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1 Introduction

The associated production of a top pair and a Z or W boson are the two processes with the

heaviest final states measured to date at the Large Hadron Collider (LHC). The total cross

section for these processes was measured during Run I [1, 2], and preliminary measurements

at a center-of-mass energy of 13 TeV are also available [3, 4]. The tt̄Z production process is

particularly interesting because it allows one to study the coupling of the Z boson with the

top quark. This measurement further tests the Standard Model (SM) of particle physics

and probes several Beyond the SM scenarios that predict changes to this coupling with

respect to the SM. In addition, these production processes lead to high multiplicity final

states which are background in the search for new heavy states decaying via long chains,

such as dark matter candidates.

Given their importance for phenomenological studies, next-to-leading-order (NLO)

QCD and electroweak corrections to the associated production of a top pair and a mas-

sive vector boson were studied by several groups [5–14]. A full calculation of the QCD

corrections to next-to-next-to leading order (NNLO) accuracy would be desirable but it is

extremely difficult even with the most up to date techniques for the calculations of higher

order corrections. However, the associated production of a top pair and a heavy colorless

boson is a multiscale process which is expected to receive potentially large corrections aris-

ing from soft gluon emission. The resummation of these effects to next-to-next-to leading

logarithmic (NNLL) accuracy can be carried out by exploiting the factorization properties

of the partonic cross section in the soft limit (which can be studied with effective field

theory methods1) and by subsequently employing renormalization group improved pertur-

bation theory techniques. In the case of the associated production of a top pair and a Higgs

boson the resummation formula in the soft emission limit was discussed in [16], and results

for the total cross section and several differential distributions at NLO+NNLL accuracy

1For an introduction see [15].
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were presented in [17]. Studies of the associated production of a top quark pair and a W

boson to NLO+NNLL accuracy can be found in [18], where the resummation was carried

out in Mellin moment space as in [17], and in [19], where the resummation was instead

carried out in momentum space.

The results of [17] and [18] were obtained by means of an in-house parton level

Monte Carlo code for the numerical evaluation of the resummation formula. The out-

put of this code was then matched to complete NLO calculations obtained by employing

MadGraph5_aMC@NLO [20] (which we indicate with MG5 aMC in the following). Building on

the results of those two papers, in this work we obtain a resummation formula for the

associated production of tt̄Z final state, and we evaluate it to NNLL accuracy by means

of dedicated parton level Monte Carlo code. We match our results for the total cross sec-

tion and differential distributions to NLO calculations in order to obtain predictions at

NLO+NNLL accuracy.

The paper is organized as follows: in section 2 we introduce some basic notation and

we briefly summarize the main steps in our calculations. For a more technical discussion

of the methods employed in this paper, we refer the reader to the detailed descriptions

provided in [16–18]. In section 3 we present predictions at NLO+NNLL accuracy for the

total cross section as well as for several differential distributions. Finally, we draw our

conclusions in section 4.

2 Outline of the calculation

The associated production of a top quark pair and a Z boson receives contributions from

the partonic process

i(p1) + j(p2) −→ t(p3) + t̄(p4) + Z(p5) +X , (2.1)

where ij ∈ {qq̄, q̄q, gg} at lowest order in QCD, and X indicates the unobserved partonic

final-state radiation. The two Mandelstam invariants which are relevant for our discus-

sion are

ŝ = (p1 + p2)2 = 2p1 · p2 , and M2 = (p3 + p4 + p5)2 . (2.2)

The soft or partonic threshold limit is defined as the kinematic region in which z ≡M2/ŝ→
1. In this region, the final state radiation indicated by X in (2.1) can only be soft.

The factorization formula for the QCD cross section in the partonic threshold limit is

the same as the one derived in [16] for tt̄H production, up to the straightforward replace-

ment of the Higgs boson with a Z boson:

σ (s,mt,mZ) =
1

2s

∫ 1

τmin

dτ

∫ 1

τ

dz√
z

∑
ij

ffij

(τ
z
, µ
)

×
∫
dPStt̄ZTr

[
Hij ({p}, µ) Sij

(
M(1− z)√

z
, {p}, µ

)]
. (2.3)

We indicated with s the square of the hadronic center-of-mass energy and we defined

τmin = (2mt +mZ)2 /s and τ = M2/s. The notation adopted for the channel dependent
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hard functions H, soft functions S, and luminosity functions ff , as well as for the final-state

phase-space integration measure, is the same one used in [17, 18] and we refer the reader to

these papers for more details. Similarly to LO, the only subprocesses to be considered in the

soft limit are those labeled by indices ij ∈ {qq̄, q̄q, gg}. The hard and soft functions are two-

by-two matrices in color space for qq̄-initiated (quark annihilation) processes, and three-by-

three matrices in color space for gg-initiated (gluon fusion) processes. Contributions from

other production channels such as q̄g and qg (collectively referred to as “quark-gluon” or

simply “qg” channel in what follows) are subleading in the soft limit. The hard functions

satisfy renormalization group equations governed by the channel dependent soft anomalous

dimension matrices ΓijH . These anomalous dimension matrices were derived in [21, 22].

In order to carry out the resummation to NNLL accuracy, the hard functions, soft

functions, and soft anomalous dimensions must be computed in fixed-order perturbation

theory up to NLO in αs. The NLO soft functions and soft anomalous dimensions are the

same ones needed in the calculation of tt̄H and tt̄W± to NNLL accuracy and can be found

in [16–18]. The NLO hard functions are instead process dependent, receive contributions

exclusively from the virtual corrections to the tree level amplitudes, and were evaluated by

customizing the one-loop provider Openloops [23], which we used in combination with the

tensor reduction library Collier [24–27]. The NLO hard function have been cross-checked

numerically by means of a customized version of GoSam [28–31], used in combination with

the reduction provided by Ninja [32–34].

In this paper we carry out the resummation in Mellin space, starting from the relation

σ(s,mt,mZ) =
1

2s

∫ 1

τmin

dτ

τ

1

2πi

∫ c+i∞

c−i∞
dNτ−N

∑
ij

f̃f ij (N,µ)

∫
dPStt̄Z c̃ij (N,µ) , (2.4)

where f̃f ij is the Mellin transform of the luminosity functions, and c̃ is the Mellin transform

of the product of the hard and soft function (see [17, 18] for details). Since the soft limit

z → 1 corresponds to the limit N →∞ in Mellin space, we neglected terms suppressed by

powers of 1/N in the integrand of (2.4).

The hard and soft functions included in the hard scattering kernels c̃ in (2.4) can

be evaluated in fixed order perturbation theory at scales at which they are free from large

logarithms. We indicate these scales with µh and µs, respectively. Subsequently, by solving

the renormalization group (RG) equations for the hard and soft functions one can evolve

the factor c̃ to the factorization scale µf . Following this procedure one finds

c̃ij(N,µf ) = Tr

[
Ũij(N̄ , {p}, µf , µh, µs) Hij({p}, µh) Ũ†ij(N̄ , {p}, µf , µh, µs)

× s̃ij

(
ln

M2

N̄2µ2
s

, {p}, µs
)]

, (2.5)

where N̄ = NeγE . Large logarithmic corrections depending on the ratio of the scales µh
and µs are resummed in the channel-dependent matrix-valued evolution factors Ũ. The

expression for the evolution factors is formally identical to the one found for tt̄W and tt̄H

production and can be found for example in equation (3.7) of [18].
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MW 80.385 GeV mt 173.2 GeV

MZ 91.1876 GeV mH 125 GeV

1/α 137.036 αs (MZ) from MMHT 2014 PDFs

Table 1. Input parameters employed throughout the calculation.

The l.h.s. of (2.5) is formally independent of µh and µs. In practice however, one cannot

evaluate the hard and soft functions at all orders in perturbation theory; this fact creates

a residual dependence on the choice of the scales µh and µs in any numerical evaluation

of c̃. The hard and soft functions are free from large logarithms if one chooses µh ∼ M

and µs ∼M/N̄ . The choice of a N -dependent value for µs produces a branch cut for large

values of N in the hard scattering kernels c̃, whose existence is related to the Landau pole

in αs. We deal with this issue by choosing the integration path in the complex N plane

according to the Minimal Prescription (MP) introduced in [35].

Finally, the parton luminosity functions in Mellin space, which we need in the numerical

evaluations, are constructed using techniques described in [36, 37].

3 Numerical results

The main purpose of this section is to present predictions for the associated production of

a top pair and a Z boson to NLO+NNLL accuracy. However, we also analyze systemati-

cally the relevance of soft emission corrections and their resummation in relation to NLO

predictions for the various observables considered in the paper. The NNLL calculations are

carried out by means of an in-house parton level Monte Carlo code, while the NLO predic-

tions are obtained by means of MG5 aMC. All of the calculations discussed in this section are

carried out with the input parameters listed in table 1. Throughout the paper we employ

MMHT 2014 PDFs [38]. In fixed order calculations, the order of the PDFs matches the

perturbative order of the calculation (i.e. LO calculations are carried out with LO PDFs,

NLO calculations employ NLO PDFs, etc.). In matched calculations, we employed NLO

PDFs for NLO+NLL accuracy, and NNLO PDFs for NLO+NNLL accuracy.

For both the total cross section and several differential distributions, we consider six

different types of predictions:

i) NLO calculations, obtained with MG5 aMC.

ii) Approximate NLO calculations, obtained from the NLO expansion of the NNLL

resummation formula. We check that for our choice of scales and input parameters

approximate NLO calculations provide a satisfactory approximation to the exact NLO

calculation. The approximate NLO formulas obtained by expanding (2.5) account

for the single and double powers of lnN as well as N -independent terms but not

for terms suppressed by inverse powers of N . N -independent terms depend on the

Mandelstam variables, however we refer to them as “constant” terms in what follows.

The approximate NLO formulas are obtained by setting µh = µs = µf in the NNLL
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version of (2.5). Approximate NLO calculations are carried out with the in-house

parton level Monte Carlo code which was developed specifically for this project.

iii) NLO+NLL calculations, which are obtained by matching NLO results with re-

summed results at NLL accuracy obtained by means of the in-house Monte Carlo

code. The results are matched according to the formula

σNLO+NLL =σNLO +
[
σNLL − σNLL expanded to NLO

]
. (3.1)

The terms in the square brackets, which contribute to NLO and beyond, depend

on the scales µs and µh in addition to the factorization scale µf . Of course the

dependence on µs and µh is formally of NNLL order; by varying these scales and

the factorization scale in (3.1) one can estimate the size of the NNLL corrections.

Because of the matching procedure described by equation (3.1), all of the NLO+NLL

calculations in this paper include the contribution of the qg channel to NLO.

iv) NLO+NNLL predictions are obtained by evaluating the hard scattering kernels

in (2.5) to NNLL accuracy with the in-house Monte Carlo code and by matching the

results to NLO calculations as follows:

σNLO+NNLL =σNLO +
[
σNNLL − σapprox. NLO

]
. (3.2)

The terms in the squared brackets in (3.2) contribute starting from NNLO and rep-

resent the NNLL corrections to be added to the NLO result. We stress that the

NLO+NNLL calculations in this paper include the contribution of the qg channel to

NLO through the matching procedure in (3.2).

v) Approximate NNLO calculations are obtained by the NNLL resummation formula

and include all powers of lnN and part of the constant terms from a complete NNLO

calculation. The approximate NNLO formulas employed in this paper are constructed

as the ones employed in [17, 18] for tt̄W and tt̄H production. A detailed description

of the constant terms which are included in the approximate NNLO formulas can

be found in section 4 of [16]. Approximate NNLO formulas are evaluated with the

in-house Monte Carlo code which we developed and they are matched to the NLO

calculations as follows

σnNLO = σNLO +
[
σapprox. NNLO − σapprox. NLO

]
, (3.3)

where we label the matched result “nNLO” for brevity. By construction nNLO

predictions are independent from the hard and soft scales but they do have a residual

N3LO dependence on µf .

vi) NLO+NNLL expanded to NNLO. Finally we consider a second way of expand-

ing the NNLL resummation formula to NNLO. This approach differs from the ap-

proximate NNLO result used above by constant terms, which are formally of N3LL

accuracy. This approximation is defined by the relation(
σNLO+NNLL

)
NNLO exp.

= σNLO +
[
σNNLL expanded to NNLO − σapprox. NLO

]
. (3.4)
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Figure 1. Factorization-scale dependence of the total tt̄Z production cross section at the LHC

with
√
s = 13 TeV. The NLO and NLO+NLL curves are obtained using MMHT 2014 NLO PDFs,

while the NLO+NNLL and nNLO curves are obtained using MMHT 2014 NNLO PDFs.

The constant pieces in (3.4) contain explicit dependence on µh and µs, in addition

to that on µf . This dependence is formally an effect of N3LL order. By comparing

the predictions obtained from (3.4) to the corresponding NLO+NNLL calculations

one can see the relative weight of terms of N3LO and higher in the NLO+NNLL

calculations. If in the future a complete NNLO calculation for the tt̄Z production

cross section were to become available, it would be possible to match it to the NNLL

resummation formula by using precisely this kind of NNLO expansion of the NNLL

resummation, as can be seen by replacing N → NN in all of the superscripts in (3.1).

3.1 Scale choices

Since any numerical evaluation of the resummed expression for the hard scattering kernels

must be carried out by evaluating the factors in (2.5) up to a certain order in perturbation

theory, the resummed kernels c̃ will show a residual dependence on the scales µs and µh.

In order to follow closely the approach adopted in “direct QCD” calculations [35, 39, 40],

the standard choice which we adopt in this work for the hard and soft scales is µh,0 = M

and µs,0 = M/N̄ [17, 18, 41, 42].

In addition, both fixed order and resummed calculations depend on the factorization

scale µf , which should be chosen in such a way that the logarithms of the scale ratio µf/M

are not large [43]. It is therefore reasonable to choose a dynamical default value for the

scale µf which is related to M . The dependence of the total tt̄Z production cross section on

the ratio µf/M at the LHC with
√
s = 13 TeV is shown in figure 1. Each line corresponds

to a different perturbative approximation, as indicated in the legend. Figure 1 shows that

the NLO, NLO+NLL and NLO+NNLL curves intersect in the vicinity of µf/M = 0.5 and

differ significantly for µf/M � 0.5 and for µf/M � 0.5. Following this observation, the

default value that we employ for the factorization scale is µf,0 = M/2.

The uncertainty related to the choice of the factorization scale in fixed order results is

estimated as usual by varying this scale in the range µf ∈ [µf,0/2, 2µf,0]. Resummed results

depend also on the hard and soft scales, consequently, the uncertainty of the resummed

– 6 –
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results is estimated by varying separately all the three scales around their default values

in the interval µi ∈ [µi,0/2, 2µi,0] for i ∈ {s, f, h}. The scale uncertainty above (below) the

central value of a resummed observable O, which can be the total cross section or the value

of the differential cross section in a given bin, is determined as follows. First one evaluates

the quantities

∆O+
i = max{O (κi = 1/2) , O (κi = 1) , O (κi = 2)} − Ō ,

∆O−i = min{O (κi = 1/2) , O (κi = 1) , O (κi = 2)} − Ō , (3.5)

for i ∈ {s, f, h}. In (3.5) we defined κi = µi/µi,0, and Ō indicates the observable evaluated

at κi = 1 for all i-s. The scale uncertainty above (below) Ō is then obtained by combining

in quadrature ∆O+
i (∆O−i ) for i ∈ {s, f, h}.

3.2 Total cross section

In this section we analyze the total cross section for the associated production of a top

quark pair and a Z boson at the LHC operating at a center-of-mass energy of 13 TeV.

The relevant results are collected in table 2. We first compare the approximate NLO

cross section, obtained by expanding the resummation formula to NLO (second row of

table 2) with the complete NLO cross section (fourth row) and the NLO cross section

without the contribution of the quark-gluon channel (third row). The difference between

the approximate NLO result and the NLO result without the qg channel is due to terms

in the quark annihilation and gluon fusion channels which are subleading in the partonic

threshold limit. We see that the impact of these terms is around 1%. The difference

between these two results is therefore small in spite of the fact that the NLO corrections

are large, as can be seen by comparing them with the LO result. However, we see that

the approximate NLO result shows a smaller scale uncertainty than the NLO result with

the contribution of the qg channel. We conclude that the soft emission corrections provide

the bulk of the NLO corrections for this choice of the factorization scale. This motivates

us to study the effect of the resummation of these corrections, keeping in mind that by

matching the resummed results to NLO calculations we consider both power corrections

and the contribution of the qg channel to that order.

The NLO+NLL and NLO+NNLL cross sections, shown in the sixth and seventh line

of table 2 are main results of this paper. By looking at the NLO, NLO+NLL, NLO+NNLL

results we see that the cross section is progressively increased, but the central value of each

prediction falls in the scale uncertainty band of the predictions of lower accuracy. One

might also want to evaluate the NLO+NNLL total cross section by employing NLO PDFs;

this leads to a total cross section of σ = 787.3+63.4
−67.4 fb. This result has a central value which

is ∼ 10 fb larger than the NLO+NNLL calculation carried out with NNLO PDFs and a

scale uncertainty interval which is almost identical to the one obtained by using NNLO

PDFs. A comparison of the of the NLO+NNLL total cross section evaluated with NLO

PDFs with the NLO total cross section in table 2 allows one to assess directly the numerical

impact of the higher-order logarithms which are included in the resummed calculation.

One can then look at the NNLO expansions of the NNLL resummation formula, which

are shown in the last two lines of table 2. By comparing these results to the NLO+NNLL

– 7 –
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order PDF order code σ [fb]

LO LO MG5 aMC 521.4+165.4
−116.9

app. NLO NLO in-house MC 737.7+38.5
−64.5

NLO no qg NLO MG5 aMC 730.4+41.8
−64.9

NLO NLO MG5 aMC 728.3+93.8
−90.3

NLO+NLL NLO in-house MC +MG5 aMC 742.0+90.1
−30.3

NLO+NNLL NNLO in-house MC +MG5 aMC 777.8+61.3
−65.2

nNLO NNLO in-house MC +MG5 aMC 798.7+36.2
−23.6

(NLO+NNLL)NNLO exp. NNLO in-house MC +MG5 aMC 766.2+17.2
−50.1

Table 2. Total cross section for tt̄Z production at the LHC with
√
s = 13 TeV and MMHT

2014 PDFs. The default value of the factorization scale is µf,0 = M/2, and the uncertainties

are estimated through variations of this scale (and of the hard and soft scales µs and µh when

applicable), as explained in the text.

cross section, one sees that the effect of the resummation corrections beyond NNLO are

relatively small. As it was observed in the case of the tt̄H and tt̄W processes in [16–18], the

scale uncertainty affecting the nNLO result is very small compared to the NLO+NNLL scale

uncertainty, and most likely underestimates the residual perturbative uncertainty at NNLO.

Experimental collaborations reported measurements of the tt̄Z total cross section in

combination with measurements of the tt̄W cross section [1–4], where the latter is the sum

of the cross sections for tt̄W+ and tt̄W− production. We conclude this section by compar-

ing our predictions for tt̄W and tt̄Z with experimental data. The tt̄W production cross

section was evaluated by running the code developed in [18] with the scale choices and

input parameters employed in the present work for tt̄Z production and described above.

The results for tt̄Z and tt̄W production cross section at 8 and 13 TeV are summarized in

table 3. In figure 2 we follow the structure of figure 12 in [4] in order to compare graph-

ically calculations with the corresponding experimental measurements. The experimental

measurements at 8 TeV are taken from [2], while the experimental measurements at 13 TeV

are taken from [4]. The green dots and cross-shaped “error bars” correspond to NLO calcu-

lations carried out with µf,0 = M/2 and their scale uncertainty. The red dots and crosses

correspond instead to NLO+NNLL calculations.

It is interesting to observe that, while predictions for the tt̄Z production cross section

are in perfect agreement with the measurements at both 8 and 13 TeV, the predictions for

the tt̄W cross section are slightly smaller than measurements for both collider energies. This

observation holds for NLO and NLO+NNLL calculations alike. Of course this discrepancy

should be taken with a grain of salt, and requires a more detailed discussion with the

experimental collaborations. Moreover, we would like to stress that a fully exhaustive

comparison between predictions and measurements should also account for the uncertainty

associated to the choice of the PDFs and to the value of αs. These two sources of uncertainty

are not reflected in the error bars of figure 2.
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√
s and pert. order process σ [fb]

8 TeV NLO tt̄W+ 136.7+15.6
−15.2

8 TeV NLO tt̄W− 60.5+7.1
−6.8

8 TeV NLO tt̄Z 189.8+24.5
−24.8

8 TeV NLO+NNLL tt̄W+ 130.7+6.9
−4.9

8 TeV NLO+NNLL tt̄W− 59.1+3.1
−2.2

8 TeV NLO+NNLL tt̄Z 203.9+13.5
−15.8

13 TeV NLO tt̄W+ 356.3+43.7
−39.5

13 TeV NLO tt̄W− 182.2+23.1
−20.4

13 TeV NLO tt̄Z 728.3+93.8
−90.3

13 TeV NLO+NNLL tt̄W+ 341.0+23.1
−13.6

13 TeV NLO+NNLL tt̄W− 177.1+12.0
−6.9

13 TeV NLO+NNLL tt̄Z 777.8+61.3
−65.2

Table 3. Total cross section for tt̄Z and tt̄W production at the LHC with
√
s = 8 and 13 TeV

and MMHT 2014 PDFs. The default value of the factorization scale is µf,0 = M/2, and the

uncertainties are estimated through variations of this scale (and of the resummation scales µs and

µh when applicable).

SM theory vs ATLAS data

LHC 8 TeV
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σ
ttZ
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SM theory vs CMS data
LHC 13 TeV
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1000

1200
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σ
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]

Figure 2. Left panel: total cross section at NLO (green cross) and NLO+NNLL (red cross)

compared to the ATLAS measurements at 8 TeV [2] (data are represented by the light blue and

pink bands). Right panel: total cross section at NLO (green cross) and NLO+NNLL (red cross)

compared to the CMS measurements at 13 TeV [4] (light blue and pink bands).

3.3 Differential distributions

In this section we obtain predictions for four differential distributions which depend on

the momenta of the final state massive particles. The distributions are i) the distribution

differential with respect to the tt̄Z invariant mass, M , ii) the distribution differential with

respect to the tt̄ invariant mass, Mtt̄, iii) the distribution differential with respect to the

– 9 –
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Figure 3. Differential distributions at approximate NLO (blue band) compared to the complete

NLO (red band). The default factorization scale is chosen as µf,0 = M/2, and the uncertainty

bands are generated through scale variations as explained in the text.

transverse momentum of the top quark,2 ptT , and iv) the distribution differential with

respect to the transverse momentum of the Z boson, pZT .

Figure 3 compares the approximate NLO calculations, carried out with our in-house

code, with the complete NLO calculations, carried out with MG5 aMC. We see that the

approximate NLO calculations reproduce well the full NLO calculations. The lower part of

each panel shows the ratio between the approximate NLO or complete NLO calculations

and the central value of the NLO calculation. One can see that the approximate NLO scale

uncertainty band is included in the NLO scale uncertainty band. Figure 4 repeats the same

2In this context we refer to top quark in a strict sense, and we evaluate this distribution by considering

exclusively the transverse momentum of the particle of charge +2/3 in the final state.
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Figure 4. Differential distributions at approximate NLO (blue band) compared to the NLO dis-

tributions without the quark-gluon channel contribution (red band). All settings are as in figure 3.

analysis but it compares approximate NLO calculations to NLO calculations without the

quark-gluon channel contribution. As expected approximate NLO distributions and NLO

distributions without the qg channel have the same shape and scale uncertainty bands of

similar size. These two figures show that, for this choice of the factorization scale at least,

soft emission corrections provide the bulk of the NLO corrections.

Figure 5 provides the main result of this section. This figure compares NLO calcula-

tions to the distributions evaluated to NLO+NNLL accuracy. Roughly, one can say that

the NLO+NNLL results fall in the upper part of the NLO scale uncertainty interval in

each bin. The central value of the NLO+NNLL calculations is slightly larger than the

central value of the NLO calculations in all bins shown. The scale uncertainty affecting
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Figure 5. Differential distributions with µf,0 = M/2 at NLO+NNLL (blue band) compared to the

NLO calculation (red band). The uncertainty bands are generated through scale variations of µf ,

µs and µh as explained in the text.

the NLO+NNLL accuracy calculation, which is obtained by varying µs, µf , and µh as

described above, is smaller than the NLO scale uncertainty band obtained by varying µf .

Results at NLO+NLL and NLO+NNLL accuracy are compared in figure 6. The main

effect of the NNLL correction with respect to the NLL ones is an increase of the central

value of the bins in the tail of the M and Mtt̄ distributions. The scale uncertainty bands

turn out to be of similar size at NLO+NLL and NLO+NNLL in almost all bins shown.

Figure 7 shows the ratio of distributions at various level of precision to the central

value of the NLO+NNLL calculation in each bin. In particular, the blue band refers to

NLO+NNLL distributions, the dashed red band to nNLO distributions and the dashed

black band to distributions obtained from the NNLO expansion of the NLO+NNLL re-

summation. The NLO+NNLL expanded distributions differ from the NLO+NNLL distri-
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Figure 6. Differential distributions with µf,0 = M/2 at NLO+NNLL (blue band) compared to the

corresponding NLO+NLL calculation (red band). The uncertainty bands are generated through

scale variations.

butions by NNLL resummation effects of order N3LO and higher. These corrections can

be as large as 5 to 10 % in all bins shown, and are particularly relevant at higher values

of µf . The difference between the nNLO and the NLO+NNLL expanded to NNLO results

is due to constant NNLO terms, which are formally of order N3LL. Both the NNLO ex-

pansion of the NLO+NNLL calculation and the nNLO calculation underestimate the scale

uncertainty which one finds at NLO+NNLL accuracy, a fact which we already observed

by looking at the predictions for the total cross section. The envelope of the two NNLO

approximations (i.e. the black and red bands) spans almost all of the NLO+NNLL scale

uncertainty interval in each bin, with the exception of the tail of the ptT distribution, where

this envelope includes the NLO+NNLL scale uncertainty.
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Figure 7. Differential distributions ratios for µf,0 = M/2, where the uncertainties are generated

through scale variations.

4 Conclusions

In the present work we carried out the resummation of soft gluon emission corrections to

the associated production of a top-antitop quark pair and a Z boson. The resummation was

studied in the partonic threshold limit z → 1 and was implemented to NNLL accuracy.

Numerical calculations of the total cross section and differential distributions to NNLL

accuracy were carried out by means of an in-house partonic Monte Carlo code which we

developed for this work. The output of this code was matched with NLO calculations

obtained from MG5 aMC. The final outcome of this work is represented by the NLO+NNLL

calculations of the total cross section and differential distributions for the LHC operating

at a center-of-mass energy of 13 TeV presented in the previous section. The code can be

easily adapted to carry out phenomenological studies which include cuts on the top, antitop

and/or Z boson momenta.

With the choice of the factorization scale made in this work, we can conclude that the

soft emission corrections to tt̄Z production evaluated to NNLL accuracy lead to a moderate

increase of the total cross section and differential distributions with respect to NLO cal-

culations of the same observables. The residual perturbative uncertainty at NLO+NNLL

accuracy, estimated by varying the soft, hard and factorization scales as explained in the

text, is smaller than the NLO scale uncertainty, thus making our evaluations of the cross
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sections and differential distributions in tt̄Z production the most precise results currently

available in the literature.

This work completes a series of papers devoted to the study of the associated produc-

tion of a top pair and a colorless heavy boson to NLO+NNLL accuracy in the partonic

threshold limit. In [18] the associated production of a top pair and a W boson was studied

with the methods employed here for tt̄Z production, while the associated production of a

top pair and a Higgs boson at NLO+NNLL accuracy was considered in [17]. In all cases the

resummation was carried out in Mellin moment space. The hard and soft scales were cho-

sen in the same way as in the traditional “direct QCD” approach. Codes for the numerical

evaluation of the resummation are now available and tested for all of these three processes,

and can be further employed in more specific phenomenological studies, according to the

interests of the experimental collaborations. Within such interactions with the experimen-

tal community, a detailed study of the uncertainty associated with the choice of the PDFs

and to the value of αs(MZ), in the light of a comparison with the new measurements which

are expected in the forthcoming months, would be particularly illuminating.

At this stage, it would also be interesting to combine the NLO+NNLL calculations of

tt̄W , tt̄Z and tt̄H production with the electroweak corrections for these processes [11, 12].

In addition to this, the inclusion of the decays of the heavy particles in the spirit of [44]

is also possible. This would allow to put kinematic cuts on the momenta of the detected

particles.
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