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1 Introduction

It is almost seventy years from the time Feynman Integrals (FI) were first introduced [1–3]

and forty-five years since the dimensional regularisation [4] set up the framework for an effi-

cient use of loop integrals in computing scattering matrix elements, and still the frontier of

multi-scale multi-loop integral calculations (maximal both in number of scales and number

of loops) is determined by the planar five-point two-loop on-shell massless integrals [5, 6],

recently computed.1 On the other hand, in order to keep up with the increasing experi-

mental accuracy as more data is collected at the LHC, more precise theoretical predictions

and higher loop calculations are required [8].

In the last years our understanding of the reduction of one-loop amplitudes to a set

of Master Integrals (MI), a minimal set of FI that form a basis, either based on unitarity

methods [9–11] or at the integrand level via the OPP method [12, 13], has drastically

changed the way one-loop calculations are preformed resulting in many fully automated

numerical tools (some reviews on the topic are [14–16]), making the next-to-leading order

1Complete results, including physical region kinematics, are presented in [6]. Notice that numerical

codes, like for instance SecDec [7], can reproduce analytic results only at Euclidean region kinematics;

results for physical region kinematics are not supported due to poor numerical convergence.
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(NLO) approximation the default precision for theoretical predictions at the LHC. In the

recent years, progress has been made also towards the extension of these reduction methods

for two-loop amplitudes at the integral [17–26] as well as the integrand [27–32] level. Two-

loop MI are defined using the integration by parts (IBP) identities [33–35], an indispensable

tool beyond one loop. Contrary to the one-loop case, where MI have been known for a long

time already [36], a complete library of MI at two-loops is still missing. At the moment

this is the main obstacle to obtain a fully automated NNLO calculation framework similar

to the one-loop one, that will satisfy the precision requirements at the LHC [8].

Many methods have been introduced in order to compute MI [37]. The overall most

successful one, is based on expressing the FI in terms of an integral representation over

Feynman parameters, involving the two well-known Symanzik Polynomials U and F [38].

The introduction of the sector decomposition [39–43] method resulted in a powerful com-

putational framework for the numerical evaluation of FI, see for instance SecDec [7]. An

alternative is based on Mellin-Barnes representation [44, 45], implemented in [46].2 Never-

theless, the most successful method to calculate multi-scale multi-loop FI is, for the time

being, the differential equations (DE) approach [47–51], which has been used in the past two

decades to calculate various MI at two-loops and beyond. Following the work of refs. [52–

54], there has been a building consensus that the so-called Goncharov Polylogarithms (GPs)

form a functional basis for many MI. The so-called canonical form of DE, introduced by

Henn [55], manifestly results in MI expressed in terms of GPs.3 Nevertheless the reduction

of a given DE to a canonical form is by no means fully understood. First of all, despite

recent efforts [57–59], and the existence of sufficient conditions that a given MI can be ex-

pressed in terms of GPs, no criterion, with practical applicability, that is at the same time

necessary and sufficient has been introduced so far. Moreover, it is well known that when

for instance enough internal masses are introduced, MI are not anymore expressible in terms

of GPs, and in fact a new class of functions involving elliptic integrals is needed [60, 61].

In this paper we are studying another representation of FI introduced by Baikov [62–

67]. As we will see in section 2, where we present a review of its derivation, it has several nice

features, including its conceptual simplicity, a direct factorisation of kinematics and loop

‘topology’, incorporation of IBP identities in a straightforward manner. We also present,

to the best of our knowledge for the first time, a consistent definition of the integration

limits which will be important for the computation of cut integrals in d dimensions. In

section 3 we elaborate on the loop-by-loop approach within the Baikov representation, that

has a minimal number of integration variables for a given FI. In section 4 we present a

novel approach to obtain DE from the Baikov representation. In section 5 we introduce

the definition of the cut integral in Baikov representation, that satisfies the same DE

and the same IBP identities as the uncut one [68], and we conjecture that computing

the corresponding maximally cut integral [69] we may have a necessary and sufficient

condition for the expression of the uncut integral in terms of GPs and when applied to the

whole family of MI on the possibility to obtain a canonical form. Finally in appendix A

2See also https://mbtools.hepforge.org.
3For an alternative method in the single scale case see also ref. [56].
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we present an alternative derivation of the Baikov representation for one- and two-loop

FI and in appendix B we collect several examples of maximally cut integrals in Baikov

representation that support our findings.

2 The Baikov representation

In this section we introduce the Baikov representation following refs. [65, 66]. An L-loop

Feynman Integral with E + 1 external lines can be written in the form

Fα1...αN =

∫ ( L∏
i=1

ddki

iπd/2

)
1

Dα1
1 . . . DαN

N

(2.1)

with N = L(L+1)
2 +LE, αi arbitrary integers, and Da, a = 1, . . . , N , inverse Feynman prop-

agators, P 2−M2, where P represents, collectively, a linear combination of loop and external

momenta and M internal masses, as dictated by the Feynman Integral in consideration.

To be more specific, let us define qi = ki, (i = 1, . . . , L) the loop momenta and qL+i =

pi, (i = 1, . . . , E), the independent external momenta, M = L+ E and sij = qi · qj . Then

Da =

L∑
i=1

M∑
j=i

Aij
a
sij + fa =

L∑
i=1

L∑
j=i

Aij
a
ki · kj +

L∑
i=1

M∑
j=L+1

Aij
a
ki · pj−L + fa, a = 1, . . . , N

(2.2)

where fa depend on external kinematics and internal masses. Aij
a

can be understood as an

N ×N matrix, with a running obviously from 1 to N and with (ij) taking also N values

as i = 1, . . . , L and j = i, . . . ,M . The elements of the matrix Aij
a

are integer numbers

taken from the set {−2,−1, 0,+1,+2}. This matrix is characteristic of the corresponding

Feynman graph and can, in a loose sense, be associated with the ‘topology’ of the graph.

Then, by projecting each of the loop momenta qi = ki, (i = 1, . . . , L) with respect to the

space spanned by the external momenta involved plus a transverse component (for details

see [66]), we may write

Fα1...αN =CLN (G (p1, . . . , pE))(−d+E+1)/2
∫
dx1 . . . dxN
xα1
1 . . . xαNN

PLN (x1−f1, . . . , xN−fN )(d−M−1)/2

(2.3)

with

CLN =
π−L(L−1)/4−LE/2∏L

i=1 Γ
(
d−M+i

2

) det
(
Aaij
)

(2.4)

and

PLN (x1, x2, . . . , xN ) = G (k1, . . . , kL, p1, . . . , pE)
∣∣∣
sij=

N∑
a=1

Aaijxa & sji=sij

with G representing the Gram determinant, G (q1, . . . , qn) = det (qi · qj) and Aaij is the

inverse of the topology matrix Aij
a

. An alternative derivation of the Baikov representation

for one- and two-loop FI is given in appendix A.
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Integration-by-parts identities can easily be accommodated in the Baikov representa-

tion. The generators of the IBP identities can be cast into the form

OijP
L
N = 0 (2.5)

with the operators Oij given by (i = 1, . . . , L)

j ≤ L (qj = kj) Oij = dδij +
N∑
a=1

N∑
b=1

M∑
m=1

Amia Abmj (1 + δmi) (xb − fb)
∂

∂xa
(2.6)

and

j>L (qj =pj−L) Oij =

N∑
a=1

(
L∑

m=1

N∑
b=1

Amia Abmj(1+δmi)(xb−fb)+

M∑
m=L+1

Amia smj

)
∂

∂xa
(2.7)

The derivation of the Baikov representation can easily be implemented in a computer

algebra code.4

We conclude this section by elaborating on the limits of the xa−integrations in eq. (2.3).

In order to simplify the discussion, let us start with a generic one-loop configuration defined

by

x1 = k2 −m2
1 , x2 = (k + p1)

2 −m2
2 , . . . , xN = (k + p1 + . . .+ pN−1)

2 −m2
N

Then consider the generic integral (αi ≥ 0),

Fα1···αN = C1
NG(p1, . . . , pN−1)

(N−d)/2
∫

dx1 . . . dxN
xα1
1 . . . xαNN

P 1
N

(d−N−1)/2
(2.8)

C1
N =

π−(N−1)/2

Γ
(
d−N+1

2

) (1

2

)N−1
(2.9)

It is easy to verify that P 1
N is a polynomial that is quadratic in the variables xa [64], and

that obviously when αN = 0, the external momentum pN−1 decouples, so that

Fα1...αN−10 = C1
NG(p1, . . . , pN−1)

(N−d)/2
∫

dx1 . . . dxN−1

xα1
1 . . . x

αN−1

N−1

x+N∫
x−N

dxNP
1
N

(d−N−1)/2
(2.10)

= C1
N−1G(p1, . . . , pN−2)

(N−1−d)/2
∫

dx1 . . . dxN−1

xα1
1 . . . x

αN−1

N−1
P 1
N−1

(d−(N−1)−1)/2

where P 1
N

(
x+N
)

= P 1
N

(
x−N
)

= 0 and

x+N∫
x−N

dxNP
1
N

(d−N−1)/2
=

2π1/2Γ
(
d−N+1

2

)
Γ
(
d−N+2

2

) G (p1, . . . , pN−1)
(d−N)/2G (p1, . . . , pN−2)

(N−1−d)/2

×P 1
N−1

(d−(N−1)−1)/2

4A Mathematica script, Baikov.m, is provided as an attachment.
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Figure 1. The two-loop three-point graph considered in the text.

using P 1
N = 1

4G (p1, . . . , pN−2)
(
x+N − xN

) (
xN − x−N

)
and

(
x+N − x

−
N

)2
=

16
G(p1,...,pN−1)

G(p1,...,pN−2)
2P

1
N−1. This can be repeated straightforwardly for all variables ex-

cept x1 = k2 − m2
1 whose integration limits are simply derived from the k−modulus

integration limits. The generalisation to the two-loop case is straightforward, with the

integration at each step performed over the x−variables involving a given external mo-

mentum, and the last ones derived by the corresponding k1− and k2−modulus integration

limits. We have checked both analytically and numerically that the limits, as defined

above, reproduce the known results for several examples at one and two loops.

3 The loop-by-loop approach

At one loop the number of Baikov variables and the number of propagators of a generic

Feynman Integral can be the same. At higher loops this is not the case anymore. Consider

for instance the double-box, with E = 3 independent external momenta and L = 2, giving

N = 9 and M = 5. In that case we have to integrate over nine variables whereas the scalar

double-box graph has only seven denominators. Of course this mismatch is the origin of

the well known irreducible scalar products (ISP) appearing for L ≥ 2. It is eventually

desirable to have a representation with the minimal number of integration variables. This

can be achieved by considering the projection over the space spanned by the external

momenta of each loop integration momentum separately. As an example to illustrate the

concept, consider the two-loop three-point Feynman Integral of figure 1. The standard

Baikov representation is based on the following set of seven inverse propagators

x1 = k21 −m2
1 x2 = (k1 + p1)

2 −m2
2 x3 = (k1 + p1 + p2)

2 −m2
3

x4 = k22 −m2
4 x5 = (k2 − p1)2 −m2

5 x6 = (k2 − p1 − p2)2 −m2
6 (3.1)

x7 = (k1 + k2)
2 −m2

7

F0111001 = C2
3 (G (p1, p2))

−(d−3)/2
∫
dx1 . . . dx7
x2x3x4x7

(
P 2
3

)(d−5)/2
(3.2)
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For the integral F0111001, in the loop-by-loop approach one can consider the k1 and

k2 integrations separately. Starting with k2 integration it is easy to see that we have a

two-point function with external momentum k1.

F0111001=

∫
ddk1

iπd/2
ddk2

iπd/2
1

x2x3x4x7
=C1

2

∫
ddk1

iπd/2
1

x2x3

(
x1 +m2

1

)−(d−2)/2∫ dx4dx7
x4x7

(
P 1
2

)(d−3)/2
(3.3)

Then for the k1 integration we have a three-point integral with two external momenta p1
and p2.

F0111001=C1
2C

1
3 (G (p1, p2))

−(d−3)/2
∫
dx1dx2dx3dx4dx7

x2x3x4x7

(
x1+m2

1

)−(d−2)/2(
P 1
3

)(d−5)/2(
P 1
2

)(d−3)/2
(3.4)

Notice that the same result can be obtained from eq. (3.2) integrating out x5 and x6, as

detailed at the end of the previous section. Nevertheless, the loop-by-loop approach offers

an alternative way of obtaining a minimal number of integration variables.

4 Deriving differential equations

It is instructive to study the way differential equations with respect to external kinematics

and masses can be obtained in Baikov representation. Differential equations are usually

written in terms of external kinematical invariants, sij = (pi + pj)
2 and internal masses,

m2
i . In the standard approach, since the integral in the momentum-space representation is

not an explicit function of the kinematical invariants, derivatives with respect to external

momenta, pµj
∂
∂pµi

, are used. In Baikov representation though, the dependence on external

kinematical invariants and internal masses is explicit. Indeed in eq. (2.3), it is easy to iden-

tify two terms that depends on the external kinematics and/or masses, namely the overall

factor G (p1, . . . , pE)(−d+E+1)/2 and the Baikov polynomial PLN itself. The differentiation

of the first factor causes no problem since the result is expressed in terms of the original

integral. For the Baikov polynomial this is not so, since the derivative introduces a different

integrand that is not directly expressible in terms of FI, eq. (2.1). To be more specific,

let us denote by X a generic kinematical variable, for instance a Mandelstam invariant

X = (pi + pj)
2 or an internal mass X = m2

i . Then

∂

∂X
Fα1...αN =

(
−d+ E + 1

2

)(
1

G

∂G

∂X

)
Fα1...αN (4.1)

+CLNG
(−d+E+1)/2

∫
dx1 . . . dxN
xα1
1 . . . xαNN

PLN
(d−M−1)/2

[(
d−M − 1

2

)
1

PLN

∂PLN
∂X

]
where G is used for G (p1, . . . , pE). Based on the fact that the derivatives

∂PLN
∂X ,

∂PLN
∂xa

are

polynomials in xa, the idea is to turn the derivative with respect to X into derivatives with

respect to xa. This can be achieved by the equation, known as the syzygy equation [70, 71],

b
∂PLN
∂X

+
∑
a

ca
∂PLN
∂xa

= 0 (4.2)

with b and ca being polynomials in xa.

– 6 –
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Assuming that a solution of this equation has been found such that b is independent

of xa (eventually depending on external kinematics and internal masses and not identical

to zero), we have

∂

∂X
Fα1...αN =

(
−d+ E + 1

2

)
1

G

∂G

∂X
Fα1...αN (4.3)

+CLNG
(−d+E+1)/2

∫
dx1 . . . dxN
xα1
1 . . . xαNN

(
−
∑
a

ca
b

∂

∂xa
PLN

(d−M−1)/2
)

Then integrating by parts the second term in the r.h.s. of the above equation and assuming

that surface terms are vanishing (a standard assumption through Baikov representation)

we get

∂

∂X
Fα1...αN =

(
−d+ E + 1

2

)
1

G

∂G

∂X
Fα1...αN (4.4)

+CLNG
(−d+E+1)/2

∫
dx1 . . . dxNP

L
N

(d−M−1)/2
{∑

a

∂

∂xa

(
ca
b

1

xα1
1 . . . xαNN

)}

The term in the curly bracket is easily seen to be a sum of terms of the form

1

xα
′
1

1 . . . xα
′
N

N

The powers α′a depend on the actual form of the solution of the syzygy equation, eq. (4.2).

The result is as expected
∂

∂X
Fα1...αN =

∑
i

Ri Fα(i)
1 ...α

(i)
N

(4.5)

with coefficients Ri that are rational functions of the space-time dimension d, the external

kinematics and the internal masses. The r.h.s. of the above equation contains integrals

that are in general not MI. We have verified in numerous examples, that after applying a

standard IBP reduction to MI for the r.h.s. of the above equation, the resulting differential

equations for the MI are the same as those obtained with the standard approach. It is still

interesting to note that the initial form, eq. (4.5), is generally not.

5 Cutting Feynman integrals

Cutting FI in the Baikov representation has a very natural definition. Indeed we define an

n−cut as follows

Fα1...αN |n×cut≡C
L
N (G)(−d+E+1)/2

(
N∏

a=n+1

∫
dxa

) n∏
c=1

∮
xc=0

dxc

 1

xα1
1 . . . xαNN

PLN
(d−M−1)/2

(5.1)

where the Baikov variables {xa : a = 1, . . . , N} have been divided in two subsets, containing

n cut propagators and (N −n) uncut ones. The cut operation defined above is operational

in any space-time dimension d and for any FI given by eq. (2.1). Notice that the definition

– 7 –
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of the cut, eq. (5.1), is not identical to the traditional unitarity cut, see for instance section

8.4 of ref. [72], due to the lack of the θ-function constraint on the energy, and therefore it

is not directly related to the discontinuity of the FI [73, 74].

Let us now consider a set of MI, Fi ≡ F
α
(i)
1 ...α

(i)
N

, i = 1, . . . , I , satisfying a system of

DE, with respect to variables Xj ,

∂

∂Xj
Fi =

I∑
l=1

M
(j)
il Fl (5.2)

with matrices M (j) depending on kinematical variables, internal masses, and the space-time

dimension, d. Since the derivation of DE in section 4 is insensitive to the cut operation, as

defined in eq. (5.1), we may immediately write5

∂

∂Xj
Fi|n×cut =

I∑
l=1

M
(j)
il Fl|n×cut (5.3)

with F |n×cut representing an arbitrary n−cut: in other words, the cut integrals satisfy

the same DE as the uncut ones.6 Of course for a given n−cut many of the MI that are

not supported on the corresponding cut vanish identically. Nevertheless, eq. (5.3) remains

valid. Especially for the maximally cut integrals defined so that n is equal to the number

of propagators (with αi > 0) of the integral, all integrals not supported on the cut vanish

and the resulting DE is restricted to its homogeneous part. Evaluating the maximally cut

MI provides therefore a solution to the homogeneous equation [68, 69]. Non-maximally cut

integrals, on the other hand, can resolve non-homogenous parts of the DE as well [68].

One important implication is that cut and uncut integrals, although very different in

many respects, as for instance their structure in ε−expansion (ε ≡ (4 − d)/2), they are

expressed in terms of the same class of functions.7 This is particularly important if we

want to know a priori if a system of DE can be solved, for instance, in terms of Goncharov

Polylogarithms, or if the solution contains a larger class of functions including, for instance

Elliptic Integrals.

In appendix B we have collected several results of maximally cut MI: in B.1 we study a

double-box with a massive loop, and find that it is expressible in terms of Polylogarithmic

functions; in B.2 we study two-loop sunset graph and show that only the fully massive one

is elliptic;8 in B.3 we show how results can be obtained beyond d = 4 and verified that

certain maximally cut integrals as well as certain combinations of maximally cut integrals

are expressed in terms of GPs in exactly the same way as their uncut counterparts; in B.4

we show that the cut of the elliptic box-triangle integral [61] is elliptic as well, and finally

in B.5 we study the elliptic double-box [61], and verify that the Elliptic Integrals only enter

through its sub-topologies.

5Care should be taken in defining the DE so that no symmetries of MI are used that may be violated

by the corresponding n−cut.
6See also refs. [70, 75, 76] for related considerations.
7See also related discussion in ref. [19], section 3.4.1.
8By elliptic we mean that it is expressible only in terms of Elliptic Integrals.
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6 Discussion and outloook

In this paper we have studied properties of Feynman integrals in Baikov representation.

We have shown how to determine the limits of integration and how to obtain DE with

respect to external kinematics and internal masses. We have introduced also a loop-by-

loop approach in constructing the Baikov representation, so that for certain FI a smaller

number of integration variables is obtained. Then we provided a definition of a cut integral,

operational in d dimensions, and show that a cut integral satisfies the same system of DE as

the uncut, original integral. We have shown how to compute the simplest, i.e. maximally,

cut integral in Baikov representation, and give explicit results for several cases.

Based on the fact that cut integrals satisfy the same system of DE as the full, uncut

integrals we have verified that their analytic expressions are given in terms of the same class

of functions, such as Goncharov Polylogarithms or Elliptic Integrals. We have therefore

arrived at the conclusion that in a family of MI satisfying a given system of DE, the study

of the maximally cut integrals for all its members can provide a necessary and sufficient

criterion for the existence of a canonical form of the DE, and in the case when such a

canonical form does not exist, it provides solutions of the homogeneous parts of the system

of DE (see also refs. [68, 69]). An application of these ideas to non-planar pentabox integrals

will be discussed elsewhere.

Baikov representation is well suited for these considerations, drastically simplifying

the computation of cut integrals for arbitrary external momenta and internal masses. It is

still an open question if it can also be used to actually compute the MI. To this end, an

algorithm, allowing the resolution of singularities in ε, needs to be devised. It remains to

be seen if this is possible and more importantly what kind of integral representations for

the individual terms in this expansion such an algorithm produces.
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A Alternative derivation of the Baikov representation

In this appendix we will show an alternative derivation of the Baikov representation of

Feynman integrals, complementary to the one given in section 2 in the main text.

We start from eq. (2.1) for the one-loop case

Fα1...αN =

∫
ddk

iπd/2
1

Dα1
1 · · ·D

αN
N

(A.1)

The integrand (Dα1
1 · · ·D

αN
N )−1 depends on E independent external momenta, which

allows us to split the integration into an E-dimensional “parallel” subspace k|| and a (d−E)-
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dimensional “orthogonal” subspace k⊥. Notice that the integrand depends on the orthog-

onal directions only through k2⊥, allowing us to perform the angular part of the integral

over the orthogonal space

Fα1...αN =
π−E/2

iΓ((d− E)/2)

∫
λ(d−E−2)/2

Dα1
1 · · ·D

αN
N

dEk||dλ (A.2)

where we define λ ≡ k2⊥.

We change now to a different set of variables ςi ≡ k · pi which is equivalent to s1,E+i

from section 2. Defining G as the Gram determinant of the external momenta, it is not

hard to realize that dEk|| = −(−G)−1/2dEς, and we now want to change the integration

to the set of Baikov variables x. Using the same argument as in section 2, we get that

dEk||dλ = det(A−1)dE+1x where A is the matrix defined in eq. (2.2), and we see that

det(A−1) = ±2−E depending on the sign of the external momenta in the definition of the

loop momenta. Putting this together, yields

Fα1...αN =
iπ−E/2

Γ((d− E)/2)

det(A−1)√
−G

∫
λ(d−E−2)/2

xα1
1 · · ·x

αN
N

dE+1x (A.3)

If additionally we use that λ = P/G where P — the Baikov polynomial — is given

as the Gram determinant of the full set of momenta {q} = {k, p1, . . . , pE}, we see that

eq. (A.3) is equivalent to eq. (2.3) in the one-loop case. The above derivation can be

straightforwardly generalised for any numbers of loops.

The loop-by-loop case. We may now go through the same procedure as above, loop by

loop, for a two-loop process. A traditional Baikov representation of a two-loop Feynman

integral with E independent external momenta would involve 3 + 2E integrations, but in

most cases it is possible to get the number further down. Each individual loop will in

general be dependent only on a subset of the E external momenta. Let us denote with k2
the loop momentum of the loop with the smallest such subset, and the size of that subset

E2 − 1. This means that the integrand of this loop depends on E2 different momenta

including k1. Performing the transverse angular part of the k2 integration individually

with the method leading up to eq. (A.2), gives

F two-loop
α1...αN

=
−π−(E2+d)/2

Γ((d− E2)/2)

∫
λ
(d−E2−2)/2
22

Dα1
1 · · ·D

αN
N

dE2k2||dλ22d
dk1 (A.4)

where λ22 = k2
2
⊥.

The integrand now depends on all the external momenta, so the transverse angular part

of the k1 integration may be done, leaving E +E2 + 2 integrations in total. So only in the

cases where both loops depend on E external momenta (so E2 = E+1) the number of inte-

grations will be equal to that of the standard Baikov approach, otherwise it will be smaller.

Changing integration variables from k|| to ς and from ς and λ to the Baikov variables

x, our result for the two-loop case in the loop-by-loop approach is written as

F two-loop
α1...αN

=
−π−(E+E2)/2

Γ((d− E)/2) Γ((d− E2)/2)

det(A−1)√
−G1

∫
λ
(d−E−2)/2
11 λ

(d−E2−2)/2
22√

−G2 x
α1
1 · · ·x

αN
N

dE+E2+2x

(A.5)
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with G1 the Gram determinant of the E external momenta and G2 the Gram determinant

of the E2 different momenta including k1.

B Examples of cuts performed in Baikov variables

In the appendix we will go through several examples of maximally cut Feynman integrals.

B.1 Double-box with massive loop

As a first example we will do a double-box with one massive loop. That integral is given as

Fdouble-box =

∫
ddk1

iπd/2
ddk2

iπd/2
1

x1x2x3x4x5x6x7
(B.1)

with

x1 = k21 −m2 x2 = (k1 + p1)
2 −m2 x3 = (k1 + p1 + p2)

2 −m2

x4 = (k2 + p1 + p2)
2 x5 = (k2 − p4)2 x6 = k22

x7 = (k1 − k2)2 −m2 x8 = (k1 − p4)2 −m2 (B.2)

where x8 is needed for later. Using the loop-by-loop approach, eq. (A.5), we may perform

the angular parts of the integral, leaving integrals over the eight Baikov variables

Fdouble-box =
−π−3

Γ2((d− 3)/2)

det(A−1)√
−G1

∫
λ
(d−5)/2
11 λ

(d−5)/2
22√

−G2 x1 · · ·x7
d8x (B.3)

The various quantities are9

λ11 =

(
4m2st(s+ t) + 2st

(
2x1x3 − x1x2 − x2x3 + t(x1 + x3)− (x1 − 2x2 + x3)x8

)
− s2

(
t2 + (x2 − x8)2 − 2t(x2 + x8)

)
− t2(x1 − x3)2

)
/
(

4st(s+ t)
)

(B.4)

λ22 = −
(

4m2s
(
− (sx5) + (x4 − x5)(x5 − x6)

)
+
(
x3(−x5 + x6) + s(x5 − x7)

)2
+ 2
(
x3(x4 − x6)(−x5 + x6)− s2(x5 + x7) + s(x4x5 − 2x4x6 + x5x6 + x3(x5 + x6)

+ (x4 − 2x5 + x6)x7)
)
x8 +

(
s2 + (x4 − x6)2 − 2s(x4 + x6)

)
x28

+ x21(x4 − x5)2 + 2x1

(
s(−2x3x5 + (x4 − x5)(x5 − x7) + (x4 + x5)x8) (B.5)

+ (x4 − x5)(x3(x5 − x6) + (−x4 + x6)x8)
))

/
(

4s(m2s+ (x1 − x8)(x3 − x8) + sx8)
)

G1 = −st(s+ t)/4

G2 = −s
(
m2s+ x1(x3 − x8) + x8(s− x3 + x8)

)
/4 (B.6)

det
(
A−1

)
= 1/64

and s = (p1 + p2)
2, t = (p1 + p4)

2, s > 0, t < 0, s+ t > 0,m2 > 0.

9This is the only example in which these quantities will be written out in full.
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Inserting all this, cutting the seven propagators, expanding in ε, and renaming x8 to

z, gives

Fdouble-box|7×cut =
1

4π4
1

s

∫ r+

r−

dz
1

z
√
P (z)

+ O(ε) (B.7)

where

P (z) = −4m2s2t− 4m2st2 + s2t2 − 2s2tz + s2z2 (B.8)

and r∓ are the two roots of P (z). The result is

Fdouble-box|7×cut =
1

4π4
iπ

s
√
st(st− 4m2(s+ t))

+ O(ε). (B.9)

In fact we have computed also the order ε which is given in terms of weight 2 functions,

but since it is quite extensive we give the result for another MI, defined as follows,

Fdouble-box-N =

∫
ddk1

iπd/2
ddk2

iπd/2
x8

x1x2x3x4x5x6x7
(B.10)

whose expression is simpler,

I ≡ −4iπ3e2γEεs2+ε(−t)−ε(s+ t)−ε
(
m2
)3ε
Fdouble-box-N|7×cut (B.11)

I = 1− ε log

(
−4t3(s+ t)2

(√
Y+ +

√
Y−
)4

m2
(√
X+− +

√
X−−

)2(√
X−+ +

√
X++

)2
)

+O(ε2)

X±± = ms
√
t(s− 4m2)(s+ t)± 4m2t(s+ t)±m

√
st (s+ t)(s+ 2t) (B.12)

Y± = 2m
√
s+ t±

√
st

suggesting that the solution is expressible in terms of logarithmic/polylogarithmic func-

tions.

B.2 The sunset

We will here go through the same considerations for the well-studied sunset-integral [60].

The integral is given as

Fsunset =

∫
ddk1 d

dk2(
iπd/2

)2 1

x1x2x3
(B.13)

with

x1 = (k1 − p)2 −m2
1 x2 = k22 −m2

2 x3 = (k1 − k2)2 −m2
3 x4 = k21. (B.14)

Using the loop-by-loop approach, we get

Fsunset =
−π−1

Γ2((d− 1)/2)

det(A−1)√
−G1

∫
λ
(d−3)/2
11 λ

(d−3)/2
22√

−G2 x1x2x3
d4x (B.15)

with

λ22 = λ(x4,m
2
2,m

2
3) λ11 = λ(s, x4,m

2
1) (B.16)
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λ(s1, s2, s3) ≡ s21 + s22 + s23 − 2s1s2 − 2s2s3 − 2s3s1, is the Källén function and s = p2.

Performing the triple cut gives [77],

Fsunset|3×cut ∝ s−1+ε
∫
dx4x

−1+ε
4 (λ11λ22)

1/2−ε (B.17)

Expanding in ε

Fsunset|3×cut ∝ s−1
∫
dx4x

−1
4 (λ11λ22)

1/2 +O(ε) (B.18)

it is easily seen that this is an integral over the square-root of a quartic polynomial [77],

which yields elliptic integrals, and such functions are indeed present in the result for the

full sunset integral as well. On the other hand, if any of the masses vanish, the square root

partially factorises, and the result is expressible in terms of polylogarithmic functions.

Notice, that the extra cut over x4 (m2 > m3), after expanding in ε,∮
x4=0

dx4x
−1
4 (λ11λ22)

1/2 = (s−m2
1)(m

2
2 −m2

3) (B.19)

yields a rational term at order O(ε0), which seems to contradict our previous findings,

eq. (B.18), as well as the known result for the full integral [60]. Nevertheless, it is easy to

verify, starting from eq. (B.15), that Fsunset|4×cut = 0 and that the result of eq. (B.19) is

just an artefact of expanding in ε before cutting.

B.3 The bubble-triangle

As mentioned in section 1, the introduction of the idea of canonical bases [55] caused a

renaissance in the derivation of analytical expressions of Feynman integrals. We will not go

through the details of what a canonical basis implies, merely say that no general algorithm

for obtaining such a basis exists. In ref. [68] it was implied that canonical integrals have

maximal cuts which equal a number (rather than a function of kinematical variables).

This criterion significantly limits the search space, and has been a helpful guideline in

many cases.

Yet for some cases the maximal cut derived in the traditional way in four dimensions,

does not provide the full information obtainable from such a criterion. For an example

lets us re-examine the triangle with bubble insertion discussed in section 3. We will here

parametrize it as

Fα1α2α3α4α5 =

∫
ddk1

iπd/2
ddk2

iπd/2
x−α5
5

xα1
1 xα2

2 xα3
3 xα4

4

(B.20)

with

x1 = (k1 − p1)2 x2 = (k1 + p2)
2 x3 = k22 x4 = (k1 − k2)2 x5 = k21 (B.21)

Using the loop-by-loop approach of eq. (A.5), we may turn this into a five-fold integral

Fα1α2α3α4α5 =
−π−3/2

Γ((d− 2)/2) Γ((d− 1)/2)

det(A−1)√
−G1

∫
λ
(d−4)/2
11 λ

(d−3)/2
22√

−G2

x−α5
5 d5x

xα1
1 xα2

2 xα3
3 xα4

4

(B.22)
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The set of canonical differential equations used in ref. [78] contains two integrals with

the topology of this integral, and they are given as (s = (p1 + p2)
2)

I1 = εR12F11210 I2 =

(
sF1221−1 −

1

2
ε
(
p21 − p22 − s

)
F11210

)
(B.23)

where R12 denotes the Källén function

R12 =
√
p21 + (p22 − s)2 − 2p21(p

2
2 + s) (B.24)

Performing the cut in four dimensions will only catch the leading term in ε, and thus not the

second term in I2. On the contrary, the definition of maximal cut given in eq. (5.1), allows

us to compute the cut integral in d dimensions and for arbitrary powers of propagators in

the integrand. The result is given by

F11210|4×cut ∝ 2(d− 3)R
(3−d)/2
12 (B.25)

×
∫ r+

r−

z(d−6)/2
(
s(p21p

2
2 − p21z − p22z + sz + z2)

)(d−4)/2
dz

F1221−1|4×cut ∝ (d− 3)(d− 4)R
(3−d)/2
12

∫ r+

r−

z(d−4)/2

×
(
− p21p22 + p42 − p22s+ p21z − p22z − sz

)
(B.26)

×
(
s(p21p

2
2 − p21z − p22z + sz + z2)

)(d−6)/2
dz

where z = x5 and r± the roots of the polynomial: p21p
2
2 − p21z − p22z + sz + z2. These

integrals evaluate to hypergeometric functions, and as the second integral diverges in the

d → 4 limit, the integration does not commute with the ε expansion. Thus one has to

evaluate them in d dimensions and then expand the resulting functions, for instance using

the HypExp package [79], to the desired order in ε. The result for the integrals defined in

eq. (B.23) is given by

I1 |4×cut =
24ε−3ε cos(πε)Γ

(
ε+ 1

2

)
π2Γ

(
3
2 − ε

) (
p21
)−2ε

x−ε(x+ 1)−ε(y − 1)(xy + 1)−ε

×2F1(1− ε, ε+ 1; 2− 2ε; 1− y) (B.27)

I2 |4×cut =
42ε−1

πΓ
(
1
2 − ε

)2 (p21)−2εx−ε(x+ 1)−ε(xy + 1)−ε 2F1(−ε, ε;−2ε; 1− y) (B.28)

where the variables x,y have been introduced, defined through s ≡ p21(1 + x)(1 + xy) and

p22 ≡ p21x2y.

In order to explicitly show the uniform transcendentallity property of these functions,

we present the results expanded up to order ε3,

NεI1 |4×cut = ε log(y) + ε2
(
−2 Li2(1− y)− log2(y)

)
+ ε3

(
− 4 Li3(1− y)− 2 Li3(y)

−Li2(y) log(y) +
2

3
(log(y)− 3 log(1− y)) log2(y) + 2 ζ(3)

)
+O(ε4) (B.29)

NεI2 |4×cut = 1− 1

2
ε log(y) +

1

2
ε2
(
log2(y)− π2

)
+

1

12
ε3
(

36 Li3(y) + 18 Li2(1− y) log(y)

−4 log3(y) + 18 log(1− y) log2(y)− 3π2 log(y)− 92 ζ(3)
)

+O(ε4) (B.30)

with Nε = e2γEε(p21)
εxε(x+ 1)ε(xy + 1)ε.
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B.4 The elliptic box-triangle

Here we will go through the generalized cut of the elliptic box-triangle studied in ref. [61]

where it is denoted IA66, and in ref. [69]. It is given as

Fbox-triangle =

∫
ddk1 d

dk2(
iπd/2

)2 1

x1x2x3x4x5x6
(B.31)

with

x1 = k21 −m2 x2 = (k1 + p1)
2 −m2 x3 = (k1 + p1 + p2)

2 −m2

x4 = (k2 − p4)2 −m2 x5 = k22 −m2 x6 = (k1 − k2)2

x7 = (k1 − p4)2 (B.32)

where x7 has been introduced for later convenience. The kinematics is such that

p21 = p22 = 0 (p1 + p2)
2 = s (p1 + p4)

2 = t (p2 + p4)
2 = u = p24 − s− t (B.33)

With the loop-by-loop approach as described in section 3, we see that the k2 integral

has a transverse space with dimension 2, as it is formed by p4 and k1, while the k1 integral

has a transverse space formed by p1, p2, and p4, which has dimension 3. Thus we can write

Fbox-triangle as a 7-dimensional integral over the seven Baikov variables given above.

Fbox-triangle =
−π−5/2

Γ(d−22 )Γ(d−32 )

det(A−1)√
−G1

∫
1

x1 · · ·x6
λ
(d−4)/2
22 λ

(d−5)/2
11√

−G2
d7x (B.34)

Here λ22 is a function of all the Baikov variables, and λ11 and G2 of those not containing

k2. We may then do the hexa-cut of the integral, yielding an integral over one variable

z = x7. That integral is well-behaved in the d = 4 limit, and thus the integration and the

ε expansion commute, giving

Fbox-triangle|6×cut = C

∫ r+

r−

dz√
F1(z)F2(z)

+O(ε) (B.35)

where C = i/(4π3) and

F1(z) = m4 − 2m2p24 + p44 − 2m2z − 2p24z + z2

F2(z) = s
(
m4s+ 2m2(2tu+ s(t− z)) + s(t− z)2

)
(B.36)

and r∓ are the two roots of F2(z) which are given as

r∓ = (m2 + t)∓
√
−m2stu/s (B.37)

Following [80], we may perform the integral with the result

Fbox-triangle|6×cut =
2iC√
X
K

(
−16m2

√
−p24stu

X

)
+O(ε) (B.38)

where K(k2) is the complete elliptic integral of the first kind, and where

X = s(p24 − t)2 − 4m2

(
p24s− tu+ 2

√
−p24stu

)
(B.39)

which holds in the physical region with m2 > 0, s > 0, p24 > 0, t < 0, u < 0.
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B.5 The elliptic double-box

Here we will go through the generalized cut of the elliptic double-box studied in ref. [61]

where it is denoted IA70. It is given as

Fell. double-box =

∫
ddk1 d

dk2(
iπd/2

)2 1

x1x2x3x4x5x6x7
(B.40)

with

x1 = k21 −m2 x2 = (k1 + p1)
2 −m2 x3 = (k1 + p1 + p2)

2 −m2

x4 = (k2 + p1 + p2)
2 −m2 x5 = (k2 − p4)2 −m2 x6 = k22 −m2

x7 = (k1 − k2)2 x8 = (k1 − p4)2 (B.41)

The kinematics is as in the previous example.

Here each of the two integrals over the loop momenta k1 and k2 are over transverse

spaces with dimensionality three, giving an eight-dimensional integral after the angular

components have been integrated out:

Fell. double-box =
−π−3

Γ2 (d−32 )

det(A−1)√
−G1

∫
1

x1 · · ·x7
λ
(d−5)/2
22 λ

(d−5)/2
11√

−G2
d8x (B.42)

As before we may perform a cut of all the propagators — an hepta-cut in this case,

yielding an integral over the last variable variable z = x8

Fell. double-box|7×cut =
C√

s(s− 4m2)

∫ r+

r−

dz

z
√
f(z)

+O(ε) (B.43)

where C = 1/(4π4) and

f(z) = s
(
4m2tu+ s(t− z)2

)
(B.44)

and r∓ are the two roots of f(z) which are given as

r∓ = t∓ 2
√
−m2stu/s (B.45)

That integral may be done and yields

Fell. double-box|7×cut =
−i
4π3

1

s
√

(4m2 − s)t(st+ 4m2u)
+O(ε) (B.46)

verifying that the elliptic character of the uncut integral stems from the non-homogeneous

part of the corresponding differential equation through its elliptic sub-topologies [61] .
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