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1 Introduction

Recent works [1–4] have introduced models of gauge/gravity duality based on quantum

error correcting codes and thus provided a new paradigm for studying holographic systems.

The models implement their codes via tensor networks that map bulk logical operators to

operators on a code subspace of a larger boundary Hilbert space. Such representations

were termed “holographic codes” in [2] and have been shown to exhibit key properties

of the AdS/CFT correspondence such as bulk reconstruction and the Ryu-Takayanagi

(RT) relation between entanglement in the boundary theory and the area of bulk minimal

surfaces [5, 6].

Indeed, as noted in [2], such holographic codes also reproduce an important part of

the 1/N2 corrections to RT found by Faulkner, Lewkowycz, and Maldacena (FLM) [7].

Recall [7] that with such corrections the entropy SA of a boundary region A takes the

interesting form

SA =
Area

4GN
+ Sbulk(ρW (A)) +

δArea

4GN
+ . . . (1.1)

The first term on the right is the leading-order Ryu-Takayanagi piece, which is local on the

entangling surface and independent of the state. The second accounts for bulk entropy in

the entanglement wedge W (A) defined by the RT minimal surface, and is thus generally

both non-local and non-linearly dependent on the bulk state. The third is an additional

effect from quantum corrections to the RT area, which is distinguished by being both local

on the RT surface and linear in the bulk state; i.e. it is an expectation value. The . . .

denote higher order terms in the 1/N expansion. In the codes from [2], the analogous

result contains the first two terms on the right-hand side.

It was suggested in [4] that the remaining δArea
4GN

term would also arise naturally from a

quantum error correction model containing operators O, associated with the boundary be-

tween the entanglement wedge of A and that of its complement Ā, that are reconstructible

from both A and Ā. Such O must lie in the center of either reconstructed algebra. The
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terms Area
4GN

+ δArea
4GN

then naturally correspond to aspects of the code that are, in some sense,

dependent on the values of operators in this center.

Much of the above structure is familiar from analyses [8–12] of entropy in lattice gauge

theories. In that context, the (electric [10]) algebra of operators acting in a bulk subregion

contains the electric fields E`|∂A along the links ` at the boundary of the subregion [8–

13]. And since Gauss’s law equates the E`|∂A with operators spatially separated from A,

the boundary electric fields commute with the entire subalgebra on A. In particular, the

canonical conjugates of the E` are closed Wilson loops that pass through `, which are not

elements of the subalgebras on either A or Ā when ` ∈ ∂A.

It is thus natural to consider modifications of the HaPPY code inspired by lattice

gauge theory and having additional degrees of freedom that live on the links of the bulk

lattice. This is done in section 2 building on the HaPPY pentagon code [2]. As desired, a

key feature of our model is the existence of bulk operators that are reconstructible on both

a boundary region and its complement. Such properties are derived in section 3 and follow

directly from results of [2]. We then demonstrate in section 4 that such central elements

do indeed endow our model with an FLM-like relation containing analogues of all three

terms shown explicitly on the right-hand side of (1.1). Section 5 concludes with some final

discussion. In particular, comparison with lattice gauge theory constructions suggests that

the FLM δArea
4GN

term might be usefully reinterpreted as part of the bulk entropy of metric

fluctuations in an appropriate extension of the physical bulk Hilbert space.

2 Edge mode construction

The fact that gauge theories are described canonically by a connection and a conjugate

electric flux makes it natural to describe these degrees of freedom as living on the links of

a discrete graph-like model, as is common in lattice gauge theory. This allows holonomies

to be described as paths through the lattice and the Gauss law constraint to be imposed

by requiring the electric fields on links attached to any vertex v to sum to the charge at v.

Since we wish to extend holographic codes in a manner reminiscent of bulk gauge

theories, we will introduce degrees of freedom below on the links of the tensor network

corresponding to the pentagon code of [2]. We will first review the relevant features of this

code and then describe the desired augmentations.

The pentagon code is a tiling of a hyperbolic disk where the fundamental unit is a six

index tensor T drawn in figure 1. The disk has finite size as the code is to be thought of

as a model of a holographic CFT with a cutoff. Except at the boundary of the disk, five of

the legs of the tensor are connected to adjacent tensors as depicted in figure 1. Even at the

boundary, we refer to these five as network legs. Each such tensor has one uncontracted

index representing a local bulk degree of freedom. If T is chosen to be a perfect tensor,

meaning that it describes an isometry from any subset of at most 3 legs to the rest, an

operator O acting on any bulk input can be “pushed” along three of the output legs to

three adjacent tensors: the action of O on T can be replaced by the action of O′ = T †OT

on one of the adjacent tensors.
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T

(a) (b)

Figure 1. (a) The fundamental tensor T of the pentagon code showing the bulk leg (dashed line,

red in color version) and the network legs (solid lines). (b) These units are contracted along their

networks legs to form a pentagonal tiling of the hyperbolic plane.

This procedure allows us to push local bulk operators to the boundary, as the negative

curvature of the hyperbolic plane ensures that each tensor has at least three legs pointing

toward the boundary in a suitable sense. Since T is a perfect tensor, one can also show [2]

that the entropy is given by an FLM-like formula having analogues of the first two terms

on the right-hand side of (1.1).

We wish to introduce additional degrees of freedom modeling bulk gauge fields in a

way that largely preserves these properties. As a first guess, one might add to each of the

non-bulk legs of the fundamental unit a three index tensor Gijk, whose role in the network

is to link two adjacent tensors to a common input modelling the electric flux of some bulk

gauge field. One might then choose the tensor structure

G = δijδjkδik (2.1)

to impose flux conservation along each each link in the network. This new fundamental

unit is drawn in figure 2. However, the values on all the network legs are then determined

by the inputs to the associated Gs, so there is no room for further input from the bulk

leg of T . Indeed, the network just described will annihilate all bulk states orthogonal to a

space in which the T inputs are determined by the G inputs (and where the G inputs also

satisfy a further set of constraints).

This unfortunate issue can be resolved by considering a model in which the above 6

bulk inputs are manifestly independent. We do so by extending the fundamental unit T

to the 6-fold tensor product ⊗6
m=1T = T ⊗ T ⊗ T ⊗ T ⊗ T ⊗ T and again connecting these

units as in the pentagonal tiling of the hyperbolic disk shown in figure 1 (b). Each factor

in the resulting tensor product will be called a “copy” of the network: the first copy will be

treated as an independent HaPPY network, while the additional copies will be contracted

with our 3-legged tensor (or indeed any isometry) G as described below.
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T G

G

G

G

G

Figure 2. An unsuccessful first attempt to add edge degrees of freedom. A copy of the tensor G

has been attached to each of the 5 network legs of the tensor T from figure 1. The bulk input leg

of G is drawn in small dashes. This attempt does not succeed, as the tensor annihilates bulk states

lacking particular correlations among the 6 bulk inputs.

T

G

T

Figure 3. Our code is built from 6 copies of the code from [2] by contracting the tensor G with a

pair of neighboring bulk inputs. The relevant two T -tenors are shown here, where we have chosen

them both to be part of the same copy of the pentagon code.

Thus far our network has 6 bulk input legs at each vertex. We will turn 5 of these

into inputs associated with edges instead. Consider some particular edge in the interior of

the disk and choose one input leg from each of the two vertices it connects (to simplify the

figures, both input legs are chosen from the same copy). Our edge-mode code is constructed

by contracting these legs with two legs of the tensor G; see figure 3. We will treat these two

legs of G as output legs; the remaining input is naturally associated with the edge under

consideration. Doing so for each edge uses 5 of the bulk legs at each vertex, leaving the 6th

free to serve as a normal bulk input at each vertex just as in the original code from [2]. To

be concrete, we take this 6th bulk input to live in the first copy of the network. Figure 4

shows a pictorial representation of the full edge-mode code including all six copies the

pentagon code. Note that we have added one G for every two bulk legs, and thus also for

every two T s.

The resulting code defines an isometry from the bulk degrees of freedom to the bound-

ary, and therefore has many of the same features as the code described in [2]. This is

because one may view this edge-mode code as six copies of the HaPPY pentagon code
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(a) (b)

Figure 4. (a) The structure near each vertex of our edge-mode code. The thick black legs carry 5

indices. The central input (long dashes, red in color version) corresponds to a bulk matter field as

in [2] while the inputs on each edge (short dashes, green in color version) are to be interpreted as

degrees of freedom of a bulk gauge field. (b) A sketch of the full edge-mode code.

together with a set of G tensors interposed between these codes and the bulk state. Since

the G tensors are isometries, composing them in this way with the original HaPPY network

yields another isometry. As described below, this observation allows us to import all of

the main technology from [2] including operator pushing, the greedy entanglement wedge

construction, and the Ryu-Takayanagi formula for entanglement entropy.1 However, the

additional tensors G introduce certain subtleties which we will discuss in depth.

3 Operators in the center and bulk reconstruction

We now consider properties of our code associated with subregion duality, showing that

our model leads to the bulk reconstruction of algebras with centers. This reproduces the

structure suggested in [4]. Here we view the tensor network of our edge-mode code as an

isometry from a bulk Hilbert space Hbulk defined by the set of all bulk inputs (both edge

and vertex) to a boundary Hilbert space Hbndy defined by the set of network links that

reach the boundary of the hyperbolic disk. For simplicity of notation, we follow standard

practice and use the above isometry to identify Hbulk with its image Hcode in Hbndy. Bulk

operators are then maps from Hbulk = Hcode to itself.

1One notable property of the HaPPY network that our tensor network does not preserve is its symmetry

group, which is a discrete subgroup of SL(2,R). Because each layer of our code is associated to a preferred

direction at each pentagon, the introduction of these additional layers breaks the symmetry of the original

network. Fixing this problem for a single pentagon is a straightforward matter of permuting the HaPPY

layers at the same time one acts with the subgroup of SL(2,R). Though this approach will be frustrated

when one attempts to apply it to the full network we have defined, we expect that that our construction

could be modified so as to allow this symmetry to be preserved. However, we will not pursue such a

modification as the symmetry plays no role in what follows.
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As in [1, 2, 4], we shall say that a bulk operator O lies in the algebra MA that can

be reconstructed from a region A of the boundary if (and only if) there exists an operator

O(A) with support in A such that

O(A) |ψ〉 = O |ψ〉 and

O(A)† |ψ〉 = O† |ψ〉 ∀ |ψ〉 ∈ Hcode . (3.1)

Note that, with this definition, bulk operators O1 ∈ MA1 and O2 ∈ MA2 for non-

intersecting regions A1 and A2 must commute. In detail, on Hcode we have

[O1,O2] |ψ〉 = O(A1)
1 O2 |ψ〉 − O(A2)

2 O1 |ψ〉
= O(A1)

1 O(A2)
2 |ψ〉 − O(A2)

2 O(A1)
1 |ψ〉

=
[
O(A1)

1 ,O(A2)
2

]
|ψ〉 = 0. (3.2)

In the first step we have used the fact that bulk operators preserve Hcode, while the final

step uses the fact that all operators in A1 commute with those in A2. As a result, any bulk

O lying in both MA1 and MA2 must be a central element of both algebras.

This is precisely the structure suggested by [4] as the natural quantum-error-correction

model of FLM corrections to the Ryu-Takayanagi relation. It is useful to contrast this

situation with that of the HaPPY code, where reconstruction on A succeeds for any operator

in the greedy entanglement wedge w∗(A) (or greedy wedge for short) defined by the greedy

algorithm of [2].2 The boundary of this greedy wedge consists of two parts, one lying on

the boundary of our hyperbolic disk and the other in the interior of the disk. We refer

to the latter as the greedy entangling surface γ∗A. In our edge-mode code, we define a

corresponding greedy wedge and γ∗A using only the tensors T associated with our 6 copies

of the pentagon code. When we then add the additional G tensors, some bulk operators

(G-inputs) act on links that straddle the resulting γ∗A. Only certain bulk operators acting

on such links can be reconstructed on A, and those operators will typically lie in the center

of the algebra of operators on A.

The essential point can be illustrated by considering only a pair of T s (TL/R) that are

linked by a single G as in figure 3. We take the one bulk edge input to be a single qubit

that feeds into G, and we take G to map

|0〉 → |00〉 and |1〉 → |11〉 (3.3)

as in (2.1). For this reason we refer to G as the copying tensor below. The perfect tensors

TL/R each have 4 uncontracted legs which we treat as proxies for the left and right halves

of the boundary.

One bulk operator of interest is the Pauli σz defined by σz|0〉 = −|0〉, σz|1〉 = |1〉
acting on the bulk edge input. The structure of G allows one to push σz through G onto

2The greedy wedge associated with a region A on the boundary is constructed by first taking all tensors

with at least three legs contained in A. Next all tensors with at least three legs contracted with this set of

tensors are included, and this procedure continues until there are no more tensors to add.
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Figure 5. Pushing σz through G.

either output leg of G: writing G = |00〉 〈0|+ |11〉 〈1|, it follows that

Gσz = − |00〉 〈0|+ |11〉 〈1| = σ(L)
z G = σ(R)

z G. (3.4)

Here σ
(L/R)
z denotes a corresponding Pauli matrix acting on the output of G that feeds

into TL/R as depicted in figure 5. It follows that we can reconstruct σz in the left boundary

by pushing σ
(L)
z through TL. But the same procedure allows us to reconstruct σz as an

operator acting only on R by pushing σ
(R)
z through TR. So as above σz must lie in the

center of ML, and also of MR.

As a result, the other Pauli operators σx, σy at our bulk edge input cannot be recon-

structed from either L or R alone. But these operators can still be reconstructed if we are

granted simultaneous access to both sets of boundary sites. Indeed, σx satisfies

Gσx = |00〉〈1|+ |11〉〈0| = σ(L)
x σ(R)

x G. (3.5)

We may then push each of σ
(L/R)
x through its respective T to the boundary, and so any

boundary region whose greedy entanglement wedge includes both TL and TR will be able

to reconstruct the σx that acts between them. σy will also be reconstructible on the region,

and σz will not be central.

Returning to the full edge-mode code, we may consider the greedy wedge for any region

A on the boundary. Bulk operators in this wedge may be generated by taking sums and

products of the following three types of ‘local’ operators: (i) operators that act on inputs

at a single vertex, (ii) operators acting on a single link that lies in the interior of the greedy

wedge, and (iii) operators acting on a single link that straddles the corresponding greedy

entangling surface.

Operators of type (i) are precisely the bulk operators defined in [2] and act on the first

copy of the code constructed in section 2, so as in [2] such operators lie in MA. Operators

of type (ii) were shown above to be equivalent to a pair of operators acting on tensors T on

either side of the link, thus they also lie in the interior of the greedy wedge. In particular,

each member of the pair acts on the leg of T that was interpreted in [2] as a bulk input of

a pentagon code. So again such operators lie in MA.

For operators of type (iii), there are two cases. When the operator acts like σz above

it can be replaced by a single operator acting on the adjacent tensor T lying inside the

greedy wedge. It acts on a leg that was interpreted in [2] as a bulk input of a pentagon

code and so can be reconstructed in A. However, other operators on this edge input cannot

generally be reconstructed in A. Indeed, when the relevant edge e also straddles the greedy
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entangling surface of the complementary (Ā) boundary region3 it follows as above that σz
lies in the center of both MA and MĀ.

We close this section by noting that our model admits a broad class of generalizations

preserving the above properties. The point is that the above arguments depended only on

G copying the input into both outputs. In particular, this makes G and isometry from any

one leg to the remaining two, allowing us to push operators of type (ii) as above to a two

site operator completely contained in the greedy wedge. This remains the case if we break

the symmetry between the first (input) leg of G and the output legs (second and third) by

replacing (3.3) with any map of the form

G : Hin → (Hin ⊗Haux)L ⊗ (Haux ⊗Hin)R, G|α〉 7→ |α〉|ψ(α)〉|α〉. (3.6)

Here {|α〉} is a basis for the input Hilbert space Hin (which we call the copying basis),

|ψ(α)〉 is a state on an auxiliary product Hilbert space Haux⊗Haux, and the tensor factors

marked L,R in (3.6) correspond respectively to the two output legs of G. As a concrete

example, one may consider

G : |0〉 → |0000〉 , |1〉 → |1〉 ⊗ 1√
2

(|00〉+ |11〉)⊗ |1〉 , (3.7)

which has

|ψ(0)〉 = |00〉 , |ψ(1)〉 =
1√
2

(|00〉+ |11〉) . (3.8)

The generalization (3.6) allows us to make direct contact with the extended-lattice

discussion [11–13] of entropy in lattice gauge theories. We will in particular follow the

construction of [13], which considered regions of a lattice with the boundary γ of the region

taken to intersect only links (i.e., no vertices lie on γ). Each link was then divided into two

parts, with separate Hilbert spaces defined on the parts on either side of γ. The original

link carries a Hilbert space Hin, which may be thought of as defined by the ‘electric’ basis

{|R〉} with R ranging over all representations of the gauge group. The entropy of the chosen

region is defined in [13] by taking, for each R, the state on the corresponding two half-links

to be the maximally-entangled pure state |ψ̃〉RR on two copies (one for each half-link) of

the representation R. The operation mapping the original lattice to the extended lattice

of half-links may then be cast in the form (3.6) by taking {|α〉} = {|R〉} and |ψ(R)〉 to be

supported on some dim(R) dimensional subspaces of each copy of Haux, and in which it is

unitarily equivalent to |ψ̃〉RR. Here Hin has dimension equal to the (potentially infinite)

number of representations, and the dimension of Haux is correspondingly infinite. It is thus

natural to apply this version of our edge-mode code when the bulk theory on the links is

a lattice gauge theory.

3For the entanglement wedges defined by minimal surfaces in gauge/gravity duality, this would always

be true in a pure state as the entanglement wedge of A is the complement of that for Ā. In contrast, in the

model of [2] there can be a region that lies in neither the greedy wedge for A nor that for Ā. The existence

of such a region is to be regarded as an artifact of the model associated with discretization of the bulk

spacetime; see section 4.1 for further discussion.
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4 Subsystem entropy and edge-mode codes

We now turn to the issue of how our code relates to various discussions of holographic

entropy. In particular, following [2] we show that the entropy of a boundary region A can be

written in a form analogous to the explicit terms in the FLM formula (1.1), but in constrast

to the original HaPPY code, for general codes of the form (3.6) there is a non-trivial term

playing the role of δArea
4GN

. This is to be expected from the algebraic entropy analysis of [4],

though we give a direct calculation in section 4.1. To allow proper comparison, we first

review the results of [4] before beginning our computation. We save discussion of the result

for section 5, where examination of the lattice gauge theory edge-mode codes described

below (3.6) and comparison with [11–13], [10] will suggest that, in a corresponding analysis

of linearized gravity, the FLM δArea
4GN

term would be precisely the difference between an

extended-lattice bulk entropy analogous to that of [13] and an algebraic entropy analogous

to that of [10].

The general structure of entropy in holographic codes was studied in [4]. For an error-

correcting code with complementary recovery4 with respect to some von Neumann algebra

MA on Hcode it takes the form

SA = S (ρ,MA) + tr (ρLA) (4.1)

in a code state ρ, where A is a subsystem of the boundary Hilbert space. The first term

is the entropy of ρ with respect to the von Neumann algebra MA associated to A, while

the second is the expectation value of a linear operator (LA) lying in the center of MA. It

was proposed that the tr (ρLA) corresponds to the first and third ( Area
4GN

and δArea
4GN

) terms

in (1.1), while the S (ρA,MA) term corresponds to the second (S(ρW (A))) term in (1.1).

If MA has a non-trivial center, any operator in MA is block-diagonal, with blocks

labeled by eigenvalues α of the center operators:

OA =
⊕

α

O(α)
A . (4.2)

Since operators diagonal in {α} can be reconstructed on Ā as well as on A, such elements

of MA are, in effect, “measured” by the system Ā. As a result, for any code state ρ the

state ρA = TrĀρ on A is also block-diagonal in {α}. We may thus write ρA =
⊕

α pαρ
(α)
A in

terms of normalized states ρ
(α)
A . The entropy of ρ with respect toMA can then be defined

as −tr (ρA ln ρA) using the representation (4.2), so we have

S (ρ,MA) = −
∑

α

pα ln pα +
∑

pαS
(
ρ

(α)
A

)
, (4.3)

with S
(
ρ

(α)
A

)
= −tr

(
ρ

(α)
A ln ρ

(α)
A

)
.

4In parallel with [2], when γ∗
A = γ∗

Ā our code satisfies this requirement for the algebra MA on Hcode

defined by bulk operators in the greedy wedge w∗(A) together with those operators diagonal in {α} on the

boundary γ∗
A .
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By contrast, the second contribution to the entanglement in (4.1) depends on the

details of the code. Since LA lies in the center of MA, it takes the form

LA =
⊕

α

sα1α. (4.4)

1α is the identity matrix on the block α and the sα are just numbers.

Since the algebras relevant to the original HaPPY code had trivial centers, a primary

goal of our work is to manifest this structure in a holographic code. When the center is

trivial there is only one value for the index α and (4.3) becomes the tautalogy S(ρA) =

S(ρA) and the tr(ρLA) term becomes independent of the state (though it still depends on

A). As reviewed in section 4.1 below, in the HaPPY code this constant is given by the

logarithm of the bond dimension χ times the length of the minimal surface anchored to the

boundary of A. This term is then interpreted as a model for the leading Ryu-Takayanagi

term in the holographic entanglement entropy, so that it is natural to think of χ as large.

Similarly, the S(ρ,MA) term is interpreted as modeling the second term in (1.1).

4.1 Entropy from edge modes

We now compute the entropy of an arbitrary boundary region A in our edge-mode code

with an arbitrary bulk state. To the extent that our code satisfies the assumptions of [4],

the result must take the form (4.1). The goal of the calculation is thus to determine the

explicit form of LA for our edge-mode code, as well as to take into account small violations

of the complementary recovery assumption of [4] (which are also present in the original

code [2]). We will see that LA takes the form of a local density on the entangling surface,

as appropriate for the term that gives rise to the Area
4G and δArea

4G pieces of the holographic

entanglement.

It is useful to begin by reviewing results for the pentagon code of [2] on which our edge-

mode code is strongly based. In order to arrive an an explicit FLM-like form, we rewrite

the original arguments of [2] as a tensor network computation. We begin by thinking of the

code as a map from bulk states |ψ〉bulk to boundary states |ψ〉bndy. In figure 6, this map is

thought of as a tensor network built out of 3 parts: the greedy wedges w∗(A), w∗(Ā), and

a residual bulk region X =
(
w∗(A) ∪ w∗(Ā)

)
excluded from both w∗(A) and w∗(Ā). Here

the long overline denotes the complement in the bulk.

We may of course also use this network to map bulk density matrices ρbulk to boundary

density matrices ρbndy. Although ρbndy is defined on the entire boundary, tracing over Ā

gives a reduced density matrix ρA on boundary region A. The associated tensor network

is shown in figure 7, displaying the different roles performed by network links cut by γ∗A,

those cut by γ∗
Ā

, and those cut by both. We then recall that w∗(Ā) defines an isometry

(which we will also denote as w∗(Ā)) from the associated bulk indices and the network

edges cut by γ∗
Ā

to Ā, i.e. it satisfies

[w∗(Ā)]†w∗(Ā) = 1, (4.5)

with 1 being the identity on the space of inputs. As a result, the tensor network may be

simplified to that shown in figure 8.
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=| ibndy

A Ā

| ibulk
ba bā

w⇤(A) w⇤(Ā)X

bx

(a)

A Ā

i

j

k

�⇤
A �⇤

Ā
j

k

i

i

j

j

k

k

i

(b)

Figure 6. In (a) the network that computes the boundary state, broken into pieces corresponding

to the wedges w∗(A), w∗(Ā), and the residual region X. In general all three regions receive inputs

from bulk legs. In (b) we label the links cut by γ∗(A) and γ∗(Ā) with j and k respectively, and the

links cut by both with i.

⇢A =

i

j k

ba bā bā

i

jk

ba

⇢bulk

bx bx

w⇤(A) w⇤(Ā)

X X†

w⇤(A)†w⇤(Ā)†

Figure 7. The reduced density matrix ρA on boundary region A described as a circuit and broken

into pieces corresponding to w∗(A), w∗(Ā), and X. The j links describe network edges cut by γ∗A,

the k links describe network edges cut by γ∗
Ā

, and the i links describe those cut by both.

⇢A = i

j k j

ba ba

w⇤(A)

X X†

w⇤(A)†

bx bx

⇢w⇤(A)[X

Figure 8. A simpler network for ρA obtained from figure 7 by using the fact that w∗(Ā) defines

an isometry from the indices k, i, and bā to the boundary Ā.
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i

j
k

j0

i0

ba b0a

⇢�⇤
A
= X X†

bx bx

⇢w⇤(A)[X

Figure 9. The state ργ∗
A

used to compute SA.

A key part of this network representation of ρA is given by the state ργ∗A , defined on the

Hilbert space Hw∗(A) ⊗Hγ∗A
as show in figure 9. Here Hw∗(A) is the space associated with

bulk inputs to w∗(A), and Hγ∗A
is the space defined by network edges cut by γ∗A. Figure 8

then implies that we may write

ρA = w∗(A)ργ∗Aw
∗(A)† (4.6)

in terms of the isometry w∗(A). Since isometries preserve von Neumann entropy, the

entropy of the boundary region A may be written

SA = −tr (ρA ln ρA) = −tr
(
ργ∗A ln ργ∗A

)
. (4.7)

To the extent that we can ignore the excluded region X, we have that ρw∗(A)∪X ≈ ρw∗(A)

and the density matrix ργ∗A is

ργ∗A ∼ ρw∗(Ā) ⊗ 1i ⊗ 1j (4.8)

up to normalization. The von Neumann entropy SA is then precisely

SA = S
(
ρw∗(A)

)
+ |γ∗A| lnχ , (4.9)

in terms of the bond dimension χ of each network edge and the number |γ∗A| of edges cut

by γ∗A (i.e. the total number of i and j indices).

More generally, the region X introduces further corrections to (4.9). While such cor-

rections are difficult to compute explicitly, subadditivity and the Araki-Lieb inequality

(|SB − SC | ≤ SBC ≤ SB + SC) can be used to bound departures from this estimate in

terms of χ and the number of j edges as defined in figure 7 (those cut by γ∗A but not by

γ∗
Ā

). In special cases X can be quite large, but this is not generally the case [2]. Indeed,

X can often be made to vanish by moving a small number of boundary points from A

to Ā and/or from Ā to A. It is thus natural to think of think of X as an artifact of the

discrete toy model used here. As a result, although there is no limit of our model in which

the region X can be systematically neglected in all cases, as in [2] we choose to ignore the

region X when considering implications for gauge/gravity duality. We thus consider only

cases with trivial X = ∅ below.
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i i0

ba b0a

⇢�⇤
A
=

⇢w⇤(A)

G G†

bei b0ei

ei e0i

Figure 10. A state ργ∗
A

that may be used to compute SA in our edge-mode code when X = ∅.
Every leg i cut by γ∗A has an associated bei and ei, although only one such leg is drawn for simplicity.

With this technology in hand, we now turn to our edge mode code. Our code attaches

bulk states |ψ〉bulk, EMC to a product of HaPPY codes via an isometry G built from the

copying tensors G, which we take here to be of the general form (3.6). The end result is

thus just what would be obtained by feeding the state

|ψ〉bulk, HaPPY = G |ψ〉bulk, EMC (4.10)

into a product of HaPPY codes. Thus all that remains is to replace ρw∗(A)∪X in figure 9

with the corresponding density matrix obtained from the state with Gs inserted.

Now, since G is an isometry from its single input to its pair of outputs, adding G-

tensors with both outputs in w∗(A) will not change the entropy of figure 9 and may be

ignored. Furthermore, the trace over w∗(Ā) in passing from figure 6 to figure 8 removes all

G’s with both outputs in w∗(Ā). When X = ∅, G has no outputs in X.

Thus the only remaining Gs to consider are those with one output in each of w∗(A),

w∗(Ā). They will act on bulk indices which we may organize in pairs containing one

unprimed index (a ket index of ρw∗(A)) and the corresponding primed index (a bra index

of ρw∗(A)). As shown in figure 10, the w∗(Ā) output legs of the pair of G-tensors acting on

these bulk indices are contracted by the above-mentioned trace over w∗(Ā).

The effect of these final Gs on the entropy is easy to understand by thinking about the

action of a single G on any pure-state input |ψ〉 =
∑

α cα|α〉. Due to the copying property

of G in (3.6), the action of G on |ψ〉 may be thought of as a von Neumann measurement;

i.e., as a unitary transformation that entangles the original system (here (Hin)L, which we

take to lie in w∗(A)) with a ‘measuring apparatus’ (Hin ⊗Haux)R in w∗(Ā). At the same

time, it also creates further entanglement with (Haux)L. Tracing over the w∗(Ā)-output

then decoheres the state into the copying basis {α} so that ργ∗A is block-diagonal in this

basis, and the entanglement with (Haux)L means that the |α〉〈α|-blocks appear tensored

with the state

ρaux(α) = tr(Haux)R (|ψ(α)〉〈ψ(α)|) . (4.11)

on (Haux)L. Thus we have

ργ∗A =
⊕

{α}

p{α}

([
ργ∗A

]
{α}
⊗ ρaux({α})

)
, (4.12)
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i i0

ba b0a⇥
⇢w⇤(A)

⇤
↵i

⇢�⇤
A
=

M

{↵}
p{↵} ( )

h
(↵i)
in h0

in
(↵i)

h0
aux

(↵i)h(↵i)
aux ⇢aux(↵i)

Figure 11. The state ργ∗
A

in terms of the states
[
ργ∗

A

]
{α} obtained by decohering the tensors G

in figure 10 with respect to the α basis. The index h
(αi)
in refers to the subspace of (Hin)L at link i

associated with the eigenvalue α, and similarly for h
(αi)
aux . Again we have drawn only one link i for

simplicity.

with p{α} =
∏
i |cαi |2, ρaux({α}) = ⊗i ρaux(αi), and i again ranging over all links cut by

both γ∗A and γ∗
Ā

. The relevant
[
ργ∗A

]
{α}

may be described by noting that, for the same

reasons as above, ρw∗(A) is also block diagonal in {α}. We may thus write

ρw∗(A) =
⊕

{α}

p{α}
[
ρw∗(A)

]
{α} . (4.13)

The
[
ργ∗A

]
{α}

are then given by figure 9 (here with X = ∅ and thus no j, j′ indices) in terms

of the
[
ρw∗(A)

]
{α} defined by (4.13). Putting everything together, we draw the network

representation of (4.12) in figure 11.

This gives

SA = |γ∗A| lnχ+
∑

{α}

p{α}

(
− ln p{α} + S(

[
ρw∗(A)

]
{α}) + S (ρaux({α}))

)

= S(ρ,MA) + |γ∗A| lnχ+
∑

{α}

p{α}S (ρaux({α})) , (4.14)

where χ now denotes the total bond dimension associated with the T tensors (i.e. 6 times

that of the HaPPY code for the code described in section 2). Here we have used (4.3) to

identify the “bulk entanglement” term S(ρ,MA). Note that (4.14) takes Harlow’s form (4.1)

if we define LA by (4.4) and make the further identification

s{α} = |γ∗A| lnχ+ S (ρaux({α})) =
∑

i

[lnχ+ S (ρaux(αi))] . (4.15)

This manifestly takes the form of a local density on the entangling surface. The contribution

of the first term in (4.15) to SA is independent of the state, analogous to the leading Ryu-

Takayanagi piece in the entropy. The contribution of the second piece to SA linearly second

depends on the bulk state, like the δArea
4G correction of [7].

As a concrete example, consider the copying tensor defined in (3.7). It is easy to show

that s0 = 0 and s1 = ln 2.
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5 Discussion

We have constructed edge-mode holographic codes by composing (copies of) the HaPPY

pentagon code [2] with certain ‘copying tensors’ G (3.6). The results provide toy models

for holography that implement the structure described in [4]. In particular, subregions A

of the boundary allow the reconstruction of bulk algebras M having a non-trivial center

associated with the interior boundary of the (greedy) entanglement wedge w∗(A), i.e. with

the holographic code analogue of the Ryu-Takayanagi minimal surface. As a result, subject

to the same caveats as for the original HaPPY code [2], our model gives rise to an FLM-

like relation (4.1). We expect that a similar edge-mode extension can be applied to other

holography-inspired codes including [3, 14, 15].

In particular, the linear operator LA of [4] receives a contribution that depends on the

choice of copying tensor G. For general G this term depends non-trivially on the bulk state.

This behavior is in contrast to that of contributions from the |γ∗A| lnχ term in χ{α}. Because

the |γ∗A| lnχ term does not depend on α, it contributes
∑
{α} p{α}|γ∗A| lnχ = |γ∗A| lnχ to

the entropy for any bulk state.

Due to this distinction, and following the spirit of [4], it is natural to think of the

|γ∗A| lnχ term in (4.14) as modeling the Ryu-Takayanagi term in (1.1), the S(ρ,MA) term

as corresponding to Sbulk(ρw(R)), and the remaining term
∑
{α} p{α}S (ρaux({α})) from

tr (ρLA) as modeling FLM’s term5 δArea
4GN

.

However, perturbative gravity is a gauge theory having much in common with Yang-

Mills theory. It is thus interesting to consider in detail the form of (4.14) when the bulk

degrees of freedom are taken to describe Yang-Mills. As described at the end of section 3,

it is natural to do so by introducing a lattice gauge theory on the links of the network links

and attaching the bulk state to 5 pentagon codes using copying tensors that transform this

lattice into an extended lattice as in [9, 13]. Only 5 pentagon codes are required as, for the

moment, we suppose that the gauge theory defines all bulk degrees of freedom.

The resulting system can now be viewed in two different ways. The viewpoint used

thus far is that the bulk system consists of lattice gauge theory on the network links and

that we act on this system with our edge-mode code to obtain the associated boundary

state. This leads to (4.14) and the above identification of terms. However, the result can

equally-well be viewed as a bulk system defined by an extended lattice, in which each link

has been replaced by a pair of half-links, acted on by a code that is precisely the tensor

product of 5 copies of the HaPPY pentagon code. We may then use the result (4.9), taking

the first term on the right to be the entropy S(ρext
w∗(A)) defined by the extended bulk lattice.

The entropy of such extended lattice states was discussed in [13], and letting αi range over

5While the FLM δArea term is often described as being due to back-reaction, it in fact contains all

perturbative terms in the metric fluctuations. In general, this includes a linear contribution from free

gravitons at order G−1/2. But in common contexts the vacuum expectation value of h vanishes and δArea
4GN

is of order G0
N = 1.
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representations Ri of the gauge group as at the end of section 3, takes the form

S
(
ρext
w∗(A)

)
=
∑

{R}

p{R}

(
− ln p{R} + S

([
ρw∗(A)

]
{R}

)
+
∑

i

ln(dim Ri)

)

= S(ρ,MA) +
∑

{α}

p{α}
∑

i

S (ρaux(αi)) , (5.1)

as expected for agreement with our previous computation of SA.

The final result (5.1) becomes particularly interesting if we assume that corresponding

results for metric fluctuations are given by a naive extrapolation. Here we choose the

analogue of dim R to match results from the replica trick; i.e., from FLM. In particular,

since Newton’s constant GN does not appear in the canonically normalized action for

linearized gravity, it is clear that no linearized gravity analysis can lead directly to the

O(G−1/2) term in δArea
4GN

discussed in footnote 5.6 Given the identification in that context

of the FLM δArea
4GN

term with the second term on the right hand side of (5.1) as described

above, such extrapolation suggests that — at least to some order in the bulk Newton

constant — the FLM relation may be rewritten as simply

SA =
Area

4G
+ S

(
ρext
w(A)

)
, (5.2)

with the first term computed in some classical background and the second defined by an

appropriate extended lattice construction for the perturbative metric fluctuations. The

form (5.2) is particularly natural given the reliance of FLM on the replica trick and the

agreement between the replica trick and extended lattice constructions noted in [16, 17].

It would thus be very interesting to study the perturbative gravity story more completely,

either on a lattice or in the continuum with an appropriate corresponding extension of the

Hilbert space, and to establish any relation to the fully non-linear extended classical phase

space for gravity described recently in [18].
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