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1 Introduction

One of the requirements for the consistent formulation of double and exceptional field

theories is a description of the patching conditions of doubled and exceptional spaces that

underpin these theories. Let us for simplicity focus on doubled spaces as many more results

for these are known. Doubled spaces arise by adding to the spacetime coordinates x a set

of dual coordinates x̃. In double field theory (DFT), the new coordinates are as many as

those of the spacetime.

The question that arises is how these new coordinates patch. There are two main

approaches in the literature for this. In the first approach, it is proposed that the dual

coordinates x̃ patching transformations depend on the transition functions of the B-field.

There are various suggestions for such dependence. Two such suggestions can be found

in [1, 2] and [3].

Another approach, advocated in [4], asserts that the patching conditions of the dual

coordinates x̃ can be arranged such that they do not depend on the transition functions

of the B-field. In such a case, the doubled space of any string background spacetime M

is either a product space M × Q, where Q can be chosen as R
n or Tn, or the cotangent

– 1 –



J
H
E
P
0
4
(
2
0
1
7
)
0
7
4

bundle T ∗M . The dual coordinates in this case become forgetful, in the sense that they

are inert under B-field gauge transformations.

In addition, a recent proposal for DFT for some coset spaces was made in [5], following

on from an analysis of DFT for Wess-Zumino-Witten models presented in [6, 7].

One of the difficulties in deciding the way that the dual coordinates should patch is

the uncertainty of which criteria one should apply. A selection of such criteria is as follows:

• The doubled spaces patch in such a way that is consistent with the dual spaces

obtained via the Buscher T-duality rules.

• The patching of double spaces is such that it requires for consistency the Dirac

quantisation property of the 3-form flux.

• The doubled spaces satisfy the topological geometrisation condition.

• Doubled spaces can be constructed for all backgrounds with 3-form flux.

• Generalised geometry emerges naturally on doubled spaces.

The first criterion is perhaps the most conservative one. Whatever the patching of

doubled spaces is, it should reproduce both locally and globally the results that arise after

applying the Buscher T-duality rules. After all these produce the only explicit examples we

know. Locally this is indeed the case through the use of O(d, d) duality transformations [8–

11] on the fields. However, we shall see that globally the patching conditions of the doubled

spaces do not reproduce the results obtained from Buscher rules.

Moreover, it is worth mentioning that DFT has raised the expectations of what can

be described. As the transformations of DFT make no mention of isometries that are

instrumental in the Buscher rules, there is some expectation that the doubled spaces can

be used to describe a dual space which arises after dualising all spacetime directions.

Another aspect of the dualisation of the whole spacetime is the idea of geometrisation,

i.e. the notion that the theory which includes the spacetime metric and the 3-form field

strength can be described in terms of metric data only. This is analogous to Kaluza-Klein

theory which provides a geometrisation for a 2-form field strength.

The second criterion is an extrapolation of a similar result that arises in Kaluza-Klein

theory. The construction of the Kaluza-Klein space is achieved after restricting the 2-form

field strength to represent the first Chern class of a line bundle. In turn the flux of the

2-form is required to obey the Dirac quantisation condition.

The third criterion is also posed in analogy with the Kaluza-Klein theory. It states

that the pull-back of the 3-form field strength on whatever a consistent description of

doubled space is, or a generalisation of it, must represent the trivial cohomology class [13].

This has several consequences such as, for example, that the dual coordinates must have a

non-trivial topology and non-trivial transition functions over the spacetime.

The fourth criterion is a natural one from the point of view of DFT. In all proposals

made in the literature for the theory, there is no restriction mentioned on the backgrounds.

The fifth criterion is introduced because in generalised geometry the T-duality group

O(d, d) arises naturally as the (sub)group of automorphisms of a vector bundle. So the
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expectation is that in a consistent formulation of the doubled space this bundle should arise

naturally. In fact it is expected to be related to, if not identified with, its tangent bundle.

There are several proposals in the literature on how the doubled spaces might patch and

some analysis of how they measure against the criteria mentioned above. In particular,

the patching of doubled spaces under the transformations proposed in [1, 2] has been

investigated in [12] where it was shown that consistency on 4-overlaps requires that the

3-form field strength H must be exact. To resolve the patching issue, C-spaces, essentially

local descriptions of gerbes, have been proposed in [13]. They exhibit consistent patching

with a cohomologically non-trivialH and locally contain the doubled spaces, but generically

they have more coordinates than doubled spaces. Indeed, in the case of non-trivial H-fields

they do not have well-defined global dimensionalities.

More recently, two new proposals for patching doubled spaces have been put forward [3,

4]. In this paper, we shall consider these two proposals and investigate them in the light of

the criteria mentioned above. First we shall clarify some aspects of the patching conditions

proposed in [3] and demonstrate that, up to an allowed redefinition of the dual coordinates

and choice of transition functions for B at double overlaps, the patching conditions of the

dual coordinates do not depend on the transition functions of the B-field. As a result, for

these choices, the dual coordinates of the doubled space remain inert under patching which

in turn implies that this proposal is related to that of [4].

The proposal made in [4] states that the dual coordinates of a doubled space remain

inert under patching and the transformations induced by the form part of a generalised

vector acting infinitesimally with a generalised Lie derivative on the fields are not coordinate

transformations but rather gauge transformations of the B-field. As a result the dual

coordinates can be forgetful and the spacetime geometry is described by a generalised

geometry structure and a splitting of the generalised geometry bundle induced by the B

field interpreted as a gerbe connection.

In the proposal of [5] for DFT on group manifolds, the doubled space is a group man-

ifold with the physical space embedded into it as a Lagrangian type of submanifold, after

the strong section condition is imposed, while the T-dual space corresponds to a different

embedding. In this case both the physical and dual coordinates are non-trivially patched.

In what follows we give a detailed analysis of the T-duality pair of S3 with N units

of H-charge and the lens space L3

N = S3/ZN with 1 unit of H charge. We show that

the dual circle twists topologically non-trivially over the spacetime L3

N and therefore that

either DFT dual coordinates cannot be identified1 with the T-duality angular coordinates,

or that the doubled spaces patching proposed in [3] and [4] is not consistent globally with

the T-duality rules. We also generalise this to other T-dual pairs including an example of

T-dual spaces constructed from the 3-torus with H-flux background.

Note that a conflict between T-duality and the strong section condition in doubled

spaces had been pointed out before from a different perspective in [14, 15]. There a resolu-

tion was proposed by allowing additional transformations which preserve the split signature

metric on the doubled space but do not satisfy the strong section condition.

1As our results are topological, this rules out all continuous and even homotopic identifications.
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We then go on to propose a scenario based on C-spaces and the Hitchin-Chatterjee

definition of a gerbe in which both the local O(d, d) symmetry and the Buscher T-dual

spaces can be consistently described. We propose an identification of the DFT coordi-

nate x̃ of [4], which transforms as a 1-form, with a coordinate that arises in the C-space

construction [13]. We then demonstrate how the T-dual space M̃ of a spacetime M with

H-flux and which is a circle fibration can be identified as a subspace of the total space of

the gerbe associated to H on M . We also provide explicit examples of this which include

the description of the T-dual lens space L3

N = S3/ZN of S3 with N units of H-charge as a

subspace of the total space of a gerbe on S3. The latter can be described as the union of S3

with a circle bundle with first Chern class N over an open neighbourhood of the equatorial

S2 of S3. The L3

N subspace of the gerbe is the restriction of this circle bundle over the

equatorial S2 of S3. We also give a similar construction for a T-dual space associated 3-

torus background with H-flux. As the angular coordinates that arise naturally in the gerbe

construction, and which are required for the identification of the T-dual spaces of spacetime

as subspaces of gerbes, are not included in doubled spaces and therefore not in DFT, we

conclude that, for the consistent description of a theory with manifest Buscher T-duality

symmetry, additional coordinates are required in addition to those of doubled spaces.

The paper is organised as follows: in section 2, we give the necessary and sufficient

conditions for the T-dual circle to (topologically) twist over a spacetime in a manner

consistent with the Buscher rules. We also prove that the dual circle of the lens space L3

N ,

viewed as a circle fibration over S2, and that of T 3 with H-flux, topologically twist over the

spacetime. In section 3, we review the proposals for patching DFT that have appeared in

the literature and in section 4 we investigate them from a patching point of view concluding

that they do not describe the topological twist of the dual circles. In section 5, we explore

the relation between doubled spaces and C-spaces, explain how local O(d, d) symmetry

arises, and present a gerbe construction for all spacetimes which are circle fibrations and

have some H-flux which allows for the identification of the T-dual space as a subspace of

the gerbe. We also present explicit examples based on S3 and T 3 with H-flux backgrounds.

In section 6, we present our conclusions.

2 T-duality rules and patching

2.1 T-duality rules

To describe the Buscher T-duality rules one assumes that the spacetime M admits an S1

group action generated by a vector field X which leaves the common sector fields, the

metric g, 3-form field strength H and dilaton Φ, invariant. Adapting coordinates along

X = ∂
∂θ
, the metric and 2-form gauge potential can be written as

ds2 = V 2(dθ + qidx
i)2 + gijdx

idxj , B = (dθ + qidx
i) ∧ pjdx

j +
1

2
bijdx

i ∧ dxj . (2.1)
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After performing a T-duality transformation, the dual metric, 2-form gauge potential and

dilaton read

ds̃2 = V −2(dθ̃ + pidx
i)2 + gijdx

idxj , B̃ = (dθ̃ + pidx
i) ∧ qjdx

j +
1

2
bijdx

i ∧ dxj ,

e2Φ̃ = e2ΦV −2 , (2.2)

where a new angular coordinate θ̃ has now been introduced. This is referred as the T-dual

coordinate of θ and the associated circle as the dual circle, which we denote S̃1. The

coordinates of (xi, θ̃) are those of a new spacetime M̃ which, apart from having different

geometry, can also have different topology to that of M . Furthermore M̃ again admits a S̃1

action given by translations in θ̃. Another significant issue, which will be of central focus

in what follows, is that the T-dual coordinate θ̃ can have non-trivial patching conditions

over the original spacetime M (or vice versa). These are given by some of the transition

functions of the B-field. As can be seen from (2.1), pi will transform under a B-field

transformation and this will induce a transformation of θ̃ in (2.2) in order for the T-dual

metric to remain invariant.

The original spacetime M together with its dual M̃ can be put together to construct

an enhanced space. To see this observe that the space of orbits of the S1 action on M

and of the S̃1 action on M̃ are the same, M/S1 = M̃/S̃1 = Q. To avoid complications

with fixed points, let us assume from now on that the action of S1 on both spaces is free.2

In such a case, one can construct a torus bundle P (Q, T 2) over Q. The torus bundles are

classified by elements in H2(Q,Z)⊕H2(Q,Z) which are the first Chern classes of M and

M̃ viewed as circle bundles over Q. In [17], P (Q, T 2) is referred to as the correspondence

space. In particular, the first Chern classes are represented by the 2-forms 1

2π
dq and 1

2π
dp,

respectively, with p = pidx
i and similarly for q.

We therefore have the diagram

P

S1 S̃1

M̃

�
�✠

❅
❅❘

M

❅
❅❘

�
�✠S̃1 S1

Q

(2.3)

We can also define two-forms F and F̃ on Q by integrating H̃ over S̃1 and H over S1

respectively. Here, from the T-duality rules,

H = dB = −dθ ∧ dp+ h+ d(q ∧ p)

H̃ = dB̃ = −dθ̃ ∧ dq + h+ d(p ∧ q) , (2.4)

2Otherwise, one can use the slice theorem to remove the fixed points and repeat the same analysis on

the remaining space.
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where h = db. So

F = −
1

4π2

∫

S̃1

H̃ ; F̃ = −
1

4π2

∫

S1

H . (2.5)

Equations (2.4) and (2.5), together with the fact that both M and M̃ have the same

quotient Q as circle bundles, were specified as the required conditions for the two spaces

to be T-dual in [18].

2.2 The T-dual circle topologically twists over the spacetime

Although the T-dual coordinates θ̃ have non-trivial transition functions over Q, it does not

necessarily mean that they are (topologically) twisted over the spacetime M . To settle this

question, let us examine an example in detail. This is the well-known T-dual pair of S3

with N-units of H flux and the 3-dimensional lens space L3

N with 1-unit of H charge. It is

useful to note that L3

N is the space of orbits of ZN on S3 where the generator g = exp 2πi/N

of ZN acts as vr → gvr, where vr are complex numbers such that v1v̄1 + v2v̄2 = 1.

Both spaces S3 and L3

N are circle fibrations over S2, Q = S2. Moreover the first

Chern class of these fibrations is c1(S
3) = u and c1(L

3

N ) = Nu, respectively, where u is the

generator of H2(S2,Z). Furthermore the cohomology groups of S3 and L3

N are

H0(S3,Z) = H3(S3,Z) = Z , H1(S3,Z) = H2(S3,Z) = 0 , (2.6)

H0(L3

N ,Z) = H3(L3

N ,Z) = Z , H1(L3

N ,Z) = 0 , H2(L3

N ,Z) = ZN .

Next consider the T 2 fibration P = P (T 2, S2) with first Chern classes c1(P ) = u and

c1(P ) = Nu. In fact P =
(

S1 × S3
)

/ZN , where now the generator g of ZN acts as

(a, vr) → (ga, gvr) and |a| = 1, a ∈ C. It turns out that the cohomology of P can be

computed and can be found that

H0(P,Z) = H1(P,Z) = H3(S3,Z) = H4(P,Z) = Z , H2(P,Z) = 0 . (2.7)

In particular observe that the middle cohomology of P vanishes.

To continue observe that P can be viewed as a circle fibration over either S3 or L3

N .

Consider first P as a circle fibration over S3. This fibration is obtained after considering

the group action [a, vr] → [az, zvr], where z ∈ S1 ⊂ C, |z| = 1 is the group element and

[a, vr] denotes the orbit of ZN represented by (a, vr). In fact notice that S1/ZN = S1 acts

freely. As H2(S3,Z) = 0, all circle bundles over S3 are topologically trivial. As a result P

is a topological product S1 × S3. One therefore concludes that the dual coordinate θ̃ does

not twist over the spacetime S3.

However the T-dual Lens space L3

N can also be considered as the spacetime, and so S3

can be thought as its T-dual. Note that H2(L3

N ,Z) = ZN and so L3

N admits topologically

non-trivial circle bundles. The fibration of P over L3

N is constructed by considering the

circle action [a, vr] → [az, vr]. If P was a trivial topological product S1×L3

N , the Künneth

formula for computing the cohomology of the topological product of two spaces would have

implied that

H2(P,Z) = H2(L3

N , H0(S1,Z)) = H2(L3

N ,Z) = ZN . (2.8)
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This is a contradiction as the second cohomology of P vanishes (2.7). Therefore P is

a topologically twisted product of S1 and L3

N . As a result, the dual θ coordinate has

non-trivial patching conditions over the spacetime L3

N .

Incidentally, observe that P satisfies a partial version of the topological geometrisation

condition of [13]. Both the S3 backgrounds and its dual L3

N have non-trivial H fluxes. As

a result, the T-duality operation does not geometrise all of the B-flux, so that one does

not expect that the pull back of H or H̃ on P will represent the trivial class in H3(P,Z).

Instead the topological geometrisation condition manifests itself as follows: pulling back H

and H̃ onto P , one may have expected that these represent two independent cohomology

classes in H3(P,Z), but this is not the case. H3(P,Z) has one generator and the linear

combination NH−H̃ represents the trivial class in H3(P,Z), where we have suppressed the

pull-back operations. This is because part of the information of the transitions functions

of H and H̃ is stored in the patching conditions of P .

The example we have given above can be generalised to include Tn actions and thus

T-duality in more than one direction. However, for the purpose of this paper, the example

we have investigated will suffice.

To conclude, the Buscher T-duality rules allow for the possibility that the dual circle

has a non-trivial topological twist over the spacetime, so that the dual angular coordinates

can have non-trivial patching conditions over the spacetime. As we have seen, this situation

does indeed arise in explicit examples.

2.3 A patching approach to T-duality

To give a bit more insight into the construction of circle bundle over a space and its relation

to the T-dual pairs, let us first describe how the third cohomology group of the spacetime

is constructed from the cohomology of S1 and that of Q.3 Assuming again that S1 acts

freely on the spacetime M and that Q is simply connected, one can use the method of

spectral sequences to determine H3(M,Z) from H1(S1,Z), H2(Q,Z) and H3(Q,Z). The

construction is rather intuitive. The elements of H3(M,Z) either are generated by au,

where a is the generator of H1(S1,Z) and u are generators of H2(Q), or they are pulled-

back from elements in H3(Q,Z) with the projection map. This is precisely the case if

H4(Q,Z) = 0. If on the other hand H4(Q,Z) 6= 0, then only some of classes generated

by au may represent elements in H3(M,Z). In either case, the 3-form field strength H in

cohomology can be written as [H] = aw + v, where w ∈ H2(Q,Z) and v ∈ H3(Q,Z), and

where the pull-back operation on v has been suppressed.

It is clear from the T-duality rules stated in (2.1) and (2.2) that the component of H

that take an active part in the T-duality transformations is represented by aw. Assuming

that w ∈ H2(Q,Z), the dual space M̃ as a circle bundle has first Chern class w. For later

applications, let us assume that w is represented by a 2-form F̃ 2. The construction of M̃

can be made using a good cover {Uα}α∈I on Q. Then, using the Poincaré lemma on Uα,

and on double and triple overlaps, Uαβ = Uα ∩ Uβ and Uαβγ = Uα ∩ Uβ ∩ Uγ respectively,

3In this subsection we allow Q to have more than two dimensions in the general discussion.
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we find

F̃ 2

α = dC1

α , − C1

α + C1

β = da0αβ , a0βγ − a0αγ + a0αβ = nαβγ , (2.9)

where C is the 1-form gauge potential, a0 are the transition functions on double overlaps

and n are constants. The latter lie in 2πZ as 1

2π
ω2 represents a class in H2(Q,Z). Then

M̃ is constructed by introducing an angular coordinate θ̃ and after imposing the patching

conditions

θ̃α − θ̃β − a0αβ = 0 mod 2πZ . (2.10)

These patching conditions are consistent on triple overlaps as nαβγ ∈ 2πZ.

Making use of the above, we can state the criterion for whether the dual angular

coordinate has non-trivial transition functions over the spacetime. Indeed, writing [H] =

aw + v and [H̃] = aw̃ + ṽ, we observe that the dual angular coordinate θ̃ has non-trivial

transition functions over the spacetime iff w represents a non-trivial class in H2(M,Z),

where the pull-back operation from H∗(Q,Z) to H∗(M,Z) has been suppressed. Similarly,

the angular coordinate θ has non-trivial transition functions over the dual space M̃ iff w̃

represents a non-trivial class in H2(M̃,Z). The classes w and w̃ are represented by the

forms F̃ and F in (2.5) respectively.

2.4 T-duality on T
3 with flux

We can use the results of the previous section to demonstrate that the T-dual angular co-

ordinate of T 3 with flux also is twisted over the spacetime. For this denote the angular co-

ordinates of T 3 with (ψ1, ψ2, ψ3), 0 ≤ ψi < 2π, i = 1, 2, 3. The metric and flux are given as

ds2 = (dψ1)
2 + (dψ2)

2 + (dψ3)
2 , H = −

N

4π2
dψ1 ∧ dψ2 ∧ dψ3 , (2.11)

where N ∈ Z. If we choose as a T-duality direction ψ1 and solve for the gauge potential

as B = N
4π2ψ2dψ1 ∧ dψ3, then

p =
N

2π
ψ2dψ3 , (2.12)

where the Killing vector field along the T-duality has been normalised as 2π∂ψ1
. As it has

been explained in the previous section, the dual coordinate topologically twists over the

spacetime iff the pull-back of dp represents a non-trivial cohomology class. Indeed

dp =
N

2π
dψ2 ∧ dψ3 , (2.13)

and its pull-back on T 3 is a non-trivial class as 1

2π
dψ2 ∧ dψ3 represents one of the three

generators of H2(T 3,Z).

3 Double field theory finite transformations

There has been extensive work in the literature to determine the allowed finite transfor-

mations of DFT. A concise description of all possibilities and the sources can be found

in [4]. Here after imposing the strong section condition, we shall briefly summarise the
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finite transformations proposed as well as their induced action on the B-field. This will

suffice for the purpose of the analysis that follows below.

First let us begin with the proposal of [1, 2]. In this proposal, the doubled space

coordinates (xi, x̃i) transform as

x′i = x′i(xj) , x̃′i = x̃i − vi(x) , (3.1)

and the induced transformation on the B field is

B′

ij(x
′) =

∂xk

∂x′i
∂xl

∂x′j

(

Bkl(x) +
1

2

(

∂vl
∂xk

−
∂vk
∂xl

))

+
1

2

(

∂xk

∂x′i
∂vj
∂xk

−
∂xk

∂x′j
∂vi
∂xk

)

. (3.2)

Observe that the spacetime coordinates transform with the usual diffeomorphisms while

the dual coordinates transform with a shift whose parameter depends only on the spacetime

coordinates. A modification of this proposal in the context of DFT was suggested in [16];

however, the transformations given in [16] reduce to the above after the strong section

condition has been imposed.

Another proposal for the finite transformation of DFT was put forward in [3]. For this,

a closed 2-form was introduced b, db = 0 which transforms as

b′ij(x
′) =

∂xk

∂x′i
∂xl

∂x′j
((bkl + ∂kvl − ∂lvk )(x)), (3.3)

while B := B − b is taken to transform tensorially:

B′

ij(x
′) =

∂xk

∂x′i
∂xl

∂x′j
Bkl(x) . (3.4)

This implies that the B-field transforms as

B′

ij(x
′) =

∂xk

∂x′i
∂xl

∂x′j
(Bkl + ∂kvl − ∂lvk)(x)) , (3.5)

i.e. in the same way as b. In these equations v depends only on the spacetime coordinates.

The doubled space coordinate transformations are taken to be

x′i = x′i(xj) , x̃′i = x̃i + vi(x) . (3.6)

More recently a new proposal has been put forward [4]. The doubled space coordinates

transform as

x′i = x′i(xj) , x̃′i = x̃i , (3.7)

i.e. the spacetime coordinates transform with diffeomorphisms while the dual coordinates

remain inert with respect to B-field gauge transformations.

The B-field transforms as

B′

ij(x
′) =

∂xk

∂x′i
∂xl

∂x′j

(

Bkl(x) +
(

∂kvl − ∂lvk
)

(x)
)

, (3.8)

i.e. in the same way as in [3].
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The reason that the dual coordinates x̃ do not transform under the B-field gauge

transformations is because the component ṽj of the generalised infinitesimal vector,

V M =

(

vi

ṽj

)

(3.9)

that enters in the generalised Lie derivative acting on the fields, is identified as the param-

eter of an infinitesimal gauge transformation of the B field viewed as a gerbe connection.

In other words ṽj is viewed as (the parameter of) a gauge transformation rather than as

a coordinate transformation. Moreover the gerbe connection introduces a splitting in the

short exact sequence

0 → T ∗M → E → TM → 0 , (3.10)

which describes the extension of TM by T ∗M . This allows E to be split as E = TM⊕T ∗M

and to thereby identify the sections of TM and T ∗M in E which now transform as vectors

and forms. The calculation of how this can be done has been described explicitly in [4]

and amounts to going from W generalised tensors to Ŵ ones in the notation of [4]. This

is related to the notion of the B-transform in generalised geometry [20–22]. As the dual

coordinates of the doubled space x̃ do not transform, or just transform as 1-forms, they are

inert under B-field gauge transformations. It has been argued in [4] that to describe DFT it

is sufficient to consider the diffeomorphisms of the spacetime together with the generalised

geometry structure described above which includes a splitting of the exact sequence that

determines the B field.

4 Patching

Let us now turn to investigate the implications of patching doubled spaces with the trans-

formations proposed in the previous section on the topology and geometry of spacetime.

Before we do this, let us describe a few properties of the de Rham-Čech theory as applied

to closed 3-forms H. Let {Uα}α∈I a good cover, then on the open sets Uα and the n-fold

overlaps Uα0...αn−1
= Uα0

∩ · · · ∩ Uαn−1
, n = 2, 3, 4, one has

Hα = dBα , −Bα +Bβ = da1αβ , a1βγ − a1αγ + a1αβ = da0αβγ ,

a0βγδ − a0αγδ + a0αβδ − a0αβγ = nαβγδ , (4.1)

respectively, where nαβγδ are constants. The last condition arises from the requirement

that on 4-fold overlaps

d(a0βγδ − a0αγδ + a0αβδ − a0αβγ) = 0 . (4.2)

If nαβγδ ∈ 2πZ, then H represents a class in H3(M,Z). The left-hand sides of all but

the first of equations (4.1) involve the Čech differential δ. It acts on form-valued fields

defined on p-fold overlaps and takes them to forms on (p+ 1)-fold overlaps, e.g. (δB)αβ =

−Bα +Bβ ; (δa)αβγ = aαβ + aβγ + aγα, and so on, and squares to zero, δ2 = 0.

We emphasise that the 2-form gauge potential B as well as the transition functions

a1, a0 are not unique in the above decomposition. In fact the decomposition is invariant
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under the local “gauge” transformations

Bα → Bα + du1α , a1αβ → a1αβ − u1α + u1β + df0

αβ , a0αβγ → a0αβγ + f0

βγ − f0

αγ + f0

αβ , (4.3)

where u1 are 1-forms and f0 are functions defined on the indicated overlaps.

4.1 B-dependent patching for dual coordinates

If the coordinates for the doubled space, x̃, are taken to be one-forms patched together

using the B-field transformations, i.e.

− x̃α + x̃β ∝ a1αβ , (4.4)

as in [1, 2] and [16] (where the notation ζαβ was used for a1αβ), then, as shown in [12], this

implies that theH-flux is trivial. It follows from (4.4) that (δa1)αβγ = 0 which can be solved

by a1αβ = (δu1)αβ by the δ-Poincaré lemma. This in turn implies that Bα can be shifted by

(du1)α on each patch so that the new B-field will be globally defined. So this construction

of doubled spaces is not compatible with backgrounds with non-trivial H-flux in H3(M,Z).

There are many examples of such backgrounds, for example those discussed in section 2.

Another patching proposal is that of [3] where it is asserted that the polarisation b,

with db = 0, is defined on each patch Uα of a good cover {Uα}α∈I and patches as4

bα = bβ + da1αβ , (4.5)

As B transforms in the same way, the difference B = B− b transforms tensorially and one

has H = dB = dB, as db = 0, and so H is exact.

One can reach the same conclusion by viewing the (3.5) as a patching condition on a

good cover as

(Bα)ij =
∂xkβ
∂xiα

∂xlβ

∂xjα
(Bβ − bβ)kl + (bβ)ij + (dvαβ)ij (4.6)

Since b is closed, one can solve this locally as bα = duα and re-arrange the above equation

using (4.5) as

(Bα − duα)ij =
∂xkβ
∂xiα

∂xlβ

∂xjα
(Bβ − duβ)kl . (4.7)

However, as we have already mentioned the definition of B is ambiguous up to a gauge

transformation generated by u. As a result B can be chosen to be a globally defined 2-form

leading to an exact H. This result is independent from the way that the dual coordinates

transform and so it is not affected by the gauge transformation introduced in [19].

An alternative reading of the proposal made in [3], which is more tuned to the examples

described later in that paper, is as follows. One introduces two different 2-form gauge

potentials B andB for the 3-form field strengthH, but where nowB is no longer necessarily

tensorial. If the transition functions with respect to B and B are denoted by a1 and a0,

and a1 and a0 in the Čech-de Rham decomposition, respectively, we take the patching

4The notation vαβ was used for a1

αβ in [3].
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conditions of the dual coordinates x̃ to be those of the polarisation b = B −B. These are

given by a1αβ − a1αβ := â1αβ . So one can set

− x̃α + x̃β = â1αβ . (4.8)

on each Uαβ . This is similar to (4.4) and implies that â1αβ = (δu1)αβ . So if we redefine

b by bα → bα − u1α on each patch b will be globally defined, while if we also redefine the

new coordinates in a similar fashion, x̃α → x̃′α = x̃a − u1α the new coordinates will be inert

under b (or B)-field gauge transformations. This is similar to the first case discussed above,

but now does not require that the flux of H be trivial. So this interpretation leads to a

patching condition which is equivalent to one which is independent of the B-field patching.

4.2 B-independent patching for dual coordinates

Such a proposal is that described in [4]. The patching conditions are just the diffeomor-

phisms of the spacetime and the patching conditions of the generalised geometry bundle

E together with a choice of a splitting. The main point is that the patching conditions of

the dual coordinates are

x̃α = x̃β (4.9)

i.e. they remain inert. As the generalised geometry data are by construction globally

defined, the patching of such a doubled space is consistent.

However, this proposal and in particular the assertion that x̃α = x̃β is in conflict with

the patching results that are a consequences of the Buscher T-duality rules. As we have

demonstrated with an explicit calculation in section 2, a T-dual circle can topologically

twist over the spacetime. As this cannot happen to the DFT dual coordinates, one can only

conclude that according to this proposal DFT either does not incorporate the Buscher T-

duality rules or the DFT dual coordinates x̃ should not be identified with the Buscher dual

angular coordinates θ̃. If the former is not considered desirable, then one must conclude

that the DFT dual coordinates x̃ is not the full story and additional coordinates must be

introduced. There has been such a suggestion before in [13] where the basis of generalised

Ŵ generalised tensors has been identified and where it was shown how the generalised

geometry emerges. In this case, one might argue that the motivation for the introduction

of the DFT dual coordinates in the first place is somewhat weakened, or that they have

only an auxiliary status.

To enforce the idea that a generalised geometry approach is not sufficient to describe the

T-duality rules, observe that, although the generalised geometry bundle E is twisted over

the spacetime, as a space it is contractible to the spacetimeM . In other words the spacetime

is fixed and the bundle transformations, which one might wish to identify with T-duality

transformations, cannot change the topology of the underlying space. On the other hand,

we have seen that T-duality changes the topology of spacetime, for example the sphere and

the lens space have different cohomology groups, and moreover both spaces in the dual pair

are smooth. This does not mean that the T-duality transformation is necessarily smooth,

but a smooth transformation of E can never induce the T-dual geometry on the spacetime,
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i.e. only singular gauge transformations of E may be of interest as they may produce the

desirable T-dual space.

The modified proposal of [3] discussed above also suffers a similar problem in that the

patching condition (4.8) does not reproduce the Buscher rules and cannot accommodate

dual angular coordinates.

5 A new proposal

5.1 C-spaces and DFT coordinates

Here we shall propose a scenario which illustrates the role of the various coordinates and

how the Buscher T-dual spaces can be incorporated using the C-space construction of [13].

Given a good cover {Uα} of the spacetime M , one introduces new coordinates y1α on

every open set Uα and angular coordinates θαβ on every intersection Uαβ and imposes the

patching conditions

−y1α + y1β + dθαβ = a1αβ ,
(

θαβ + θβγ + θγα + a0αβγ
)

= 0 mod 2πZ , (5.1)

on Uαβ and Uαβγ . Then consistency with (4.1) at triple and fourfold overlaps implies

nαβγδ = 0 mod Z , (5.2)

which is satisfied provided that 1

2π
H represents a class in H3(M,Z). The angular coordi-

nates at double intersections are associated with the fibre directions of the principal U(1)

bundles that arise in the Hitchin-Chatterjee description of gerbes [23, 24], explained in

detail in [25].

Common sector theories with O(d, d) local gauge symmetry can be described solely in

terms of generalised geometry, i.e. without the introduction of additional coordinates. Such

theories can also be described in terms of C-spaces, as discussed in [13]. In this context of

C-spaces additional one-form coordinates can be introduced, as we have seen above, and it

was shown in [13] that the first patching condition in (5.1) can be used to introduce new

one-form coordinates

ỹ1α = y1α −
∑

γ

ργ(dθαγ − a1αγ) , (5.3)

which are globally defined on the spacetime, i.e. ỹ1α = ỹ1β . Here {ρα} is a partition of unity

subordinate to the good cover. It seems reasonable on the grounds of their transformation

properties to identify the ỹ1α with the doubled coordinates of [4] which also transform

as one-forms, i.e. x̃ = ỹ, after suppressing the degree and open set labels on ỹ. This

incorporates the the DFT doubled coordinates into a C-space description.

However, we have shown that the Buscher T-dual spaces cannot be described in terms

of the (x, x̃) coordinates alone. So the question that remains is where the Buscher T-dual

spaces are hidden in this description. The C-space description contains in addition the

angular coordinates θ which describe the gerbe part of the space. We shall argue that the

Buscher T-dual spaces are hidden in the gerbe.
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5.2 Gerbes and Buscher rules

Although in the construction of C-spaces a good cover has been used, for the definition of

a Hitchin-Chatterjee gerbe any open cover5 suffices. We shall use this to adapt an open

cover such that the Buscher T-duals can be described as subspaces of gerbes.

To illustrate how gerbes can be constructed, consider the example of S3 with N units

of H flux. We have already seen that the T-dual space of this is the lens space L3

N with

one unit of flux. To describe this gerbe on S3 [25], we can choose a stereographic cover of

two open sets {U0, U1} on S3 for which their intersection U0 ∩ U1 := U01 is I × S2, I an

open interval, and the Mayer-Vietoris description of H3(S3,Z) which uses representatives

localised on U01, see e.g. [26]. Such representatives are constructed as follows. As U01 is

contractible to S2, choose a representative F01 of the class Nu in H2(S2×I,Z) = H2(S2,Z)

where u is the generator of H2(S2 × I,Z). A representative of 1

2π
[H] can be chosen as

Ĥ0 = −dρ1 ∧ F01 , Ĥ1 = dρ0 ∧ F01 , (5.4)

on U0 and U1, respectively, where {ρ0, ρ1} is a partition of unity subordinate to the cover

{U0, U1}. Observe that at the intersection

− Ĥ0 + Ĥ1 = d(ρ1 + ρ0) ∧ F01 = d1 ∧ F01 = 0 , (5.5)

and so Ĥ is globally defined on S3. Furthermore Stoke’s theorem reveals that [H] = [Ĥ]. As

there are no more than double overlaps the rest of the compatibility conditions for the gerbe

are trivially satisfied. The gerbe6 associated to S3 and H is then the union of S3 together

with the principal U(1) bundle on U01 which has first Chern class Nu. Observe that the

principal bundle over U01 when restricted on S2 ⊂ U01 ⊂ S3 is the Lens space L3

N . It is

significant that the lens space L3

N which is the T-dual to S3 naturally appears in this gerbe

construction. Prompted by this, it is tempting to identify the T-dual angular coordinate θ̃

with the fibre coordinate of the lens space that appears in the gerbe construction. We shall

provide a further explanation for this below.

Suppose next that the spacetime is a product M = S1 × Q and the 3-form flux H =

dθ∧F , where F is a 2-form representing a class in H2(Q,Z) and where we have suppressed

the pull back operation from Q to M . Choose a cover on S1 of two open sets {V0, V1}

then U0 = V0 × Q and U1 = V1 × Q are open and cover M , and their intersection U01 =

(V0 ∩ V1)×Q. As F is defined on M it is also defined on U01 and we denote its restriction

to U01 by F01. Choose the gerbe principal U(1) bundle P01 on U01 to have Chern class

represented by F . Then a representative of the class of the 3-form flux H on M can be

constructed as in equation (5.4)

Ĥ0 = −dρ1 ∧ F01 , Ĥ1 = dρ0 ∧ F01 , (5.6)

where now {ρ0, ρ1} is a partition of unity subordinate to the {V0, V1} cover. Ĥ is globally

defined on M and it is a representative of the 3-form flux associated to the gerbe. The

5Note, however, that for gerbes there is a notion of refinement [23]. As a result, any chosen open cover

can be refined to a good open cover, so that any gerbe can be related to one defined on a good open cover.
6The gerbe in not a manifold. From the perspective of S3 it grows an extra dimension as one approaches

the sphere at the equator.
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T-dual space of M is the bundle space of P01 which is clearly a subspace of the total space

of the gerbe.

As a special case of the above take Q = T 2. In this case, M = T 3 and H can be chosen

as in section 2.4 in which the T-dual pair of T 3 with flux was described. In particular, we set

F = dp =
N

2π
dψ2 ∧ dψ3 . (5.7)

In this case, the restriction of the principal U(1) gerbe bundle P01 on Q = T 2 ⊂ U01 ⊂ T 3 is

the T-dual space T̃ 3 as described by the Buscher T-duality rules. For a different treatment

of this example, see [5].

As a final example we take M to be a circle bundle over Q with 3-form flux H that can

be represented as [H] = aw, where w ∈ H2(Q,Z) and a is the generator of H1(S1,Z). Take

an open cover {Wα} on Q which trivialises the circle bundle M over Q, i.e. π−1(Wα) =

ϕ−1
α (Wα × S1), where π : M → Q is the projection and ϕα : π−1(Wα) → Wα × S1 is

the trivilisation map, and write each Wα × S1 as the union of the open set Wα × V0 and

Wα × V1, where {V0, V1} are the two open sets that cover S1 introduced above. It is clear

that {ϕ−1
α (Wα × Vr)}, r = 0, 1, is a cover for M . As the union of open sets is open U0 =

⋃

α ϕ
−1
α (Wα×V0) and U1 =

⋃

α ϕ
−1
α (Wα×V1) are open and cover M . As in the case that M

was a product, we consider a representative F of the class w ∈ H2(Q) and its pull back to

M with the projection map π. Restricting F to the intersection of U01 and denoting it by

F01, we can construct a representative Ĥ of the H flux as in (5.4), where again {ρ0, ρ1} is

a partition of unity subordinate to the cover {U0, U1}. Ĥ is globally defined and represents

[H] = aw as the derivatives of the partition functions at the intersection of open sets on the

circle represent the generator of H1(S1,Z). It is clear that the gerbe is the union of space-

time with a circle bundle defined on the open set U01 of M which is the restriction of the

pull-back of a circle bundle over the base spaceQ with Chern class w. The circle bundle over

Q is the T-dual space derived from the Buscher rules. If S3 is viewed as a circle fibration

over S2 and H represents N units of flux, the above gerbe construction will also lead to the

identification of the T-dual space as L3

N . It is clear that the gerbes in all the above examples

have simple descriptions because the spacetimes have been covered by only two open sets.

5.3 Summary of the proposal

The above results provide evidence to suggest that the double coordinates x̃ of DFT that

transform like 1-forms [4] should be identified with the ỹ coordinates that occur in C-spaces,

eqn (5.3). DFT can be formulated with only these coordinates and will exhibit local O(d, d)

symmetry as such a description accommodates generalised geometry both from the double

spaces point of view and that of C-spaces. However, such a formulation will not describe

the T-dual spaces of the spacetime. This is regardless of the choice of solution to the strong

section condition that one makes on the doubled space.

Our results have also established that the T-dual space of a spacetime with H flux can

be identified as a subspace of a gerbe which is part of the C-space. This has been done

explicitly for the T-dual space derived after performing T-duality along the fibre direction

of a spacetime which is a circle fibre bundle. This identification requires the presence of
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additional coordinates from those of doubled space which are the fibre coordinates of the

principal U(1) bundles that lie on double intersections of an open cover of the spacetime

and are required in the description of the gerbe.

We have given two gerbe descriptions of the T-dual space of S3 with N units of H

flux example. The first description was in terms of a stereographic cover and the other in

terms of a cover adapted to the fibration over S2. In both cases, the T-dual space has been

identified as the lens space L3

N . In hindsight this may have been expected. The T-dual

space should be independent from a large enough selection of covers on the spacetime that

are used to describe the gerbe. This can be seen as the requirement for the construction of

gerbes and that of T-dual spaces to be covariant. In turn one can view this as a covariant

description of the Buscher T-duality rules.

6 Conclusions

We have made a proposal based on C-spaces and the Hitchin-Chatterjee description of a

gerbe where both the local (bundle) O(d, d) symmetry and the T-dual spaces of a spacetime

can be described in a globally consistent way. In particular, we have demonstrated that the

doubled space of a DFT as described in [4] can be included into a C-space and the O(d, d)

symmetry arises as part of the generalised geometry structure on C-spaces. Furthermore,

we have demonstrated that the T-dual spaces of a spacetime that are constructed using

Buscher rules can be identified as subspaces of the gerbe which is included in C-spaces

but not in the doubled spaces. In this identification, the T-dual angular coordinate of a

spacetime which is a circle fibration with T-duality operation taken along the fibre circle

is identified with the gerbe angular coordinate which is the fibre coordinate of a principal

U(1) bundle defined on an intersection of two open sets of the spacetime.

Our analysis has indicated that it is not possible to formulate a theory which exhibits

both local O(d, d) symmetry and at the same time has a description of all the T-dual

spaces of a spacetime based only on doubled spaces. Using the available globally consistent

definitions of doubled spaces, we have demonstrated that these cannot provide an explana-

tion for the property of the T-dual circles to topologically twist over the spacetime. This

topological twisting has been established in several examples and it is a consequence of the

Buscher rules. In other words, the T-dual spaces cannot arise in DFT as different solutions

to the (strong) section condition on doubled spaces.

The inclusion of gerbes in a consistent definition of a theory which exhibits local O(d, d)

symmetry and which describes the T-dual spaces of a spacetime requires the presence of

additional angular coordinates, the gerbe coordinates. Such spaces are not manifolds and in

particular they do not have a fixed dimension. Nevertheless they contain all the necessary

ingredients for the definition of the theory including the ability to perform differential

geometry computations related to O(d, d) symmetry and the topological properties required

for the descrption of the T-dual spaces.

The gerbe description of T-dual spaces of a spacetime has some additional conse-

quences. First notice that the Buscher rules are not covariant. Their formulation involves

several gauge choices and their construction is essentially local on the spacetime. Moreover,
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they depend on the spacetime admitting an isometry. On the other hand gerbes can be

defined on any smooth manifold with a closed 3-form flux H without further additional

assumptions. Therefore the gerbe description can be seen as a covariantisation of the T-

duality rules. Furthermore the gerbe description opens the possibility that it might be

possible to investigate the T-duals of a spacetime that does not admit isometries. In this

case, however, it may not be possible to identify the subspaces of the gerbe which can be

characterised as T-dual spaces as we have done in the case of spacetimes with isometries.

Even if the T-dual spaces can be identified, it is likely that they will not be manifolds.
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