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1 Introduction

For many purposes, it is useful to study the dynamics of relativistic strings in the framework

of a Wilsonian effective field theory on the string worldsheet. This enterprise is known as

effective string theory. A manifestly Poincaré-invariant version of this theory was invented

in [1]. This theory was more recently elucidated by embedding it into the Polyakov formal-

ism [2, 3], which simplifies the construction of vertex operators and the renormalization

of short-distance singularities of the worldsheet path integral. This simplified covariant

formalism has been applied to calculate subleading terms in the perturbative expansion of

the mass-squared of rotating string states at large angular momentum J [4].

Open relativistic strings with freely moving endpoints are of particular interest, as

these objects are believed to describe the dynamics of confined quark-antiquark pairs in

gauge theories in the planar approximation. In the covariant formalism, the condition of

freely moving endpoints corresponds to a Neumann boundary condition on the embedding

coordinates Xµ, at leading order in the expansion around large angular momentum J . To
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analyze higher-order corrections and renormalize such theories correctly, it is important

to characterize the spectrum of boundary operators in the open worldsheet theory with

Neumann boundary conditions, as has been done [5–7] for operators in the interior of the

worldsheet and for boundary operators with Dirichlet boundary conditions.1

In all cases, local operators are organized hierarchically under an assignment of X-

scaling dimension, which encodes the scaling dimension of the term in the standard Wilso-

nian sense. (We use the term “X-scaling dimension” to distinguish the X-scaling from the

scaling dimensions of operators under the residual Virasoro symmetry of the Polyakov for-

malism after gauge-fixing the metric. The Virasoro algebra is a residual gauge symmetry of

the Polyakov action, and the weights of all physical states and operators under it are deter-

mined by gauge symmetry.) The spectrum of X-scaling dimensions of operators depends

on the details of the particular effective string theory under consideration, but in all cases

is bounded above, and continues discretely downwards towards −∞. Negative X-scalings

come from negative powers of the “dressing” operator, a distinguished bilinear invariant of

X, which compensates the conformal scaling dimension of a nonsingular numerator. The

numerators are polynomials in derivatives of X.

For bulk operators and Dirichlet boundary operators, the operator spectrum is orga-

nized according to a rule for dressing operators for each case, specifying the unique operator

that can occur to negative or fractional powers, and which fractional exponents can occur.

In the case of bulk operators in conformal gauge, the dressing rule amounts to the condition

that operators are dressed with negative integer powers of the dressing operator I11, where2

Ipq ≡ ∂p+X · ∂
q
−X . (1.1)

For boundaries where some coordinates X have Neumann boundary conditions and

some have Dirichlet, the dressing rule for boundary operators is that the operator dressing

consists only of half-integer powers of B(11) ≡ Ẋ2
Neumann, where we introduce the notation

B(pq) ≡ ∂
p
σ0X · ∂qσ0X (1.2)

for boundary operators. In each case there exist a number of simple motivations for the

dressing rule, which we shall discuss briefly in section 2. For instance, the correct result

for the dressing rule can be stated in terms of a pure power principle: the dressing comes

in negative powers of the most relevant bilinear invariant operator. In the example above,

the dressing consists of powers of the operator O = B1/2
(11).

The dressing rule in the case of Neumann boundary conditions is equally simple but

less familiar. We will show below that at Neumann boundaries, operators are dressed with

negative quarter-integer powers of the operator B(22), or, equivalently, negative integer

powers of the operator O(quark) ≡ B
1/4
(22), which encodes the leading physical effect of an

infinitesimal change in the mass of the quark. This is another instance of the pure power

principle: the operator O(quark) is the invariant with the largest X-scaling in the theory

with Neumann boundaries.
1For strings with all spacelike directions satisfying Dirichlet boundary conditions, the organization of

operators has been supported by numerical evidence from lattice simulations [8–11].
2Our worldsheet coordinate conventions are σ± ≡ σ0 ± σ1 = τ ± σ, ∂± = 1

2
(∂0 ± ∂1).
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The dressing rule for Neumann boundary operators is particularly physically signifi-

cant, because there is an anomaly term in the Lagrangian density with a universal coef-

ficient3 that has a non-integrable divergence near a Neumann boundary. This singularity

does not signify a breakdown of the effective theory. Rather, the singularity is removed by

a familiar procedure of short-distance regularization, and the divergence in the quantum

effective action when the regulator is removed must be cancelled by a boundary countert-

erm. In this case the counterterm is the quark mass operator O(quark) itself [4]. Thus,

demonstrating the renormalizability of the effective string theory with Neumann boundary

conditions depends on the use of the correct dressing rule.

Moreover, the universality of the large-J spectrum (and other observables) at relative

order J−1 also depends on the use of the correct dressing rule: there are neither bulk nor

boundary terms in the action with adjustable coefficients at order |X|0 (which is order

|X|−2 relative to the Nambu-Goto action). Amplitudes are therefore universal at relative

order J−1, since the length of a string scales with its angular momentum as (length) ∼ J
1
2 .

If there were such an operator at order |X|0, amplitudes would not be universal at relative

order J−1. Demonstrating the absence of order-|X|0 operators at Neumann boundaries,

and therefore the universality of the asymptotic intercept of the Regge trajectory, thus

depends on the correct derivation and application of the dressing rule.

The goal of the paper is to explain the origin of the dressing rule for boundary operators

on strings with freely moving endpoints. In a covariant gauge, in which all D embedding co-

ordinates appear on equal footing as dynamical worldsheet fields, the leading-order bound-

ary condition is that all D coordinates obey Neumann conditions ∂normalX
µ = 0 at the

boundary. For concreteness, we will work in the simplified covariant formalism introduced

in [3], with the (diff)×(Weyl) symmetry fixed by taking unit gauge gab = ηab. However

this is only to simplify the discussion: all other known consistent formalisms and gauges

for the effective string, can be obtained by gauge-fixing the simplified covariant formalism.

We will work within the context of the simplified covariant formalism introduced in [3],

which includes an independent intrinsic metric gab transforming under a Weyl symmetry

gab → exp {2ρ} gab. The anomaly in the gauge symmetry is compensated by an explicit

anomaly term. The Nambu-Goto string is recovered from the (partial) gauge fixing con-

dition that sets gab equal to the induced metric gab → ∂aX · ∂bX, which fixes the Weyl

symmetry while leaving the diffeomorphism symmetry unfixed. In this (partial) gauge-

fixing, the anomaly term does not need to be added and its physical effect appears in

the quantum effective action. In the standard unit gauge gab → ηab, its effect appears

through an explicit term in the bare action. Unit gauge simplifies calculations consider-

ably in practice, and we shall always structure our derivations with unit gauge in mind.

The dressing rule in other gauges can be obtained straightforwardly by gauge-fixing the

simplified-covariant expressions.

3We are using the term “universal” according to its usual meaning in the context of effective field theory,

i.e., that the value of the asymptotic intercept does not depend on the values of adjustable parameters in

the effective worldsheet action. If one considers a universality class with different low-energy degrees of

freedom or symmetries, the value of the asymptotic intercept may of course differ.
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To provide some context, and to guide the subsequent analysis, we will begin in the

following section by motivating the dressing rule on heuristic grounds. In section 3 we will

provide a more concrete derivation of the dressing rule starting from an ultraviolet-complete

worldsheet theory. As a demonstration that the conclusions are in fact independent of the

details of any particular UV completion of the effective string theory, we take yet another

approach in section 4. There, we adopt a displaced-boundary UV regulator scheme and

show how the dressing rule emerges from this regulator for a few specific operators of

interest. We conclude in section 5 with a broader discussion of some of the physical con-

sequences of the dressing rule. As supplementary material to both the study of boundary

operators in effective string theory, and to the larger goal of understanding certain aspects

of the strong-coupling dynamics of QCD via string theory, we provide in the appendices

a more detailed and fully gauge-invariant calculation of the asymptotic Regge intercept (a

result originally presented in [4]), as well as other calculational details that support the

conclusions drawn in the main body of the paper.

2 Heuristic motivation

We have proposed a boundary operator dressing rule in effective string theory, which states

that at Neumann boundaries, operators are dressed with negative quarter-integer powers of

the operator B(22). In this section we will motivate this claim on heuristic grounds, based

on minimality, naturalness and on the pure power principle discussed above. Following

this, we will turn to a more detailed derivation of the Neumann-boundary dressing rule.

2.1 Dressing rules for bulk and Dirichlet boundary operators

Minimality. We begin with an overview of bulk worldsheet operators and Dirichlet

boundary operators. In ref. [1], the dressing rule for bulk operators was assumed rather

than derived. There, Polchinski and Strominger (PS) introduced a singular interaction

term in the Lagrangian of order |X|0 for spacetime dimension D 6= 26:

LPS =
β

2π

I12I21

I2
11

, (2.1)

which compensates for the conformal anomaly by contributing ∆c = 26−D to the central

charge of the conformal dynamics of the embedding coordinates Xµ. Rather than basing

the form of this term explicitly on general restrictions descending from the symmetries and

constraints of the theory, the authors arrived at eq. (2.1) based on the specific requirement

that the conformal anomaly cancel for small perturbations around the static string solution.

The denominator of the singular term is I2
11, from which it follows that integer powers of

I11 must be allowed in the bulk operator dressing rule. Singularities in operator products

between powers of the anomaly term above have denominators that are integer powers of

I11 only. To all orders in large-|X| perturbation theory, then, the rule that bulk operators

appear dressed strictly with integer powers of I11 is stable against quantum corrections.

An I11 dressing rule can thus be taken as the minimal rule that is consistent with anomaly

cancellation and stable against quantum corrections. It is this notion of minimality that

we will propose be applied to the case of Neumann boundaries.
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Naturalness and genericity: the pure power principle. For bulk operators and

Dirichlet boundary operators, the dressing operator is the unique monomial with the lowest

X-scaling obeying the required symmetries, and it is automatic that such an operator is a

conformal tensor. In other words, the dressing rule for bulk and Dirichlet operators takes

the form of negative integer powers of the most relevant operator that can be expressed

as a power of a bilinear invariant. Below we will promote this structure to an ansatz for

dressing operators in general, and apply it to the case of Neumann boundaries.

As discussed briefly in [3], the bulk dressing rule follows in some sense from naturalness.

If an operator of nonmarginal conformal weight is dressed to conformality with some other

operator, and we assume the latter is generic (in the sense of being a linear combination

of all possible operators of the appropriate conformal weight), then at large J the dressing

operator will be dominated by powers of a single operator, I11 (that is, the operator that

contains the most powers of X per conformal dimension). The same conclusion holds for

mixed Dirichlet-Neumann boundaries, such as those describing strings with fixed, static

endpoints: for mixed Dirichlet-Neumann boundary conditions,4 naturalness dictates that

the dressing operator be dominated by powers of B(11). For comparison, with strictly

Dirichlet boundary conditions we expect the dressing rule should be formulated purely in

powers of (Ẋ ′)2.

We will generalize this notion of naturalness to the case of Neumann boundaries as well.

However, as a final comment, it is worth noting that it is a logical possibility that there may

exist other types of boundary conditions or singularities where there is not a unique leading

large-X invariant operator, and thus no unique candidate for a dressing operator. In these

cases it would clearly be more difficult, for instance, to arrive at universality statements

regarding terms arising in the perturbative analysis of the physical spectrum.

2.2 The Neumann dressing rule

Let us now proceed with a proposal for an operator dressing rule at Neumann boundaries

that satisfies the same properties as the bulk and Dirichlet dressing rules summarized above.

To motivate the claim on heuristic grounds, we begin with the ansatz that our dressing

operator be a monomial in bilinears in derivatives of the embedding coordinates X. To

satisfy the principle of naturalness, we require the monomial to have the highest possible

X-scaling for its worldsheet conformal dimension (or, equivalently, the lowest possible

worldsheet conformal dimension for its X-scaling). Both X-scaling and (in the semiclassical

regime) conformal dimension are additive under multiplication, so the ratio of X-scaling

to worldsheet conformal dimension is maximized by powers of a single bilinear. Therefore,

4The distinction between “mixed Dirichlet-Neumann” and “purely Dirichlet” is in some sense gauge-

dependent. In static gauge, where the time direction is not an independent variable, an infinitely heavy

static quark is represented by a “purely Dirichlet” boundary condition on the unconstrained degrees of

freedom, i.e., the transverse Goldstone bosons. In conformal gauge, the same boundary condition is mixed,

because the timelike embedding coordinate X0 is treated as an independent degree of freedom before

restricting to the physical Hilbert space, and so takes Neumann boundary conditions. The case of purely

Dirichlet boundary conditions in covariant gauge is potentially relevant to gauge instantons in planar QCD,

and can’t even in principle be described in static gauge.
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we will identify the nonvanishing bilinear with lowest possible worldsheet conformal scaling

dimension and see that it is unique up to operator equivalences.

First, one can use the equations of motion to reduce all derivatives of X to the form

∂p0X or ∂p0∂1X, where Neumann boundary conditions can be used to eliminate the latter.5

The only invariant candidate operators remaining are then of the form

B(pq) = ∂p0X · ∂
q
0X , (2.2)

introduced in (1.2). It is important to note here that when we eliminate other possible

operators from this search, we are only doing so modulo operators of lower X-scaling.

For the purpose of estimating leading-order scalings and proceeding order-by-order in J ,

this is always sufficient, and whenever we refer to eliminating operators by appealing to

constraints or to the equations of motion, we will always mean it in this sense.

The operator B(11) is proportional to the leading-order stress tensor, and thus vanishes

as an operator, modulo operators of lower X-scaling. The operator B(12) is a tangential

derivative of B(11), and also vanishes, modulo operators of lower X-scaling. Next we come

to the operators B(22) and B(13). The sum of these is proportional to a second tangential

derivative of B(11), and we can eliminate B(13) as an operator in favor of B(22), modulo

operators of lower X-scaling.

The operator B(22) itself is an independent, gauge-invariant operator. For instance,

it takes a nonzero expectation value, proportional to J , in the lowest state of angular

momentum J that satisfies the Virasoro constraints. It is natural to propose, then, that

B(22) should be the dressing operator for effective string theories with Neumann bound-

aries. More precisely, and following the pure-power principle, the proposed dressing rule

states that the basis for symmetry-preserving boundary operators in conformal gauge, with

Neumann boundary conditions, is

O ∈ Span

{
B−

1
4

(∆−1)

(22) ·
∏
i

B(piqi) ; ∆ ≡
∑
i

pi + qi

}
. (2.3)

Before moving on to a more principled derivation of this rule, we pause to make some

final comments about the proposed B(22) dressing rule for Neumann boundaries:

• Ordinarily, we expect that perturbations of the Lagrangian in conformal gauge must

be Virasoro primaries of weight one. The operator Ba(22) is not Virasoro primary;

the lowering operator L1 does not annihilate it identically, but gives an operator

proportional to B(12) Ba−1
(22). The operator B(12) vanishes on the constraint space,

so the quark-mass term I1/4
(22) is gauge-invariant in matrix elements between states

satisfying the constraint. In order to see the gauge-invariance of the term off the

constraint space, one could define the boundary perturbation in a fully conformally

invariant way by starting with the Weyl-invariant Î22 ≡ I22− (I12I21)/I11, which is

a conformal tensor, and taking it to the boundary. The fully (diff)×(Weyl)-invariant

version of Î(22) in the simplified covariant formalism is given in reference [3]. For our

purposes this is not necessary.

5Where we now replace explicit worldsheet directions σ0,1 with (0, 1) indices.
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• The rule has direct phenomenological consequences: the leading gauge-invariant

boundary operator B(22) has been studied in other gauges [12, 13], and the inser-

tion of its fourth root into the boundary action corresponds to the leading effect of

an infinitesimal variation of the quark mass at large J .

• Finally, in actual UV-complete worldsheet theories, where the non-Goldstone degrees

of freedom can be integrated out, the dressing rule for Neumann boundaries in the

effective theory is indeed the one we have described. In what follows, we will demon-

strate this in full detail in one such UV completion of the effective theory, taking the

form of a perturbed Liouville theory [3]. We will also comment in more detail on how

this rule satisfies the minimality principle outlined above.

3 Effective strings from perturbed Liouville theory

We have now motivated the dressing rule for Neumann boundaries on heuristic grounds.

Namely, Neumann boundary operators are dressed with negative quarter-integer powers of

the operator B(22). In this section we derive this statement rigorously from the starting

point of a particular UV complete worldsheet theory.

In [1], Polchinski and Strominger present a microscopic model from which an effective

string description might emerge, in terms of a (D + 1)-dimensional string theory with a

Liouville direction. At large D, the PS-Liouville Lagrangian looks like

L =
|D|
24π

(∂φ)2 + µ2e−2φ + µ′−2e2φI2
11 + ( φ− independent ) . (3.1)

Here, µ and µ′ are arbitrary mass parameters. One can introduce open strings into this

model by introducing a space-filling brane into the Liouville theory.

3.1 Origin of the dressing rule for bulk operators

We begin our analysis of this theory by extracting the form of the dressing rule for bulk

operators noted above. The intent is that this will provide context for the subsequent

analysis in the boundary theory. In particular, we derive the I11 dressing rule for the

closed string theory, motivated on general grounds in section 2.1 above. We will derive this

dressing rule in a class of UV-complete models that generalizes the construction of ref. [1]

to a considerable extent, showing that the dressing rule emerges for completely generic

gauge-invariant and Poincaré-invariant operator perturbations of the theory. The ideas in

this subsection are to some extent implicit in [1]; we make them explicit to show that they

indeed generalize to the case when open strings are included.

First, we redefine the Liouville field in such a way that the second and third terms in

the equations of motion scale equally, and the kinetic term for φ can be neglected in the

large-X regime:

eφ =
√
µµ′ I−

1
2

11 e
φ̂ ,

φ = φ̂− 1

2
log

(
I11

µµ′

)
. (3.2)

– 7 –
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Note that this field transformation becomes singular whenever µ or µ′ vanish. This re-

definition is specifically adapted to a situation where φ gets a minimum of its effective

potential for a long string, which happens only when both µ and µ′ are nonzero.

Under this field redefinition, the Lagrangian above becomes

L = L|X|2 + L|X|0 +O(|X|−2) , (3.3)

with

L|X|2 ≡
µ

µ′

(
exp

(
2φ̂
)

+ exp
(
−2φ̂

) )
I11 +

(
terms subleading in D

)
=

2µ

µ′
I11 +

(
terms involving φ̂ fluctuations

)
+

(
terms subleading in D

)
,

L|X|0 ≡ LPS +

(
terms involving φ̂ fluctuations

)
+

(
terms subleading in D

)
. (3.4)

In particular, the order |X|0 term agrees with the PS anomaly Lagrangian up to terms of

order |D|0, as pointed out in [1].

We observe that the effective theory in [1] can be derived from a much larger class of

microscopic models described by perturbations of the (D + 1)-dimensional string theory

with one Liouville direction. Adding higher-derivative terms dressed to conformality with

Liouville exponentials leads to the same scaling for φ̂ and the same coefficient for the

anomaly term in the effective Lagrangian at leading order. For instance, consider a more

general Lagrangian of the form

L =
|D|
24π

(∂φ)2 + µ2e−2φ +
∑
q≥0

aq µ
−2qexp (2qφ) Iq+1

11

=
|D|
24π

(∂φ)2 + I11 F (y) , (3.5)

with

y ≡ µ−2 I11 exp (2φ) , (3.6)

where a0 is the microscopic string tension (i.e., the string tension in the full (D + 1)-

dimensional string theory), and a1, a2, · · · are the values of massive stringy condensates. If

(y0, F (y0)) is the global minimum of F (y), then we can shift the Liouville field to φ̂, where

eφ = µ
√
y0 I

− 1
2

11 e
φ̂ ,

φ = φ̂− 1

2
log

(
I11

µ2 y0

)
, (3.7)

whereby we obtain

L = L|X|2 + L|X|0 +O(|X|−2) ,

L|X|2 ≡ F (y0) I11 +

(
terms involving φ̂ fluctuations

)
+

(
terms subleading in D

)
,

L|X|0 ≡ LPS +

(
terms involving φ̂ fluctuations

)
+

(
terms subleading in D

)
. (3.8)
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Here, the global minimum F (y0) assumes the role of the effective string tension in the

D-dimensional effective string theory. The coefficient of the PS anomaly Lagrangian is, as

expected, independent of the form of F (y) and in agreement, at leading order in |D|, with

the value required [1] to compensate the O(|D|) contribution to the central charge deficit.

The terms linear in φ̂ vanish at orders |X|2 and |X|1; as with (3.2), we have chosen

the shift in φ (3.7) so that φ̂ = 0 is a solution to the classical equations of motion for φ

with the O(|X|0) kinetic terms omitted. The mass-squared of the φ̂ fluctuation is of order

|X|2, and it can be integrated out. The leading contribution of the path integral over φ̂

is of order |D|0 |X|0, which acts only to shift the coefficient of the Polchinski-Strominger

anomaly term by one unit of central charge.

We can now perturb the microscopic string theory with arbitrary gauge-invariant op-

erators and investigate the structure of resulting perturbations of the effective theory. It is

immediately clear that the bulk dressing rule is respected. Perturbations of the microscopic

theory are generated by monomials in derivatives of X and φ, dressed with Liouville expo-

nentials. But, as we have seen, the classical elimination of the Liouville degree of freedom

φ is such that all Liouville exponentials become powers of I11 in the effective theory.

Now let us consider several sources of error whose discussion we have omitted in the

above derivation of the bulk dressing rule; the corresponding corrections will be seen to

respect the same dressing rule as the leading terms, in both the large-D and large-X sense.

Corrections to the classical solution for φ. In the above discussion, we shifted φ so

that φ̂ = 0 is a minimum to accuracy up to and including order |X|−1. We can study the

effects of the kinetic term order by order in a large-|X| expansion, however. Expanding

the classical solution φ∗ as φ
(0)
∗ + φ

(1)
∗ + · · · , where φ

(n)
∗ is of order |X|−2n, one can solve

for each order iteratively. For instance, in the case of the original PS-Liouville model [1],

we have6

φ
(1)
∗ =

|D|
24π

µ′

4µ

∂∂̄φ
(0)
∗

I11
. (3.9)

This correction obviously satisfies the dressing rule. More generally, it is straightforward

to show inductively that the nth correction to the classical solution is always of the form

φ
(n)
∗ = Pn +

|D|
24π

µ′

4µ

∂∂̄φ
(n−1)
∗
I11

, (3.10)

where Pn is a polynomial in φ
(1)
∗ through φ

(n−1)
∗ , whose total X-scaling is exactly

|X|−2n. (The polynomials Pn come from the large-|X| expansion of the exponentials

exp
{
±2

(
φ

(1)
∗ + φ

(2)
∗ + · · ·

)}
.) Thus, the dressing rule holds to all orders in the large-

|X| expansion of the classical solution at large D.

In the above, we have used leading-order, large-D expressions for the classical action.

At finite D, we replace |D| with 26−D and supplement I2
11 with subleading D-dependent

terms, proportional to D−1 (∂−X)2(∂+X)2, in the form of the irrelevant perturbation.

6Here, ∂ and ∂̄ are the usual derivatives with respect to the holomorphic conformal coordinates on the

worldsheet.
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Such terms are required to make the perturbation a Virasoro primary of weight one (in

particular, see eq. (20) of [1]).

Subleading large-D corrections from quantum effects. The large-D regime sup-

presses quantum corrections to the classical elimination of the φ̂ fluctuations, in terms of

contributions to the effective action for the X fields. We can also consider corrections to

the Wilsonian action for X in perturbation theory when we integrate out φ̂ at one or more

loops. The resulting effective action is of course complicated, but we emphasize that all

Feynman diagrams correcting the classical effective action for X give terms obeying the

bulk dressing rule.

To see this, let M2
φ̂

be the tree-level mass of the φ̂-fluctuation, while
{
C

(3,4,5,···)
φ̂

}
denote, collectively, its cubic, quartic, quintic, etc., self-couplings. The general structure

of the effective action at a given order of perturbation theory will always have elements of{
C

(p)

φ̂

}
in the numerator, and powers of Mφ̂ in the denominator.

In models (3.1) or (3.5), the mass of the φ̂ fluctuation is exactly proportional to I11,

and so the form of the effective action, order by order in perturbation theory, is given

by polynomials in Ipq, dressed with negative powers of I11. In 1/D perturbation the-

ory, singular operators in the effective action can come only from φ̂-propagators, since the

interaction vertices for φ̂ have only positive powers of X in the UV theory. Beyond pertur-

bation theory, the singular X-dependence of operators come entirely from the mass scale

at which new degrees of freedom enter, namely M2
φ̂
∝ I11, plus terms subleading in |X|.

We therefore infer that the bulk dressing rule holds for all 1/D quantum corrections to the

effective string action as well, away from loci on the worldsheet where I11 vanishes.

3.2 Demonstration of the boundary dressing rule

We now turn to the boundary theory to demonstrate explicitly the form of the dressing rule

for boundary operators in effective string theory, for the Polchinski-Strominger deformed

Liouville theory. We do this in the most direct possible way, expanding around a nonsin-

gular classical solution for the Liouville field φ and integrating out massive fluctuations.

The first step is thus to understand how the classical solution for the Liouville field scales

in the near-boundary region.

We start by expanding I11 near the boundary:

I11 = −1

2
B(22)σ

2
1 +O(σ3

1) . (3.11)

The expansion contains higher terms of the form B(pq)σ
p+q−2, with B(pq) defined in eq. (1.2).

Such terms are obtained by Taylor expanding I11 near the boundary and using the free

EOM and free Virasoro constraints. There are also terms coming from corrections to the

free-field EOM due to the interactions with the Liouville field. In this section we will

estimate the J-scaling of such corrections and the effective terms they generate after the

elimination of the Liouville field.

Order by order in σ, equation (3.11) is an operator statement in the low energy Hilbert

space, rather than just a property of a particular classical solution or matrix element in a

given state. We now pause to emphasize this distinction.
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In effective string theory, the degrees of freedom are small fluctuations around a lowest-

energy classical solution carrying certain conserved global quantum numbers. The lowest-

lying classical solution carrying a given set of charges is always automatically Virasoro-

primary and preserves a ‘helical’ symmetry, i.e., an invariance under a combined time

translation and a global symmetry transformation, which in this context is a rotation of

some of the target-space coordinates. (For more details on the helical solution, see eq. (10)

of [4], or appendix A.) In the helical solution, the values of the invariants Ipq and B(pq) are

all time-independent, and equation (3.11) is simply an identity between time-independent

expectation values. However, the existence of the operator expansion (3.11) does not

depend on the helical property: the expansion in fact holds true even for general time-

dependent perturbations with energies of O(1) above the large-J ground state. For the

sake of brevity we are not explicitly indicating any time dependence, though both sides

of equation (3.11) can be assumed to depend arbitrarily on σ0, as consistent with the

equations of motion and the Virasoro constraints.

Starting with (3.1), and motivated by (3.11), we invoke the following change of variables

ˆ̂
φ = φ+

1

4
log

(
|D|
24π

B(22)

µ3 µ′

)
, φ =

ˆ̂
φ− 1

4
log

(
|D|
24π

B(22)

µ3 µ′

)
, (3.12)

along with the coordinate rescaling

ˆ̂σ1 = B
1
4

(22)

(
|D|
24π

)− 1
4

µ
1
4 µ′−

1
4 σ1 , σ1 ≡ B−

1
4

(22)

(
|D|
24π

) 1
4

µ−
1
4 µ′

1
4 ˆ̂σ1 . (3.13)

As with (3.2), this field redefinition and coordinate transformation make sense only if both

µ and µ′ are nonzero. These transformations have been performed so that the unique

time-independent classical solution for the shifted field
ˆ̂
φ approaches a fixed limit in the

scaling region of fixed ˆ̂σ1, as |X| → ∞.

Of course, we can extend this to a rescaling of both worldsheet coordinates by taking

ˆ̂σ0 = σ0 , (3.14)

so that

∂1 = B
1
4

(22)

(
|D|
24π

)− 1
4

µ
1
4 µ′−

1
4 ∂ˆ̂σ1 ,

∂0 = ∂ˆ̂σ0 +
1

2

B(23)

B(22)

ˆ̂σ1∂ˆ̂σ1 . (3.15)

The redefinition of the σ0 derivative from a fixed-σ1 to a fixed-ˆ̂σ1 partial derivative does

not affect the leading J-scalings. For instance, we have

∂0φ = ∂ˆ̂σ0
ˆ̂
φ− 1

2

B(23)

B(22)
+

1

2

B(23)

B(22)

ˆ̂σ1∂ˆ̂σ1
ˆ̂
φ . (3.16)

The latter two terms are order J0 and are subleading relative to the J-scaling of the

σ0-derivative, which we will see is generally O(J
1
4 ) (see eq. (3.21)).
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Classical solution. In the classical ground state (i.e., the helical solution), the solution

for
ˆ̂
φ is always time-independent:

∂2
ˆ̂σ1

ˆ̂
φ =

ˆ̂σ4
1

4
exp

(
2

ˆ̂
φ
)
− exp

(
−2

ˆ̂
φ
)

(ground state) . (3.17)

The boundary condition for this equation states that
ˆ̂
φ obeys the Neumann condition at

ˆ̂σ1 = 0 and continues smoothly to all values of σ1 = O(1). Let us now define
ˆ̂
Φ as the

classical ground state solution for
ˆ̂
φ. For

ˆ̂
Φ′(0) = 0, by adjusting the initial value

ˆ̂
Φ(0), it

is easy to see that the solution goes to +∞ at finite ˆ̂σ1 for
ˆ̂
Φ(0) >

ˆ̂
Φ(crit.)(0), and to −∞

at finite ˆ̂σ1 for
ˆ̂
Φ(0) <

ˆ̂
Φ(crit.)(0), where

ˆ̂
Φ(0)(crit.) is some critical initial condition lying

between the two singular trajectories. In other words, the only value of
ˆ̂
Φ compatible with

the boundary condition and the existence of a smooth solution is
ˆ̂
Φ(0) =

ˆ̂
Φ(crit.)(0). It

is straightforward to numerically determine the value of
ˆ̂
Φ(crit.)(0). For the ground-state

classical solution,

ˆ̂
Φ(0) = 0.4067 , (3.18)

so we find that the full boundary value of Φ is

Φ(0) = 0.4067− 1

4
log

(
|D|
24π

B(22)

µ′µ3

)
, (3.19)

at large J . Note that the specific value (3.18) depends on the details of the perturbation of

the Liouville theory. A different form for the perturbation, e.g., a different set of aq in the

ansatz parametrized in (3.5), would give the same coefficient of log(B(22)) in equation (3.19),

but a different constant term.

Frequencies of normal modes. Now let us estimate the frequencies of normal modes

of φ̆ ≡ ˆ̂
φ− ˆ̂

Φ, localized near the boundary. Such modes are of the form

φ̆ = exp
(
iω ˆ̂σ0

)
f(ˆ̂σ1) , (3.20)

where the functional dependence of f(ˆ̂σ1) is fixed in the J → ∞ limit. At large J , the

second and third terms in (3.16) are negligible, so the linearized equation of motion for the

φ̆ fluctuation can only be satisfied if ω scales as J
1
4 :

ω = O(J
1
4 ) . (3.21)

Now we retain only the leading (first) term in (3.16), and use (3.11) to get a leading-

order action for the shifted Liouville field
ˆ̂
φ in the scaling region σ1 ∼ B−1/4

(22) . The ac-

tion (3.1) becomes

L =

(
|D|
24π

)(
∂ˆ̂σ0

ˆ̂
φ
)2

−
(B(22) |D|

24π

) 1
2
(
µ

µ′

) 1
2
{(

∂ˆ̂σ1
ˆ̂
φ
)2

+exp
(
−2

ˆ̂
φ
)

+
ˆ̂σ4

1

4
exp

(
2

ˆ̂
φ
)}

+O(|X|−1) . (3.22)
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So, at large J , the term ∂0 is approximated by ∂ˆ̂σ0 , and the equation of motion becomes

∂2
ˆ̂σ0

ˆ̂
φ = B

1
2

(22)

(
|D|
24π

)− 1
2
(
µ

µ′

) 1
2
{
∂2

ˆ̂σ1

ˆ̂
φ+ exp

(
−2

ˆ̂
φ
)
−

ˆ̂σ4
1

4
exp

(
2

ˆ̂
φ
) }

. (3.23)

If we rewrite quantities in terms of
ˆ̂
Φ =

ˆ̂
φ − φ̆, then the normal mode equation for the

mode f in (3.20) takes the form

ω2f

(
ˆ̂
σ1

)
= Θ · f

(
ˆ̂
σ1

)
, (3.24)

where

Θ ≡ B
1
2

(22)

(
µ

µ′

) 1
2
(
|D|
24π

)− 1
2
{
−∂2

ˆ̂σ1 + 2 exp
(
−2

ˆ̂
Φ
)

+
ˆ̂σ4

1

2
exp

(
2

ˆ̂
Φ
) }

. (3.25)

Quantum perturbation theory at large J . Prior to the rescaling executed above, it

looked as though the theory contained any number of operators that could become singular

at the boundary. We now see, however, that there is indeed a controlled perturbative

expansion of the effective Lagrangian near the boundary in φ̆ propagators and vertices at

large J , by using (3.12) and (3.13) in the action. Translational invariance near the boundary

is strongly broken, so the Gaussian terms for the propagator are position-dependent, but,

even so, their J-scaling is simple and can be read off directly from the Lagrangian for φ̆.

That is, the Gaussian action has the form

L(φ̆)
Gaussian =

(
|D|
24π

)(
˙̆
φ2 + φ̆Θ(gauss) φ̆

)
, (3.26)

where Θ(gauss) is just the operator in (3.25). Therefore, the φ̆-propagator is always domi-

nated by a position-dependent mass-squared term scaling as B1/2
(22), which goes as J

1
2 . Thus,

the on-shell frequencies of near-boundary modes will always scale as J1/4.

3.3 From UV operators to effective boundary operators

Now we would like to show that any gauge invariant boundary operator in the microscopic

theory, or likewise any bulk operator in the scaling region ˆ̂σ1 = O(1), goes over to an

operator satisfying the B(22)-dressing rule on the boundary in the effective theory.

To begin, it is useful to write the full expansion of the bulk operator I11 near the

boundary:

I11 =

∞∑
j=2

O(j)
11 σ

j
1 =

∞∑
j=2

Ξj O(j)
11 B

−j/4
(22)

ˆ̂σj1 , (3.27)

where

O(j)
kl ≡

1

j!
∂j
σ1Ikl

∣∣∣∣
σ1=0

, (3.28)
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and Ξ is a numerical constant given by

Ξ ≡
(
|D|
24π

) 1
4

µ−
1
4 µ′

1
4 . (3.29)

The O(j)
kl consist of operators of the form B(pq) with p+ q = j + k + l.

Now, we consider the most general monomial perturbation of the Lagrangian respecting

Poincaré and worldsheet scale invariance:

Lpert = eMφ
∏
p,q≥1

INpq
pq

∏
r≥1

(∂rφ)Kr , (3.30)

where M , Npq and Kr are some arbitrary exponents. For this contribution to be of mass

dimension two, we require

−M +
∑
p,q≥2

(p+ q)Npq +
∑
r≥1

rKr = 2 . (3.31)

Using this restriction to eliminate M , let us rewrite Lpert as

Lpert = e−2φ
∏
p,q≥1

SNpq
pq

∏
r≥1

T Kr
r , (3.32)

where

Spq ≡ exp {(p+ q)φ} Ipq , Tr ≡ exp (rφ) ∂rφ . (3.33)

The objects Spq and Tr have scaling dimension zero, so Lpert is now strictly of mass

dimension two.

We can now compute constraints on the |X|-scaling of terms in Lpert in the boundary

region. In terms of the shifted field
ˆ̂
φ (3.12),

exp {(p+ q)φ} ∼ B−(p+q)/4
(22) exp

{
(p+ q)

ˆ̂
φ
}
, (3.34)

so the Spq contribution to the |X|-scaling of Lpert at the boundary is 2 − (p+ q)/2. Now,

the only Spq that can potentially contribute positive |X|-scaling overall are those for which

p+ q ∈ {2, 3}. I11 scales at the boundary as −1
2 B(22) σ

2
1 = −1

2 Ξ2B1/2
(22)

ˆ̂σ2
1, so

S11 = exp (2φ) I11 ∼ −
µµ′

2
B0

(22) exp
(

2
ˆ̂
φ
)

ˆ̂σ2
1 = O(|X|0) . (3.35)

Similarly, I12 and I21 at the boundary behave like ±1
2 B(22) σ1 ∼ ±1

2 B
3/4
(22)

ˆ̂σ1, so S12 and

S21 go as ±1
2 B

0
(22) exp

(
3

ˆ̂
φ
)

ˆ̂σ1 = O(|X|0).

The B(22) scaling of factors of the form Tr can be analyzed in a similar fashion.

The B(22)-scaling of contributions from exp (rφ) are B−r/4(22) , while the dominant B(22) con-

tributions from the φ derivatives in Tr descend from ∂1 derivatives, and these become

∂r1 = Ξ−r Br/4(22)∂
r
ˆ̂σ1

in our rescaled coordinates. So the Tr objects themselves enter with

B(22)-scaling B0
(22). Thus, we have seen that the B(22)-dressing rule is satisfied in the effec-

tive theory, for any operator insertion in the UV theory of the general form (3.30).
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As a specific example, we now demonstrate that the boundary Liouville term in the

microscopic theory descends to a quark mass term in the effective string theory. In this

regime, we can calculate the numerical value of the coefficient of the quark mass operator

in the effective string theory derived from the Polchinski-Strominger deformed Liouville

theory, with space-filling branes in D + 1 dimensions, and a boundary Liouville term:

Lboundary = µB exp (−Φ)→ 0.6558µB

(µ3 µ′)
1
4

(
|D|
24π

) 1
4

B
1
4

(22) . (3.36)

When we expand the X field in vev plus fluctuations, the terms with fluctuations have

lower J-scaling than the B(22) term evaluated in the classical solution. Therefore, the

coefficient of the J1/4 term in the open string mass-squared is set directly by the coefficient

in equation (3.36), regardless of the details of the state, so long as its excitation number

above the ground state is not parametrically large in J .

3.4 Quantum corrections leave the boundary dressing rule unmodified

To show that quantum corrections do not affect the dressing rule at the nonperturbative

level, all we need to establish is that the energies of the modes we are integrating out go

as ωσ0 ∼ B1/4
(22). In a Wilsonian action, the dimensional suppression of a nonrenormalizable

effective term is generated by inverse powers of the frequencies of the modes that generated

the term when they were integrated out. Bulk terms are generated by integrating out bulk

modes of the Liouville field, whose bulk mass is proportional to
√
|I11|. On the other

hand, near the boundary, the dimensional suppression of boundary operators comes from

negative powers of the frequency of near-boundary modes of the fluctuations of φ. From

equation (3.22) we can see that the frequencies of these modes are of order

ω = O

(
B

1
4

(22)

(
|D|
24π

)− 1
4

)
. (3.37)

It follows that B(22) is indeed the operator dressing for all boundary operators. This is a

nonperturbative statement, and the powers of ω that appear — and therefore the powers of

B(22) that appear — depend on the full nonperturbative dynamics of the strongly coupled

conformal field theory through the anomalous dimensions of the operators they are dressing.

Note, however, that the form of the dressing, as opposed to its exponents, is the same as

it is in large-|D| perturbation theory: both the classical solution for φ and the propagator

for its fluctuations, contain only powers and logarithms of B(22).

4 A displaced-boundary regulator

To this point, we have been working from the starting point of a UV-complete worldsheet

theory, taking the form of a Liouville model coupled to the goldstone bosons X. As we

have seen, this ultraviolet completion provides a natural way to regulate the effective string

theory, giving the B(22)-dressing rule for effective Neumann boundary operators, as well as

the I11-dressing rule for bulk effective operators. Deriving the dressing rule from a UV-

complete theory, however, should not overshadow one very important point: the structure
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of these operator dressing rules is an intrinsic property of the effective theory. That is,

the operator dressing rules we have demonstrated above do not arise as an artifact of a

particular UV-completion of effective string theory. To illustrate this point in greater detail,

we can adopt a different regulation procedure that is not related to any particular physical

completion of the effective theory. For instance, we can work instead with an artificial

cutoff, which renders calculations tractable while preserving the underlying symmetries of

the worldsheet theory. The B(22)-dressing rule again emerges ineluctably in such schemes,

so long as one takes care to preserve worldsheet gauge symmetries,7 as well as the global

D-dimensional Poincaré symmetry.

One such regulator is defined by replacing the boundary of the worldsheet with a

displaced timelike boundary, moved slightly into the interior of the worldsheet by a fixed

distance ε. We refer to this scheme as the “displaced-boundary regulator.” For bulk op-

erators, the significance of the displaced boundary is that we integrate only up to the

displaced boundary rather than the real one, excising interaction terms from the strip at

the boundary. For boundary operators, we integrate along the displaced boundary rather

than the real one. For instance, for a quark mass, we simply let the worldline of the quark

run along the displaced boundary.

The spacelike displaement ε is measured with respect to the induced metric. This reg-

ulator is fully gauge invariant by construction, referring only to gauge invariant quantities,

and approaches the bare quark action when ε is taken to zero.

To avoid complications in the near-boundary expansion, we can define the induced

proper distance with respect to the free, rather than interacting, X-coordinates, which

is indeed equivalent to turning off all bulk interactions inside the excised strip. This is

a perfectly well-defined and gauge-invariant procedure, modulo one subtle complication:

when we work in the simplified covariant formalism, we need the anomaly term to maintain

gauge invariance at the quantum level. Therefore turning off the anomaly term in the near-

boundary strip is not a completely legitimate operation. However, the only effect of the

excision of the anomaly term is a variation of the quantum effective action by the Wess-

Zumino functional integrated over a strip of coordinate width proportional to ε
1
2 . This goes

to zero as ε→ 0, and gauge invariance is restored as the regulator is removed. Concretely,

we will see below that the effect of the near-boundary excision of the anomaly term is

equivalent to adding a gauge-invariant boundary counterterm, plus other boundary terms

that vanish in the limit ε→ 0.

Alternatively, we can define the induced proper distance with respect to the interact-

ing embedding coordinates. If we do so, we must separately regulate the bulk interactions

(including the anomaly term) and remove the associated divergences with boundary coun-

terterms again.8

7In this paper we work within the framework of the simplified covariant formalism for the bosonic

string [3], which is based on the Polyakov formalism with the addition of an anomaly-cancelling term. In

this formalism the gauge symmetries are worldsheet diffeomorphisms and Weyl transformations.
8We give an example of a regulator of this type in appendix A, where we perform a fully gauge-invariant

calculation of the asymptotic intercept. In this calculation, the excision of the strip is not needed, as the

only divergence comes from the bulk anomaly term, which we regulate explicitly.
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In what follows, we work through three examples of interest, and the displaced-

boundary regulator proposed here handles each differently. First, we consider boundary

terms. The naive quark-mass operator, regulated according to this scheme, requires a mul-

tiplicative renormalization in order to have nonzero matrix elements in low-energy states

in the limit where the regulator is removed. It is important to note that this is always

true when we are expanding in the limit where the quark mass is held fixed, at any finite

value, and J is taken to infinity. Other boundary operators, such as the integrated geodesic

curvature, or the proper acceleration operator, are proportional to the quark-mass operator

at leading order in J .

Second, we investigate fully gauge invariant bulk terms. For one such example, that of

the induced-curvature-squared term, we compute the leading divergence as the size of the

displaced-boundary regulator is taken to zero. Here again, the divergence is proportional

to the quark mass term, with a coefficient scaling as ε−5/2.

Finally, we consider the anomaly term itself, which we need to include when working in

the Polyakov formalism, in order to maintain gauge invariance at the quantum level [2, 3].

The naive near-boundary regulation of this term does not result in a gauge-invariant theory,

because the anomalous transformation of the free theory is cancelled only by the integral

of the PS term over the full worldsheet. In section 4.4, we show that gauge invariance is

restored in the limit ε → 0, by decomposing the integral of the PS term in the strip as a

gauge invariant operator (proportional to B1/4
(22)) and terms that vanish as ε→ 0.

More generally, and returning to the central lesson of the dressing rule, there is only

one invariant perturbation of the action of order J1/4, and all gauge-invariant operators

are just proportional to a single, linearly independent operator, B1/4
(22), at order J1/4. This

operator should be thought of as just the identity, dressed with a line element along the

boundary, expanded near the boundary and renormalized multiplicatively to give a finite

and nonzero value.

4.1 Definition of the displaced-boundary regulator scheme

To begin, we attach the worldline of the quark to the string worldsheet, separated from the

boundary by a fixed spacelike induced proper distance ε. That is, the distance from the

quark to the boundary is computed with respect to the induced metric on the worldsheet,

G
(ind)

σaσb ≡ ∂aX · ∂bX . (4.1)

The simplest gauge-invariant characterization of a trajectory near the boundary is defined

to be the set of interior points separated from the boundary by extremal spacelike geodesics

of length ε with respect to the induced metric.9 The spacelike geodesics of interest connect-

ing interior points to the boundary are simply slices of constant σ0, parametrized by σ1.

That is, the set of points lying at a fixed spacelike geodesic distance ε from the boundary

9In particular, the separation is characterized by spacelike geodesics of maximal length (in Lorentzian

signature), extending from an interior reference point to the boundary. See appendix B for further details

on the maximal geodesic in the near-boundary region.
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is just a trajectory of constant σ1:

σ1 = σ̃ = (σ0 − independent) . (4.2)

With this, we can work out the actual value of the coordinate location σ̃ of the near-

boundary trajectory, in terms of the induced proper distance ε.

Concretely, the induced proper distance is

ε =

∫ σ̃

0
dσ

√
G

(ind)
σσ =

∫ σ̃

0
dσ
√
∂σXµ∂σXµ =

∫ σ̃

0
dσ
√
−2I11 . (4.3)

Recalling the boundary expansion of I11 in eq. (3.11), we obtain

ε =

∫ σ̃

0
dσ
√
B(22)σ2 +O(σ3) =

1

2

√
B(22) σ̃

2 +O(σ̃3) , (4.4)

or

σ̃ =
√

2ε B−
1
4

(22) +O(ε) . (4.5)

The expressions in this section are again operator identities, and not simply properties

of the classical helical solution; this point warrants some discussion. The expansion of

I11 near the boundary in (4.4) receives corrections due to bulk interactions, just as it

did in the Polchinski-Strominger-Liouville UV completion, as discussed above (3.11). In

the UV-complete theory, the bulk interactions were nonsingular near the boundary, and

their near-boundary expansion was unproblematic. Strictly within the effective theory,

however, we have bulk operators that are explicitly singular near the boundary, where

these singularities are excised by the explicit cutoff at fixed induced proper length ε from

the boundary.

For instance, there are terms coming from the PS correction and from other corrections

to the free-field action and its constraints. The d’Alembertian on Xµ contains singular

terms such as βα′
I21I212
I411

∂+X
µ, leading to corrections to the r.h.s. of (3.11) of the form

βα′
I221I212
I411

σ2
1, for example, which, near the boundary, behave as

βα′
I2

21I2
12

I4
11

σ2
1

∣∣∣∣
boundary

→ βα′

σ2
1

. (4.6)

As noted above, we can deal with such singularities either by introducing a separate UV

cutoff for the bulk interactions, or by simply defining the induced geodesic distance with

respect to an embedding in which the embedding coordinates satisfy the free, rather than

interacting, EOM inside the excised strip. We take the latter approach in this section.

It is also important to note that, while ε is a number, σ̃(σ0) is actually an operator,

denoting the coordinate position at which the induced proper distance from the boundary

is equal to ε. The ε-dependent terms coming from the regulator enter in a series with

hierarchical J-suppression, determined by how many powers of the dressing operator B(22)

they carry in the denominator.
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There is a second kind of large-J suppression associated with the expansion of any

given operator into a classical background and quantum fluctuations, i.e.,

Xµ ≡ Y µ + Eµhelical , (4.7)

where Eµhelical is the helical classical solution, whose invariants (such as I11) are time-

independent. For any given configuration in the path integral, the length of the extremal

geodesic integrated out to σ1 = σ̃ in the boundary scaling region contains corrections

such as 1
2

√
B(22)σ̃

pOp, where Op is an operator of dimension p made of derivatives of Y ,

e.g., Op 3 (∂Y )p. Since σ̃ depends on the configuration and ε does not, it is better to

express the corrections to (4.5) in terms of fixed-ε quantities,

σ̃ =
√

2ε B−
1
4

(22)

(
1 +O(εp/2B

−p/4
(22) Op)

)
. (4.8)

Note, in particular, that the correction terms in the equation above will be suppressed both

by J and ε.

4.2 Boundary operators

We now expand some simple gauge-invariant operators near the boundary, with the bound-

ary proximity defined in a gauge-invariant way, based on the induced proper distance. The

key result here is that gauge invariant local operators have near-boundary expansions that

go as (const.) J0, with the constant depending only on the regulator and the Hamiltonian

of the system, and not at all on the state. In other words, the leading coefficient can be

theory-dependent, but not state-dependent within a given effective theory. After being

multiplied by the induced boundary line element to make a gauge-invariant perturbation

to the action, gauge-invariant terms scale as (const.)B1/4
(22), where the constant factor is

independent of the state.

Quark mass operator from naive quark action. The simplest case to consider is the

operator B(22), in which we simply take the identity, multiply it by a regulated induced

line element with a coefficient we can think of as a bare quark mass term. The naive quark

mass term thus appears as

S(quark mass) = M (bare)

∫
ds(induced) = M

∫
dρ

√
−dX

µ

dρ

dXµ

dρ
, (4.9)

where the integral is now understood to be taken over a timelike trajectory near the bound-

ary, and where the separation from the boundary is parametrized by the cutoff ε. Taking

the integral over an exactly lightlike boundary leads to a singular worldsheet Hamiltonian;

the nonsingular operator is obtained by rescaling the naive term. Stated another way,

after fixing a gauge-invariant scheme parametrized by ε to regularize the term, we make

an ε-dependent readjustment of the bare parameter M :

S(quark mass) = M (bare)(ε)

∫
ds(induced) . (4.10)
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As noted, the renormalization can depend on the scheme, and on the parameters of

the worldsheet Hamiltonian, but cannot depend on the state of the system. Therefore, it is

simplest to determine the scaling by simply inserting the quark mass term into the helical

solution. Evaluated on this trajectory, the line element in (4.9) goes as

dρ

√
−dX

µ

dρ

dXµ

dρ
= dτ

√
−Ẋ2 = dτ

√
−4I11

' dτ
√

2B(22) σ̃2 = 2 dτ ε
1
2 B

1
4

(22) , (4.11)

where we have used the Virasoro constraints to substitute −Ẋ2 ∼ −4 I11, and equa-

tion (3.11) to approximate I11 by −1
2 B(22) σ̃

2. Thus, the bare mass M (bare)(ε) must be

scaled as ε−
1
2 to recover a finite operator when ε is taken to 0:

M (bare)(ε) ∼ cquark ε
− 1

2 . (4.12)

We have discarded subleading terms on the r.h.s. of (4.11) such as εB(23)/B
3/2
(22). In general,

boundary operators contributing to σ̃ have scaling dimension −1 and so must come dressed

with an (ε2/B(22))
p+q−4

4 for every B(pq) in the numerator. The expansion of the formula for

σ̃ in boundary operators is therefore an expansion in (fractional) positive powers of ε2/Jα′.

Note that all throughout, we have taken the physical effective quark mass term, defined

as the J1/4 contribution to the mass-squared, to be zero prior to the perturbation (4.9).

In the presence of a nonzero quark mass coefficient, the boundary of the worldsheet is

slightly timelike at finite J , and the operator renormalization (4.12) may be deformed.10

However, the basic organization of boundary operators itself does not depend on the value

of cquark: the basis of boundary operators is still the set of arbitrary polynomials of X and

its derivatives, dressed with powers of B(22), so long as cquark is taken fixed and independent

of J as J is taken to infinity.11

Boundary operator: geodesic curvature. Another example of a boundary operator

is the geodesic curvature. Taking γ to be a curve of fixed σ, with unit tangent vector

u = dγ/ds, we have

u =
dγ

ds
=

(τ ′(ρ), σ′(ρ))

|gabσa′(ρ)σb′(ρ)|1/2

=
(1, 0)√
2|I11|

, (4.13)

where we have chosen the specific parameterization τ=ρ. The geodesic curvature squared is

κ2 = ucudDcu
aDdu

bgab . (4.14)

10We thank S. Dubovsky and V. Gorbenko for discussions of this point.
11Note that it is also possible to take a scaling limit where the coefficient of the B

1
4
(22) term is scaled as

J
3
4 , in which the velocity of the endpoint stays finite and the organization of boundary operators changes.

See, for instance, the discussion of rotating strings at large J and fixed endpoint velocity in [14].
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Expressing this quantity in terms of the embedding coordinates via the induced metric, we

obtain

κ2 =
1

4
(u0)4g11(g00,1)2 =

(Ẋ · Ẋ ′)2

(Ẋ · Ẋ)3
. (4.15)

Taken to the boundary cutoff ε,

κ2 =
1

B(22)σ4

∣∣∣∣
ε

, (4.16)

where σ̃ =
√

2εB−1/4
(22) +O(ε), we obtain

κ2 −→ 1

4ε2
. (4.17)

The matrix elements of this operator are theory-dependent, regulator-dependent, and UV

singular for massless endpoints, but have the same value at order J0 for every state in

the low-energy Hilbert space. Treated as integrated perturbations, they scale as J1/4 after

multiplication by the induced boundary line element B1/4
(22).

Boundary operator: proper acceleration. Let us now consider the proper

acceleration,

aa = Xa
,ρρ + ΓabcX

b
,ρX

c
,ρ , (4.18)

where it can be shown by similar methods that, near the boundary,

aaρρa
a
ρρ(g

ρρ)2 =
(Ẍ)2

(Ẋ2)2
=

B(22)

(B(22)σ̃2)2
=

1

4ε2
. (4.19)

We have now expanded several gauge-invariant operators in a near-boundary expan-

sion, where the distance to the boundary is defined in a gauge-invariant way. With the

regulation parameter ε held fixed, we have found that gauge-invariant scalar operators scale

as J0 in the large-J limit, with a coefficient that depends only on the parameters of the

theory and on the regulator, and not on the individual state of the system. In particular,

the coefficient can be read off directly from its value in the helical state. After multipli-

cation by the regulated line element, which scales as B1/4
(22), these operators contribute to

the action at leading order as J1/4, with a state-independent coefficient. The operators in

the examples above demonstrate the dressing rule concretely, in the context of a particular

short-distance cutoff.

4.3 Bulk operators

As an example of a bulk operator analysis in the displaced-boundary regulator scheme,

consider the curvature-squared of the induced metric:

R̃2dµInduced = 8
(Î22)2

|I11|3
dσ0dσ1 , (4.20)
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where, as in [3], we define Î22 to be the Weyl-covariant version of I22:

Î22 ≡ I22 −
I12I21

I11
. (4.21)

Near the boundary, this becomes

(Î22)2

I3
11

∣∣∣∣
bdy

= −1

2
B−1

(22)σ
−6 , (4.22)

so that ∫ σfar

σ̃
R̃2dσ =

∫ σfar

σ̃
8

(Î22)2

I3
11

dσ

=
4

5
B−1

(22)

(
σ−5

far − σ̃
−5
)

=
4

5
B−1

(22)

σ−5
far −

1

(2ε)5/2B−5/4
(22)


= −4

5
(2ε)−

5
2B

1
4

(22) . (4.23)

Note that we have dropped subleading divergent terms in the near-boundary expansion,

which give rise to operators of lower X-scaling and less divergent ε-scaling than the leading

term (4.23). For instance, including the σ−4 term in the near-boundary expansion of I−3
11

leads to a divergence proportional to B(33)/B
5/4
(22) ε

−3/2 in the integrated curvature-squared

term, which scales as J−1/4. In addition, there are similar corrections coming from the

subleading terms in the expansion of σ̃ in powers of ε2/Jα′, discussed below (4.5).

In particular, any ε-independent terms in the integral must scale as 1/(Jα′) at most,

simply by dimensional analysis. Thus, while the UV-divergent counterterms may have J-

scaling as large as J1/4, the observable, finite contribution of the curvature-squared operator

to the mass-squared of the open string state is no greater than O(J−1). More generally, a

higher-derivative bulk operator with |X|-scaling |X|−p may generate UV divergences going

as εp
′−pO(p′), where O(p′) is an operator with |X|-scaling −p′. Finite terms can only scale

as O(J−p/2) at most. This is the basis for the perturbativity of the properly renormalized

effective worldsheet theory in the 1/J expansion.

4.4 Anomaly term

The displaced-boundary regulator treatment of the anomaly term must be handled some-

what more cautiously than the corresponding regulation of gauge-invariant bulk terms.

The naive regulation of the anomaly term does not result in a gauge-invariant path in-

tegral, because the anomalous transformation of the free theory is cancelled only by the

integral of the PS term over the full worldsheet.

One way to proceed is to use a modified PS term that is finite at the boundary while

preserving exact gauge invariance. Such a term can be constructed easily in the general

framework of [3]. This approach yields a notably different situation, with two classes
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of bulk terms. One class admits gauge-invariant terms of definite X-scaling, which are

integrated over the worldsheet with the boundary strip removed. The other class of bulk

terms have inhomogeneous X-scaling by necessity. They behave like a Liouville term under

Weyl transformations, and are integrated over the entire strip.

Another approach is simply to integrate the standard, unmodified anomaly term over

the worldsheet with the excised strip, and notice that the only term with a nonpositive

ε-scaling is the quark mass term, which is gauge invariant. Modulo terms that vanish as

ε→ 0, the strip-excision prescription for the anomaly term results here in a gauge-invariant

and finite quantum effective action (because one can renormalize the sole divergence with

a gauge-invariant counterterm).

Near the boundary, it can be shown that

LPS = − β

2π

1

σ2
+O(σ0) . (4.24)

The displaced-boundary regulator integral then yields

∫ σfar

σ̃
LPS dσ = − β

2π

B1/4
(22)√
2ε

+O(ε0) . (4.25)

This defines the counterterm to be added to the action. Although this regulator does not,

strictly speaking, preserve gauge invariance for ε 6= 0, we proceed by adding

∆L = (cdivergent + cfinite)B
1/4
(22) , (4.26)

with

cdivergent =
β

2π

1√
2ε
. (4.27)

We are free to choose cfinite, as long as it is ε-independent. The result is a gauge invariant,

finite path integral in the limit ε→ 0. This concretely illustrates the restoration of gauge

invariance in the limit ε → 0: the near-boundary region’s contribution to the anomaly

action is seen explicitly to be equal to a (gauge-invariant) boundary term, plus contributions

scaling as positive powers of ε.

5 Conclusions and physical consequences

We have proposed an operator dressing rule for Neumann boundaries in effective string

theory in which the boundary operator B(22) plays the role of the unique monomial in X

occurring to negative or fractional powers, analogous to I11 for bulk operators. Having

motivated the rule via a number of heuristic arguments, we then explicitly derived the B(22)

dressing rule for Neumann boundaries in detail in a particular UV completion of the effec-

tive theory. To avoid any reliance on the specific UV completion, we also demonstrated the

persistence of the dressing rule using an artificial regulator directly in the effective theory.

There is at least one important physical consequence of this analysis. Having estab-

lished the dressing rule for Neumann boundaries, we can explain in detail the universality
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of the asymptotic Regge intercept for mesons in planar QCD with massless, bosonic quarks,

first calculated in [4]. (For completeness, we include an explicit, gauge-invariant calculation

of the asymptotic Regge intercept in this theory — for bosonic quarks on the leading tra-

jectory, in the planar approximation — in appendix A.) The argument stems from the fact

that all bilinear invariants of the embedding coordinates X at the boundary are of the form

B(pq) ≡ ∂
p
0X · ∂

q
0X , (5.1)

and, by the dressing rule, boundary operators are spanned by the set∏
i

B(piqi)/B
k
(22) . (5.2)

Now, consider only boundary operators of marginal scaling dimension. If an “undressed”

operator (the numerator) has dimension

∆ ≡
∑
i

pi + qi , (5.3)

then the dressing, under the requirement of conformality, is

B−(∆−1)/4
(22) . (5.4)

Thus, to have positive or zero X-scaling, the undressed operator must have ∆ ≤ 5. The

operators B(11) and B(12), for instance, vanish as independent operators because they are

proportional to free-field stress tensors and first derivatives thereof. Meanwhile, the only

marginal operator with ∆ = 5 is B(23)/B(22), which is a total derivative along the bound-

ary. Thus, after modding out by Virasoro descendants, the only marginal operator with

nonnegative X-scaling is the quark mass operator, corresponding to ∆ = 4. There are no

operators scaling as J0, so the J0 term in the expansion of the quantum effective action

is indeed universal. In particular, the order J0 term in the expansion of the mass-squared

of the meson is independent of the details of the theory, beyond the basic assumptions of

D-dimensional Poincaré invariance and the restriction that the Nambu-Goldstone bosons

constitute the only infinite-range excitations on the string worldvolume.

It is also worth revisiting what we expect to hold as corresponding dressing rules when

Dirichlet boundaries are included. In the case of strictly Dirichlet boundary conditions, the

dressing rule should be formulated purely in powers of (Ẋ ′)2. When both Neumann and

Dirichlet directions are present, we expect the appropriate dressing rule to be formulated

in terms of (ẊNeumann)2, or, equivalently by virtue of Virasoro constraints, in terms of

(X ′Dirichlet)2.

Looking ahead, the renormalization analysis in this paper can and should be extended

to the fold singularities of rotating strings with angular momentum in a single plane

(see [3, 4, 15–17] and references therein for further discussion on this topic). It would

also be interesting to understand the origin of the Neumann dressing rule in the context

of Natsuume’s warped UV completion [18], as this ties in most directly with modern holo-

graphic ideas in this arena.
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A Calculation of the asymptotic Regge intercept

In previous work [4] we presented an abridged computation of the first sub-leading cor-

rection near large J to the ground state energy of spinning strings, arising from contribu-

tions from the Casimir energy and from the Polchinski-Strominger anomaly term discussed

above. (The origin of the PS term in the general setting of a perturbed Liouville theory

embedded in the Polyakov framework was further explained in [3].) In this section we pro-

vide an explicit and completely gauge-invariant derivation of these universal sub-leading

corrections to the energy spectrum for open strings.

From [3, 4], the ground state helical solution discussed above can be explicitly

written as

X0 = 2α′P 0σ0

Z̄1 = i

√
α′

2
αZ̄1

1

(
e−iσ

+
+ e−iσ

−
)

Z̄2 = i

√
α′

2

αZ̄2
2

2

(
e−2iσ+

+ e−2iσ−
)

Z1 = −i
√
α′

2
αZ1
−1

(
eiσ

+
+ eiσ

−
)

Z2 = −i
√
α′

2

αZ2
−2

2

(
e2iσ+

+ e2iσ−
)
, (A.1)

with

αZ̄1
1 =

√
2J1 αZ1

−1 =
√

2J1

αZ̄2
2 = 2

√
J2 αZ2

−2 = 2
√
J2 . (A.2)

The usual classical constraint takes the form,

T++ = −(∂+X
0)2 + ∂+Z1∂+Z̄1 + ∂+Z2∂+Z̄2 , (A.3)

which sets

(P 0)2 =
J1 + 2J2

α′
. (A.4)

In D ≥ 5, spinning strings can carry angular momenta J1,2 in one or two planes, and

the large-J perturbation theory is understood to keep these quantities in fixed ratio. As

described in [4], in a suitable Cartan decomposition, the angular momenta are aligned with

the “3” direction of the self-dual and antiself-dual SU(2)± subgroups of the SO(4) little

group of SO(D − 1). In D ≥ 5, states can carry angular momenta in both planes with

angular-momentum quantum numbers

J± =
1

2
(J1 ± J2) . (A.5)
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States are determined by minimizing the energy over highest-weight vectors of SU(2)+ ×
SU(2)−, with total angular momenta J± and zero momentum in the σ1 direction. The

free-field ground state in the open-string sector is unique and can be expressed as

|J+, J−;P 〉free =
1√
N (open)
J+,J−

(
αZ1
−1α

Z2
−2 − α

Z1
−2α

Z2
−1

)J+−J− (
αZ1
−1

)2J−
|0;P 〉free . (A.6)

The quantity N (open)
J+,J−

is a normalization constant, and the energy under the free-field

Hamiltonian takes the form

E(free) = α′P 2 + 3J+ − J− −
D

24
. (A.7)

Starting with Î22 in eq. (4.21) above,

Î22 ≡ I22 −
I12I21

I11
, (A.8)

and adopting notation consistent with [3], we introduce a regulated version of the

Liouville field:

ϕ ≡ −1

4
log
(
I2

11 − L2Î22

)
. (A.9)

The operator Î22 is a Weyl tensor of weight four, so the object ϕ transforms as a scalar

under worldsheet diffeomorphisms and as a Liouville field under Weyl transformations of

the intrinsic metric:

ϕ→ ϕ+ ρ under g•• → exp (2ρ) g•• . (A.10)

Therefore, the anomaly action evaluated on ϕ has precisely the same anomaly-canceling

property as the anomaly action evaluated with L = 0, which leads to the Polchinski-

Strominger anomaly term. In terms of ϕ, the regulated anomaly term can conveniently be

expressed as [3]

Lanom ≡
β

2π

(
−|∇ϕ|2 + ϕR(2)

)
, (A.11)

where R(2) is the Ricci scalar curvature of the two-dimensional intrinsic metric.

After gauge-fixing gab → ηab, the anomaly term becomes

Lanom =
2β

π
∂+ϕ∂−ϕ . (A.12)

The path integral with the addition of this term is fully gauge invariant and finite at

the boundary.

We now turn to the evaluation of this term in the classical helical solution (A.1). For

p, q ≤ 2, the ground state profile of Ipq is as follows:

I11 = −2α′ (J1 + 4J2 + 4J2 cos(2σ1)) sin2(σ1)

I12 = −I21 = α′ (J1 + 8J2 cos(2σ1)) sin(2σ1)

I22 = α′ (J1 cos(2σ1) + 8J2 cos(4σ1)) . (A.13)
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Taking these together, we recover an explicit expression for the Weyl-covariant version of

I22 on the ground state solution

Î22 = α′

(
J1 cos(2σ1) + 8J2 cos(4σ1)− 2 cos2(σ1)

(
J1 + 8J2 cos2(2σ1)

)2
J1 + 4J2 + 4J2 cos(2σ1)

)
. (A.14)

Analysis of the PS anomaly contribution can thus be reduced to a straightforward

contour integral evaluated by residues, with the removal of a UV divergence at the endpoints

of the interval. Let us introduce the following change of variables:

σ1 =
1

2i
logw , dσ1 =

1

2i

dw

w
. (A.15)

We can infer the location of the poles of the PS integrand (as a function of w) by looking

at the denominator of the PS anomaly term. To do this, let us further define

a ≡ J2

J1
, b ≡ L

J
1/2
1

, (A.16)

and write the integrated Lagrangian as∫
LPS dσ1 = −i β

4π

∫
(w + 1)2(w − 1)6F 2

1

w [w + 2a(w + 1)2]2 F 2
2

dw . (A.17)

The functions F1 and F2 are complicated polynomials in w, with coefficients depending on

a, b and α′. Organizing the polynomial coefficients according to

F1 =

8∑
i=0

C1,iw
i ,

F2 =

10∑
i=0

C2,iw
i , (A.18)

we have

C1,0 = 32a4α′

C1,1 = 8a3(7 + 24a)α′

C1,2 = 4a2 (a+ 4a(15 + 32a))α′

C1,3 = 2a
[
−2ab2 + [5 + 4a (12 + a(57 + 104a))]α′

]
C1,4 = −4a(1 + 6a)b2 + [1 + 4a [3 + 2a (15 + 4a(17 + 30a))]]α′

C1,5 = 2a
[
−2ab2 + [5 + 4a (12 + a(57 + 104a))]α′

]
C1,6 = 4a2 (a+ 4a(15 + 32a))α′

C1,7 = 8a3(7 + 24a)α′

C1,8 = 32a4α′ , (A.19)
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and

C2,0 = 8a3α′

C2,1 = 4a2(3 + 4a)α′

C2,2 = 6a(1− 4a2)α′

C2,3 = −4ab2 − (−1 + 4a(3 + 4a(3 + 4a)))α′

C2,4 = 8a(3 + 8a)b2 + 2(−2− 3a+ 8a3)α′

C2,5 = 4(1 + 6a+ 32a2)b2 + 6(1 + 2a)(1 + 2a+ 8a2)α′

C2,6 = 8a(3 + 8a)b2 + 2(−2− 3a+ 8a3)α′

C2,7 = −4ab2 − (−1 + 4a(3 + 4a(3 + 4a)))α′

C2,8 = 6a(1− 4a2)α′

C2,9 = 4a2(3 + 4a)α′

C2,10 = 8a3α′ . (A.20)

The analysis of the contour integral can then be organized as follows. Poles (single

or multiple) of the integrand can be sorted into those that give a nonzero contribution as√
L→ 0, and those that give vanishing contributions as

√
L→ 0. In the second category,

we find poles that lie outside the unit circle in the w plane at sufficiently small
√
L, as

well as poles that either disappear or exhibit vanishing residue as
√
L→ 0. In particular,

any pole that approaches any point on the w unit circle other than the point w = 1 as√
L→ 0 fall into the latter category; as

√
L→ 0 we must recover the original unregulated

integrand, which is smooth everywhere on the unit circle except at the point w = 1.

Among the poles that provide a nonzero contribution, we find a set of poles that

approach points interior to the unit circle as
√
L→ 0, and a set that approaches the point

w = 1 in the same limit. Contributions from the former set can be computed by setting√
L to zero at the outset, identifying poles interior to the unit circle, and calculating the

corresponding residues. Contributions from the second set can be determined by making

the change of variables w → 1 + i
√
Lv and examining the limit

√
L → 0 for fixed v. In

this limit, the positions of the singularities approach fixed locations in the v plane, and

the residues scale12 as L−1/2. That is, in the scaling limit L → 0, the PS term in these

variables takes the form∫
LPS dσ1 = L

(finite)
PS + L

(divergent)
PS +O(L1/2) , (A.21)

where the divergent term comes entirely from the scaling limit of the integral near the

cluster of poles near w = 1:

L
(divergent)
PS ≡

∫ (
− βα

′2

π
√
L

q2v6

(4 + α′qv4)2

)
dv , (A.22)

12This scaling comes from a contribution of
√
L, strictly from the transformed measure, and a contribution

of L−1 from the leading-order scaling of the original integrand, modulo the measure.
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and q is the combination

q ≡ J1 + 8J2 . (A.23)

The value of the divergent term is:

L
(divergent)
PS = −3β(qα′)

1
4

8
√
L

(A.24)

Let us emphasize here that the L−1/2 divergences are strictly proportional to the term

Oquark = B1/4
(22). (Indeed, according to the dressing structure and, correspondingly, the

allowed spectrum of boundary operators in the effective theory, this is the only possibility.)

The particular combination J1 + 8J2 occurring inside the fourth root agrees nontrivially

with B(22), which can be read, e.g., from the boundary value of I11 in (A.13). In the helical

solution, this operator scales as 〈Oquark〉 ∝ (J1 + 8J2)1/4 = q1/4, so the divergence of the

PS integrand thus appears as 〈Oquark〉 with a coefficient that diverges as L−1/2. There

are also terms in the integrand of order
√
L

0
, but these turn out to be odd in v, and thus

integrate to zero.

The finite terms come from poles interior to the unit circle in the L → 0 limit, and

the sum of their residues can be found by integrating along a circle enclosing all the poles

away from w ∼ 1, but excluding the poles near w = 1. In the L = 0 expression, the interior

singularities comprise a single pole at the origin, and a double pole at

wint
(∗) ≡

1

4J2

(
J

1/2
1

√
J1 + 8J2 − J1 − 4J2

)
, (A.25)

which is always real and lies between 0 and −1.

Altogether, the integral decomposes into contributions that are manifestly regulator-

independent (i.e., those that approach interior points to the unit circle as
√
L → 0), and

contributions from a purely local UV divergence (i.e., the sum of contributions from poles

that approach w = 1 as
√
L→ 0). The contribution from the pole at the origin is

2β

π

∮
w→0

∂+ϕ∂−ϕdσ = 2β , (A.26)

and the contribution from the double pole at wint
(∗) is

2β

π

∮
w→wint

(∗)

∂+ϕ∂−ϕdσ = −β
2

3J1 + 4J2√
J1(J1 + 8J2)

. (A.27)

Thus, the UV-finite part of the PS anomaly term (A.21) evaluates to

L
(finite)
PS =

2β

π

∫
∂+ϕ∂−ϕdσ =

β

2

(
4− 3J1 + 4J2√

J1(J1 + 8J2)

)
, (A.28)

while the divergent piece can be removed with a boundary counterterm proportional to

the quark mass operator. As described in [4], the first-order shift in the energy of the

lowest classical solution with fixed Noether charges is just the negative of the interaction
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Lagrangian for the unperturbed, zeroth-order helically symmetric solution. Replacing β =

(26−D)/12 (see [1, 4]), we recover the contribution to the open string mass-squared from

the PS interaction:

∆M2
open =

D − 26

24α′

(
4− 3J1 + 4J2√

J1(J1 + 8J2)

)
. (A.29)

B Properties of geodesics near the boundary

In the displaced-boundary regulator analysis of section 4, we introduced a near-boundary

cutoff scheme by defining a strip to be excised from the worldsheet along a set of points

on the σ1 = σ̃ locus separated from the boundary by a fixed geodesic distance ε. Here

we demonstrate in detail the gauge-invariant characterization of this distance function.

In particular, we identify the longest13 spacelike geodesic in the near-boundary region,

extending from the boundary to the interior point σ̃. We can show that such a global

maximum must always exist by first anchoring a point in the bulk. Given a point on

the boundary, there is always a geodesic of some kind from the anchor point to that

boundary point. For boundary points sufficiently far in the past or the future, the geodesic

will be future-oriented timelike or past-oriented timelike. Between, it must necessarily be

spacelike. The geodesic length varies continuously across this region of the boundary, so

it must assume a global maximum. (On the endpoints of the spacelike-separated region,

the proper length goes to zero, so the maximum is never assumed at the endpoints.) For

the static geometry induced by the helical solution, this geodesic is just the horizontal

trajectory in the obvious flat coordinates.

Let us now make this argument more concrete. With the expansion of I11 in the

near-boundary region (3.11), we can characterize the form of the metric in this region as

d̂s2 ≡ ds2

B(22)
= σ2

1(−dσ2
0 + dσ2

1) . (B.1)

It is convenient to make the following change of variables:

a ≡ σ2
1

2
. (B.2)

We can always parameterize sufficiently short geodesics as functions of σ1, so, in turn,

we define

b ≡
√

2σ0 ≡ h(a) . (B.3)

Working up to an overall scaling of the metric, we have

d̂s2 = da2 − a db2 = da2 − a(h′)2da2 = (1− a(h′)2) da2 . (B.4)

The arc length is then

ˆ̀=

∫ √
1− a(h′)2 da , (B.5)

13In Lorentzian signature.
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such that the geodesic equation on this space is just

0 = ∂a

(
ah′√

1− a(h′)2

)
−→ ah′√

1− a(h′)2
= K , (B.6)

where K is a constant. Solving for (h′)2,

(h′)2 =
K2

a(a+K2)
, (B.7)

the geodesic equation admits solutions of the form

h(a) = const.± 2K log
(√

a+
√
a+K2

)
. (B.8)

When K is nonzero, at small σ1 (correspondingly, at small a), the solutions are of the form

h(a)

∣∣∣∣
a small

≈ const.+ (linear in σ1) + · · · (B.9)

As we approach the boundary, solutions with vanishing K are asymptotically purely space-

like and normal to the boundary.

One concern might have been that the singularity at the boundary might spoil this

analysis, though it does not. The integrated geodesic length remains finite, for instance,

as a function of the natural conformal coordinate σ1.

More directly, we can compute the arc length of these geodesics from the boundary to

an anchor point a0 in the interior. We obtain

ˆ̀=

∫ a0

0

√
1− K2

a+K2
da

=
√
a0 (a0 +K2) +K2 log

(
K

√
a0 +

√
a0 +K2

)
. (B.10)

It can be shown that the K = 0 class of solutions globally maximizes the length function in

the asymptotic near-boundary region. In detail, the first derivative of l with respect to K is

∂ ˆ̀

∂K
= 2K

(√
a0

a0 +K2
+ log

(
K

√
a0 +

√
a0 +K2

))

≈ (2− log(4a0) + 2 log(K))K − 3K3

2a0
+O(K5) , (B.11)

which vanishes in the limit K → 0. The second derivative

∂2 ˆ̀

∂K2
= 2

(√
a0(2a0 +K2)

(a0 +K2)3/2
+ logK − log

(√
a0 +

√
a0 +K2

))
≈ 4− log(4a0) + 2 logK − 9K2

2a0
+O(K4) (B.12)

is negative as K → 0.

– 31 –



J
H
E
P
0
4
(
2
0
1
7
)
0
8
5

Acknowledgments

The authors are deeply grateful to J. Sonnenschein and O. Aharony for discussions that

were responsible for refining the ideas presented herein and motivating the derivation of

the dressing rule in section 3. The work of SH is supported by the World Premier Interna-

tional Research Center Initiative (WPI Initiative), MEXT, Japan; by the JSPS Program

for Advancing Strategic International Networks to Accelerate the Circulation of Talented

Researchers; and also supported in part by JSPS KAKENHI Grant Numbers JP22740153,

JP26400242. SH is also grateful to the CCPP and New York University and the Walter

Burke Institute for Theoretical Physics at Caltech for generous hospitality while this work

was in progress.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J. Polchinski and A. Strominger, Effective string theory, Phys. Rev. Lett. 67 (1991) 1681

[INSPIRE].

[2] N.D. Hari Dass and P. Matlock, Covariant Calculus for Effective String Theories, Indian J.

Phys. 88 (2014) 965 [arXiv:0709.1765] [INSPIRE].

[3] S. Hellerman, S. Maeda, J. Maltz and I. Swanson, Effective String Theory Simplified, JHEP

09 (2014) 183 [arXiv:1405.6197] [INSPIRE].

[4] S. Hellerman and I. Swanson, String Theory of the Regge Intercept, Phys. Rev. Lett. 114

(2015) 111601 [arXiv:1312.0999] [INSPIRE].

[5] O. Aharony and M. Field, On the effective theory of long open strings, JHEP 01 (2011) 065

[arXiv:1008.2636] [INSPIRE].

[6] O. Aharony and Z. Komargodski, The Effective Theory of Long Strings, JHEP 05 (2013)

118 [arXiv:1302.6257] [INSPIRE].

[7] O. Aharony, The effective action on the confining string, presented at The Strings 2009

Conference, June 2009, http://strings2009.roma2.infn.it/talks/Aharony Strings09.ppt.

[8] B.B. Brandt and P. Majumdar, Spectrum of the QCD flux tube in 3d SU(2) lattice gauge

theory, Phys. Lett. B 682 (2009) 253 [arXiv:0905.4195] [INSPIRE].

[9] B.B. Brandt, Probing boundary-corrections to Nambu-Goto open string energy levels in 3d

SU(2) gauge theory, JHEP 02 (2011) 040 [arXiv:1010.3625] [INSPIRE].

[10] B.B. Brandt, Spectrum of the open QCD flux tube in d = 2 + 1 and its effective string

description, PoS(EPS-HEP 2013)540 [arXiv:1308.4993] [INSPIRE].

[11] B.B. Brandt and M. Meineri, Effective string description of confining flux tubes, Int. J. Mod.

Phys. A 31 (2016) 1643001 [arXiv:1603.06969] [INSPIRE].

[12] M. Baker and R. Steinke, Semiclassical quantization of effective string theory and Regge

trajectories, Phys. Rev. D 65 (2002) 094042 [hep-th/0201169] [INSPIRE].

[13] F. Wilczek, Diquarks as inspiration and as objects, hep-ph/0409168 [INSPIRE].

– 32 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevLett.67.1681
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,67,1681%22
http://dx.doi.org/10.1007/s12648-014-0493-7
http://dx.doi.org/10.1007/s12648-014-0493-7
https://arxiv.org/abs/0709.1765
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1765
http://dx.doi.org/10.1007/JHEP09(2014)183
http://dx.doi.org/10.1007/JHEP09(2014)183
https://arxiv.org/abs/1405.6197
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.6197
http://dx.doi.org/10.1103/PhysRevLett.114.111601
http://dx.doi.org/10.1103/PhysRevLett.114.111601
https://arxiv.org/abs/1312.0999
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.0999
http://dx.doi.org/10.1007/JHEP01(2011)065
https://arxiv.org/abs/1008.2636
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2636
http://dx.doi.org/10.1007/JHEP05(2013)118
http://dx.doi.org/10.1007/JHEP05(2013)118
https://arxiv.org/abs/1302.6257
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6257
http://strings2009.roma2.infn.it/talks/Aharony_Strings09.ppt
http://dx.doi.org/10.1016/j.physletb.2009.11.010
https://arxiv.org/abs/0905.4195
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.4195
http://dx.doi.org/10.1007/JHEP02(2011)040
https://arxiv.org/abs/1010.3625
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.3625
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(EPS-HEP 2013)540
https://arxiv.org/abs/1308.4993
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4993
http://dx.doi.org/10.1142/S0217751X16430016
http://dx.doi.org/10.1142/S0217751X16430016
https://arxiv.org/abs/1603.06969
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.06969
http://dx.doi.org/10.1103/PhysRevD.65.094042
https://arxiv.org/abs/hep-th/0201169
http://inspirehep.net/search?p=find+EPRINT+hep-th/0201169
https://arxiv.org/abs/hep-ph/0409168
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0409168


J
H
E
P
0
4
(
2
0
1
7
)
0
8
5

[14] J. Sonnenschein and D. Weissman, Rotating strings confronting PDG mesons, JHEP 08

(2014) 013 [arXiv:1402.5603] [INSPIRE].

[15] O. Ganor, J. Sonnenschein and S. Yankielowicz, Folds in 2-D string theories, Nucl. Phys. B

427 (1994) 203 [hep-th/9404149] [INSPIRE].

[16] S. Caron-Huot, Z. Komargodski, A. Sever and A. Zhiboedov, Strings from Massive Higher

Spins: The Asymptotic Uniqueness of the Veneziano Amplitude, arXiv:1607.04253

[INSPIRE].

[17] J. Sonnenschein and D. Weissman, Glueballs as rotating folded closed strings, JHEP 12

(2015) 011 [arXiv:1507.01604] [INSPIRE].

[18] G. German and Y. Jiang, On quark mass correction to the string potential, Eur. Phys. J. C

8 (1999) 689 [hep-th/9707037] [INSPIRE].

– 33 –

http://dx.doi.org/10.1007/JHEP08(2014)013
http://dx.doi.org/10.1007/JHEP08(2014)013
https://arxiv.org/abs/1402.5603
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5603
http://dx.doi.org/10.1016/0550-3213(94)90275-5
http://dx.doi.org/10.1016/0550-3213(94)90275-5
https://arxiv.org/abs/hep-th/9404149
http://inspirehep.net/search?p=find+EPRINT+hep-th/9404149
https://arxiv.org/abs/1607.04253
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.04253
http://dx.doi.org/10.1007/JHEP12(2015)011
http://dx.doi.org/10.1007/JHEP12(2015)011
https://arxiv.org/abs/1507.01604
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.01604
http://dx.doi.org/10.1007/s100520050505
http://dx.doi.org/10.1007/s100520050505
https://arxiv.org/abs/hep-th/9707037
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707037

	Introduction
	Heuristic motivation
	Dressing rules for bulk and Dirichlet boundary operators
	The Neumann dressing rule

	Effective strings from perturbed Liouville theory
	Origin of the dressing rule for bulk operators
	Demonstration of the boundary dressing rule
	From UV operators to effective boundary operators
	Quantum corrections leave the boundary dressing rule unmodified

	A displaced-boundary regulator 
	Definition of the displaced-boundary regulator scheme
	Boundary operators
	Bulk operators
	Anomaly term

	Conclusions and physical consequences
	Calculation of the asymptotic Regge intercept
	Properties of geodesics near the boundary

