algebra with the Galilean limit

is found by taking the sum. In particular, the total 4-momentum P = P+ + P− is the

combination relevant to the Galilean limit, and

P 2 = 2m2c2 [γ+γ− (1− u+ · u−)− 1] ≥ 0,

(

γ± =
1

√

1− |u±|2

)

. (4.9)

It follows that P is spacelike unless u+ = u−, in which case it is null. This is the tachyonic

behaviour found in [14] although we would choose to interpret the model as a two-particle

system rather than a tachyon. In any case, the relative minus sign between the two terms

of the Lagrangian LRel gives us information that is not obtainable from the equations of

motion alone, and it tells us that the quantum theory is not unitary, as was to be expected

from its Galilean limit.
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[1] J.-M. Souriau, Structure des systèmes dynamiques, Dunod (1970), republished as Structure of

Dynamical Systems: A Symplectic View of Physics, R.H. Cushman and G.M. Tuynman eds.,
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