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1 Introduction

The models of two-dimensional dilaton gravity were popular for decades [1–3]. Some of

them describe spherically-symmetric sectors of multidimensional gravities with dilaton

fields φ related to the sizes of the extra spheres.1 Some others are exactly solvable at

the semiclassical [4, 5] or quantum [3] levels which makes them valuable for studying black

holes and gravitational scattering [6–8].

These models become particularly important in the context of information para-

dox [9, 10] confronting an apparent loss of quantum coherence during black hole evaporation

1In particular, gravitational sector of the CGHS model [4] can be obtained by spherical reduction of

D-dimensional gravity at D → +∞ [3].
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Figure 1. Penrose diagrams of Minkowski vacuum in the (a) original CGHS model and (b) model

with a boundary. The dashed lines are light rays extending from J− to J+.

with the principles of quantum theory. Since unitarity of quantum gravity is strongly sup-

ported by the AdS/CFT correspondence [11, 12], modern AMPS argument [13, 14] suggests

dramatic violation of the equivalence principle (“firewalls”) in the vicinity of old black hole

horizons, see [15, 16] for earlier works. This feature, if exists, may leave “echoes” in the

gravitational wave signal [17, 18] to be detected by LIGO [19, 20], cf. [21, 22]. From the

theoretical viewpoint, further progress can be achieved by understanding unitary evolution

of black holes outside of the explicit AdS/CFT framework. This brings us to the arena of

two-dimensional models which may, in addition, clarify relation of black holes to quantum

chaos [23–28], cf. [29].

Unfortunately, solvable models of two-dimensional dilaton gravity essentially differ

from their multidimensional cousins. Consider e.g. the celebrated Callan-Giddings-Harvey-

Strominger (CGHS) model [4], see [1, 2] for reviews. Its two-dimensional Minkowski vacuum

in figure 1a, unlike the multidimensional vacua, has disconnected sets of “left” and “right”

infinities J±L and J±R , and transitions between those are expected [30] to be important

for the information loss problem. Besides, the CGHS model is strongly coupled [31] near

the “left” infinities which puts its semiclassical results on shaky ground. It was recently

suggested [32] that due to the above peculiarities evaporation of the CGHS black holes

leads to remnants rather than firewalls.

We consider the modified CGHS model proposed2 in [33, 34], see also [31, 39–42]. The

region of strong coupling in this model is cut off by the reflective dynamical boundary placed

at a fixed value φ = φ0 of the dilaton field, see figure 1b. Parameter e2φ0 � 1 plays the

role of a small coupling constant. We explicitly obtain reparametrization-invariant action

of the model by restricting CGHS action to the space-time region φ < φ0 and adding

appropriate boundary terms. Note that the original CGHS model is formally restored in

the limit φ0 → +∞ which shifts the regulating boundary in figure 1b all the way the left.

We do not consider this limit avoiding potential problems with strong coupling, cf. [43–45].

2Similar models appeared recently in the context of near AdS2 / near CFT1 holography [35–38].
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Figure 2. The simplest exact solution (s1 = s2 = 1) in the model with a boundary at different

values of parameters. Finite-range light-cone coordinates (ū, v̄) are used. The centers of the

incoming and reflected matter wave packets are marked by the dashed lines.

As an additional bonus, the above model with a boundary is causally similar to sphe-

rically-symmetric multidimensional gravity, cf. figure 1b. The price to pay, however, is

nonlinear equation of motion for the boundary which, if non-integrable, may damage major

attractive property of the CGHS model — its solvability. Note that the previous studies

of this or similar models were relying on numerical [40–42, 46] or shock-wave [33, 34, 39]

solutions.

In this paper we demonstrate that the CGHS model with a boundary is exactly solv-

able at the classical level. We obtain general solution of the classical field equations and

construct an infinite number of particular soliton solutions. The latter describe reflection

of matter waves off the boundary at low energies and formation of black holes at energies

above some critical values, see figures 2a and 2c. Each solution is characterized by N inte-

gers or half-integers s1, . . . , sN and the same number of real parameters. The parameters

of the solitons satisfy inequalities ensuring positivity of energy.

We establish one-to-one correspondence between the above solitons and the eigenstates

of the auxiliary integrable system — the rational Gaudin model [47–49]. This allows us to

classify these solutions and study their properties.

We find that equation of motion for the boundary is invariant under conformal trans-

formations v → w(v), where v is the light-cone coordinate, w(v) is an arbitrary function.

These transformations relate physically distinct solutions, and one should not confuse them,

say, with the residual reparametrization symmetry in [39, 40]. In particular, the transfor-

mations from the global SL(2,R) subgroup change massless matter field(s) f of the model

as the standard zero-weight fields. They also map the solitons into solitons. The transfor-

mations with nonzero Schwarzian derivative act non-linearly on f , and we do not consider

them in detail.

Finally, we study dynamics of the model in the critical regime, i.e. at the verge of

black hole formation, cf. figure 2b. We demonstrate that in this limit scattering of matter
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waves off the boundary displays instabilities specific to chaotic systems: the final state of

the process becomes extremely sensitive to the initial Cauchy data. This feature is in tune

with the near-horizon chaos suggested in [25]. We argue that it impedes global integrability

of the model, i.e. prevents one from choosing a complete set of smooth conserved quantities

in the entire phase space.

In section 2 we introduce dilaton gravity with a boundary and study its properties.

We construct exact solutions in section 3. Critical chaos is considered in section 4. In

section 5 we discuss possible applications of our results.

2 The model

2.1 Adding the boundary

We consider two-dimensional model with classical action

S =

∫
φ<φ0

d2x
√
−g
[
e−2φ

(
R+ 4(∇φ)2 + 4λ2

)
− (∇f)2/2

]
+

∫
φ=φ0

dτ e−2φ (2K + 4λ) , (2.1)

where3 the integrand in the first line is the CGHS Lagrangian [4] describing interaction

of the metric gµν and dilaton φ with massless scalar f ; the dimensionful parameter λ sets

the energy scale of the model. In eq. (2.1) we modified the CGHS action by restricting

integration to the submanifold φ < φ0 and adding the boundary terms4 at φ = φ0. We

introduced the proper time of the boundary τ , its extrinsic curvature K = gµν∇µnν , and

unit outer normal nµ ∝ ∇µφ.

In fact, the choice of the boundary action in eq. (2.1) is limited. First, the Gibbons-

Hawking term with extrinsic curvature ensures consistency of the gravitational action.

Without this term the boundary conditions following from eq. (2.1) would be incompatible

with the Dirichlet condition φ = φ0, see [51] and cf. appendix A.1. Second, we assume

no direct interaction of the matter field f with the boundary. Then the only natural

generalization of our model would include an arbitrary constant in the last term of eq. (2.1).

However, this parameter needs to be fine-tuned in order to retain Minkowski solution (see

below). Thus, the action (2.1) describing interaction of the boundary with the gravitational

sector of the CGHS model is fixed [33].

The quantity e2φ0 is a coupling constant controlling loop expansion in the model (2.1).

Indeed, change of variables φ̃ = φ − φ0, f̃ = eφ0f brings this parameter in front of the

classical action, S = S̃/e2φ0 . Thus, e2φ0 plays the role of a Planck constant implying that

the model is classical at e2φ0 � 1.

It is clear that the bulk equations in the model (2.1) are the same as in the original

CGHS model [1, 2, 4]. However, extremizing the action with respect to the boundary values

3We use (−, +) signature and Greek indices µ, ν, · · · = 0, 1. We denote covariant derivatives by ∇µ and

Ricci scalar by R.
4Similar boundary terms appear in the path integral formulation of dilaton gravity [50].
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of gµν and f , one also obtains the boundary conditions

nµ∇µφ = λ , nµ∇µf = 0 at φ = φ0 , (2.2)

see appendix A.1 for details. Note that the constant λ in the right-hand side of the first

equation comes from the last term in eq. (2.1). Besides, the second equation guarantees

zero energy flux through the boundary.

Let us now recall [4] that linear dilaton vacuum

gµν = ηµν , φ = −λx , f = 0 , (2.3)

satisfies the CGHS equations, cf. appendix A.1. In this case the boundary φ = φ0 is static,

xboundary = −φ0/λ, and the first of eqs. (2.2) is automatically satisfied. Note that the

Minkowski vacuum (2.3) is a solution in our model due to exact matching between the

bulk and boundary terms with λ in the action (2.1).

2.2 Solution in the bulk and reflection laws

The CGHS equations in the bulk are exactly solvable [1, 2] in the light-cone frame (u, v),

where

ds2 = −e2ρ(u, v)dudv . (2.4)

Let us review their general solution leaving technical details to appendix A.2. In what

follows we fix the remaining gauge freedom in eq. (2.4) with the on-shell “Kruskal” condi-

tion ρ = φ.

In the frame (2.4) the matter field satisfies ∂u∂vf = 0 and therefore splits into a sum

of incoming and outgoing parts,

f = fin(v) + fout(u) (2.5)

The respective energy fluxes are

Tvv(v) = (∂vfin)2 and Tuu(u) = (∂ufout)
2 . (2.6)

This specifies the Cauchy problem in our model: one prepares fin or Tvv at the past null

infinity and calculates fout or Tuu at J+, see figure 1b.

The solution for the scale factor ρ and dilaton field φ is

e−2ρ = e−2φ = −λ2vu+ g(v) + h(u) , (2.7)

where

g(v) =
1

2

v∫
0

dv′
+∞∫
v′

dv′′ Tvv(v
′′) , h(u) = −1

2

u∫
−∞

du′
u′∫

−∞

du′′ Tuu(u′′) . (2.8)

We fixed the integration constants in these expressions by requiring, first, that the space-

time is flat in the infinite past, i.e. no white hole preexists the scattering process. Second,

we chose the coordinates in such a way that the quadrant u ∈ (−∞; 0), v ∈ (0; +∞) covers

– 5 –
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Figure 3. Penrose diagram showing the ranges of u, v and definition of τ(v).

all space-time accessible to the distant observer. In particular, the limits u→ −∞ at v > 0

and v → +∞ at u < 0 lead to J− and J+, respectively, see figure 3.

Now, consider the boundary φ = φ0 described by the function u = U(v) in the

“Kruskal” coordinates. Substituting the bulk solution (2.5), (2.7) into the boundary con-

ditions (2.2), one obtains equation for U(v) and reflection law for the matter field f ,

dU

dv
=
e2φ0

λ2

(
∂vg − λ2U

)2
, fout(U(v)) = fin(v) , (2.9)

see appendix A.2 for the derivation of these equations and proof that they are compatible

with the definition φ(U(v), v) = φ0 of the boundary. Note that the second of eqs. (2.9)

relates the incoming and outgoing waves by conformal transformation v → U(v). The first

equation implies that the boundary is always time-like, dU/dv > 0. When rewritten in the

appropriate terms, it coincides5 with the boundary equation obtained in [33, 34, 39] using

energy conservation.

One easily finds solution in the empty space using eqs. (2.9) and (2.7) with Tvv =

Tuu = 0,

U(v) = −e−2φ0/(λ2v) , e−2ρ = e−2φ = −λ2uv , f = 0 , (2.10)

where the integration constant in the first expression was chosen to make U(v) smooth

and invertible in the interval 0 < v < +∞. Solution (2.10) is the linear dilaton vacuum:6

coordinate transformation

λv = eλ(t+x) , λu = −e−λ(t−x) (2.11)

brings it to the standard form (2.3). In what follows we impose flat asymptotics (2.10) in

the infinite past v → 0, u→ −∞.

Note that the space-time (2.7) is always flat far away from the boundary, i.e. at large |u|
and v. Below we transform to the asymptotic Minkowski coordinates (t, x) using eq. (2.11).

5It does not conform, however, with the boundary conditions introduced at one-loop level in [43–45]: in

the classical model the latter conditions imply that the boundary is space-like.
6Recall that we excluded solutions with eternal black holes in eq. (2.7).
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We have got a receipt for solving the Cauchy problem in the CGHS model with a

boundary. In this case the initial Cauchy data are represented by the incoming wave fin(v)

or its energy flux Tvv(v). One solves eqs. (2.9) with the initial condition (2.10) at v → 0

and finds U(v), fout(u). The scale factor of the metric, dilaton and matter fields are then

given by eqs. (2.7) and (2.5).

2.3 Simple equation for the boundary

One notices that eq. (2.9) for U(v) is, in fact, a Riccati equation. The standard substitution

λ2U = ∂vg − e−2φ0∂vψ/ψ , (2.12)

brings it to the form of a Schrödinger equation for the new unknown ψ(v),

∂2
vψ(v) = −e2φ0

2
Tvv(v)ψ(v) . (2.13)

Note that ψ(v) is defined up to a multiplicative constant. Now, one can solve for ψ(v)

given the initial data Tvv(v). After that the entire solution is determined by eq. (2.12) and

expressions from the previous section. For example, the outgoing energy flux equals

Tuu(u) =
(
λeφ0ψ/∂vψ

)4
Tvv

∣∣∣
v=V (u)

, (2.14)

where V (u) is inverse of U(v), V (U(v)) = v. We obtained eq. (2.14) by substituting the

reflection law (2.9) into the definition (2.6) of the flux and then expressing the derivative

of U(v) from the first of eqs. (2.9) and eq. (2.12).

Importantly, eq. (2.13) is well-known in mathematical physics. Similar equation ap-

pears in Liouville theory at classical and semiclassical levels [52]. Besides, the eigenstates

of the Gaudin model [47] can be related to the solutions of eq. (2.13) with monodromies

±1 and rational Tvv(v) [48]. In what follows we exploit these similarities for studying exact

solutions in dilaton gravity.

The function ψ(v) in eq. (2.12) has simple geometric meaning. First, the value of ψ is

related to the proper time τ along the boundary,

dτ2 = e2φ0dU(v) dv = (∂vψ/λψ)2dv2 ⇒ ψ(v) = ψ0 · eλτ(v) , (2.15)

where we used eqs. (2.4), (2.9), (2.12) and introduced the arbitrary constant ψ0 related to

the origin of τ . Function τ(v) is illustrated in figure 3. Second, recall that v is the exponent

of the flat light-cone coordinate (t+u) far away from the boundary, eq. (2.11). Thus, ψ(v)

maps the affine coordinate at J− to τ . Equation (2.13) relates this coordinate-independent

function to the asymptotic Cauchy data Tvv(v).

Consider general properties of classical solutions in the model with a boundary. Ex-

pression (2.15) implies that ψ(v) vanishes in the infinite past,

ψ(0) = 0 . (2.16)

– 7 –
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Figure 4. Functions ψ(v) and U(v) at different Tvv. The right graph is rotated for visualization

purposes. Dashed line in this graph is the space-like “singularity” φ = φ0.

Indeed, behavior ψ → c0v as v → 0 corresponds to the linear dilaton vacuum (2.10) in

the beginning of the process. To simplify the next argument, we set7 c0 = 1. We consider

well-localized Tvv(v) and therefore linear asymptotics

ψ(v)→ Cv +D as v → +∞ (2.17)

of the solution to eq. (2.13). If Tvv is small, one has C ≈ 1. The respective “low-energy”

solutions describe reflection of matter waves off the time-like boundary, see figures 4a,b.

As Tvv grows, the function ψ(v) becomes more concave and C decreases because ∂2
vψ ∝

−Tvv < 0. For some large fine-tuned Tvv(v) one obtains critical solutions with C = 0. In

this case the boundary is null in the asymptotic future because its proper time τ(v) in

eq. (2.15) remains finite as v → +∞. The respective “critical” solution in figures 4 is at

the brink of black hole formation: we will see that the asymptotically null boundary sits

precisely at the horizon of would-be black hole.

At sufficiently high energies we get C < 0 and therefore ψ(v) has a maximum (point

A in figure 4a). The boundary is null at this point: dU/dv|A ∝ (∂vψ)2|A= 0 according to

eqs. (2.9) and (2.12). Moreover, near A=(uA, vA) one obtains U(v)≈uA + d · (v − vA)3 and

e−2φ(u, v) ≈ e−2φ0 +
Tvv(vA)

4d2/3

[
(uA − u)2/3 − d2/3(v − vA)2

]
.

where eqs. (2.9), (2.12), and (2.7) were solved to the leading order in u−uA, v−vA. Thus,

A is a singularity of φ in coordinates (u, v).

Besides, one discovers that the condition φ = φ0 defines two intersecting curves u −
uA ≈ ±d(v − vA)3 near A, and only one of those is the time-like boundary considered

7Recall that ψ(v) is defined up to a multiplicative constant.
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so far. The second curve is space-like, it is shown by the dashed line in figure 4b. The

boundary conditions (2.9) are not met at this line. We obtained the analog of the black

hole singularity in the model with a boundary. Indeed, our model is formulated at φ < φ0

i.e. in the space-time region to the right of both solid and dashed graphs in figure 4b. The

space-like “edge” φ = φ0 swallows all matter at u > 0 limiting the region accessible to the

outside observer to u < 0. The line u = 0 is a horizon.

Except for the point A itself, the solution is smooth at the space-like “singularity”

φ = φ0. This fact was not appreciated in the previous studies. The mass of the formed

black hole, by energy conservation, is related to the value of the dilaton field at the future

horizon,

Mbh =

+∞∫
0

λvdv Tvv −
0∫

−∞

λ|u|duTuu = 2λ [g(+∞) + h(0)] = 2λ lim
v→+∞

e−2φ(0, v) ,

where we subtracted the final matter energy from the initial one in the first equality

(cf. eq. (2.11)), integrated by parts and used eqs. (2.8) in the second equality, and then

expressed the result in terms of φ, eq. (2.7). Since φ < φ0, this implies that all black hole

masses are larger than

Mcr = 2λe−2φ0 , (2.18)

see detailed discussion in [5, 42]. Black holes with Mbh = Mcr have boundary sitting

precisely at the horizon. They are formed in the critical solutions.

The solutions in figure 4b, when replotted in the finite-range coordinates (ū, v̄) =

(arctanu, arctan v), look like Penrose diagrams, see figure 2. From now on, we will exploit ū

and v̄ for visualizing the solutions. We will also mark the (smooth) space-like “singularities”

φ = φ0 by zigzag lines, see the one in figure 2c.

2.4 On-shell conformal symmetry

We find that the boundary equation (2.13) is invariant under conformal transformations

v → w(v),

ψ → ψ̃(w) =

(
dv

dw

)−1/2

ψ(v) , (2.19)

Tvv 7→ T̃vv(w) =

(
dv

dw

)2

Tvv(v) + e−2φ0{v; w} , (2.20)

which change ψ(v) as an h = −1/2 primary field and Tvv(v) as an energy-momentum

tensor with large negative central charge c = −24πe−2φ0 [53]. In eq. (2.19) we introduced

the Schwarzian derivative {v; w} ≡ v′′′/v′ − 3(v′′)2/2(v′)2 with v′ ≡ dv/dw. The transfor-

mations (2.19), (2.20) relate physically distinct solutions8 with different energy fluxes Tvv.

Acting with them on the vacuum ψ = v, Tvv = 0 one can obtain any solution.

8Unlike the transformations in [39, 40], they do not represent residual gauge symmetry. The latter was

completely fixed, see discussion after eq. (2.4).
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Note that the symmetry (2.19), (2.20) does not make our model a CFT in a conven-

tional sense.9 First, the full energy-momentum tensor Tµν + T
(φ)
µν of the model includes

contribution of the dilaton field and vanishes by Einstein equations, cf. eq. (A.1). Sec-

ond, eq. (2.20) is not a conformal transformation fin → fin(v(w)) of the massless scalar

field f far away from the boundary: the latter changes classical Tvv ≡ (∂vfin)2 without

the Schwarzian derivative. At the quantum level, healthy conformal matter has positive

central charge c > 0 [53], and transformations of its energy-momentum tensor Tvv do not

match eq. (2.20) as well.

Transformations from the SL(2, R) subgroup of (2.19), (2.20),

v → w(v) =
αv + β

γv + δ
, αδ − βγ = 1 , (2.21)

have vanishing Schwarzian derivative and therefore change f in the standard way

fin → fin(v(w)). Besides trivial translations of v they include v-dilatations due to shifts

of the asymptotic coordinate t + x in eq. (2.11) and inversion v → 1/v related to PT-

reflection t+ x→ −(t+ x). These transformations constitute the global symmetry group

of our model.

As a side remark, let us argue that (2.19), (2.20) is a symmetry of the gravitational

degrees of freedom but not of the matter sector. To this end we introduce the field χ(u) =

e−λτ(u)/ψ0 which is T -symmetric with respect to ψ(v) and therefore satisfies

∂2
uχ(u) = −e2φ0

2
Tuu(u)χ(u) , (2.22)

cf. eqs. (2.15) and (2.13); now, τ(u) is the boundary proper time parametrized with u. It

is convenient to combine ψ(v) and χ(u) into a single free field

e−2Φ(u,v) ≡ χ(u)ψ(v) e−2φ0 ,

transforming in a simple Liouville-like manner under eq. (2.19). To describe the gravita-

tional degrees of freedom with Φ, we extract its energy-momentum tensor T
(φ)
µν from the

Einstein equations T
(φ)
µν + Tµν = 0,

T (φ)
vv ≡ −Tvv = 8e−2φ0

[
(∂vΦ)2 − ∂2

vΦ/2
]
, T (φ)

uu ≡ −Tuu ,

where eq. (2.13) was used in the left equality; similar expression for T
(φ)
uu can be obtained us-

ing eq. (2.22). One observes that T
(φ)
vv transforms under eq. (2.19) as an energy-momentum

tensor with positive conformal charge c = 24πe2φ0 , in agreement with eq. (2.20).

Now, the entire scattering problem can be reformulated in terms of Φ. One sends the

incoming energy flux T
(φ)
vv towards the dynamical boundary u = U(v) at Φ = φ0. The flux

reflects into T
(φ)
uu according to the non-conformal law T

(φ)
uu = (dU/dv)−2 T

(φ)
vv , see eq. (2.14).

All these equations and boundary conditions can be summarized in the flat-space action

SΦ = −
∫

Φ<φ0

d2x [e−2φ0(∂µΦ)2 + λ2] .

9Thus, one may still hope that our model is unitary at the quantum level despite negative primary

dimension in eq. (2.19) and negative central charge in eq. (2.20).
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In this setup (2.19), (2.20) is an apparent conformal symmetry of Φ far away from the

boundary, whereas the symmetry of the matter sector is hidden in the reflection laws.

3 Integrable sector

3.1 General solution

One can use eq. (2.13) to express the entire solution in terms of one arbitrary function.

Indeed, introducing

W ≡ ∂vψ/ψ = e2φ0
(
∂vg − λ2U

)
, (3.1)

we find,

ψ = e
v∫
dv′W (v′) , −e2φ0

2
Tvv = W 2 + ∂vW . (3.2)

Then U , Tuu, φ, and f are given by eqs. (3.1), (2.14), (2.7), and (2.6). We obtained general

classical solution in the model with a boundary.

By itself, this solution is of little practical use because the function ψ(v) has a zero at

v = 0 and, possibly, another one at v = ṽ1 > 0, see figure 4a. In general, the incoming flux

Tvv(v) in eq. (3.2) is singular at these points. Indeed, eq. (3.1) gives

W (v) = R(v) + 1/v + 1/(v − ṽ1) ,

where R(v) is regular at v ≥ 0. As a consequence, Tvv(v) has first-order poles at v = 0 and

ṽ1. Requiring zero residuals at these poles, we obtain two constraints R(0) = −R(ṽ1) =

1/ṽ1 on parameters of R(v).

Choosing multiparametric R(v) and solving the constraints, one finds an arbitrary

number of smooth solutions. The physical ones satisfy

Tvv(v) ≥ 0 , at v ≥ 0 . (3.3)

In what follows we will concentrate on a large class of soliton solutions with power-law

singularities. We will argue that some of them satisfy eq. (3.3).

3.2 Soliton solutions with power-law singularities

Let us follow the Painlevé test [54] and guess the form of Tvv(v) which guarantees that

the general solution ψ(v) of eq. (2.13) has power-law singularities ψ ∼ (v − v0)−s in the

complex v-plane. One introduces Laurent series at v ≈ v0,

− e2φ0

2
Tvv =

+∞∑
k=0

Tk−2(v − v0)k−2 , ψ =
+∞∑
k=0

ψk−s(v − v0)k−s , (3.4)

where the expansion of Tvv starts from (v− v0)−2 due to eq. (2.13). Substituting eqs. (3.4)

into eq. (2.13), we obtain an infinite algebraic system for ψk−s,

(k − s)(k − s− 1)ψk−s = T−2ψk−s + T−1ψk−s−1 + · · ·+ Tk−2ψ−s . (3.5)
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s equation

1 T1 = T0T−1 − 1
4(T−1)3

3/2 T2 = 2
3T1T−1 − 5

18T0(T−1)2 + 1
4(T0)2 + 1

36(T−1)4

2 . . .

Table 1. Equations for the Laurent coefficients of the solitonic Tvv(v).

The very first (k = 0) of these relations gives T−2 = s(s + 1), the others determine ψk−s
with k ≥ 1 in terms of arbitrary ψ−s and {Tm}. Expression (3.4) is a general solution of

the second-order equation (2.13) if precisely two of its parameters, ψ−s and some ψk0−s,

remain arbitrary. Thus, (k0 − s)(k0 − s − 1) = s(s + 1) in eq. (3.5) implying k0 = 2s + 1.

One concludes that s is integer or half-integer.

Note that the two equations from the system (3.5) which do not determine the coeffi-

cients of ψ, constrain {Tk}. For example for s = 1/2 one gets,

T−2 = 3/4 , T0 = (T−1)2 , (3.6)

where we expressed all ψk−1/2 via {Tk} and ψ−1/2. For larger s, one obtains T−2 = s(s+1)

and higher-order equations listed in table 1.

We arrived at the practical method for obtaining the soliton solutions in our model.

One specifies N singularities of ψ(v): selects their integer or half-integer powers sn and

complex positions vn. The function Tvv(v) has second-order poles at v = vn, see eq. (3.4).

This analytic structure gives expressions,

− e2φ0

2
Tvv =

N∑
n=1

[
sn(sn + 1)

(v − vn)2
+

Tn−1

v − vn

]
, ψ = C

∏M
m=1(v − ṽm)∏N
n=1(v − vn)sn

, (3.7)

where we required Tvv → 0 as v → +∞ and introduced a polynomial in the nominator

of ψ(v) with M zeroes ṽm and a normalization constant C. Next, one solves equations

in table 1 at each singularity and determines Tn−1. After that ψ(v) is obtained by sub-

stituting eqs. (3.7) into eqs. (2.13) or (3.5). Two parameters — say, C and ṽM — re-

main arbitrary because eq. (3.7) is a general solution of the second-order equation. One

takes ṽM = 0 in accordance with the flat-space asymptotics (2.16). This gives the soliton

{ψ(v), Tvv(v)} characterized by N complex parameters vn and the same number of integers

or half-integers sn.

We consider solutions with finite total energy of incoming matter,

Ein =

∫ +∞

0
λvdv Tvv(v) ,

see eq. (2.11). Convergence of this integral implies Tvv ∼ ō(v−2) as v → +∞ or, given

eq. (3.7), linear relations

N∑
n=1

Tn−1 = 0 ,

N∑
n=1

[
sn(sn + 1) + vnT

n
−1

]
= 0 . (3.8)
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0

0

ū

v̄
→

→

−π/2
π/2

0

0

ū

v̄
→

→

−π/2
π/2

0

0

ū

v̄
→

→

−π/2
π/2

(a) λa = −0.2 (b) λa = 0 (c) λa = 0.2

Figure 5. Solution (3.10) in the finite-range coordinates ū = arctg(λu), v̄ = arctg(λv) at different

values of a. We use λb = e2φ0 = 1 keeping in mind that the parameter e2φ0 � 1 can be restored in

the classical solution, see discussion in section 2.1.

Moreover, asymptotic (2.17) of ψ(v) suggests falloff Tvv ∼ O(v−4) at large v and additional

relation
N∑
n=1

[
2vnsn(sn + 1) + v2

nT
n
−1

]
= 0 , (3.9)

which should hold for noncritical solutions. Equations (3.8) and (3.9) are useful for ob-

taining the lowest solitons.

Example. Consider the soliton with two s = 1/2 singularities.10 Solving the finite-energy

conditions (3.8), one obtains T 1
−1 = −T 2

−1 = 3/[2(v2 − v1)]. It is straightforward to check

that Tvv(v) with these parameters satisfies eqs. (3.6) at v = v1 and v = v2. To make the

solution real at v ∈ R, we take v1 = a+ ib and v2 = a− ib. Then eqs. (3.7) give,

Tvv =
6e−2φ0 b2

[(v − a)2 + b2]2
, ψ(v) =

v(a2 + b2 − av)

[(v − a)2 + b2]1/2
, (3.10)

where ψ(v) was obtained by substituting eqs. (3.7) into eq. (2.13). One observes that the

matter flux (3.10) peaks near v ∼ a, its total energy Ein = 3
2Mcr

[
1 + a

b arcctg(−a/b)
]

is

controlled by the ratio a/b , where Mcr = 2λe−2φ0 is the minimal black hole mass.

Since ψ → −av as v → +∞, the solution (3.10) describes reflection of matter waves off

the boundary and formation of black holes at a < 0 and a > 0, respectively, see figure 4a.

This fact is clearly seen in figure 5 showing the boundary u = U(v) at different a in the

finite-range coordinates (ū, v̄). In figure 5c we also plotted the space-like “singularity”

φ = φ0 and horizon u = 0 (zigzag red and solid black lines, respectively). Note that the

critical solution in figure 5b corresponds to Ein = 3
2Mcr.

The simplest exact solution in eq. (3.10) describes the incoming matter flux with a

single peak. Solutions with multiple peaks can be obtained by adding singularities at

v = an ± ibn, see figure 6. Unfortunately, it is hard to find these solutions explicitly at

10Note that Tvv(v) with one singularity does not satisfy eqs. (3.8).
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v
a1 + ib1

a1 − ib1

a2 + ib2

a2 − ib2

v
a1 + ib1

a1 − ib1

a2 + ib2

a2 − ib2

Figure 6. Singularities of solitons in the complex v-plane.

large N . Besides, it is not clear whether they will satisfy the positivity condition (3.3). We

will clarify these issues in the subsequent sections.

3.3 Simplifying the coefficient equations

Instead of solving the equations in table 1, one can extract Tvv(v) from the general solution.

Namely, substituting the solitonic ψ(v) into the first of eqs. (3.2), we find,

W (v) = −
N∑
n=1

sn
v − vn

+

M∑
m=1

1

v − ṽm
. (3.11)

Then the second of eqs. (3.2) gives the incoming flux. However, in this case Tvv(v) receives

parasitic first-order poles at v = ṽm which are absent in eq. (3.7). Requiring zero residuals

at these poles, we obtain equations for {ṽm},

N∑
n=1

sn
ṽm − vn

=

M∑
m′=1
m′ 6=m

1

ṽm − ṽm′
, (3.12)

which are, in fact, equivalent to the ones in table 1. Indeed, after solving eqs. (3.12) one

obtains Tvv(v) of the form (3.7) with

Tn−1 =
∑
n′ 6=n

2snsn′

vn − vn′
−
∑
m

2sn
vn − ṽm

. (3.13)

In practice one finds ṽm numerically from eqs. (3.12), then computes Tvv and ψ by

eqs. (3.13) and (3.7).

Unlike in section 3.1, we impose eqs. (3.12) at all ṽm, not just the ones at the real pos-

itive axis. The goal is to obtain solutions with transparent properties, see the forthcoming

discussion in section 3.5.

3.4 SL(2, C) symmetry

The global SL(2, C) transformations (2.21) are invertible and therefore preserve the singu-

larity structure of the solitons. One obtains,

Tvv → T̃vv(w) =
Tvv(v)

(α− γw)4
, ψ → ψ̃(w) = (α− γw)ψ(v) . (3.14)
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This symmetry relates solitons with different parameters. Real solutions at v ≥ 0 transform

under SL(2, R).

The transformation (2.21) sends the point v = −δ/γ to infinity. If the original solution

was regular at this point, its image receives asymptotics ψ̃ → Cw +D and T̃vv → O(w−4)

as w → +∞. In eq. (2.17) we obtained the same asymptotics from physical considerations.

Solutions with other asymptotics, i.e. those violating the finite-energy conditions (3.8) or

eq. (3.9), have singularities “sitting” at infinity.

Example. One can use the above property to construct new solutions. Consider e.g. the

trivial solution ψ = v−s − vs+1, Tvv = −2e−2φ0 s(s + 1)/v2 of eq. (2.13) with non-linear

ψ(v) at large v. We send the points v = 0, ∞, and 1 to v1, v2, and 0 by linear rational

transformation11 (3.14) and get,

Tvv =
−2e−2φ0s(s+ 1)(v2 − v1)2

(v − v1)2(v − v2)2
, ψ =

i(v − v1)s+1vs2
vs+1

1 (v − v2)s
− i(v − v2)s+1vs1
vs+1

2 (v − v1)s
, (3.15)

where the constant in front of ψ(v) was ignored. This is the soliton with two singularities

of power s. Taking v1 = v∗2 = a + ib, one obtains Tvv(v) ≥ 0 at real v. Note that the

incoming flux in eq. (3.15) is the same as in eq. (3.10) albeit with different multiplicative

factor. The behaviors of the boundaries are also similar, as one can see by comparing the

solutions (3.15) with12 s = 1/2 and 1 in figures 5 and 2, respectively.

3.5 Relation to the Gaudin model

In this section we establish one-to-one correspondence between the solitons (3.7) and eigen-

states of the auxiliary integrable system, the Gaudin model [47–49]. This will allow us to

count the number of solitons and explain some of their properties.

The Gaudin model [47] describes a chain of N three-dimensional spins

ŝn = {ŝ1
n, ŝ

2
n, ŝ

3
n} with the standard commutation relations [ŝαn, ŝ

β
l ] = iδnl ε

αβγ ŝγn. The

model is equipped with N commuting Hamiltonians

T̂n =
∑
l 6=n

(ŝn, ŝl)

vn − vl
, (3.16)

where vn are complex parameters and (ŝn, ŝl) ≡
∑

α ŝ
α
n ŝ

α
l is the scalar product. The

eigenstates |Ψ〉 of the model simultaneously diagonalize all Hamiltonians, T̂n|Ψ〉 = Tn|Ψ〉,
where Tn are complex eigenvalues.

It is convenient to pack all spins and Hamiltonians into the operator-valued functions

ŝ(v) ≡
N∑
n=1

ŝn
v − vn

, T̂ (v) ≡ [ŝ(v)]2 =
N∑
n=1

[
ŝ2
n

(v − vn)2
+

2T̂n
v − vn

]
. (3.17)

Now, the eigenvectors satisfy T̂ (v)|Ψ〉 = T (v)|Ψ〉.
11With parameters α = −β = (1/v2 − 1/v1)−1/2, γ = α/v2, δ = β/v1.
12In figures 2a, b, and c we used λa = −1, −1/

√
3, and 0.3, respectively, and λb = e−2φ0 = 1.
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Solitons Eigenstates of the Gaudin model

vn positions of singularities parameters of the Hamiltonians

sn powers of singularities representations of ŝn
ṽm zeros of ψ(v) parameters of eigenstates

Tvv = −2e−2φ0T incoming energy flux eigenvalue of T̂ (v)

Tn−1 = 2Tn coefficients of Tvv eigenvalues of T̂n

Table 2. Correspondence between solitons in dilaton gravity and eigenstates of the Gaudin model.

A complete set of eigenvectors and eigenvalues in the model (3.16) is provided by the

algebraic Bethe Ansatz [47–49]. We review this method in appendix B and list its main

results below.

One fixes the representations (ŝn)2 = sn(sn + 1) of all spins, where sn are integers or

half-integers. The simplest eigenstate |0〉 of the Gaudin model has all spins down,

ŝ−n |0〉 = 0 , ŝ3
n|0〉 = −sn|0〉 for all n , (3.18)

where ŝ−n ≡ ŝ1
n − iŝ2

n are the lowering operators. The other eigenstates are obtained by

acting on |0〉 with rising operators ŝ+(v) ≡ ŝ1(v) + iŝ2(v),

|ṽ1, . . . , ṽM 〉 = ŝ+(ṽ1)ŝ+(ṽ2) . . . ŝ+(ṽM )|0〉 (3.19)

at certain points ṽm which satisfy the Bethe equations,

−
N∑
n=1

sn
ṽm − vn

+

M∑
m′=1
m′ 6=m

1

ṽm − ṽm′
= 0 . (3.20)

The eigenvalue of T̂ (v) corresponding to the state (3.19) is

T (v) = W 2 + ∂vW , W (v) = −
N∑
n=1

sn
v − vn

+
M∑
m=1

1

v − ṽm
. (3.21)

To sum up, one solves eqs. (3.20) for every M and finds all
∏
n(2sn + 1) eigenvectors and

eigenvalues of T̂ (v).

Importantly, the Bethe equations (3.20) coincide with the algebraic equations (3.12)

for the parameters ṽm of the solitons in dilaton gravity. This establishes one-to-one cor-

respondence between our exact solutions and the eigenstates (3.19) of the Gaudin model.

The singularities {sn, vn} and zeros {ṽm} of ψ(v) are related to the parameters of the

Gaudin Hamiltonians (3.16) and Bethe states (3.19), respectively. Besides, the incom-

ing flux Tvv(v) is proportional to the eigenvalue of T̂ (v): Tvv(v) = −2e−2φ0 T (v), cf.

eqs. (3.2), (3.11) and (3.21). The related quantities of the two models are listed in table 2.

One can use the Gaudin model to study solitons in dilaton gravity. We are interested

in the case of well-localized Tvv = O(v−4) as v → +∞. The corresponding Gaudin states

have zero total spin13

Ŝ =
∑
n

ŝn

13Note that Ŝ commutes with all Gaudin Hamiltonians.
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because T̂ → (Ŝ/v)2 as v → +∞, see eq. (3.17). Using this property, one counts the

number of solitons with correct asymptotics by adding up spins. For example, there are

two such solutions with four s = 1/2 singularities because the Hilbert space of four s = 1/2

spins has two-dimensional zero-Ŝ subspace: (1/2)⊗4 = 0⊕ 0⊕ 1⊕ 1⊕ 1⊕ 2, where the spin

representations are marked with their highest weights.

Besides, now we can explain what happens at v1 → v2 when two singularities of the

solitons coalesce. In this limit the spin operator (3.17),

ŝ(v)→ ŝ1 + ŝ2

v − v2
+
∑
n≥3

ŝn
v − vn

as v1 → v2 ,

depends on the sum ŝ1 + ŝ2. The corresponding solutions have singularities at v = v2 of

powers |s1−s2|, |s1−s2|+1, . . . , (s1+s2) in accordance with the irreducible representations

of ŝ1 + ŝ2. For instance, consider coalescence of two s1,2 = 1/2 singularities as v1 → v2.

The second-order equations (3.6) at these singularities have four solutions corresponding

to four eigenstates of two s = 1/2 spins. In the limit v1 → v2 the spins sum up and we

obtain14 one s = 0 (non-singular) solution and three solutions with s = 1 singularity.

Finally, one can obtain more general solutions with infinite number of singularities

using the thermodynamic Bethe Ansatz for the Gaudin model [55].

Example. Consider the solution with four s = 1/2 singularities arranged in two complex

conjugate pairs v1,2 = a1 ± ib1, v3,4 = a2 ± ib2. Solving eqs. (3.8), (3.9), (3.6), we obtain,

as expected above, two solutions

T (±)
vv =

6b21 e−2φ0(
(v − a1)2 + b21

)2 +
6b22 e−2φ0(

(v − a2)2 + b22
)2 (3.22)

− 2e−2φ0 (a1 − a2)2 + b21 + b22 ±
√

∆(
(v − a1)2 + b21

) (
(v − a2)2 + b22

) , (3.23)

where ∆ =
(
(a1 − a2)2 + b21 + b22

)2
+ 12b21b

2
2 > 0. In the limit a1 → a2, b1 → b2 the pairs of

singularities in the upper and lower parts of the complex v-plane coalesce, and one obtains

a nonsingular solution and a solution (3.15) with two s = 1 singularities,

T (+)
vv → 0 , T (−)

vv →
16e−2φ0 b22

((v − a2)2 + b22)2
,

again in accordance with the above expectations.

Note that T
(+)
vv (v) is not positive-definite at real positive v and therefore unphysical.

The function T
(−)
vv (v) describes incoming matter flux with two peaks at v ∼ a1 and a2, see

figure 7.

3.6 Positivity condition

Physical solutions have real ψ(v) at real v. Thus, their singularities vn and zeros ṽm are

either real or organized in complex conjugate pairs like in figure 6. Besides, the singularities

vn may not be placed at the physical part v ≥ 0 of the real axis.

14One can explicitly demonstrate this by solving eqs. (3.6) to the leading order in v1 − v2 → 0.

– 17 –



J
H
E
P
0
4
(
2
0
1
7
)
1
0
8

0

0

ū

v̄
→

→

−π/2
π/2

Figure 7. Solution “−” in eq. (3.22) with four s = 1/2 poles and parameters λa1 = −0.1, λb1 = 1,

λa2 = 0.2, λb2 = 10, and e−2φ0 = 1. The two peaks of the incoming matter flux are marked by the

dashed lines. For this choice of parameters, the second peak forms the black hole.

The remaining nontrivial condition is Tvv(v) ≥ 0 at v ≥ 0, eq. (3.3). This inequal-

ity is not satisfied automatically. For example, our solutions with two singularities (3.15)

have negative and positive Tvv(v) at v1,2 < 0 and v1,2 = a ± ib, respectively. In fact,

any solution with all singularities placed at v < 0 is unphysical. In this case the oper-

ator ŝ(v) at real v is Hermitean, and therefore T̂ (v) in eq. (3.17) has positive-definite

eigenvalues T (v) ∝ −Tvv(v).

In the opposite case when all singularities are organized in complex conjugate pairs

v2k−1, v2k = ak ± ibk with s2k−1 = s2k, one expects to find at least one physical solu-

tion. Indeed, consider the state |Ψ1〉 (not an eigenstate) of the Gaudin model satisfying

(ŝ2k−1 + ŝ2k)|Ψ1〉 = 0 for all k. Explicit calculation shows that 〈Ψ1|T̂ (v)|Ψ1〉 < 0 at real

v. On the other hand, the variational principle implies that for any N real points wn there

exists an eigenstate |Ψ〉 minimizing all 〈Ψ|T̂ (wn)|Ψ〉. The respective eigenvalue T (v) is

negative at all v = wn suggesting that Tvv(v) ∝ −T (v) is positive at the entire real axis.

Let us explicitly select the above physical solution at bk → 0. In this case Tvv(v) falls

into a collection of peaks at v ∼ ak near the singularities v2k−1, v2k. At |v − ak| � bk
and yet, far away from other singularities, the operator (3.17) takes the form T̂ (v) ≈
(ŝ2k−1 + ŝ2k)

2/(v − ak)
2. Its eigenvalue T (v) ∝ −Tvv(v) is positive-definite unless the

eigenstate satisfies (ŝ2k−1 + ŝ2k)|Ψ〉 = 0. Thus, in the limit bk → 0 the physical eigenstate

coincides with the state |Ψ1〉 introduced above. The respective energy flux Tvv(v) is the

sum of two-spin terms (3.15),

Tvv ≈ 8e−2φ0

N/2∑
k=1

s2k(s2k + 1)b2k[
(v − ak)2 + b2k

]2 at small bk .

One expects that this solution remains physical at finite bk.
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Figure 8. (a) Singularities of the solution (3.24). (b) Parameters of this solution giving positive-

definite Tvv(v) at v ≥ 0 (gray region). The upper right corner of this region corresponds to black

hole formation.

Example. In general case the positivity condition bounds parameters of the solutions.

Consider e.g. the soliton with three s = 1 singularities at v1,2 = a± ib, v3 < 0, see figure 8a.

Solving eqs. (3.8), (3.9), one obtains,

Tvv =
16e−2φ0b2

((v − a)2 + b2)2
−

4e−2φ0
[
(a− v3)2 + b2

]
(v − v3)2 [(v − a)2 + b2]

. (3.24)

The second (negative) term in this expression represents contribution of the singularity

v3 < 0. It can be compensated by the first term if the singularities v1 and v2 are close

enough to v3. Namely, the function (3.24) is positive-definite at v ≥ 0 if a − b
√

3 ≤ v3 ≤
(a2 + b2)/(a− b

√
3), see the gray region in figure 8b. The solutions with these parameters

involve one peak of the incoming flux, just like the solutions (3.15).

4 Critical chaos

4.1 Perturbative expansion in the critical regime

In section 2.3 we argued that the critical solutions at the verge of black hole formation

have constant ψ(v) and null boundary U(v) at large v, see figure 4. One can say that they

describe formation of the minimal-mass black holes with the boundary placed precisely at

the horizon [46, 56], cf. [57, 58].

At energies somewhat below critical the boundary has long almost null part

(“plateau”), see figure 9a. The energy flux reflected from this part is strongly ampli-

fied by the Lorentz factor of the boundary and forms a high and narrow peak in Tuu(u),

see figure 9b. We will argue below that in the critical limit the peak tends to a δ-function

(shock-wave) with energy equal to the minimal black hole mass Mcr. In the overcritical

solutions the shock-wave is swallowed by the black hole. Besides, we will see in the next
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Figure 9. Solution (3.15) at almost critical values of parameters s = b = e−2φ0 = 1 and a =

acr−10−3, where acr = −1/
√

3 and we use units with λ = 1. In this case C ≈ 7×10−4 � 1. Figure

(a) shows the boundary u = U(v) in the asymptotically flat light-cone coordinates t+x = log(λv)/λ,

t− x = − log(−λu)/λ, see eq. (2.11). In figures (b), (c) we plot the outgoing and incoming energy

fluxes u2Tuu and v2Tvv as functions of t− x and t+ x, respectively.

section that the structure of the peak is highly sensitive to the initial data. This feature

impedes global integrability of the model.

Let us find the boundary U(v) in the “plateau” region where v is large and Tvv(v) is

small. In this case eq. (2.13) can be solved perturbatively by representing ψ = 1 + ψ(1) +

ψ(2) + . . . , where ψ(k) ∝ (Tvv)
k. Using ψ ≈ 1 in the r.h.s. of eq. (2.13), we obtain,

ψ(1)(v) = Cv + e2φ0 [g(v)− g∞] , (4.1)

where the function g(v) is introduced in eq. (2.8) and g∞ is its value at v → +∞. Note

that the linear asymptotics Cv � 1 of the solution appears at first order of expansion in

eq. (4.1) because in the near-critical regime ∂vψ ≈ C is small at large v. In what follows

we will regard C as a parameter of the expansion. Using ψ ≈ 1 + ψ(1) in the r.h.s. of

eq. (2.13), we get

∂vψ
(2)(v) = e2φ0(g − g∞)

(
e2φ0∂vg − C

)
+ e2φ0C v∂vg + e4φ0

∞∫
v

dv′ (∂v′g)2 .

The higher-order corrections ψ(n) are obtained in similar way.
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Now, we compute the reflected energy flux Tuu(u) and the boundary function U(v)

using eqs. (2.14) and (2.12),

Tuu(U(v)) ≈ λ4e4φ0 Tvv(v)

[C + e2φ0∂vg(v)]
4 , (4.2)

λ2U(v) ≈ −e−2φ0C + e−2φ0C2v + 2C(g − g∞)− e2φ0

∫ ∞
v

dv′ (∂v′g)2 . (4.3)

We kept one and two orders of the expansion in eqs. (4.2) and (4.3), respectively. Note that

the leading (first) term in U(v) is constant; this behavior corresponds to the “plateau” in

figure 9a. At the same time, the reflected flux (4.2) has a peak at large v corresponding

to ∂vg ∼ Ce−2φ0 . This peak is narrow in terms of slowly-changing u = U(v) in agreement

with figure 9b.

Using the soliton asymptotics Tvv ∝ v−4 and ∂vg ∝ v−3, one finds that the peak in

eq. (4.2) occurs at v ∝ C−1/3, and its width ∆v is of the same order. The respective

value of U(v) is approximately given by the first term in eq. (4.3), while the peak width

∆U ∝ C2/3U is controlled by the second-order terms. In the critical limit C → 0 the peak

of Tuu(u) is infinitely high and narrow.

Calculating the total energy within the shock-wave at C → 0, we obtain,

Epeak = λ

∫
u∼C

|u|duTuu(u)→ −2λC

∫ +∞

0

dv ∂2
vg(v)

[C + e2φ0∂vg(v)]
2 → 2λe−2φ0

where eqs. (4.2), (4.3) were used. The value of Epeak coincides with the minimal black hole

mass Mcr implying that the peak of Tuu(u) tends to a δ-function in the critical limit.

4.2 Shock-wave instability

Since our model is equipped with the general solution, one may think that it is integrable,

i.e. has a complete set of conserved quantities {Ik} smoothly foliating the phase space. In

the in-sector these quantities are arbitrary functionals Ik[fin] of conserved fin(v), cf. [59].

Then, Ik can be computed at arbitrary space-like line: to this end one evolves the classi-

cal fields from this line to J−, extracts the incoming wave15 fin(v), and calculates Ik[fin].

The quantities {Ik} obtained in this way are conserved by definition. For example, in the

out-sector one gets Ik[fout] ≡ Ik[fin] if fout(u) and fin(v) are related by classical evolu-

tion, eq. (2.9).

Let us argue, however, that {Ik} cannot be smoothly defined in the near-critical regime

because the map fin → fout in this case is essentially singular. To simplify the argument,

we consider solutions with the modulated flux at large v,

Tvv = (∂vfin)2 , ∂vfin ≈ Av−2 cos(ω ln (λv)) at v & C−1/3 , (4.4)

where C is the small parameter of the near-critical expansion. If ω is small as well, the

asymptotics of Tvv is almost power-law, like in the ordinary solitons. However, the shock-

wave part of the reflected flux represents squeezed and amplified tail of Tvv at v ∼ C−1/3,

15Recall that all our solutions start from flat space-time in the infinite past.
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Figure 10. Regions ∆I3 > 0 (white) and ∆I3 < 0 (blue) in the (C, ω) plane. We use the

solution (4.4) with A2 = 12e−2φ0/λ2.

see figure 9. It should be essentially modulated. For simplicity, let us characterize the

outgoing wave packet with a single quantity

I3(C, ω) ≡
+∞∫
−∞

d(t− x) (∂t−xfout)
3 = ∆I3(C, ω) + const ,

∆I3 =

∞∫
0

dv
C2(∂vfin)3

[C + e2φ0gv(v)]
4 , (4.5)

where we used the flat coordinates (2.11) in the definition of I3, then separated the

shock-wave part ∆I3 of the integral at t − x ≡ − log(−λu)/λ & logC from the (C, ω)-

independent contribution at smaller t − x. In the second line we substituted the shock-

wave profile (4.2), (4.3) and extended the integration range to v ≥ 0. Now, one sub-

stitutes the asymptotics (4.4) into eq. (4.5) and finds that ∆I3(C, ω) is quasi-periodic.

Indeed, change of the integration variable v 7→ ve2πn/ω with integer n gives relation16

∆I3(e6πn/ωC, ω) = e−2πn/ω∆I3(C, ω). Thus, ∆I3 = C−1/3 J (ω logC), where J (x) is

6π-periodic.

We see that ∆I3 has an essential singularity at ω = C = 0. Indeed, taking the limit

C → 0 along the paths ω logC = const, one obtains ∆I3 → −∞, 0, or +∞, see figure 10.

Thus, any value of ∆I3 can be obtained by adjusting the limiting path.

The above property ascertains dynamical chaos in the critical limit of our model.

Indeed, infinitesimally small changes (4.4) of the initial data at small C produce outgoing

fluxes with essentially different values of I3. This prevents one from characterizing the

critical evolution with a set of smooth conserved quantities Ik. Indeed, all functionals

Ik[fin], being smooth in the in-sector, are not sensitive to ω at small values of latter.

Thus, they fail to describe essentially different out-states fout(u) at different ω. From a

more general perspective, one can introduce the integrals which are smooth either in the

in-sector or in the out-sector, but not in both.

16In this case g′(ve2πn/ω) = e−6πn/ωg′(v), where the derivative is taken with respect to the argument,

see eqs. (2.8).
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5 Discussion

In this paper we considered two-dimensional CGHS model with a regulating dynamical

boundary [33, 34]. This model is weakly coupled and causally similar to the spherically-

symmetric gravity in many dimensions. We demonstrated that classical field equations in

this model are exactly solvable. We constructed their general solution and studied in detail

a large subset of soliton solutions with transparent properties. We illustrated the results

with many explicit examples hoping that this model will serve as a practical playground

for black hole physics.

In the critical regime i.e. at the verge of black hole formation, our model displays

dynamical instabilities specific to chaotic systems. This property is similar to the near-

horizon chaos suggested recently in the context of AdS/CFT correspondence [23–28]. We

argued that it hinders global integrability of the model.

We see several applications of our results. First, exact solvability may extend to one-

loop semiclassical level if one adds a reflective boundary to the RST model [5]. This

approach, if successful, will produce analytic solutions describing black hole formation and

evaporation. The singularities of such solutions should be either covered by the boundary

or hidden behind the space-like line φ = φ0, see figure 4b. Then a complete Penrose

diagram for the evaporation process may be obtained, cf. [39, 41, 42, 46].

Second, in the alternative approach one directly adds one-loop corrections to the clas-

sical equations of our model with a boundary and integrates the resulting system numeri-

cally, cf. [60, 61]. By the same reasons as above, the respective solutions should completely

describe the process of black hole evaporation.

Third and finally, the model of this paper is ideal for applying the semiclassical method

of [62, 63] which relates calculation of the exponentially suppressed S-matrix elements to

certain complex classical solutions. The results of such calculations may be used to test

unitarity of the gravitational S-matrix [63].
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A Field equations and boundary conditions

A.1 Derivation

Field equations in the bulk are obtained by varying the action (2.1) with respect to gµν ,

φ, and f , and ignoring the boundary terms,

4e−2φ∇µ∇νφ+ 4gµνe
−2φ

[
(∇φ)2 −∇2φ− λ2

]
= ∇µf∇νf −

1

2
gµν(∇f)2 , (A.1)

(∇φ)2 −∇2φ− λ2 = R/4 , (A.2)

∇2f = 0 . (A.3)
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The first line here relates the energy-momentum tensors of φ and f , −T (φ)
µν = T

(f)
µν . The

second line implies, in addition, that the rescaled metric e−2φgµν is flat.

To find the boundary conditions at the line φ = φ0, we keep the boundary terms in

the variation of the action. For a start, let us consider variations preserving the coordinate

position of the boundary φ = φ0. We take δφ = 0 along this line and fix the direction of

its outer normal, δnµ ∝ nµ. The integration domains in eq. (2.1) are unchanged by such

variations. One obtains,

δS = −
∫

φ=φ0

dτ
[
2hµνδhµν e−2φ0 (nκ∇κφ− λ) + δf nκ∇κf

]
= 0 , (A.4)

where we canceled the bulk terms using eqs. (A.1)–(A.3) and introduced the induced metric

hµν ≡ gµν − nµnν . The variation (A.4) gives the boundary conditions (2.2). Note that

the space-time is flat near the boundary: one obtains R = 0 at φ = φ0 using the first of

eqs. (2.2), eq. (A.2) and the trace of eq. (A.1).

Now, let us consider general variations shifting the position of the boundary. They are

combinations of the general coordinate transformations and position-preserving variations

considered above. The action is unchanged by these variations: it is covariant and already

extremized at fixed coordinate position of the boundary.

A.2 Solution in the conformal gauge

Let us review the general solution [4] of the bulk equations (A.1)–(A.3), see [1, 2] for details.

In the light-cone frame (2.4) eq. (A.3) takes the form ∂u∂vf = 0, its solution is given by

eq. (2.5). Combining eq. (A.2) with the trace of eq. (A.1) and substituting R = 8e−2ρ∂u∂vρ,

we obtain,

∂u∂v(φ− ρ) = 0 ⇒ φ = ρ ,

where the residual coordinate freedom17 was fixed in the last equation. After that

eqs. (A.1), namely,

∂2
ue−2φ = −1

2
(∂uf)2 ,

∂2
ve−2φ = −1

2
(∂vf)2 ,

∂u∂ve
−2φ = −λ2 ,

are integrated into

e−2ρ = e−2φ =
M−
2λ
− λ2(u− u0)(v − v0) + g(v) + h(u) . (A.5)

In this expression M−, u0, and v0 are integration constants; functions g(v) and h(u) were

introduced in eq. (2.8). We fix u0 = v0 = 0 by shifting u and v. After that M− represents

the mass of white hole in the infinite past [1, 2]. Indeed, the past time infinity i− in

17Namely, the transformations u→ ũ(u), v → ṽ(v) preserving the metric (2.4).
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figure 1b is reached at u → −∞, v → 0, and constant φ, cf. eq. (2.3). If M− 6= 0, the

curvature remains nonzero in this limit,

R = 4e2ρ(∂ue−2ρ)(∂ve
−2ρ)− 4∂u∂ve

−2ρ → 2λe2φM− ,

where eq. (A.5) with u0 = v0 = 0 was used. In this paper we consider solutions starting

from flat space-time. Thus, M− = 0, and eq. (A.5) takes the form (2.7).

It is worth noting that the patch u ∈ (−∞, 0) and v ∈ (0, +∞) covers all space-time

accessible to the outside observer. Indeed, we already mentioned that the time infinities i−

and i+ are reached in the limits u→ −∞ and v → +∞ at finite values of the dilaton field

φ. By eq. (2.7), the product uv remains finite in these limits implying v → +0 as u→ −∞
(i−) and u→ −0 as v → +∞ (i+), see figure 3.

We proceed by deriving equation of motion for the boundary u = U(v) satisfying

φ(U(v), v) = φ0. Taking the derivative of eq. (2.7) along this line, we find,

0 =
d

dv
e−2φ0 = U ′

[
∂uh− λ2v

]
+ ∂vg − λ2U , at u = U(v) , (A.6)

where U ′ ≡ dU/dv > 0 because the boundary is time-like. The other two equations come

from the boundary conditions (2.2). Introducing the unit outer normal

nu = e−φ0
√
U ′ , nv = −e−φ0/

√
U ′

and using eq. (A.6), we rewrite eqs. (2.2) in the form (2.9).

At this point, we have three equations, eqs. (A.6) and (2.9), for the two unknown

functions fout(u) and U(v). Note, however, that eq. (A.6) follows from the other two

equations. Indeed,

d

dv

(
∂vg − λ2U

U ′

)
= λ2e−2ϕ0

d

dv
(∂vg − λ2U)−1 =

(∂vfin)2/2 + λ2U ′

U ′
=

d

dv
(λ2v − ∂uh) ,

where we expressed U ′ and g via eqs. (2.9) and (2.8) in the first and second equalities, then

turned fin → fout by the second of eqs. (2.9) and used the equation for U ′, again. One

concludes that eq. (A.6) is automatically satisfied once the initial conditions for U(v) are

chosen correctly.

B Bethe Ansatz for the Gaudin model

In this appendix we review Bethe Ansatz for the Gaudin model (3.16), see [47–49] for

details.

One introduces raising and lowering operators ŝ±(v) = ŝ1(v)± iŝ2(v) for the position-

dependent spin (3.17). The commutation rules of these operators are

[ŝ−(v), ŝ+(w)] = 2
ŝ3(v)− ŝ3(w)

v − w
, [ŝ3(v), ŝ±(w)] = ∓ ŝ

±(v)− ŝ±(w)

v − w
.

The Hamiltonian T̂ (v) in eq. (3.17) takes the form

T̂ (v) =
1

2
ŝ+(v)ŝ−(v) +

1

2
ŝ−(v)ŝ+(v) + (ŝ3(v))2 . (B.1)
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Now, it is straightforward to check that the spin-down state (3.18) is an eigenstate:

T̂ (v)|0〉 =
[
(W0)2 + ∂vW0

]
|0〉 , where W0(v) = −

∑
n

sn
v − vn

is the eigenvalue of the third spin component, ŝ3(v)|0〉 = W0(v)|0〉.
One explicitly acts with T̂ (v), eq. (B.1), on the state (3.19) and obtains,

T̂ (v)|ṽ1, . . . , ṽM 〉 = T (v)|ṽ1, . . . , ṽM 〉 −
M∑
m=1

2Lm
v − ṽm

|ṽ1, . . . , ṽm 7→ v, . . . , ṽM 〉 , (B.2)

where T (v) is given by eq. (3.21), Lm is the left-hand side of eq. (3.20), and arrow denotes

substitution. Note that the relations

[T̂ (v), ŝ+(w)] =
2

v − w
(
ŝ+(w)ŝ3(v)− ŝ+(v)ŝ3(w)

)
,

ŝ3(v)|ṽ1, . . . , ṽM 〉 = W (v)|ṽ1, . . . , ṽM 〉 −
∑
m

1

v − ṽm
|ṽ1, . . . , ṽm → v, . . . , ṽM 〉 ,

where W (v) is defined in eq. (3.21), are helpful for deriving eq. (B.2).

We conclude that eq. (B.2) coincides with the eigenproblem for T̂ (v) if the Bethe

equations Lm = 0, eqs. (3.20), are satisfied. In this case the Bethe states (3.19) are the

eigenstates of the Gaudin Hamiltonians (3.16). Moreover, one can prove [47–49] that the

basis (3.19) is complete.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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