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1 Introduction

Recent development in the inflationary perturbation theory has revealed a new way of

probing some of the highest energy particle states in our universe. All particles present in

the inflationary universe with mass up to the Hubble scale H leave characteristic signals

in soft limits of primordial non-Gaussianities. Remarkably, these signals directly encode
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the mass and spin spectrum of these particles [1–18], making primordial perturbations a

particle detector of the early universe.

As in ground-based colliders, before exploring new physics, we have to understand the

signals from the Standard Model (SM) of particle physics. If the Hubble scale of inflation

is much larger than the electroweak broken scale, one might näıvely treat all SM fields

as being effectively massless and ignore them if our goal is to explore the much heavier

states accessible to the cosmological collider. However, the situation is more complicated

— Through loop corrections, some light fields can acquire large mass with the inflationary

background. In [19], it is shown that a classically massless scalar boson can receive nonzero

mass due to its self interaction. Gauge boson can also receive similar mass correction if

there exist some light scalar particles charged under the corresponding gauge group. On the

contrary, classically massless fermions do not receive nonzero Dirac mass correction from

its Yukawa interaction with light scalars. This result may also be understood qualitatively

from the point of view of the mean field approximation. The expectation value of Higgs-

field-squared is of order H2/
√
λ for the massless case (where λ is the self-coupling of Higgs

field), due to the Gibbons-Hawking temperature H/2π of the inflationary background, even

though the vacuum expectation value (VEV) of the Higgs field is zero. This provides the

origin of the masses of certain fields.

In this paper, we continue this line of research and work out the SM particle spectrum

in inflation models and their imprints in the primordial non-Gaussianities.

In section 2, we revisit 1-loop mass corrections to various particles. A similar cal-

culation is done in [19] using real-time Schwinger-Kelydish formalism and in a particular

space-time asymmetric gauge. The nonzero mass corrections there result from resum-

ming the infrared-divergent loop diagrams by the dynamical renormalization group (DRG)

method [20]. The calculation has a number of subtleties and is technically involved, too.

Given both technical and conceptual importance of the loop correction to SM spectrum,

in section 2 of this paper, we shall present an alternative derivation of the same result by

carrying out all loop calculations in Euclidean de Sitter (dS) space. Euclidean dS approach

has the advantage that the full spacetime symmetry is manifest and is made good use of.

With some tricks, the loop calculation can also be done easily and neatly. Some useful

tools for doing calculation in Euclidean dS are collected in appendix A of this paper.

In section 3, section 4, and section 5, we study the mass spectrum of SM in inflation

models and their signatures in bispectrum. Apart from loop corrections, the interactions

between inflaton and SM fields can also introduce nonzero mass correction to SM fields,

due to the nonzero inflaton background. The inflaton-SM couplings may depend heavily on

inflation models. In section 3 and section 4, we study generic non-Higgs inflation models in

which the Higgs field has zero VEV. On the other hand, if the inflaton itself is the SM Higgs

boson [21, 22] — a class of models known collectively as Higgs inflation — the inflaton-SM

coupling would be very similar, though not identical, to various Higgs couplings in SM. We

study the case of Higgs inflation separately in section 5.

The main lesson we learn from the analysis of SM is that many particles in SM can

well receive mass of O(H). It is then natural to study the signals of SM fields in primordial

bispectrum following [1–6]. The purpose of this study is twofold: on one hand, if the SM
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fields do acquire mass O(H) and do generate observable signals in the bispectrum, these

imprints would constitute the background signal to the Cosmological Collider, of which

we should have good understanding before using the Cosmological Collider to explore new

physics at very high scales. On the other hand, the study of 1-loop SM contribution

to the bispectrum with all spin-(0, 1/2, 1) particles can serve as a prototypical example

which can be readily generalized to other similar calculations with new physics included.

In section 4 of this paper, we shall present detailed calculation of the squeezed limit of

bispectrum contributed by all kinds of SM fields through 1-loop, in a generic non-Higgs

inflation model with approximate shift symmetry for the inflaton. Meanwhile, we shall also

discuss a parallel calculation in Higgs inflation in section 5. More physical consequences of

this study was discussed in [23].

When mediated by a massive particle through tree diagram, the bispectrum has an

angular dependence Ps(cos θ) (where θ is the angle between the long and short mode and

Ps is the Legendre polynomial) that can tell us the spin s of the particle [6]. However,

since SM particles can only appear in loops in primordial non-Gaussianities, we expect

some subtleties in the determination of the spin. The angular dependence only shows the

total angular momentum of the loop, rather than the spin of an individual particle. More

details can be found in section 4.

On the observational side, the sensitivity of probing the primordial non-Gaussianities

has been improving steadily. There has been a 300-fold improvement from the COBE

era [24] to the Planck era [25] in the past two decades. Future experiments on large-scale

structure [26–28] would further improve the precision by another order of magnitude. In

the more distant future, the 21 cm experiments [11, 29–31] can potentially open up an

enormous amount of observable volume and drastically reduce the cosmic variance, further

improving the precision by a few orders of magnitude. While the experimental precision

varies significantly for different types of bispectra, overall these experiments are expected

to be able to constrain the primordial bispectrum down to fNL ∼ 1 for all major shapes

of bispectra, and may even probe non-Gaussianities well below this value. At fNL < 1,

for the local bispectrum, the density fluctuation from the curvaton and the inflaton may

be distinguished [32]; for the equilateral bispectrum, we may tell whether the inflation

mechanism is dominated by linear or nonlinear effects [33–35]. The type of bispectra

relevant to the cosmological collider physics is much more difficult to constrain than these

conventional bispectra. Nonetheless, analysis show that the 21cm survey has the potential

to probe these signals down to fNL > 10−2 [11].

Ideally, a detailed understanding of the SM background provides valuable information

on what we could hope to learn from the experiments that probe the cosmological collider

physics. In the parameter space where the SM background is observable, an agreement

between our calculation and the observations would indicate a particle desert beyond SM

up to the Hubble scale of inflation. On the other hand, observations that do not agree

with the SM background of any parameter space would indicate new physics beyond the

SM, such as new interactions or new particles. It would be interesting to work out the

consequence of new physics, such as the GUT/supersymmetry/string states, in this setup.

– 3 –



J
H
E
P
0
4
(
2
0
1
7
)
0
5
8

We end this introductory section by a few remarks on the notations and conventions.

The universe during inflation experiences nearly exponential expansion, with nearly con-

stant Hubble parameter, and negligible spatial curvature. Such a spacetime can be well

approximated by the Poincaré patch of the de Sitter space, which describes an exactly

exponentially expanding universe with zero spatial curvature, with the following metric,

ds2 = −dt2 + e2Htdx2, (1.1)

where the comoving time t ∈ (−∞,∞). The constant t slices are flat and are parameterized

by the comoving coordinates x. The Hubble parameter H is a real constant over time,

and the exponential expansion is manifest through the scale factor a2(t) = e2Ht. The

metric (1.1) is conformally flat, and this can be seen by introducing the conformal time τ

via dτ2 = e−2Htdt2. As a result, the metric (1.1) becomes,

ds2 =
1

(Hτ)2
(−dτ2 + dx2), (1.2)

where the conformal time τ ∈ (−∞, 0), and it is convenient to fix the normalization by

−1/Hτ = eHt. In this paper, we shall mostly work with conformal coordinates with

metric (1.2). To apply dimensional regularization, we shall sometimes work in D = (d+1)-

dimensional dS, but eventually we shall take D = 4 (d = 3) limit of the result. In this paper

we shall use both spacetime dimension D and spatial dimension d = D − 1 extensively.

2 1-loop mass correction revisited

In this section, we shall review the 1-loop correction to the masses of spin-(0, 1/2, 1) parti-

cles. The loop correction in dS is important, due to the peculiar infrared behavior of scalar

field. To see this in a simple way, we note that a minimally coupled massless scalar field

φ in dS has a constant mode in the late time limit τ → 0. When the scalar is canonically

normalized, its mode function in 3-momentum space is given by,

φ(τ,k) =
H√
2k3

(1 + ikτ)e−ikτ , (2.1)

which indeed becomes a constant φ(0,k) = H/
√

2k3 when τ → 0. Intuitively, when another

particle χ interacts with φ through a time like λχ2φ2 in the Lagrangian, this constant mode

can contribute a nonzero mass to χ field which is proportional to λ〈φ2〉 in the late-time

limit τ → 0.

However, the expectation value 〈φ2〉, or more generally the 2-point function

〈φ(x)φ(x′)〉, is ill-defined for a minimally coupled massless scalar field φ, precisely because

the infrared divergence coming from the constant zero mode. One can see this problem

by noticing that the inverse-Fourier transformation of 〈φ(τ,k)φ(τ,−k)〉 back to coordinate

space is ill-defined for the massless mode function (2.1). It is also instructive to view this

problem by Wick rotating the dS spacetime dSD to its Euclidean counterpart, which is sim-

ply a D-dimensional sphere SD. On a sphere SD, the scalar field φ can be decomposed into

modes by spherical harmonics Y~L(x), where ~L = (LD, LD−1, · · · , L2, L1) is a D-dimensional
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vector taking values in integers and with the restriction LD ≥ LD−1 ≥ · · · ≥ L2 ≥ |L1|
(More details are presented in appendix A). Throughout this paper we shall also denote

the first entry LD by L. The constant mode in dS then corresponds to the zero mode L = 0

on the sphere. In this setup, the tree-level 2-point function for a minimally coupled scalar

field φ of mass m is given by,

〈φ(x)φ(x′)〉 =
∑

~L

1

λL
Y~L(x)Y ∗~L (x′), (2.2)

where λL = L(L + d) + (m/H)2. Now it is clear that the zero-mode component of the

2-point function 1/λ0 is divergent if m = 0.

The divergence in zero mode is irrelevant for a free field φ as it is unobservable. It

becomes important only when we turn on some coupling among fields so that zero modes

interact with others. However, the appearance of a problem also provides a hint of the

solution. The point here is that the zero mode gets non-perturbatively coupled even when

we turn on a small coupling. As a result, the 1-loop calculation is insufficient and we must

take account of a whole series of higher order loops. After summing over all these loops, a

finite answer is obtained, and precisely has the form of a mass correction.

In [19] the 1-loop corrections to 2-point functions of spin-(0, 1/2, 1) fields are studied

with the real time Schwinger-Keldysh formalism. The dynamical renormalization group

resummation is used to sum over an important class of higher order loop diagrams. It is

shown there that loop corrections can introduce nonzero mass to classically massless fields

through infrared effects, especially if the scalar field in the loop has mass of order H or less.

However, the results presented in [19] also have some unwanted features which we would

like to clarify. Firstly, the loop diagrams with 3-point vertices are calculated in such a way

that both the time integral and momentum integral are artificially cut off at UV, and ap-

pear to be more divergent than loop diagrams with 4-point vertex in the IR. Although such

results agree with similar calculations in literature [20, 36], they are nevertheless quite ob-

scure. The second problem is that the in-in calculation treats the space and time separately

so the manifest covariance of the results is lost. This explains why the time-time and space-

space components of 2-point function for vector field have different behaviors at late times.

In this section we shall take another approach to this problem which makes the space-

time symmetry manifest and is also much simpler. This method involves the Wick rotation

of time direction and does analysis in Euclidean version of de Sitter space. We present some

basic material of Euclidean dS calculations in appendix A, where we also fix the notations

for the following calculations. Readers interested in the calculation of this section may

want to read appendix A before going on. The relation between in-in amplitudes in dSD
and corresponding amplitudes in SD is carefully studied in [37] and we adopt the viewpoint

that the two approaches are equivalent for the calculation we are interested in.

Before we proceed into the details, here we recall some general features of loop cor-

rections presented in [19]. Firstly, we can ignore all diagrams which do not contain scalar

lines. Conceptually this is because the action for a gauge theory with charged massless

fermions is classically Weyl invariant, and technically this is related to the fact that the
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mode functions for both gauge boson and fermion have no IR growth, so they do not

contribute the IR divergence which is the source of the mass correction.

Secondly, we can also disregard the fermion-loop and vector-loop corrections to scalar’s

2-point function. Once again, the technical reason is that such diagrams have no IR

divergence. While this conclusion can be checked explicitly as was done in [19], one can

also understand it by recalling the fact that the diagram with external massless scalars can

be got by acting an appropriate differential operator (with respect to external momenta) on

a corresponding diagram with all external massless scalars replaced by conformal scalars [6].

An example of this manipulation is given in (4.7) in section 4 of this paper. Now that there

is no IR divergence in diagrams with conformal scalars, massless fermions, and vector

fields, so we conclude that the diagrams with external scalars (but no loop scalars) do not

contribute to mass correction.

Therefore, it only remains to consider diagrams with scalar loops. Now we are going

to reevaluate 1-(scalar) loop corrections to 2-point functions of scalar, spinor, and vector

fields, respectively, working in Euclidean dS space. The calculation can be very complicated

if one demands full loop correction. However, we can simplify the calculation significantly

by considering the mass correction only. Because the mass correction is independent of

external momenta, we are free to set external fields to constants. Then the calculation

becomes rather straightforward.

2.1 A toy example

To illustrate the basic technique of our calculation, it would be helpful to consider a toy

example with two minimally coupled massive real scalar fields φ and χ interacting through

a non-derivative cubic vertex. In dSD, the action can be written as,

Stoy = −1

2

∫
dDx
√−g

[
(∂µφ)2 + (∂µχ)2 +M2

φφ
2 +M2

χχ
2 + λφχ2

]
. (2.3)

We would like to find the 1-loop correction to M2
φ through χ-loop, i.e. the external-

momentum-independent piece of 1-loop correction to the 2-point function of φ. For this

purpose we work with SD and it is enough to set external φ’s to be constants.1 Then we

only need to evaluate the following integral,

λ2µ4−D
R

2

∫
dΩdΩ′φ(x)φ(x′)Gχ(x, x′)2, (2.4)

where dΩ = dDx
√
g(x), dΩ′ = dDx′

√
g(x′) are invariant integral measures on SD at point

x and x′, respectively; Gχ(x, x′) is the propagator for χ, and a renormalization scale µR is

introduced to keep the coupling λ being dimension 1 on D-sphere. In this expression we

write φ(x) and φ(x′) formally as two operators sitting at x and x′ respectively, although

1To obtain the full loop correction to the propagator, one still need to work out the wave function

renormalization, which can be got only by keeping external momentum finite. However, it can be easily

understood that there is no infrared problem for this part, and the wave function renormalization will

be essentially the same with the flat space counterpart. Therefore, we shall not consider wave function

renormalization in this work, as its effect is expected to be subleading.

– 6 –
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it should be clear that both of them are constants. Then it is easy to work out the

integral (2.4) with the help of (A.18),

λ2µ4−D
R H2D−4

2

∫
dΩdΩ′

∑

~L, ~M

1

λLλM
Y~L(x)Y ∗~L (x′)Y ∗~M (x)Y ~M

(x′)

=
λ2µ4−D

R HD−4

2

∫
dΩ

∑

~L

1

λ2
L

Y~L(x)Y ∗~L (x)

= −λ
2µ4−D

R HD−2

2

∂

∂m2

∫
dΩ

∑

~L

1

λL
Y~L(x)Y ∗~L (x)

= −λ
2µ4−D

R

2

[
∂m2G(x, x)

]
m2=M2

χ

∫
dΩ, (2.5)

where λL = (L + d/2 + µ)(L + d/2 − µ) and µ =
√

(d/2)2 − (m/H)2, and we have used

the orthonormal condition of spherical harmonics, and the fact that G(x, x) is coordinate

independent. According to (A.17), the scalar propagator at coincident limit of its two

variables is,

G(x, x) =
HD−2

(4π)D/2
Γ(d/2− µ)Γ(d/2 + µ)

Γ(d/2)
2F1

(
d

2
− µ, d

2
+ µ;

D

2
; 1

)
. (2.6)

where 2F1(a, b; c; z) is the hypergeometric function of type-(2, 1). Alternatively, we can also

evaluate G(x, x) from its mode decomposition (A.18) by carrying out the mode summation

over ~L directly,

∑

~L

1

λL
=

∞∑

LD=0

LD∑

LD−1=0

· · ·
L3∑

L2=0

L2∑

L1=−L2

1

λLD
=

∞∑

LD=0

1

λL

(2LD + d)Γ(LD + d)

Γ(d+ 1)Γ(LD + 1)

=
dΓ(−d)Γ(d/2) sin(πd/2) cos(πµ)

πd/2Γ(1− d
2 − µ)Γ(1− d

2 + µ)
[

cos(πd)− cos(2πµ)
] . (2.7)

The coincident limit is given by G(x, x) = H−2V −1
D

∑
λ−1
L , where VD =

2π(D+1)/2/Γ(D+1
2 ) × H−D is the volume of SD. Then we can simplify G(x, x) into the

following form,

G(x, x) =
HD−2

4(4π)D/2−1

Γ(µ+ d
2)
[

tan(πd2 )− cot(πµ− πd
2 )
]

Γ(µ− d
2 + 1)Γ(1+d

2 )
. (2.8)

This method of mode summation is particularly useful in the following when we calculate

photon’s 2-point function.

Now we are ready to evaluate the above result (2.5) at d = 3− ε,

− λ2µ4−D
R

2

[
∂m2G(x, x)

]
m2=M2

χ
=

λ2

32π2

(
2

ε
− γE + log 4π

)
− λ2

32π2µ

[(
1− µ+ 2µ log

H

µR

)

+ 2µψ(µ−1/2)+

(
1−

M2
χ

2H2

)(
2ψ′(µ−1/2)−π2 sec2(πµ)

)
−πµ tan(πµ)

]
+O(ε), (2.9)
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where ψ(z) is the digamma function. The divergent piece as ε → 0 is identical to the

case of flat space, as it should. Now we use modified minimal subtraction (MS) scheme

to subtract the term proportional to 2/ε − γE + log 4π, and then send ε = 0, to get the

following 1-loop correction to M2
φ,

δM2
φ = − λ2

16π2µ

[(
1− µ+ 2µ log

H

µR

)
+ 2µψ(µ− 1/2)

+

(
1−

M2
χ

2H2

)(
2ψ′(µ− 1/2)− π2 sec2(πµ)

)
− πµ tan(πµ)

]
. (2.10)

In the case of inflation, we can set the renormalization scale µR = H. It is interesting to

note that the loop correction diverges as Mχ → 0,

δM2
φ =

3λ2H4

8π2M4
χ

+O(M0
χ), (2.11)

which should be expected. At the same time, the mass correction above is independent

of Mφ and remains valid even when Mφ → 0. So we conclude that φ3-interaction can

contribute a nonzero mass correction to classically massless scalar. The simplification of

above calculation can be visualized as follows,

λ λ
= − ∂

∂m2

(

λ2

)
.

mφ χ

1

(2.12)

The left hand side of this expression is the original Feynman diagram in (2.4), while the

right hand side represents the final result of (2.5) after our simplification. It should be

noted that the above diagrammatic expression is valid only when external black lines carry

zero momentum.

2.2 Loop correction to Higgs mass

For SM, we can treat Higgs field as massless field effectively so long as the inflation scale

is much higher than the electroweak scale. However, the Higgs sector of SM has quartic

self-interaction instead of cubic, and needs a separate treatment which is quite different

from the above toy model.

For free scalar fields the zero mode is unobservable, and therefore, the divergence is

physically irrelevant. On the other hand, once we turn interactions on, e.g. the quartic

potential of Higgs field, an effective mass term for Higgs can be built dynamically and the

divergence of zero modes is thus removed. In [19] this is explored in the real time in-in

calculation with dynamical renormalization group resummation. While this treatment can

provide a reasonable qualitative description of the mechanism of dynamical mass generation

which agrees with other methods such as stochastic approach, Large N limit, and Euclidean

method [20], it is still not fully satisfactory since the DRG resummation cannot take account

of all soft loop diagrams. In this respect, the Euclidean approach is again advantageous

– 8 –
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because the zero mode loops can be summed to all orders in perturbation theory [38, 39].

Below we review this calculation very briefly.

The Higgs action can be written as,

SHiggs = −
∫

dDx
√−g

[
|DµH|2 + λ(H†H)2

]

⊃ −
∫

dDx
√−g

[
1

2
(∂µhi)

2 − 1

4
λ(hihi)

2

]
, (2.13)

where hi (i = 1, · · · , 4) denotes four real components of Higgs field. In terms of standard

parameterization H = 1√
2
(π1 + iπ2, h+ iπ0)T we may identify (h1, · · ·h4) = (h, π0, π1, π2).

If we are allowed to decouple gauge boson by turning off the gauge couplings, then the

Higgs sector would be consist of 4 real scalars with O(4) symmetry, as is shown in the

expression above. On the other hand, if the SM gauge symmetry is broken, either by the

standard Higgs mechanism in flat space, or by the nontrivial zero modes in dS as will be

shown below, the (π0, π1, π2) components will be unphysical, and only the Higgs boson h

remains in the physical spectrum.

In perturbation theory the tree-level propagator of the Higgs field is ill-defined due

to the absence of the mass term and the divergence of the zero mode. The insight here,

however, is that the zero modes can be treated nonperturbatively. In a general φ4 theory

with tree level mass m0 and with O(N ) symmetry, the 2-point function of the zero modes

can be written as 〈hihj〉 = N−1〈h2〉δij , where i, j = 1, · · · N , h2 ≡ hihi is the square of

the radial direction in the field space, and the expectation value 〈· · ·〉 is taken with respect

to the Bunch-Davis vacuum in Euclidean dS. The expectation value 〈h2〉 can be evaluated

directly as follows,

〈h2〉 ≡
∫

dNhh2 exp[−VD(m2
0h

2/2 + λh4/4)]∫
dNh exp[−VD(m2

0h
2/2 + λh4/4)]

=
2√
VDλ

1F̃ 1

(N+2
4 ; 1

2 ; z2
)
− z 1F̃ 1

(N+4
4 ; 3

2 ; z2
)

1F̃ 1

(N
4 ; 1

2 ; z2
)
− z 1F̃ 1

(N+2
4 ; 3

2 ; z2
) , (2.14)

in which z ≡ 1
2m

2
0

√
VD/λ, 1F̃ 1(a; b; z) ≡ Γ(a)

Γ(b) 1F1(a; b; z), and 1F1(a; b; z) is hypergeometric

function of type-(1, 1). We can extract the effective mass m2
eff from this 2-point function

of zero modes by expressing it in terms of spherical harmonics,

〈hihj〉 = δij
HD−2Y 2

~0

(meff/H)2
= δij

1

VDm2
eff

. (2.15)

Then it is clear that m2
eff = N

(
VD〈h2〉

)−1
.

The above calculation shows how scalar fields acquire O(N )-symmetric mass correc-

tion. In the following section, we shall also deal with symmetry broken gauge theories,

where the would-be Goldstone components of scale fields are transferred to the longitudinal

polarizations of the gauge field. In this case, it is mostly convenient to go to unitary gauge.

Here let us illustrate this case with a specific symmetry breaking pattern SU(2) → U(1)

and consider an SU(2) doublet scalar Φ. We can parameterize Φ = 1√
2
ĥeiπ̂iσi with π̂i the
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three would-be Goldstone components and σi the standard Pauli matrices. We have used

hatted variables to denote fields in unitary gauge. Then there is only one real physical

component ĥ in Φ, and the 2-point correlator of its zero mode is evaluated as follows,

〈ĥ2〉 =

∫
d3π̂

∫
dĥ ĥ3 × ĥ2 exp[−VD(m2

0ĥ
2/2 + λĥ4/4)]∫

d3π̂
∫

dĥ ĥ3 exp[−VD(m2
0ĥ

2/2 + λĥ4/4)]
, (2.16)

where we see that π̂i’s disappear from the action and the path integral of their zero modes

factors out. As a result, the above correlator is identical to 〈h2〉 in (2.14), with N = 4. In

the similar way, the effective mass of ĥ is also given by m2
eff = N (VD〈ĥ2〉)−1. In section 3

we shall use this unitary gauge result to determine the Higgs mass during inflation where

we shall also explain the classical origin of a nonzero m0 even in the absence of quadratic

term of Higgs potential.

Finally we note that the 〈hihi〉 correlator (no summation over i) in (2.15) and 〈ĥ2〉
correlator in (2.16) differ by a factor of N . In the case of SU(2), this would be a factor of 4.

If we consider an U(1) gauge theory with one complex scalar instead, the difference would

be a factor of 2. We emphasis this seemingly trivial difference because this fact will be

crucial in section 2.4 when we show that the mass correction is independent of gauge choice.

2.3 Loop correction to fermion mass

Next we consider the 1-loop mass correction to a Dirac spinor. As mentioned above, the

only possible mass correction come from the scalar loop. Thus let’s consider the following

action with a real scalar and a Dirac fermion interacting through Yukawa term,

S =

∫
d4x det(enν )

[
i

2

(
ψγµ∇µψ − ψ

←−∇µγ
µψ
)
− 1

2
(∂µφ)2 − 1

2
m2φ2 − yφψψ

]
, (2.17)

where enν is the vierbein, and ∇µ is the standard covariant derivative containing spin

connection term. For simplicity we only consider the case of massless fermion, which is

enough for our purpose since SM fermions are all massless so long as the Higgs field does

not acquire nonzero background value.

We are interested in a possible 1-loop contribution to the Dirac mass term ψψ. To

this end we need to evaluate the following loop integral,

∆S = y2

∫
dΩdΩ′ ψ(x)GF (x, x′)Gφ(x′, x)ψ(x′). (2.18)

We do not bother to spell out explicitly the renormalization scale µR dependence when

D 6= 4 because it does not play any role in our calculation. As in the previous case, to find

the loop correction to the Dirac mass term, it is enough to set the two external fields ψ(x)

and ψ(x′) to be constant. Then it is straightforward to show that this integral actually
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vanishes. In fact,

∆S = y2H2D−2
∑

~L, ~M,s

∫
dΩdΩ′ ψ(x) /X

×
[

1

λ+
L

Y +
~Ls

(x)Y +†
~Ls

(x′) +
1

λ−L
Y −~Ls

(x)Y −†~Ls
(x′)

]
1

λM
Y ∗~M (x)Y ~M (x′)ψ(x′)

= y2HD−2
∑

~L,s

∫
dΩψ(x) /X

[
1

λ+
LλL

Y +
~Ls

(x)ψ†sY~L(x) +
1

λ−LλL
Y −~Ls

(x)ψ†sY~L(x)

]
ψ(x)

=
−y2HD−2

µ2 − 1/4

∑

~L,s

∫
dΩψ(x) /X

×
[(

1

λ+
L

− 1 + λ+
L

λL

)
Y +
~Ls

(x)ψ†sY~L(x) +

(
1

λ−L
− 1 + λ−L

λL

)
Y −~Ls

(x)ψ†sY~L(x)

]
ψ(x)

=
−y2

µ2 − 1/4

∫
dΩψ(x)

[
H−2GF (x, x)−

(
/X +H−2 /∇x)Gφ(x, x′)

)
x′=x

]
ψ(x)

= 0, (2.19)

where λL is given in (A.18), λ± is given in (A.13), and ψs is a basis for Dirac spinors. In

above derivation we have used the definition of spin-weighted spherical harmonics (A.13),

the orthonormal condition of spin-weighted spherical harmonics (A.15), and the rela-

tion (A.16). The final expression must vanish on symmetry ground. To see this point

more explicitly, we note that each term in the second-to-last line of above expression con-

tains either γµXµ or γµ∂µ, which can be further written as γmeµm(x)Xµ or γmeµm(x)∂µ. In

these expressions, γm is coordinate independent and thus can be taken out of the integral.

The rest factor is then a dS-invariant quantity with single vector index and thus must be

zero. Therefore, we see that the 1-loop correction to fermion’s mass vanishes if the fermion

itself is classically massless. This confirms the results found in [19], and also agrees with

the flat space result.

2.4 Loop correction to vector boson mass

Finally, we consider the correction to Abelian gauge boson. Here we consider the action of

a complex real scalar charged under a U(1) gauge symmetry,

S = −
∫

d4x
√−g

[
1

4
FµνF

µν + |DµΦ|2 +m2Φ†Φ

]

⊃ −
∫

d4x
√−g

[
1

2
e2A2(π2 + φ2) + eAµ(φ∂µπ − π∂µφ)

]
, (2.20)

where we have parameterized the complex scalar field Φ in terms its two real components as

Φ = 1√
2
(φ+iπ). We do not need to specify the gauge fixing condition explicitly at this place

because we won’t use gauge boson’s propagator. However, for the sake of rigorousness,

we can just choose Lorentz gauge ∇µAµ = 0 and follow the standard Faddeev-Popov

quantization, so that the two real components of scalar field have the mass as indicated

in the Lagrangian. It’s also worth mentioning that the Faddeev-Popov ghost does not
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contribute to 1-loop correction of Abelian gauge boson’s two-point function, because the

ghost field, which has the same charge as the gauge transformation parameter, is neutral in

Abelian theory. This is no longer the case in non-Abelian gauge theory where the ghost is

charged under gauge group and interacts with gauge field. This would make the calculation

for non-Abelian theory more complicated. Fortunately, at the end of this section, we shall

show that the same result of mass correction can also be obtained in unitary gauge, where

only physical degrees of freedom appear.

In the second line of above expression we show explicitly the two types of interactions

that contribute to 1-loop correction of photon’s 2-point function. They contribute to the

following two types of diagrams, respectively,

+ .

(a) (b)

1

(2.21)

The Diagram (2.21a) is similar to the case of φ4 loop and is easy to calculate. As in [19], this

diagram contributes nonzero mass to the gauge boson, i.e., a term proportional to AµA
µ,

Diagram (2.21a) = e2µ4−D
R

[
Gφ(x, x) +Gπ(x, x)

]
(2.22)

=
e2µ4−D

R HD−2

2(4π)D/2−1

Γ(µ+ d
2)
[

tan(πd2 )− cot(πµ− πd
2 )
]

Γ(µ− d
2 + 1)Γ(1+d

2 )
.

Expanding the above expression around ε ≡ 3− d = 0, we get,

Diagram (2.21a) =
e2(2H2 −m2)

8π2

2

ε
− e2

8π2

[
m2 + (1 + 2µ)H2 + (2H2 −m2) (2.23)

×
(
γE + 2ψ

(
µ− 1

2

)
+ log

H2

µ2
R

− log 4π − π tan(πµ)

)]
+O(ε).

Here it is more convenient to use Minimal Subtraction (MS) rather than MS scheme.

Under MS scheme, the mass correction to the photon from A2φ2 interaction is simply the

O(ε0) terms of the above equation,

δM2
A(Diagram (2.21a)) = − e2

8π2

[
m2 + (1 + 2µ)H2 + (2H2 −m2) (2.24)

×
(
γE + 2ψ

(
µ− 1

2

)
+ log

H2

µ2
R

− log 4π − π tan(πµ)

)]
.

Then in the small scalar mass limit m/H � 1, the mass correction (2.24) becomes,

δM2
A(Diagram (2.21a)) =

3e2H4

4π2m2
+O(m0), (2.25)
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which reduces to the result found in [19].2 But in order to fully justify this result, it

remains to be seen that Diagram (2.21b)’s contribution can be ignored in the m � H

limit. Diagram (2.21b) is more difficult to compute than (2.21a). But in the limit of

vanishing external momentum and using some tricks, we can get analytic expression for

it. To show this, we firstly write down the expression of Diagram (2.21b) in the limit of

vanishing external momentum,

2e2µ4−D
R Aµ(x)Aµ

′
(x′)

∫
dΩdΩ′

[
Gφ(x, x′)∂µ∂µ′Gφ(x, x′)−∂µGφ(x, x′)∂µ′Gφ(x, x′)

]
, (2.26)

where we have treated Aµ(x) and Aµ
′
(x′) as constants and pulled them out of integral.3

It is still quite difficult to carry out the above integral by brute force. Fortunately, we

are able to simplify the calculation by using symmetry arguments. On symmetry ground,

the contribution to a local operator from above integral must be proportional to gµµ′ .

Therefore, to get the result of above integration, it is enough to calculate one component,

which we choose to be the azimuthal direction gϕϕ. This is a great simplification because

the spherical harmonics Y~L(x) are eigenfunctions of ∂ϕ, that is, ∂ϕY~L(x) = iL1Y~L(x)

where L1 is the “last” component of the vector ~L = (L,LD−1, LD−2, · · · , L1). Then

using (A.18), we further have ∂ϕG(x, x′) = −∂ϕ′G(x, x′), where ϕ and ϕ′ denotes the

azimuthal directions at point x and x′, respectively. Therefore, the ϕϕ-component of above

integral (with AϕAϕ
′

suppressed) can be rewritten in the following way using (A.18),

− 2e2µ4−D
R H2D−2

∫
dΩdΩ′

∑

~L, ~M

1

λLλM

×
[
Y~L(x)Y ∗~L (x′)Y ~M

(x′)∂xϕ∂
x
ϕY
∗
~M

(x)−
(
∂xϕY~L(x)

)
Y ∗~L (x′)Y ~M

(x′)∂xϕY
∗
~M

(x)
]

= −4e2µ4−D
R HD−2

∫
dΩ
∑

~L

1

λ2
L

Y~L(x)∂xϕ∂
x
ϕY
∗
~L

(x)

= 4e2µ4−D
R HD−2

∫
dΩ
∑

~L

L2
1

λ2
L

Y~L(x)Y ∗~L (x)

= −4e2µ4−D
R

∂

∂m2

∑

~L

L2
1

λL
. (2.27)

Then we compare this with the tree level diagram from gϕϕA
ϕAϕ component of the mass

2In [19] the mass correction to gauge boson δMA can never be larger than H/2, due to the limitation

of dynamical renormalization group resummation. Here we see that (2.25) holds even when m � H, and

thus the mass correction δMA can probably exceed H/2. However, one caveat is that the loop expansion

may break down for very small m/H, because the expansion parameter here is actually (eH/4πm)2 rather

than the typical (e/4π)2. Therefore, even the 1-loop calculation here indicates that δMA can be large, it

should be noted that the 1-loop result alone is no longer a good approximation when m� eH.
3Here we encounter the topological obstacle from the hairy ball theorem which states that there is no non-

vanishing smooth vector field over S4. But we can refine our choice of field configuration by requiring that Aµ

is a constant vector field over S4 except at the north pole and south pole, at which we require Aµ to be zero.

Then one can readily check that all following calculation is not affected by the removal of two polar points.
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term with Aϕ constant,

− 2× 1

2

∫
dΩM2

Agϕϕ(x)AϕAϕ = − 2M2
A

D + 1
VDA

ϕAϕ, (2.28)

It is straightforward to see that the mass correction from Diagram (2.21b) is,

δM2
A(Diagram (2.21b)) = 2e2µ4−D

R (D + 1)V −1
D

∂

∂m2

∑

~L

L2
1

λL

= − 4e2HDµ4−D
R Γ(2 + d/2)

πd/2+1Γ(3 + d) cos(πd/2)

∂

∂m2

[
cos(πµ)Γ

(
1 +

d

2
+ µ

)
Γ

(
1 +

d

2
− µ

)]
, (2.29)

where the summation over ~L can be carried out in closed form, similar to what we have

done in the toy example of section 2.1,

∑

~L

L2
1

λL
=

∞∑

LD=0

LD∑

LD−1=0

· · ·
L3∑

L2=0

L2∑

L1=−L2

L2
1

λLD

=

∞∑

LD=0

1

λD

2(2LD + d)Γ(LD + d+ 1)

Γ(d+ 3)Γ(LD)

= −2 cos(πµ)Γ(1 + d/2 + µ)Γ(1 + d/2− µ)

cos(πd/2)Γ(d+ 3)
. (2.30)

Now we expand the above result around ε ≡ 3− d = 0,

Diagram (2.21b) =
e2(−H2 +m2)

8π2

2

ε
(2.31)

+
e2

16π2

∂

∂m2

{
(2H2 −m2)m2

[
− 3

2
+ γE − log(4π) + log

H2

µ2
R

−
(

3

2
−µ
)
ψ

(
5

2
−µ
)

+

(
3

2
+µ

)
ψ

(
5

2
+µ

)
− 3

2
π tan(πµ)

]}
+O(ε).

Then, under MS scheme, we get the final expression for the mass correction from Dia-

gram (2.21b) to be,

δM2
A(Diagram (2.21b))

=
e2

16π2

∂

∂m2

{
(2H2 −m2)m2

[
− 3

2
+ γE − log(4π) + log

H2

µ2
R

−
(

3

2
− µ

)
ψ

(
5

2
− µ

)
+

(
3

2
+ µ

)
ψ

(
5

2
+ µ

)
− 3

2
π tan(πµ)

]}
. (2.32)

To justify the m� H limit expression in (2.25), we need to show that (2.32) is subdominant

in this limit. Indeed, after expanding in m/H, we get

δM2
A(Diagram (2.21b)) =

e2H2

8π2

(
10

3
− 2γE + log 4π + log

H2

µ2
R

)
+O(m2/H2). (2.33)
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Figure 1. The 1-loop mass corrections to the gauge boson δM2
A as functions of the mass of the

loop scalar field m2. The blue, orange, and green curves correspond to the mass corrections from

diagram (2.21a) [given by eq. (2.24)], diagram (2.21b) [given by eq. (2.32)], and the sum of the two,

respectively. The dashed line is the approximation eq. (2.25).

Therefore, the mass contribution from this diagram is finite as m→ 0, which confirms the

m� H limit expression (2.25), and thus the result found in [19].

To illustrate the contributions from different diagrams, we plot the mass corrections

from Diagrams (2.21a) and (2.21b), as well as their sum, as functions of loop scalar mass

m, in figure 1, from which one can see clearly that Diagram (2.21a) is divergent when

m→ 0 while Diagram (2.21b) remains finite.

The interesting point to note is that although (2.25) is only the leading order term of

mass correction in the m� H limit, it is nevertheless a very good approximation even when

m is comparable with H, as is clear from figure 1. Below we shall also show that (2.25) ac-

tually corresponds to the contribution of zero mode. When m > H, there are some discrep-

ancy between the approximate result (2.25) and the full result (2.24)+(2.32). But it should

also be noted that the mass correction for m > H is also subject to uncertainties from the

choice of renormalization scale. Therefore, unless one demands very high precision, we can

just use (2.25) without considering much more complicated full expression (2.24) and (2.32).

In figure 1 one can also observe that both Diagrams (2.21a) and (2.21b) increase as

m/H goes large. However, there are some cancellation between the two diagrams. This

is actually an important consistency check of our result, which we would like to spell out

more explicitly here. The consistency with flat space limit H → 0 requires that both the

divergence part (proportional to 1/ε) and the finite part (proportional to ε0) cancel out

between the two diagrams, because the gauge field must remain massless as required by
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gauge invariance.4 Now it is obvious from (2.23) and (2.31) that the terms proportional to

1/ε in both diagrams cancel each other when H = 0. But it is less obvious that the finite

part (proportional to ε0) in (2.23) and (2.31) also cancel each other in H → 0 limit. To

see this is indeed the case, we expand both expressions in m� H limit, using µ ' im/H

and the asymptotic behavior of digamma function ψ(z) ∼ log(z) +O(z−1), and we find,

δM2
A(Diagram (2.21a))

=
e2m2

8π2

(
− 1 + γE − log 4π + log

m2

µ2
R

)
+O(H)

= −δM2
A(Diagram (2.21b)). (2.34)

Therefore, we see that the mass correction in flat space limit H → 0 does vanish due to

the cancellation of two diagrams.

In this subsection, we have performed the loop calculation in a diagram-wise manner.

On the other hand, we recall that the IR mass generation in de Sitter is usually attributed

to the divergence of zero mode of the scalar field. Therefore, it is also illuminating to recast

our calculation of gauge boson’s mass correction in mode-wise manner. That is, we want

to rewrite the 1-loop mass correction to gauge boson as a summation over modes of the

loop scalar. This can be conveniently done by rewriting (2.22) and (2.29) in the following

form with the help of (2.7) and (2.30),

δM2
A(Diagram (2.21a))=

2e2µ4−D
R

VDH2

∑

L

∆L(a), ∆L(a)=
1

λL

(2L+ d)Γ(L+ d)

Γ(d+ 1)Γ(L+ 1)
, (2.35)

δM2
A(Diagram (2.21b))=

2e2µ4−D
R

VDH2

∑

L

∆L(b), ∆L(b)=
1

λ2
L

2(2L+d)Γ(L+d+1)

Γ(d+ 2)Γ(L)
, (2.36)

where λL = L(L+ d) + (m/H)2.

Now we make several remarks about these expressions. Firstly, when m � H, the

zero mode (L = 0) contributes dominantly to the mass correction in Diagram (2.21a) and

the contribution scales as 1/m2, while the zero-mode contribution in Diagram (2.21b) is

constantly zero, due to Γ(L) factor in the denominator of ∆L(b). This must be so because

the zero mode represents the constant component of the loop fields, and thus it must vanish

when there are spacetime derivatives acting on loop lines as in (2.26). In particular, one

can immediately recognize that the approximate expression (2.25) can be got by keeping

only the L = 0 terms in (2.35).

Secondly, the nonzero-mode contributions from two diagrams almost (though not ex-

actly) cancel each other, giving negligible contribution to the mass correction. To make

this point more clear, we plot ∆L(a), ∆L(b), as well as their sum, for first several modes, in

figure 2, choosing the mass m = 1
5H. It should not be a surprise that the mass contribution

in each nonzero mode is positive for Diagram (2.21a) (negative for (2.21b)), while from fig-

ure 1 it is clear that the summation over all modes sometimes gives negative contribution

4One caveat to this argument is that spontaneous gauge symmetry breaking may happen as in the case of

Coleman-Weinberg model. But we can exclude this case by taking the mass of the scalar field large enough.
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Figure 2. The 1-loop correction to photon’s mass from a scalar with mass m = 1
5H, as a function

of angular quantum number L of loop modes. The function ∆L is defined as in (2.35) and (2.36).

for (2.21a) (and positive contribution for (2.21a)). This is because the results presented

in figure 1 are already dimensional-regularized, and we know that a positive but divergent

series can indeed sum to a negative value after regularization.

Finally but not least importantly, we note that the mass correction to photon can be

attributed to the scalar zero mode contribution. In this process, the scalar field itself does

not pick up a nonzero VEV. On the other hand, the zero-mode-squared does pick up a

nonzero VEV, see (2.14). As a result, the gauge invariance of the kinetic term of the scalar

field |Dµφ|2 is broken, due to the nonvanishing 2-point function of scalar zero mode, and it

is for this reason that the gauge boson becomes massive. Therefore, the mass generation

mechanism here is quite different from the standard Higgs mechanism, although we still

expect that one of scalar degree of freedom is converted to the longitudinal polarization of

the gauge boson.

The disappearance of would-be Goldstone component in the scalar field inspires us to

revisit the above calculation in unitary gauge, where we parameterize the complex scalar

field as Φ = φ̂eiπ̂. It is well known that unitary gauge is not suitable for loop computation

as the structure of UV divergence in this gauge is obscure. If we view the unitary gauge

as the ξ → ∞ limit of Rξ gauge, then this problem can sometimes be viewed as the

noncommutativity of taking loop integral and taking ξ → ∞ limit. This is manifest in

our result, because if we turn off π field directly, then Diagram (2.21b) will disappear, and

the crucial cancellation of UV divergence between Diagram (2.21a) and (2.21b) in the flat

space limit no longer holds.

However, so far as we are concerned with the leading mass correction from zero modes,

we should be able to recover (2.25) even in unitary gauge, because the zero mode has no

UV divergence so unitary gauge should work in principle. This is indeed true: if we only

focus on zero modes in unitary gauge, then π̂ field disappears completely. Then we will
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have Diagram (2.21a) only, with only φ̂ field running in the loop. So apparently the mass

correction should be half of (2.25). However, as emphasized at the end of section 2.2, the

zero mode 2-point correlator 〈φ̂2〉 in the unitary gauge is twice of the correlator 〈φ2〉 in

Lorentz gauge we used above, so the two factors cancel out, and we conclude that the

zero-mode contribution to gauge field mass is the same in both Lorentz gauge and unitary

gauge. We shall make use of this agreement in next section to compute SM gauge bosons’

mass with unitary gauge, because the computation in Lorentz gauge is more involved for

non-Abelian gauge theory due to Faddeev-Popov ghost.

At the end of this subsection, we mention a possible concern regarding our method of

calculating the mass correction. In this section, we have turned off the external momentum,

and focused on the momentum independent part of the loop correction. In particular, we

interpret the loop correction proportional to AµA
µ as the correction to photon’s mass.

However, in dS, the kinetic term of photon also contributes a term proportional to AµA
µ,

due to the nonzero constant background curvature. In fact, after integration by parts, one

can find the following quadratic terms from the kinetic term of photon,

1

4

√
gFµνF

µν =
1

2

√
g
[
Aµ
(
−∇2 + 3H2

)
Aµ −Aµ∇µ∇νAν

]
, (2.37)

where ∇2 ≡ gµν∇µ∇ν , and there is an apparent mass-like term with squared “mass” 3H2.

Then one may wonder whether our result is actually a wave function renormalization (i.e.

a correction to kinetic term F 2
µν) rather than mass correction, and that it appears to be a

mass term proportional to AµA
µ just because we have turn off the external momentum.

In general, this question can only be answered by keeping the external momentum fi-

nite, which however would make the computation much more complicated. Fortunately, for

our result (2.25) which comes predominantly from zero modes of loop scalar as elaborated

above, there is a simple way to see that it is a genuine mass correction rather than wave

function renormalization. In fact, if (2.25) is a wave function renormalization, then there

must be a corresponding correction to Aµ∇2Aµ. Such a contribution can arise only from

Diagram (2.21b). But we have seen that zero modes contribute nothing to this diagram,

and this remains correct even when we turn on the external momentum. Therefore, we

conclude that the expression (2.25) is a genuine correction to photon’s mass rather than a

wave function renormalization.

3 SM spectrum in non-Higgs inflation

The SM mass spectrum during inflation can be quite different from the the familiar SM

spectrum, i.e. the spectrum in the electroweak broken phase. There are several new contri-

butions to the masses of SM particles which we are going to clarify in this section. In this

paper we shall focus on the single field slow-roll models for simplicity, assuming that the in-

flaton has effective couplings with the SM sector parameterized by some unknown functions.

The analysis can be generalized to more general effective field theories of inflation models.

Before entering the details, here we present an overview of new ingredients that would

contribute the SM spectrum during inflation. The first and foremost ingredient is the back-

ground value of Higgs field. In electroweak broken vacuum, the Higgs VEV vh ' 246GeV is
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nonzero due to the negative quadratic term in the Higgs potential. In typical inflation mod-

els, however, this scale is too low and thus can be safely neglected in most cases. Then, given

a positive quartic potential for Higgs field, one may expect that the Higgs VEV is constantly

zero during inflation, so long as the inflation scale is high enough. However, we have two

exceptions. Firstly, in Higgs inflation such as the one we will study in section 5, the Higgs

field is identical to the inflaton field, and it picks up a large VEV during inflation, which can

be of O(MPl). Secondly, even in non-Higgs inflation scenarios, we may also have a nonzero

Higgs VEV if there is spontaneously symmetry breaking, which we will comment at the end

of subsection 3.2. In this and next sections, we shall mainly focus on the non-Higgs inflation

scenarios with zero Higgs VEV. For non-Higgs inflation, we only need to consider the soft

fluctuations of Higgs field, which have been consistently taken account of in our treatment

of zero modes of Higgs fields in section 2.2 in form of quantum corrections, so we can con-

veniently include these quantum corrections after working out the classical mass spectrum.

The second ingredient is the nonminimal coupling between Higgs field and the Ricci

scalar,

S ⊃ −
∫

d4x
√−gξRH†H, (3.1)

which is the unique dim-4 operator in the effective theory of SM + general relativity, and

represents the leading term of a whole series of effective operators between SM fields and

gravitational fields. This term is particularly important for determining the Higgs mass

because it introduces a tree level mass ξR = 12ξH2 to the Higgs. Since other SM fields

may receive mass from Higgs loop, which depends on Higgs mass in an important way, this

operator is also potentially important for determining the masses of other SM particles.

In principle, one can also consider higher dimensional operators between SM and gravity,

but they are expected to be suppressed by a very high scale, e.g. Planck scale if we assume

general relativity for the gravitational sector. Therefore, we shall ignore them in this paper.

The third ingredient is the coupling between the inflaton field φ and the SM fields.

These interactions can be quite arbitrary, and one can in principle specify them in each

given inflation model. Here we choose not to specify the inflation model, but to proceed

with a very broad class of inflaton-SM interactions. If we assume that the inflaton field is

SM singlet, then we can write down very general couplings between the inflaton and SM

fields in the following way,

S ⊃ −
∫

d4x
√−g

∑

α

fα(X,φ)Oα[ΦSM], (3.2)

where fα(X,φ) are arbitrary functions of X ≡ (∂µφ)2 and φ, which we assume to be well

behaved in the sense that a sensible low energy limit should be recovered, and OSM is any

singlet operator constructed from SM fields, collectively denoted by ΦSM.

The interaction (3.2) may introduce a number of uncertainties in our study though.

Taking a term fH(X,φ)H†H from (3.2) for example, the above interaction would introduce

additional squared mass δM2
H = fH(X0, φ0) with X0 ≡ −φ̇2

0. As another example, the cou-

pling fDH(X,φ)|DµH|2 would modify the kinetic term of Higgs field. Then after canonical

normalization, the Higgs mass will also be modified by a factor of [1 + fDH(X0, φ0)]−1. A
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simple limit is that the function fH(X,φ) which couples to H†H is much smaller than H2,

and at the same time, all the rest of fα(X0, φ0) in (3.2) are much smaller than the coefficient

of corresponding operator Oα in the SM Lagrangian. For instance, if Oα is any dimension-4

kinetic term in SM Lagrangian, the previous condition is simply fα(X0, φ0) � 1. In this

limit, the masses of SM fields receive negligible amount of correction from inflaton-SM

interactions, which presents a universal SM spectrum during inflation.

Finally but not least importantly, we have quantum correction to all “tree level” masses

considered above. Quantum corrections can be very important when the tree level mass

is small. This has been considered in great details in [19] and also in the previous section

of this paper. We shall include these results in the following when determining the SM

spectrum.

With all above points clarified, we can now go to determine the SM spectrum for a

general single field slow-roll model assuming that the inflaton is not the SM Higgs field.

3.1 Higgs mass

Firstly we study the Higgs mass M2
H . For simplicity we shall call those contributions di-

rectly from classical Lagrangian as “tree mass”, denoted by M2
H0, and those from quantum

corrections as “loop mass”. The loop corrected Higgs mass will be denoted by M2
H . We

shall firstly consider the various contributions to the tree mass, and then consider the loop

corrections.

We are mostly interested in the scenario where the inflation scale is much higher than

the electroweak scale so that the tree-level mass term for Higgs field in SM can be well

neglected. In this limit, the SM action for Higgs field reduces to (2.13). From now on we pa-

rameterize the Higgs doublet in the standard way, H = 1√
2
(π1 +iπ2, vh+h+iπ0)T , where vh

is the classical background value of the Higgs field while πi (i = 0, 1, 2) and h are fluctuation

components. As explained above, the expectation value can be classically nonzero in Higgs

inflation models which will be studied in section 5, and in the following we will take vh = 0.

The tree mass of Higgs field can be nonzero even when the mass term in the classical

Lagrangian is set to zero. This is because, first of all, we can have a dim-4 nonminimal

coupling between the Higgs field and the Ricci scalar, and this introduces a nonzero mass

M2
ξ = 12ξH2 in dS background. Besides, we can also consider higher dimensional operators.

The most relevant contributions come from the interactions between Higgs field and the

inflaton field. Assuming that the shift symmetry of inflaton field in the Lagrangian, we

expect that the interactions between Higgs and inflaton have the following form,

S ⊃ −
∫

d4x
√−g

[
fH(X,φ)H†H + fDH(X,φ)|DνH|2 + · · ·

]
, (3.3)

in which fH(X,φ) and fDH(X,φ) are aforementioned arbitrary functions of X = (∂µφ)2

and φ, and we have neglected operators of higher order in Higgs field H and its derivatives.

During inflation the nonzero φ̇0 would contribute to the tree mass of Higgs field via the inter-

actions above, and this contribution is given by ∆M2
Higgs = fH(X0, φ0)/[1 + fDH(X0, φ0)].

Note that the factor fDH(X0, φ0) changes the normalization of the Higgs field, thus all tree
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mass terms are affected by it. In summary, the tree mass of Higgs field during inflation is,

M2
H0 =

12ξH2 + fH(X0, φ0)

1 + fDH(X0, φ0)
. (3.4)

The nonminimal coupling ξ is unknown and can be large, and therefore, we should treat

the tree mass M2
H0 as an input. On the other hand, as discussed above, the most inter-

esting parameter space is the limit fH(X0, φ0) � H2 and fDH(X0, φ0) � 1 so that the

inflaton-Higgs coupling would not “contaminate” the Higgs mass. We further note that ξ,

fH(X0, φ0), and fDH(X0, φ0) can be negative in generic EFT. We will mainly consider the

parameter region M2
H0 > 0.

Then we need to consider the loop corrections to the Higgs mass. This correction can

be very important when M2
H0 � H2 but is irrelevant in the opposite limit. As explained

in [19], this contribution comes from the Higgs loop via |H|4 interaction. To quote the

result for O(N ) theory got in section 2.2, we can rewrite the SM Higgs doublet as a

matrix, H = 1√
2
h exp(iπiσi) where σi (i = 1, 2, 3) are standard Pauli matrices. Then, πi

components disappear from the action, and the path integral of πi’s zero modes factor out,

while the path integral for zero mode of h field has the same form with (2.14) with N = 4,

as depicted in section 2.2. Therefore we can evaluate (2.14) at N = 4, and use the formula

m2
eff = N (VD〈h2〉)−1 to get,

M2
H =

√
λ

VD

4
[
1−√πzez2Erfc(z)

]

−2z +
√
π(1 + 2z2)ez2Erfc(z)

, (3.5)

where Erfc(z) ≡ 2π−1/2
∫∞
z dt e−t

2
is the complementary error function, z =√

2π2/3λ(MH0/H)2, and the Higgs self-coupling λ here is related to its SM value λSM

via the following expression due to the presence of inflaton background,

λ =
λSM

[1 + fDH(X0)]2
. (3.6)

The remarkable thing here is that the loop-corrected mass M2
H is nonzero even when the

scalar is massless classically (z = 0) and in this case we have,

M2
H =

√
6λ

π3
H2. (3.7)

This result agrees with [19] in qualitative structure M2
H ∼

√
λH2 but differs in the coeffi-

cient (with 4 degrees of freedom taken account). The difference can be attributed to the

partial resummation of dynamical renormalization group used in [19] though we shall not

demonstrate this point explicitly in the current work. We plot the quantum corrected mass

MH as a function of tree level mass MH0 in figure 3 and it is clear from the plot that the

quantum correction dominates when MH0 � H but becomes negligible quickly when MH0

gets larger than H.
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Figure 3. The quantum corrected Higgs mass MH (in unit of Hubble parameter H) as functions

of tree level mass MH0. The three curves from bottom to top correspond to λ = (0.01, 0.1, 0.5),

respectively.

3.2 Fermion and vector boson masses

Gauge bosons and SM fermions do not receive classical mass so long as the gauge symmetry

is not broken at tree level, which is the case for our current study since we assume Higgs

field does not develop classical VEV during inflation. Therefore, we only need to consider

quantum corrections for them. According to our results in the previous section, massless

fermions do not receive Dirac mass even at the quantum level, so they remain massless

during inflation so long as Higgs does not develop VEV. On the other hand, vector bosons do

receive nonzero mass correction from their interactions with scalar fields. The vector bosons

in SM include gluon, photon, W , and Z bosons. In the unitary gauge, the Higgs field H

contains only one real component, the Higgs boson h. The gluon and photon do not interact

with the Higgs boson h at tree level, so they remain massless during inflation. On the other

hand, W/Z bosons can receive nonzero mass due to their interactions with Higgs boson h.

Before we can quote the results from previous section, we should also carefully take

account of higher dimensional operators involving vector bosons, which could also affect

their mass. The most important operators are the following,

S ⊃ −
∫

d4x
√−g

[
fDH(X,φ)|DµH|2 +

1

4
fW (X,φ)W a

µνW
µνa +

1

4
fB(X,φ)BµνB

µν + · · ·
]
.

(3.8)

Due to the nonzero background value of inflaton φ0 and its derivative φ̇0, the effective

gauge couplings of Higgs field are modified, and are related to their SM values (denoted
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with subscript “SM”) in the following way,

g2 =
g2

SM

1 + fW (X0, φ0)
, (3.9)

g′2 =
g′2SM

1 + fB(X0, φ0)
. (3.10)

The nonzero quantum corrections to gauge boson mass come again from Higgs loop.

We parameterize the Higgs field as a matrix H = 1√
2
heiπiσi as was done in section 3.1,

and its covariant derivative is given by DµH = ∂µH + igW i
µσ

iH/2 − ig′BµHσ3/2. In the

unitary gauge, we set πi = 0 by gauge rotation, and we can extract interactions between

Higgs boson and gauge bosons from the kinetic term of H as follows,

1

2
tr
(
DµH

†DµH
)
⊃ 1

8
h2

(
g2

3∑

i=1

WiµW
µ
i + g′2BµB

µ − 2gg′W3µB
µ

)

=
1

4
g2h2

(
W+
µ W

−µ +
1

2 cos2 θW
ZµZ

µ

)
. (3.11)

In the second line above we have switched to the charge and mass eigenbasis, where W±µ =
1√
2
(Wµ

1 ∓ iWµ
2 ), Zµ = W 3

µ cos θW − Bµ sin θW , Aµ = W 3
µ sin θW + Bµ cos θW , and the

Weinberg angle θW is given by tan θW = g′/g. The gauge couplings in the expression above

are already modified from their SM values according to (3.9) and (3.10). With these points

clarified, we are now ready to write down the quantum corrections to gauge boson masses,

M2
W =

3g2H4

8π2M2
H

, M2
Z =

3g2H4

8π2M2
H cos2 θW

, (3.12)

and the photon remains massless.

As mentioned in the previous section, so far we have focused on the symmetric phase

M2
H0 > 0. Now let us briefly comment the parameter regime M2

H0 < 0, namely 12ξH2 +

fH < 0. In this case, the electroweak symmetry is spontaneously broken and the Higgs

field gets a VEV,5

v2
h =
−4M2

H0

λ
. (3.13)

The tree-level mass of the physical Higgs boson around the potential minima is

m2
h =

1

2
λv2

h = −2M2
H0 . (3.14)

This mass should be dominate over the loop-generated mass for small λ and MH0 & H.

Otherwise the loop (or non-perturbative) corrections should be computed.

5Here we focus on the tree level Higgs potential and neglect the quantum corrections, which should be

a good approximation unless |MH0| � H.
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As the case of SM in flat space, the broken electroweak symmetry shifts the mass of

W and Z by,6

∆M2
W =

g2v2
h

4
, ∆M2

Z =
∆M2

W

cos2 θW
. (3.15)

The shift can be comparble to the quantum corrections that we have computed above.

More remarkably, all the fermions now get mass from the Higgs mechanism,

mi =
yi|vh|√

2
, (3.16)

where i can be quarks and leptons, namely t, b, τ, c, µ, s, d, u, e. This does not happen in

the case of the symmetric phase M2
H0 > 0. Naturally (considering the ξ parameter), we

expect |vh| is of order H, thus the top quark is most likely to be the relevant fermion and

leave signatures in cosmology in the case of a broken phase.

3.3 Renormalization group running of SM coupling constants

The SM spectrum in generic non-Higgs inflation studied in this section depends on various

SM couplings as well as inflaton-SM couplings. In the case when the contributions from

inflaton-SM couplings are negligible, it is possible to make certain predictions to the pattern

of SM mass spectrum. For this purpose, we need the Higgs mass, as well as gauge couplings

(g, g′) associated with SU(2)L ⊗ U(1)Y as input. Since the inflation scale H can be much

higher than the electroweak scale by several orders of magnitude, the renormalization group

(RG) running of gauge couplings should be taken into account. Furthermore, in the case

when fermions do acquire mass during inflation, the RG running of Yukawa coupling is

important, too.

More broadly speaking, the Higgs self-coupling λ is perhaps the most crucial part of

RG running of SM couplings in the context of inflation. Indeed, current measurements

of Higgs mass and top mass suggest that the β function for λ is negative, and that

λ would probably turn negative at some high energy scale µ0. Using SM 2-loop RG

running together with the current central values of Higgs and top mass, one can find

µ0 ∼ 1011GeV, which is indeed possible to be lower than the inflation scale (measured by

Hubble parameter). Meanwhile, there are large uncertainties in this calculation, chiefly

because the turning scale µ0 is exponentially sensitive to the input of Higgs mass and top

mass at electroweak scale. Consequently, the uncertainties associated with the Higgs and

top mass measurement would greatly affect the prediction of µ0. In addition to that, the

calculation of effective potential usually suffers from the problem of gauge dependence.

Different treatment of this issue would also affect the result [40, 41].

Further complication appears when one considers all these problems during inflation,

where a lot more factors need to be considered, e.g. the nonminimal coupling between Higgs

field and Ricci scalar, the stochastic quantum fluctuation of Higgs field. One should also

6Strictly speaking, we should recalculate the loop-corrected gauge bosons’ mass in the broken phase thus

the shift here is just an estimate. But note that the mass shift is dominated by the diagram (2.21a) instead

of diagram (2.21b). And the interaction in diagram (2.21a) is not affected by the symmetry breaking. Thus

the estimate should be close to the full calculation.
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Figure 4. The gauge boson masses (left panel) and Yukawa couplings (right panel) as functions

of Hubble scale H, using 2-loop SM renormalization group running. On left panel, the masses of Z

and W (from top to bottom) are normalized by the mass of W ; on right panel, various curves from

top to bottom correspond to Yukawa couplings of t, b, τ, c, µ, s, d, u, e, respectively.

be concerned with the Higgs instability during reheating epoch even this instability is not

that harmful during inflation [42–45].

We shall not consider these problems further in current work, but only take the at-

titude that there is a successful inflation scenario which correctly generates the density

perturbation as we see today, and is free from the problem of Higgs instability. Perhaps the

simplest way to achieve this scenario is to assume some new physics beyond SM to stabilize

the Higgs sector. Without further digression, now we show the inflation scale dependence

of SM spectrum by applying 2-loop RG running. The two-loop β functions for gauge sector,

Higgs self-coupling, and top-Yukawa coupling, with non-minimal coupling ξ included, can

be found in [46], the two-loop β functions for all Yukawa couplings can be found in [47],

and the 1-loop matching conditions can be found in [48]. We identify the running scale to

be the Hubble scale H, and then plot the gauge boson masses (3.12), and Yukawa couplings

yi, as functions of H, in figure 4. In the most optimistic scenario where we can measure the

gauge boson mass splitting and the corresponding amplitudes accurately, it is possible to

obtain the scale of inflation H from such a measurement, which is rather difficult because

it requires us to firstly identify the signals of gauge bosons. One possible way to achieve

this goal is to try to identify the consistency relation for gauge boson signals (4.52) as will

discussed in the following. Given all practical difficulties for such observations, this is how-

ever an interesting point to make because it means that we may be lucky to learn the scale

of inflation solely from scalar mode of primordial perturbation due to the renormalization

group running of the particle spectrum, without any reference to the tensor mode.

4 Three-point function in non-Higgs inflation

In previous sections we have worked out the mass spectrum of SM particles during inflation.

It remains to answer how the SM spectrum can be probed observationally. It has been

known that a massive field can reveal itself during inflation through characteristic scaling

behaviors in the squeezed limit of bispectrum of the primordial curvature perturbation [1–
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6], due to its interaction with the inflaton field. In the case of SM, if we assume that the

inflaton is SM singlet, then the SM fields can couple to the inflaton field only through

singlet operators. This implies in particular that SM fields appear in its inflaton coupling

at least pairwise, and that SM fields can contribute to inflaton three-point function starting

at 1-loop level. So it is again important to study SM loops during inflation.

In this section we are going to evaluate the squeezed limit of bispectrum with interme-

diate loops of SM fields. We shall assume that the inflaton field φ interacts with SM fields

through the action (3.2). Expanding the inflaton field φ = φ0 + δφ around its background

value φ0, we get the leading couplings between inflaton fluctuation δφ and SM fields to be,

−
∫

d4x
√−g

∑

α

fα(X,φ) Oα

= −
∫

d4x
√−g

∑

α

[
fα(X0, φ0) + fα,φ(X0, φ0)δφ− 2fα,X(X0, φ0)φ̇0

˙δφ

+
1

2
fα,φφ(X0, φ0)(δφ)2 − 2fα,Xφ(X0, φ0)φ̇0

˙δφδφ

+ fα,X(X0, φ0)(∂µδφ)2 + 2fα,XX(X0, φ0)φ̇2
0( ˙δφ)2

]
Oα, (4.1)

in which X and φ in subscripts of fα functions after a comma denote corresponding deriva-

tives of fα. We have kept all terms up to quadratic order in fluctuation field δφ. Some

further simplification can be made for our current calculation. Firstly, we shall postpone

the study of direct coupling to section 5, and here we shall assume that all fα functions

depend only on X but not directly on φ. In other words, we shall consider the leading terms

in the approximate shift symmetry. Secondly, we shall keep only the leading terms in the

slow-roll approximation, so that terms suppressed by more powers of φ̇0 can be dropped

off. Under these two assumptions,7 there are only 3 terms left in (4.1),

−
∫

d4x
√−g

∑

α

fα(X,φ)Oα

⊃ −
∫

d4x
√−g

∑

α

[
fα(X0)− 2f ′α(X0)φ̇0

˙δφ+ f ′α(X0)(∂µδφ)2
]
Oα, (4.2)

where we have dropped off the explicit φ dependence of fα, and used a prime to denote

the derivative of fα with respect to X. In (4.2), the first term proportional to fα(X0) is a

rescaling of the corresponding operator Oα. As elaborated in last section, this term shall

modify the SM spectrum significantly unless it is sufficiently small.

We are mostly interested in the case that Oα is quadratic in SM fields because only

such operators can contribute 1-loop diagrams. We shall consider operators with mass

7The latter assumption is not quite robust. For instance, in the case fα(X) ∼ X2, we see that the “φ̇2
0-

suppressed” term fα,XX(X0)φ̇2
0( ˙δφ)2 is actually of the same order as fα,X(X0)(∂µδφ)2. We can nevertheless

keep all such terms and the calculation in the following would be almost the same, although the expression

would be a little more complicated.
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dimension up to 4, then the only choices for Oα are the following,

S ⊃ −
∫

d4x
√−g

[
fH(X)H†H + fDH(X)|DµH|2 − fΨi(X)iΨi /DΨi

+
1

4
fW (X)WaµνW

µν
a +

1

4
fB(X)BµνB

µν

]
. (4.3)

Most of them have appeared in the previous section, except the one for fermions. Though

fermions remain massless in non-Higgs inflation scenarios, we still consider massive fermions

in this section for completeness, and the result will also be useful in section 5.

In this paper we only consider Oα of spin-0, i.e., scalar operators. It is well

possible that the SM fields couple to inflaton via higher spin interactions, such as

(∂µ∂νφ)(∂µφ)Ψiγ
νΨi. Such higher spin operator will leave characteristic angular de-

pendence on the bispectrum [6]. The important point here is that a detection of such

higher-spin behavior does not necessarily imply the discovery of a corresponding higher

spin particle, because it is possible that it is only a higher spin superposition of some lower

spin particles running in the loop. For example, the operator (∂µ∂ρφ)(∂ν∂σφ)FµνFρσ can

generate a spin-2 angular dependence in the bispectrum of φ, although this is from the

superposition of a pair of spin-1 boson, not from a graviton.

Using the Schwinger-Keldysh formalism, the 3-point correlator of inflaton fluctuation

δφ with 1-loop contribution from operator Oα can be written as,
〈
δφ(k1)δφ(k2)δφ(k3)

〉′
α

= 4f ′ 2α (X0)
∑

a,b=±
ab

∫ 0

−∞

dτ ′

(Hτ ′)2

∫ 0

−∞

dτ ′′

(Hτ ′′)2

[
− ∂τ ′′G+b(k3, τ, τ

′′)∂τ ′′φ0

]

×
[
− ∂τ ′G+a(k1, τ, τ

′)∂τ ′G+a(k2, τ, τ
′)− k1 · k2G+a(k1, τ, τ

′)G+a(k2, τ, τ
′)
]

×
∫

d3X e−ikI ·X
〈
Oα(τ ′,x′)Oα(τ ′′,x′′)

〉
ab

=
f ′ 2α (X0)Hφ̇0

2k3
1k

3
2k

3
3

×
∑

a,b=±
ab

∫ 0

−∞

dτ ′

τ ′2

∫ 0

−∞

dτ ′′

τ ′′2
k2

3

[
− k2

1k
2
2τ
′2 − k1 · k2(1− iak1τ

′)(1− iak2τ
′)
]

× eia(k1+k2)τ ′+ibk3τ ′′
∫

d3X e−ikI ·X
〈
Oα(τ ′,x′)Oα(τ ′′,x′′)

〉
ab

≡ f ′ 2α (X0)Hφ̇0

2k3
1k

3
2k

3
3

I(k1, k2, k3), (4.4)

where kI = k1 + k2, X ≡ x′ − x′′, and the indices (a, b) take either plus or minus sign,

which correspond to the + and − contour in Schwinger-Keldysh formalism. More details

about Schwinger-Keldysh formalism and Feynman rules during inflation used in this paper

can be found in [19]. The expectation value 〈O2
α〉 is in general rather difficult to work out,

and it is even more difficult to carry out the whole integral.

Fortunately, under certain approximations, it is possible to get analytic expressions for

the part of amplitude which we are mostly interested in. The first approximation we shall
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take, is to expand the 2-point correlator 〈Oα(τ ′,x′)Oα(τ ′′,x′′)〉 in the late time (IR) limit

τ ′, τ ′′ → 0. Note that, while this is a good approximation for the massive fields at the vertex

point τ ′ (at which k1,2 ' kmassless � kmassive = k3), it is not always a good approximation

for the massive fields at the vertex point τ ′′ (at which kmassless = kmassive = k3). In the

latter case, it is a reasonable approximation for µ ∼ 1 but not for µ� 1. This is because

the IR approximation of the massive field mode function is good for 0 < kmassive|τ | < √µ.

The interaction between the massive and massless mode (such as the resonance) takes

effect around kmassless|τ | = µ. If kmassless ∼ kmassive, the interaction point is close to the

validity region of the IR approximation 0 < kmassive|τ | < √µ only if
√
µ ∼ 1 but getting

worse for µ � 1. On the other hand, if kmassless/kmassive >
√
µ, the interaction point lies

in the validity region of the IR approximation. In any case, the µ ∼ 1 case is sufficient

for our purpose because more massive fields contribute Boltzmann factors and become less

interesting phenomenologically.

The second simplifying assumption we shall make, is that we are only concerned with

the so-called nonlocal part of the amplitude, i.e., the part of the momentum-dependence

proportional to (k3/k1)γ with γ being some real (generically non-integer) or complex num-

ber. It is this part of the power-law or oscillatory behavior in momentum ratio that encodes

the mass spectrum of particle states. Keeping nonlocal part only is also a desirable simpli-

fication because, as we shall see below, for generic values of mass, the nonlocal part of the

expectation value is disentangled with the UV divergence of the loop integral, and there-

fore, we do not have to run into the problem of regularization and renormalization, which

is a notoriously difficult task in dS. Moreover, the nonlocal part of the late time expansion

of 〈O2
α〉 is actually independent of ± contour of in-in integral, and for this reason we can

freely drop the ab indices of the 2-point correlator 〈O2
α〉.

We have one more computational simplification as pointed out in [6]. That is, the

amplitude (4.4) can be easily got by firstly computing a much simpler 4-point amplitude

of conformal scalars φc, and then applying a differential operator on the amplitude of

conformal scalars. Assuming that the conformal scalar φc couples to Oα through direct

coupling
∫

d4x
√−gφ2

cOα, and making use of the following mode function of a conformal

scalar φc in dS,

φc(τ,k) =
Hτe−ikτ

√
2k

, (4.5)

we can write down a 4-point amplitude of the conformal scalar φc contributed by the 〈O2
α〉

as,

∑

a,b=±
ab

∫ τ

−∞

dτ ′

(Hτ ′)4

∫ τ

−∞

dτ ′′

(Hτ ′′)4
G

(c)
+a(k1; τ, τ ′)G

(c)
+a(k2; τ, τ ′)G

(c)
+b(k3; τ, τ ′′)G

(c)
+b(k4; τ, τ ′′)

×
∫

d3X e−ikI ·X
〈
Oα(τ ′,x′)Oα(τ ′′,x′′)

〉
ab

=
4τ4

16k1k2k3k4

∑

a,b=±
ab

∫ τ

−∞

dτ ′

τ ′2

∫ τ

−∞

dτ ′′

τ ′′2
eia(k1+k2)τ ′+ib(k3+k4)τ ′′

×
∫

d3X e−ikI ·X
〈
Oα(τ ′,x′)Oα(τ ′′,x′′)

〉
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≡ 4τ4

16k1k2k3k4
Ic(k12, k34, kI), (4.6)

where G
(c)
ab is the propagator of conformal scalar; k12 = k1 + k2 and k34 = k3 + k4, It

is clear that the integrals I(k1, k2, k3) in (4.4) and Ic(k12, k34, kI) in (4.6) have similar

form when τ → 0, apart from the complicated factor involving k1 and k2 in I(k1, k2, k3).

This difference is inessential as was pointed out in [6], and can be removed by acting an

differential operator on Ic(k12, k34, kI) in the following way,

I(k1, k2, k3) = k2
3

[
k2

1k
2
2∂

2
k12 − k1 · k2(1− k12∂k12 + k1k2∂

2
k12)
]
Ic(k12, k3, k3). (4.7)

Finally, we comment on the evaluation of 〈O2
α〉. Since we are only concerned with 1-loop

correction, the only relevant Oα consists of operators quadratic in SM fields. Therefore,

the expectation value 〈Oα(x)Oα(x′)〉 is essentially the same with a four-point correlation

of SM fields Φ, i.e. 〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉. At leading order, we have three diagrams

contributing to this correlation, namely the usual s, t, u channels. However, as the four

points xi are identified pairwise, x1 = x2 = x and x3 = x4 = x′, the t-channel contribution

will be divergent, and it is actually a part of definition of Oα that this divergence should

be subtracted. As a result, only s channel and u channel diagrams are left, as shown

diagrammatically below.

�

�

�

�

�

�

�

�

�) +O↵ O↵ (4.8)

In the case of fermion where the two fields in Oα are not identical (ψ and ψ), the u channel

is absent too, and in that case only one fermion loop contributes.

With above technical fine points clarified, we are now ready to evaluate the expectation

value 〈O2
α〉 for all operators in (4.3).

4.1 H†H

The process of calculating three-point function as done above applies to each of the oper-

ators in (4.3) given the late-time expanded form of 〈O2
α〉. Therefore, we shall not present

all the intermediate steps of calculation for these operators. Instead, we shall explain how

the late-time expansion of 〈O2
α〉 is calculated in each case.

We first consider the unique dimension-2 gauge singlet operator,

S ⊃ − 1

1 + fDH(X0)

∫
d4x
√−gfH(X)H†H

= − 1

2
(
1 + fDH(X0)

)
∫

d4x
√−gfH(X)h2, (4.9)

where we have kept the only physical degree of freedom h in the Higgs doublet H, and we

have included a factor of [1 + fDH(X0)]−1 so that the Higgs field is canonically normalized
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in the presence of the inflaton background. Then according to the aforementioned strategy,

we need to work out the late time expansion of the following expectation value,

〈[
H†H(x)

][
H†H(x′)

]〉
=

1

4

〈
h2(x)h2(x′)

〉
=

1

2

〈
h(x)h(x′)

〉2
=

1

2
G2
h(x, x′). (4.10)

The propagator Gh(x, x′) of h field can be expanded at late time limit, using (A.5), as,

Gh(x, x′) =
H2

16π2
Γ

(
3

2
− µh

)
Γ

(
3

2
+ µh

)
2F1

(
3

2
− µh,

3

2
+ µh; 2;

1 + Zxx′

2

)

⇒ H2

4π5/2

[
Γ(µh)Γ

(
3

2
− µh

)(
ττ ′

X2

)3/2−µh
+ (µh → −µh)

]
, (4.11)

where µh =
√

9/4− (MH/H)2, and Zxx′ is the embedding distance between x and x′,

defined in appendix A.1. Therefore, we get

G2
h(x, x′) =

H4

16π5

[
Γ(µh)2Γ

(
3

2
− µh

)2(ττ ′
X2

)3−2µh

+ (µh → −µh)

]
, (4.12)

and its Fourier transformation,

∫
d3X e−ikI ·XG2

h(x, x′) (4.13)

=
H4(ττ ′)3/2

4π4

[
Γ(µh)2Γ

(
3

2
− µh

)2

Γ(−4 + 4µh) sin(2πµh)(k2
Iττ

′)3/2−2µh + (µh → −µh)

]
.

In these expression we have kept the nonlocal terms only, that is, terms that are not the

polynomials of k2
I . According to previous discussion, only such terms can contribute to

characteristic power-law/oscillatory behavior. Then we can use (4.4) to evaluate the three-

point function of the inflaton perturbation. Remarkably, each of four in-in integral in (4.4)

is divergent in the late time region, but the divergences cancel out among the four, as they

should. The finite result in the squeezed limit k1,2 � k3 can then be written as follows,

〈
δφ(k1)δφ(k2)δφ(k3)

〉
H

(4.14)

= −
[

f ′H(X0)

1 + fDH(X0)

]2 H5φ̇0

8π4k6
S

[
CH(µh)

(
kL
2kS

)−2µh

+ (µh → −µh)

]
,

where we have made the approximation k1 ' k2 ≡ kS (and therefore, k12 ' 2kS) as well

as k3 ≡ kL, and the µ-dependent coefficient CH(µ) is given by,

CH(µ) ≡ (2− µ)(3− 2µ) cos(πµ) sin3(πµ)Γ(−4 + 4µ)Γ2(µ)Γ2

(
3

2
− µ

)
Γ2(2− 2µ). (4.15)

When MH > 3
2H, µh is pure imaginary, and the two terms in (4.14) are complex

conjugate of each other. One can readily see the Boltzmann suppression factor e−2πMH/H

from CH(µ) when MH/H � 1, by using the Stirling expansion Γ(z) ∼
√

2πe−zzz−1/2 when

z →∞. In this case we have µ ∼ iMH/H, and for finite real a and b, we have Γ(a+ bµ) ∼
Γ(ibMH/H) ∼ e−π|b|MH/2H/

√
|b|MH/H. So all Γ functions in CH(µ) contribute e−6πMH/H
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in total, together with another factor of e+4πMH/H coming from trigonometric functions,

we see that the Boltzmann suppression factor e−2πMH/H is recovered in the large MH/H

limit. As expected, this suppression is the square of the tree-level case because two massive

fields are excited quantum-mechanically in the loop diagram.

On the other hand, when Higgs mass MH < 3
2H, we have µh > 0, and the term

explicitly shown in (4.14) dominates the squeezed limit. We note that the amplitude (4.14)

has poles when µh = 1/4, 3/4, 3/2. The poles at µh = 1/4, 3/4 are unphysical and are

due to the UV divergence arising from (4.13). Although, as mentioned, for generic values

of µh the UV divergence is absent after several approximation methods, for some special

values of µh it is still present. We leave the more proper treatment for future investigation.

The presence of the pole at µh = 3/2 is however expected, because in this case the Higgs

becomes massless and contribute to the correlation indefinitely at super-horizon scales. An

infrared cutoff, such as the end of inflation, or a dynamically built mass, should be present

to regulate the pole [2].

The above discussions of imaginary µh and µh > 0 regimes also apply for the subsec-

tions that follow, where similar coefficients arise for other types of operators.

4.2 |DµH|2

Now we consider the other operator Oα = |DµH|2 involving Higgs field in (4.3),

S ⊃ − 1

1 + fDH(X0)

∫
d4x
√−gfDH(X)|DµH|2. (4.16)

Here again we include the normalization factor [1 + fDH(X0)]−1 so that H is properly

normalized. We again extract the only physical component h from H. Then we need to

evaluate the following 2-point correlation function,

〈[
(∂µh)2(x)

][
(∂νh)2(x′)

]〉
= 2
[
∇µ∇ν′Gh(x, x′)

][
∇µ∇ν′Gh(x, x′)

]
. (4.17)

We have rewrite partial derivates as covariant derivatives since they are equivalent for scalar

functions. Then the covariant derivatives of the propagator Gh(Z) as a function of imbed-

ding distance Z = Z(x, x′) can be worked out using the formulae in appendix A, as follows,

2
[
∇µ∇ν′Gh(Z)

][
∇µ∇ν′Gh(Z)

]

= 6H4G′2h (Z) + 2H4
[
(1− Z2)G′′h(Z)− ZG′h(Z)

]2
(4.18)

Then we are ready to expand the propagator and its derivatives at late time limit τ, τ ′ → 0,

using (A.5), to get a pair of nonlocal terms at leading order,

〈[
(∂µh)2(x)

][
(∂νh)2(x′)

]〉

=
H8

32π5

[
Γ2(µh)Γ2

(
5

2
− µh

)
(3− 2µh)2

(
ττ ′

X2

)3−2µh

+ (µh → −µh)

]
. (4.19)
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Once we have this expanded form of 2-point correlation, we can proceed directly to

calculate the following three-point function,

〈
δφ(k1)δφ(k2)δφ(k3)

〉
DH

= −
[

f ′DH(X0)

1 + fDH(X0)

]2 H9φ̇0

32π4k6
S

[
CDH(µh)

(
kL
2kS

)−2µh

+ (µh → −µh)

]
, (4.20)

where

CDH = (2− µh)(3− 2µh)3 cos(πµh) sin3(πµh)

× Γ(−4 + 4µh)Γ2(µh)Γ2

(
5

2
− µh

)
Γ2(2− 2µh), (4.21)

and kL, kS are defined below (4.14). This amplitude has unphysical poles at µh = 1/4, 3/4.

4.3 Ψi/DΨ

For the Dirac spinor of mass MF we consider the following interaction term with the spinor

field Ψi properly normalized,

S ⊃ 1

1 + fΨ(X0)

∫
d4x
√−gfΨ(X)iΨγµDµΨ. (4.22)

The corresponding 2-point correlation we need to calculate is the following,

〈[
Ψ /∇Ψ(x)

][
Ψ /∇Ψ(x′)

]〉

= M2
F

〈[
ΨΨ(x)

][
ΨΨ(x′)

]〉

= −M2
F tr

[
GF (x, x′)GF (x′, x)

]
, (4.23)

in which we have used the Dirac equation in the first equality. Since we are now interested

in the late time behavior of this quantity, it is more convenient to work in real time dS

rather than doing Wick rotation. The propagator of a massive Dirac fermion in dSD is

well-known and given by [49–53],

GF (x, x′) = HD−2a(x)(i /∇+MF )

[
S+(x, x′)

1 + γ0

2
+ S−(x, x′)

1− γ0

2

]
, (4.24)

where

S±(x, x′) =
1

(4π)D/2
√
a(x)a(x′)

Γ(D2 − 1∓ iµ1/2)Γ(D2 ± iµ1/2)

Γ(D2 )

× 2F1

(
D

2
− 1∓ iµ1/2,

D

2
± iµ1/2;

D

2
;

1 + Z

2

)
, (4.25)

in which µ1/2 ≡MF /H, and Z = Z(x, x′) is the imbedding distance between x and x′. From

now on we shall set D = 4 since no regularization is needed for nonlocal part of late time

expansion of (4.23). For notational simplicity we define A±(x, x′) = 1
2 [S+(x, x′)±S−(x, x′)].
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Note that A±(x, x′) is symmetric with respect to its two arguments, so we shall not write

the arguments explicitly. Then (4.23) can be evaluated as follows,

−M2
F tr

[
GF (x, x′)GF (x′, x)

]

= −H4M2
Fa(x)a(x′) tr

{
(i /∇µ +MF )(A+ +A−γ

0)(i /∇µ′ +MF )(A+ +A−γ
0)
}

= −H4M2
Fa(x)a(x′) tr

{
(i/∂µ + M̃F )(A+ +A−γ

0)(i/∂µ′ + M̃F )(A+ +A−γ
0)
}

= −H4M2
Fa(x)a(x′)

×
{

tr [γmγn]eµme
ν′
n (i∂µA+)(i∂ν′A+) + tr [γmγ0γnγ0]eµme

ν′
n (i∂µA−)(i∂ν′A−)

+ iM̃F tr [γmγ0]
[
A−e

µ
m∂µA+ +A+e

µ
m∂µA− +A+e

µ
m∂µ′A− +A−e

µ′
m∂µ′A+

]

+ tr [1]M̃2
FA+A+ + tr [γ0γ0]M̃2

FA−A−

}

= −4H4M2
Fa(x)a(x′)

×
{(
eµm∂µA+

)(
emν

′
∂ν′A+

)
−
(
eµm∂µA−

)(
emν

′
∂ν′A−

)
− 2H2ττ ′∂τA−∂

′
τA−

+ iM̃F

[
(−Hτ)A−∂τA+ + (−Hτ)A+∂τA− + (−Hτ ′)A+∂τ ′A− + (−Hτ ′)A−∂τ ′A+

]

+ M̃2
FA

2
+ + M̃2

FA
2
−

}
, (4.26)

where M̃F ≡MF + 2H. The additional 2H is from the covariant derivative acting on the

constant spinor. We are interested in the late time limit of the two coordinates x = (τ,x)

and x′ = (τ ′,x′) where the spatial distance X ≡ |x − x′| is fixed while τ, τ ′ → 0. In this

limit, we have,

A± ∼
H2X2

8π5/2

(
ττ ′

X2

)2+iµ1/2

Γ(1 + iµ1/2)Γ

(
1

2
− iµ1/2

)
± (µ1/2 → −µ1/2). (4.27)

Plug this result into above expression we get,〈[
Ψ /∇Ψ(x)

][
Ψ /∇Ψ(x′)

]〉

=
H4M4

F

32π5

[
(7 + 24i)Γ2(iµ1/2)Γ2

(
1

2
− iµ1/2

)(
ττ ′

X2

)2+2iµ1/2

+ c.c.

]
. (4.28)

Then the three-point function from the spinor loop is,
〈
δφ(k1)δφ(k2)δφ(k3)

〉
Ψ4

=

[
f ′Ψ(X0)

1 + fΨ(X0)

]2H7M2
F φ̇0

2π4k6
S

CΨ(µ1/2)

(
kL
kS

)−1+2iµ1/2

+ c.c., (4.29)

where the mass dependent coefficient CΨ4(µ1/2) is given by,

CΨ(µ1/2) = µ4
1/2(−24 + 7i)(1 + iµ1/2)(3 + 2iµ1/2) cosh3(πµ1/2) sinh(πµ1/2)

× Γ2

(
1

2
− iµ1/2

)
Γ(−2− 4iµ1/2)Γ2(iµ1/2)Γ2(2iµ1/2). (4.30)

Note that this amplitude does not have a pole. A special feature of fermion loop is that

the exponent of momentum ratio always contains an imaginary part 2iµ1/2 so long as the

fermion is massive, and therefore, the signal of massive fermion loop is always oscillatory.
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4.4 FµνF
µν

Finally, we consider the gauge boson loop. Just like the case of Higgs field, we can consider

one real component of vector bosons with mass MA, and the result apply equally to W/Z

and photon, with mass and degrees of freedom properly adjusted.

We denote the vector boson field being considered as Aµ and the quadratic part of

its kinetic term as FµνF
µν . If Aµ is a component of non-Abelian gauge field (W or Z),

then it is understood that the self-interaction part is excluded from Fµν since it does not

contribute at 1-loop level. Then the operator Oα we are interested in can be written in

terms of properly normalized field strength Fµν as,

S ⊃ − 1

4
(
1 + fA(X0)

)
∫

d4x
√−gfA(X)FµνF

µν . (4.31)

Then we need to evaluate the following 2-point correlation function,
〈[
FµνF

µν(x)
][
FρσF

ρσ(x′)
]〉

=
[(
∇µ∇ρ′Gνσ′(x, x′)− (µ↔ ν)

)
− (ρ′ ↔ σ′)

]2
, (4.32)

in which the vector propagator is given by (A.20) and the covariant derivatives can be

taken using the formulae in appendix A. As before, the result can be expanded at late time

limit τ, τ ′ → 0 as,
〈[
FµνF

µν(x)
][
FρσF

ρσ(x′)
]〉

=
27H12

16π5M4
A

[
(23− 6µ1)2Γ2(µ1)Γ2

(
5

2
− µ1

)(
ττ ′

X2

)3−2µ1

+ (µ1 → −µ1)

]
, (4.33)

where µ1 =
√

1/4− (MA/H)2. Then the three-point function in squeezed limit from this

loop is,

〈
δφ(k1)δφ(k2)δφ(k3)

〉
F4

=

[
f ′A(X0)

1 + fA(X0)

]2 27H13φ̇0

π4M4
A(2kS)6

CA(µ1)

(
kL
2kS

)−2µ1

+ (µ1 → −µ1), (4.34)

where the mass-dependent coefficient CA(µ1) is,

CA(µ1) ≡ −(2− µ1)(3− 2µ1)(23− 6µ1)2

× Γ2(µ1)Γ(−4 + 4µ1)Γ2

(
5

2
− µ1

)
Γ2(2− 2µ1) sin3(πµ1) cos(πµ1). (4.35)

This amplitude has an unphysical pole at µ1 = 1/4.

4.5 Summary of the correlation functions

In above calculations we have obtained the squeezed limit of three-point function of inflaton

fluctuations, contributed by SM loops. Now let us summarize the results more systemat-

ically. We shall express these results in terms of curvature fluctuations ζ = −Hδφ/φ̇0.

According to the standard parameterization of three-point function of ζ [54, 55],

〈ζ(k1)ζ(k2)ζ(k3)〉 ≡ S(k1, k2, k3)
1

(k1k2k3)2
P 2
ζ (2π)7δ3(k1 + k2 + k3), (4.36)
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where Pζ ≡ H2/(8π2M2
Plε) is the power spectrum of the curvature perturbation. Now we

take the squeezed limit k1,2 � k3 and using the notation kS ≡ k1 ' k2 and kL ≡ k3, we

can define the magnitude of non-Gaussianity fNL as,

S(kL, kS) ∼ fNL
(
kL
kS

)γ
, (4.37)

up to a normalization numerical factor. Below we collect the squeezed limit shape functions

S for bispectra involving various SM operators Oα calculated above,

SH =

[
f ′H(X0)

1 + fDH(X0)

]2 φ̇2
0

2π4

[
CH(µh)

(
kL
2kS

)2−2µh

+ (µh → −µh)

]
, (4.38)

SDH =

[
f ′DH(X0)

1 + fDH(X0)

]2 H4φ̇2
0

8π4

[
CDH(µh)

(
kL
2kS

)2−2µh

+ (µh → −µh)

]
, (4.39)

SΨ =

[
f ′Ψ(X0)

1 + fΨ(X0)

]2 H4φ̇2
0µ

2
1/2

2π4

[
CΨ(µ1/2)

(
kL
kS

)1+2iµ1/2

+ c.c.

]
, (4.40)

SA =

[
f ′A(X0)

1 + fA(X0)

]2 27H8φ̇2
0

16π4M4
A

[
CA(µ1)

(
kL
2kS

)2−2µ1

+ (µ1 → −µ1)

]
, (4.41)

where µh =
√

9/4− (MH/H)2, µ1/2 ≡ MF /H and µ1 =
√

1/4− (MA/H)2. As we can

see, the exponent γ can be either real or complex, depending on the mass of SM fields

in the loop, and we would see characteristic power-law behavior or oscillatory behavior,

respectively. In particular, the oscillatory dependence on the momentum ratio directly

encodes the scale factor evolution of the inflationary background [7], because the massive

fields can be regarded as primordial standard clocks. If detected, these signals would

provide a direction evidence for inflation.

To be observable, the SM masses need to be around the Hubble scale or less, as too large

mass would suffer from strong Boltzmann suppression. For these signals, if fNL > 0.01,

we can hope to see them or even distinguish different γ’s in the future 21cm surveys [11]

or large scale structure surveys [9, 10, 56], at least in principle.

4.6 Observational consequences

In this subsection, we discuss a few interesting features of the amplitudes of the bispectra

obtained in this section.

Firstly, to have an estimate for the magnitude of non-Gaussianity with the C-

coefficients, we note that the size of those C-coefficients can be approximated with

|CH(µh)| ∼ 1.5

cosh(2π|µh|)
, (4.42)

|CDH(µh)| ∼ 30

cosh(2π|µh|)
, (4.43)

|CΨ(µ1/2)| ∼ 23

cosh(2π|µ1/2|)
, (4.44)

|CA(µ1)| ∼ 1800

cosh(2π|µ1|)
, (4.45)
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when µh and µ1 are purely imaginary and µ1/2 is real. This approximation works quite well

before the C-coefficients are exponentially suppressed. When |µ| � 1, the approximation

underestimates the C-coefficients, but is a good approximation on logarithmic scale.

Therefore, as an order-of-magnitude estimate, we have, for example,

fNL(F 2) ∼ 30φ̇2
0H

8

M4
A cosh(2π|µ1|)

[
f ′A(X0)

1 + fA(X0)

]2

, (4.46)

as well as similar expressions for the other fields.

For mass of SM fields of order Hubble, to make fNL ∼ 1, it is required that f ′ 2A (X0) ∼
H−4φ̇−2

0 (similarly, f ′ 2H (X0) ∼ φ̇−2
0 and f ′ 2DH(X0) ∼ H−4φ̇−2

0 ), which should be in principle

attainable even if the smallness of fα(X0) is assumed. This parameter region is not likely

to be natural, but it would be good to find realistic and complete inflation models so that

this parameter region is realized. On the other hand, if one takes the simplest choice

fα(X) ∝ X, then it is easy to see that the smallness of fα(X) and the observability of the

oscillatory/power-law signal cannot be both satisfied. In this case, we would either see a

rather arbitrary mass spectrum of the SM background or very clean background without

any detectable SM signals at all.

On the other hand, the calculation in this section can be readily extended to new

particles in beyond SM new physics. In particular, when those new particles are gauge

singlet so that they can be produced singly, they can contribute to the squeezed limit of

bispectrum at tree level. It is expected that the signal of such tree diagrams can be much

more significant than the SM signals even if the couplings between new particle and inflaton

are of the simplest type, i.e. f(X) ∝ X. Examples of such particles include various type

of axions in string theory or Peccei-Quinn type theories, right-handed sneutrino in SUSY

theories. With some luck, the cosmological collider may be a good discovery machine for

these beyond SM new particles.

Secondly, note that the masses of the SM fields depend on f(X0), and the non-

Gaussianities depend on f ′(X0), a consistency relation can be constructed by making use

of the scale dependence of mass parameters. Taking the gauge bosons for example, one

can calculate the Weinberg angle from the gauge boson’s mass ratio as,

M2
Z

M2
W

− 1 = tan2 θW =
1 + fW
1 + fB

tan2 θSM
W . (4.47)

Neglecting the running of the SM Weinberg angle θSM
W for simplicity, the scale dependence

of tan2 θW gives

d ln tan2 θW
d ln k

=
d ln(1 + fW )

d ln k
− d ln(1 + fB)

d ln k
=

(
f ′W

1 + fW
− f ′B

1 + fB

)
φ̇0φ̈0

H
. (4.48)

This relation can be readily related to eq. (4.41). If we normalize the non-Gaussianity of

eq. (4.41) as,

fWNL ≡ NW

(
f ′W

1 + fW

)2 27H8φ̇2
0

16π4M4
W

|CA(µW )| , (4.49)

fZNL ≡ NZ

(
f ′W

1 + fW
cos2 θW +

f ′B
1 + fB

sin2 θW

)2 27H8φ̇2
0

16π4M4
Z

|CA(µZ)| , (4.50)
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where NW = 2 and NZ = 1 are from counting of field content. We have,

d ln tan2 θW
d ln k

=
π(η − 2ε)

3
√

3Pζ sin2 θW


M

2
W

H2

√
fWNL

NW |CA(µW )| −
M2
Z

H2

√
fZNL

NZ |CA(µZ)|


 , (4.51)

where ε ≡ −Ḣ/H2 and η ≡ ε̇/(Hε) are slow roll parameters. This equation can further

be recasted using the spectral index of curvature perturbation ns and the tensor-to-scalar

ratio r as,

d ln tan2 θW
d ln k

=
π(1− ns − 1

4r)

3
√

3Pζ sin2 θW


M

2
W

H2

√
fWNL

NW |CA(µW )| −
M2
Z

H2

√
fZNL

NZ |CA(µZ)|


 , (4.52)

In the near future, one shall be able to determine 1 − ns − 1
4r very accurately. To ver-

ify (4.52), very precise measurements of the mass parameters MW and MZ are needed.

This would be a very challenging test for the future non-Gaussianity measurement.

Thirdly, so far we have not assumed any relations between the f(X) parameters.

In specitific inflation models, there may be various relations between f(X) couplings for

different SM fields. If it is true, additional predictions can be made. For example, if the

inflaton is coupled to the SM sector via a common coupling L = f(X)LSM, then we have

θW = θSM
W , along with some other predictions. It is interesting to study the implications

of those assumptions in the model building point of view.

5 SM fingerprints of Higgs inflation

In previous sections we have focused on non-Higgs inflation models, assuming that Higgs

field does not develop nonzero VEV during inflation and that the inflaton couples to SM

fields through derivative coupling due to approximate shift symmetry. Both of two assump-

tions are not valid if the inflaton is just the SM Higgs boson itself. Given the fact that the

Higgs boson is the only fundamental scalar particle in SM, and also the only fundamental

scalar particle experimentally discovered, it is both natural and important to study the

possibility that the Higgs field itself is the inflaton. In fact, the Higgs boson can indeed be

the inflaton, and the simplest model built on this assumption is consistent with basically

all known results from both particle experiments and cosmological observations, with one

important caveat about the quantum correction of the Higgs potential at high energies

which we shall comment on below. This is the model firstly proposed by [21] and we shall

refer to it as the original Higgs inflation model.

A potential problem for original Higgs inflation is the Higgs instability mentioned

before. Higgs self-coupling may decrease to negative values when the energy scale is larger

than 1011GeV, due to the renormalization group running, and this scale is much smaller

than the scale of pre-normalized Higgs field, which is typically 1016GeV during inflation.8

8Here the pre-normalized Higgs field refers to the Higgs field in Einstein frame without canonical nor-

malization, given in (5.5) below. During inflation there are several relevant scales, including the magnitude

of inflaton, the magnitude of energy density, the magnitude of Hubble scale, and one must be careful

when making comparisons. When considering renormalization group running of Higgs potential, it is the

pre-normalized Higgs field that should be compared with the renormalization scale.

– 37 –



J
H
E
P
0
4
(
2
0
1
7
)
0
5
8

Depending on the uncertainties in the measured value of top quark mass, the sign-changing

scale of Higgs potential may be much higher than 1011GeV, since this scale is exponentially

sensitive to the mass input of Higgs boson and top quark. But even after taking this

into account, it would still be some tension between the positiveness of Higgs potential

during Higgs inflation and the Higgs and top mass measurements. May or may not be

a fatal problem for the original Higgs inflation [57], the Higgs instability has nevertheless

motivated a lot of studies on the possible extension of original Higgs inflation to various

new physics scenario, and by far it is clear that Higgs inflation can be realized in many

different models, including simple extensions of SM and more complete new physics models

such as supergravity GUTs [58–65].

Given the abundance of Higgs inflation models, a natural question to ask is, can

we find any universal feature of these models that can separate them apart from other

non-Higgs inflation theories. At the level of linear perturbation theory, this is almost

impossible due to the lack of observables. In fact, the original Higgs inflation has almost

identical predictions to power spectrum of both scalar mode and tensor mode with any

single field slow roll model with a exponentially flat potential, of which the Starobinsky

model is a notable example. If we consider generalization of original Higgs inflation to

other new physics theories, one can even achieve more wider range of predictions, with

tensor-to-scalar ratio r varying from O(0.1) to O(10−7).

Therefore, we need to go beyond linear perturbations. Here a very important clue for

distinguishing Higgs inflations from other inflation models is that the electroweak symme-

try is spontaneously broken in the former case. Indeed, the Higgs inflaton during inflation

generally acquires an extremely large background value, and the excursion of the canon-

ically normalized Higgs field VEV can be at the same order with the Planck scale.9 An

immediate consequence of this observation is that the SM mass spectrum will be vastly

different from the spectrum in non-Higgs inflation models. Therefore, in the case of Higgs

field, all SM fields that receive masses from Higgs VEV can acquire huge mass during

inflation due to the huge background value of Higgs field.

In original Higgs inflation, both the SM spectrum and the couplings between Higgs

inflaton and other SM fields can be unambiguously determined, and therefore, one can in

principle make a rather definite prediction on these signals. Given the unique feature of

spontaneous electroweak symmetry breaking, this signals can be a distinctive feature of

Higgs inflation, and for this reason we call it the “SM fingerprints” of the Higgs inflation.

In this section we shall carry out an analysis of Higgs inflation parallel to previous

two sections for non-Higgs inflation. We shall review Higgs inflation very briefly, and then

work out the corresponding SM spectrum, as well as their signals in the squeezed limit of

bispectrum.

5.1 Higgs inflation and the SM spectrum

The original Higgs inflation makes use of the SM Higgs potential, plus the crucial ingredient

of non-minimal coupling between Higgs field and Ricci scalar. The inflation scale is much

9This huge VEV of Higgs field does not violate perturbativity of the model, as has been carefully

studied in [66].
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higher than the electroweak scale, so that the negative quadratic term in the Higgs potential

can be safely neglected when studying physics during inflation.10 With this point in mind,

we can write down the SM action in a general curved background as follows,

SJ =

∫
d4x
√−g

[(
1

2
M2 + ξH†H

)
R− |DµH|2 − λ(H†H)2 − 1

4

∑

I

F aIµνF
µνa
I

+
∑

i

iΨi /DΨi − (y`LH`R + ydQHdR + yuQH̃uR + c.c.)

]
, (5.1)

in which we have the Higgs doublet H coupled to the Ricci scalar R with nonminimal

coupling ξ. We denote all gauge field strength of the SM gauge group collectively as

F aIµν , and denote all SM fermions collectively as Ψi. In Yukawa terms, we have the left-

handed lepton doublets L and quark Q, together with right handed singlets `R, uR, and

dR. The covariant derivative DµH is associated with the SM gauge group under which

the Higgs doublet is charged, while the covariant derivative DΨi contains both SM gauge

fields and spin connection. The action (5.1) is conventionally said to be written in the

Jordan frame. The nonminimal coupling term in this action can be eliminated by a “frame

transformation”, i.e. the following field redefinition,

gµν → Ω−2gµν , Ω2 ≡ M2 + 2ξH†H

M2
Pl

, (5.2)

and we can take M = MPl for simplicity. As a result, we reach the following action which

is said to be written in the Einstein frame [66, 67],

SE =

∫
d4x
√−g

[
1

2
M2

PlR−
1

Ω2
|DµH|2 −

λ

Ω4
(H†H)2 − 3ξ2

M2
PlΩ

4

(
∇µ(H†H)

)2
(5.3)

− 1

4

∑

I

F aIµνF
µνa
I +

∑

i

iΨi /DΨi −
1

Ω
(y`LH`R + ydQHdR + yuQH̃uR + c.c.)

]
,

where we have also redefine the fermion fields according to Ψi → Ω3/2Ψi so that their

kinetic terms are canonically normalized. Compared with Jordan frame action (5.1), the

Einstein frame action (5.3) does not contain nonminimal coupling, but instead, there ap-

pear several new features: 1) The Higgs field is no longer canonically normalized (and

therefore, a further normalization of Higgs field is needed); 2) Higgs field receives new

higher-dimensional derivative couplings; 3) The Higgs potential is rescaled by a factor of

Ω−4 and similarly the Yukawa terms by a factor of Ω−1.

In our present study it is convenient to work in the unitary gauge in which the Higgs

doublet can be parameterized by a single real component h via H = (0, h/
√

2)T . By

examining the kinetic term of h, we can find the corresponding normalized field φ, which

is related to h via,

dφ

dh
=

√
Ω2 + 6ξ2h2/M2

Pl

Ω2
. (5.4)

10But the negative quadratic term is crucial in an implicitly way, because it provides the mass to Higgs

boson at the electroweak scale, and the Higgs mass, as as a input for renormalization running.
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In original Higgs inflation, we have h�MPl/ξ during inflation era, and therefore, we can

make the following approximation,

h2(φ) ' M2
Pl

ξ

(
e
√

2/3φ/MPl − 1
)
, Ω2(φ) ' e

√
2/3φ/MPl . (5.5)

Now we figure out the SM spectrum during inflation. Firstly, the Higgs field has only

one physical component which we have identified to be the inflaton. As in any slow-roll

model, the Higgs inflaton is nearly massless during inflation, and its self-interaction is ex-

tremely weak. On the other hand, due to the presence of a huge Higgs VEV, W/Z boson and

all charged fermions are massive during inflation, while the photon and the gluon remain

massless. Meanwhile, both W/Z and charged fermions interact with Higgs inflaton directly,

i.e. no spacetime derivative involved at the leading order. The masses of W/Z and charged

fermions and their interactions with Higgs inflaton can be easily found by examining the

part of the Lagrangian which is quadratic in these fields. Firstly, for the W/Z boson,

− g2h2

4Ω2

(
W+
µ W

−µ +
1

2 cos2 θW
ZµZ

µ

)

= −g
2

4

(
W+
µ W

−µ +
1

2 cos2 θW
ZµZ

µ

)[
V2 + G1δφ+

1

2
G2δφ

2 + · · ·
]
, (5.6)

in which we have separated in the Higgs inflaton φ into the background value and the

fluctuation, φ = φ0 +δφ, and expanded the quantity h2/Ω2 in terms of δφ2 up to quadratic

order, which is all we need. The various effective couplings in above expression are defined

as follows,

V =
h0

Ω0
, (5.7)

G1 =
d

dφ

h2

Ω2

∣∣∣∣
φ=φ0

=

√
2

3

MPl

ξΩ2
0

, (5.8)

G2 =
d2

dφ2

h2

Ω2

∣∣∣∣
φ=φ0

= − 2

3ξΩ2
0

, (5.9)

where the subscript 0 indicates that the quantity is to be evaluated at φ = φ0. In the

same way we can also find the quadratic part of fermionic action as follows,

− yi√
2

h

Ω
ΨiΨi = − yi√

2
ΨiΨi

[
V + F1δφ+

1

2
F2δφ

2 + · · ·
]
, (5.10)

where the two new couplings are defined as,

F1 =
d

dφ

h

Ω

∣∣∣∣
φ=φ0

=
MPl√

6ξh0Ω0

, (5.11)

F2 =
d2

dφ2

h

Ω

∣∣∣∣
φ=φ0

= −M
2
Pl(2Ω2

0 − 1)

6ξ2Ω0h3
0

. (5.12)

An interesting feature of above results is that the SM spectrum during Higgs inflation

is very different from the non-Higgs inflation models, but qualitatively similar to the SM
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spectrum in electroweak broken phase, with the Higgs VEV v ' 246GeV replaced by V.

And also, the quantity V is actually not a constant during inflation and therefore, the

masses of all SM particles during Higgs inflation are changing as the Higgs inflaton rolls

down along its potential. However, this changing is significant only for the final dozens of

e-folds during observable inflation, which are very difficult to observe, so we shall treat the

mass as constant, taking the value h0/Ω0 at the onset of observable inflation.

5.2 Signals in bispectrum

In this subsection we compute the squeezed limit of relevant bispectrum of inflaton per-

turbations to show the shape and strength of the SM fingerprints in Higgs inflation. The

amplitude we are going to calculate is still (4.4), and this amplitude can again be related to

corresponding four-point amplitude of conformal scalars (4.6). The difference from the pre-

vious section is that the SM fields couple to Higgs inflaton with non-derivative interaction,

while in previous section we only considered derivative coupling. Therefore, in previous

section, the 3-point function of inflaton fluctuations is obtained from the conformal ampli-

tude Ic(k12, k34, kI) by acting differential operator, but in the current situation, we have

an integral operator instead. That is,

I(k1, k2, k3) =
(
K2

12 + k12K12 + k1k2

)(
K2

3 + k3K3

)
Ic(k12, k3, k3), (5.13)

where K12 is an integral operator defined as follows,

K12f(k12) =

∫ ∞

k12

dk′12 f(k′12), (5.14)

and K3 is defined similarly.

With this slight modification, it is straightforward to work out the non-local part of

the 2-point function of SM operators at one-loop level. For gauge fields, we have,

〈A2(x)A2(x′)〉

=
9H8

8π5m4
A

[
(4− µ1)Γ2(µ1)Γ2(

5

2
− µ1)

(
ττ ′

X2

)3−2µ1

+ (µ1 → −µ1)

]
, (5.15)

in which µ1 =
√

1/2− (mA/H)2 and for spinor fields, we have,

〈ΨΨ(x)ΨΨ(x′)〉

=
H4m2

F

32π5

[
(7 + 24i)Γ2(iµ1/2)Γ2

(
1

2
− iµ1/2

)(
ττ ′

X2

)2+2iµ1/2

+ c.c.

]
, (5.16)

in which µ1/2 = mF /H. Then through the procedure parallel with the last section, we find

the squeezed limit of 3-point function for inflaton fluctuations contributed from 〈A2A2〉 to

be,

〈δφ(k1)δφ(k2)δφ(k3)〉A =
9G1G2H

6

32π4m4
Ak

6
S

C̃A(µ1)

(
kL
2kS

)−2µ1

+ (µ1 → −µ1), (5.17)
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where

C̃A(µ1) = µ1(2− µ1)(4− µ1)(1− 2µ1)(3− 2µ1)(2 + 3µ1 + 2µ2
1)

× Γ(−3 + 4µ1)Γ2(−1 + µ1)Γ2(−2µ1)Γ2

(
3

2
− µ1

)

× sin2(πµ1) sin(2πµ1). (5.18)

For spinor fields, we have,

〈δφ(k1)δφ(k2)δφ(k3)〉Ψ =
y2F1F2H

4

2π4k6
S

C̃Ψ(µ1/2)

(
kL
kS

)−1+2iµ1/2

+ c.c., (5.19)

where

C̃Ψ(µ1/2) =
24 + 7i

1− iµ1/2 + 2u2
µ3

1/2(3i− 2µ1/2)(−4 + 5iµ1/2 + 2µ2
1/2)

× Γ2

(
−1

2
− iµ1/2

)
Γ(−1− 4iµ1/2)Γ2(iµ1/2)Γ2(2iµ1/2)

× cosh3(πµ1/2) sinh(πµ1/2). (5.20)

We then find the squeezed limit bispectrum using the definition of (4.36),

SA =
9G1G2Hφ̇0

8π4m4
A

C̃A(µ1)

(
kL
2kS

)2−2µ1

+ (µ1 → −µ1), (5.21)

SΨ =
F1F2φ̇0

π4H
C̃Ψ(µ1/2)

(
kL
kS

)1+2iµ1/2

+ c.c.. (5.22)

It is however unfortunate that the “fingerprints” of SM fields in original Higgs inflation is far

too weak to be observable. The physical reason is clear: the Boltzmann suppression is severe

for very heavy fields like top quark and W/Z bosons, while the coupling to Higgs inflaton is

too small for light fields like charged fermions of first generation. However, it would be in-

teresting to seek variations of original Higss inflation model so that the SM fingerprints can

be observable, and the calculation presented in this section would be helpful in those cases.

6 Discussions

In this paper we have studied the Standard Model spectrum during the inflationary era of

our universe, assuming a generic single field slow-roll model of inflation. The spectrum turns

out to be quite different from both the ordinary SM mass spectrum in the electroweak bro-

ken phase and the trivial massless spectrum in electroweak symmetric phase. Notably, the

masses of many SM fields, such as the Higgs and some gauge bosons, are lifted to be around

the Hubble scale H due to quantum corrections. The details of this spectrum depends on

the background rolling velocity of inflaton φ̇0, the effective couplings between SM fields

and inflaton, as well as on the quantum corrections. Manipulations in Euclidean de Sitter

space have played a crucial role and have brought great simplification to our calculation.
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For non-Higgs inflation, depending on the strength of the interactions between SM

fields and inflaton, the SM spectrum can be very different in different inflation models.

For example, if the interactions fα(X)Oα satisfy fα(X0)� 1, then the SM spectrum turns

out to be quite universal and predictable, which depends only on the Hubble scale H and

the non-minimal coupling ξ between Higgs field and Ricci scalar. However, if fα(X0)’s are

large enough, the masses of the Higgs and W/Z’s can become somewhat arbitrary although

the photon still remains massless.

The SM spectrum can manifest itself through the squeezed limit of bispectrum of the

curvature perturbation. In the current work we have assumed that the inflaton is a SM

singlet, so the leading order effects of SM fields are at 1-loop order. We have computed the

amplitudes and shapes of the squeezed-limit bispectra that correspond to the SM particle

spectrum. The shapes of the bispectra are determined by the mass and spin of the SM

particles in the inflation background. The amplitudes are also very model-dependent. In

the simplest case where the coupling fα(X) � 1 and fα(X) ∝ X, the amplitudes are too

small to be observed, so we expect no SM background for the cosmological collider. Our

explicit formulae also point out the parameter space where such signals are observable.

We have adopted the effective field theory approach in this work, assuming SM coupled

to a single field inflation sector, with nothing else. In particular, we do not address the

naturalness problem in this work, which should be considered when new physics beyond SM

is included. It would be interesting to work out more concrete examples of our calculation

in various specific inflation models, in particular in those models where the inflaton-SM

couplings are strong. Meanwhile, it would also be interesting to consider mass spectrum of

corresponding non-Gaussian signals for new physics beyond SM, such as the right-handed

neutrinos, grand unification theories, etc.

Another important direction worth exploring is the higher-spin interactions between

inflaton and SM fields, which should be straightforward to work out in our current frame-

work. The nonzero spin of such interactions can leave characteristic angular dependence in

the squeezed limit of bispectrum, and it remains to be seen how can one distinguish such

signal from higher-spin interactions from a genuine higher spin particle.

Finally, it is also desirable to generalize the analysis to more general effective theories

of inflation models beyond slow-roll, and it remains to be seen if we would find anything

dramatically new about the SM signals.
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A Euclidean dS toolbox

In this appendix we collect some basics of manipulations in D-dimensional Euclidean dS,

which are useful in the main text.

A.1 Preliminaries

The D-dimensional de Sitter space dSD can be realized as a hypersurface in (D + 1)-

dimensional Minkowski spacetime of signature (1, D). With Minkowski coordinates

XM (M = 0, 1, · · · , D), the hypersurface is given by the equation −(X0)2 + (X1)2 +

· · · + (XD)2 = H−2. Now if we Wick rotate the Minkowski space into Euclidean space,

then dSD will be rotated into D-sphere SD.

There are many ways of parameterizing dSD [68, 69], of which we find two very useful

coordinates of dSD in current study. One is the global coordinates. In dSD they are given

by,

X0 = sinh(HT ), X i = ξi cosh(HT ), (i = 1, · · · , D), (A.1)

where ξi’s are further parameterized by the standard spherical coordinates on the unit

sphere SD−1. The metric on dSD corresponding to the global coordinates reads,

ds2 = −dT 2 + (cosh2 T )dΩ2
D−1. (A.2)

After Wick rotation in T direction, the metric above becomes the standard metric dΩ2
D on

SD written in spherical coordinates.

The other useful coordinates (t, xi) are the planar (inflation) coordinates, which covers

only half of the dS,

X0 = − sinh(Ht)− 1

2
xix

ieHt, X i = xieHt, XD = cosh(Ht)− 1

2
xix

ieHt. (A.3)

The metric written in inflation coordinates is the familiar one in inflation calculation,

ds2 = −dt2 + e2Htdxidxi. (A.4)

The conformal time τ used in this paper is related to t via eHt = −1/(Hτ), and the dS

metric expressed in (τ, xi) coordinates is given by (1.2).

The geodesic distance L(x, x′) between two points x, x′ on sphere is simply propor-

tional to the angle between the corresponding vectors ~X and ~X ′ in background Euclidean

space. Let this angle be θ, then we have L(x, x′) = θ/H. Meanwhile we will also

use another spherically invariant distance between x and x′, i.e. the imbedding distance

Z(x, x′) ≡ H2 ~X · ~X ′ = cos(HL(x, x′)). It is useful to write the imbedding distance Z(x, x′)

in conformal coordinates x = (τ,x), x′ = (τ ′,x′), as,

Z(x, x′) = 1− |x− x′|2 − (τ − τ ′)2

2ττ ′
. (A.5)

Given a function of geodesic distance f = f(L) or imbedding distance f = f(Z), we

need to know how to take derivate of it. For this purpose we only need to know that the
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covariant derivative of the geodesic distance itself is the unit normal vector tangent to it,

which we denote as nµ and nµ′ for the two ends of L(x, x′), respectively,

nµ ≡ ∇µL(x, x′), nµ′ ≡ ∇µ′L(x, x′). (A.6)

Then on sphere these vectors satisfy nµnµ = 1, nµ
′
nµ′ = 1. The covariant derivatives of

these vectors can be further represented in terms of themselves, as,

∇µnν = H cot(HL)(gµν − nµnν), (A.7)

∇µnν′ = −H csc(HL)(gµν′ + nµnν′), (A.8)

∇ρgµν′ = H tan(HL/2)(gρµnν′ + gρν′nµ). (A.9)

For functions of imbedding distance Z(x, x′) we can also get similar expressions, by noting

that dZ/dL = −H
√

1− Z2. We refer readers to [70, 71] for more details on concepts and

quantities in this paragraph.

A.2 Spherical harmonics

The spherical harmonics on SD are defined to be eigenfunctions of Laplacian operator [72,

73],

∇2Y~L(x) = −H2L(L+ d)Y~L(x). (A.10)

Y~L is parameterized by a vector ~L = (LD, · · · , L1) with all Li (i = 1, · · · , D) being integers

and satisfying LD ≥ · · · ≥ L2 ≥ |L1|. In above expression and thought the paper we

also use the notation L = LD. The spherical harmonics satisfy the following orthonormal

conditions,

∑

~L

Y~L(x)Y ∗~L (x′) = H−Dδ(x, x′),

∫
dΩY~L(x)Y ∗~M (x) = H−Dδ~L ~M . (A.11)

The integral measure dΩ ≡ dDx
√
g(x) and the delta function are defined in the covariant

way, ∫
dΩ δ(x, x′)f(x) = f(x′). (A.12)

We also use the shorthand notation dΩ′ ≡ dDx′
√
g(x′) occasionally.

When dealing with spinors we also make use of spin-weighted spherical harmon-

ics [74], which are defined to be the eigenfunctions of spinor rotation generator JS =
1
8 [γMγN ](XM∂N −XN∂M ) of the background (D+ 1)-dimensional Euclidean space acting

on the sphere,

(
JS +

D

2

)
Y ±~Ls

(x) = λ±LY
±
~Ls

(x), λ±L = ∓
(
L+

d± 1

2

)
, (A.13)

where s is the spinor index. Here the additional constant D/2 is added to JS because the

Dirac operator /∇ on sphere can be rewritten as /∇ = H2 /X(JS+D/2) where the background

coordinates Xi is subject to the restriction H2X2 = 1.
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The spin-weighted spherical harmonics can be constructed from ordinary Y~L(x)’s and

a set of basis of constant Dirac spinor ψs by projections,

Y ±~Ls
(x) = P±Y~L(x)ψs, P+ =

L+ d− JS
2L+ d

, P− = 1− P+. (A.14)

The spin-weighted spherical harmonics satisfy the following relations,
∫

dΩY ±†~Ls
(x)Y ±~Ms′

(x) = H−Dδ~L ~Mδss′ , (A.15a)
∫

dΩY ±†~Ls
(x)Y ∓~Ms′

(x) = 0, (A.15b)

∑

~L,s

[
Y +
~Ls

(x)Y +†
~Ls

(x′) + Y −~Ls
(x)Y −†~Ls

(x′)
]

= H−Dδ(x, x′)1, (A.15c)

where 1 stands for unit spinor. By definition, we can rewrite a scalar spherical harmonic

function Y~L(x) in terms of spin-weighted one, as,

Y~L(x)1 =
∑

s

[
Y +
~Ls

(x) + Y −~Ls
(x)
]
ψ†s. (A.16)

A.3 Propagators

The propagator for a real scalar field of mass M is given by,

G(x, x′) =
HD−2

(4π)D/2
Γ(d/2− µ)Γ(d/2 + µ)

Γ(d/2)
2F1

(
d

2
− µ, d

2
+ µ;

D

2
;

1 + Zxx′

2

)
, (A.17)

where µ ≡
√
d2/4− (M/H)2. It can also be expressed in terms of spherical harmonics, as,

G(x, x′) = HD−2
∑

~L

1

λL
Y~L(x)Y ∗~L (x′), λL =

(
L+

d

2
− µ

)(
L+

d

2
+ µ

)
. (A.18)

In the Euclidean dS calculations in section 2 we shall need the propagator for massless

Dirac spinor only [74]. It can be conveniently represented in terms of spinor spherical

harmonics as,

GF (x, x′) = HD /X
∑

~L,s

[
1

λ+
L

Y +
~Ls

(x)Y +†
~Ls

(x′) +
1

λ−L
Y −~Ls

(x)Y −†~Ls
(x′)

]
,

= −HD
∑

~L,s

[
1

λ+
L

Y +
~Ls

(x)Y +†
~Ls

(x′) +
1

λ−L
Y −~Ls

(x)Y −†~Ls
(x′)

]
/X
′
, (A.19)

where λ±L is defined in (A.13).

We shall also need the propagator for a massive vector field of mass MA [71],

Gµν′(x, x
′) =

(1−D)HD

2(4π)D/2M2
A

[(
1− Z2

D − 1

d

dZ
+ Z

)
(gµν′ + nµnν′)− nµnν′

]

× Γ(D+1
2 + µ1)Γ(D+1

2 − µ1)

Γ(D2 + 1)

× 2F1

(
D + 1

2
+ µ1,

D + 1

2
− µ1;

D

2
+ 1;

1 + Z

2

)
, (A.20)
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where µ1 ≡
√

(D − 3)2/4− (MA/H)2, and Z = Z(x, x′) is again the imbedding distance

between x and x′. It is interesting to note that the propagator above is inversely propor-

tional to M2
A and is divergent as M2

A → 0, which is similar to the case in flat spacetime.

This means in particular that the massless propagator for the gauge boson is not the mass-

less limit of the massive propagator. In fact, the massless propagator for gauge boson is

more complicated (partly due to gauge freedom) and we refer the readers to [71] for details.

A.4 Simple manipulations

One simple but very useful relation which is particularly manifest in Euclidean dS is the

following, ∫
dΩxG1(x1, x)G2(x, x2) = −G1(x1, x2)−G2(x1, x2)

m2
1 −m2

2

, (A.21)

where G1,2(x, x′) denotes a scalar propagator with mass m1,2. The proof of this relation is

straightforward,
∫

dΩxG1(x1, x)G2(x, x2) =
∑

~L, ~M

H2D−4

λ1Lλ2M
Y~L(x1)Y ∗~M (x2)

∫
dΩxY

∗
~L

(x)Y ~M (x)

=
∑

~L

HD−4

λ1Lλ2L
Y~L(x1)Y ∗~L (x2) =

−HD−2

m2
1 −m2

2

∑

~L

(
1

λ1L
− 1

λ2L

)
Y~L(x1)Y ∗~L (x2)

= −G1(x1, x2)−G2(x1, x2)

m2
1 −m2

2

. (A.22)

In particular, in the limiting case when m1 = m2, we have,
∫

dΩxG1(x1, x)G1(x, x2) = − ∂

∂m2
Gm(x1, x2)

∣∣∣
m=m1

, (A.23)

and one can even generalize it to the product of a string of propagators, and the result is

actually put in use (See eq. (5.5) of [19] and the discussion nearby) when we demonstrate

the equivalence between dynamical renormalization group resummation and the explicit

summation of all mass insertions to all orders in perturbation theory.

Actually the relation (A.21) is nothing but the leading order of the perturbation ex-

pansion for a bilinear mixing between to scalar fields of masses m1 and m2, and one can

actually check that the relation holds using the standard in-in formulation in real-time dS,

− i

∫ τ

−∞

dτ ′

(Hτ ′)4

[
G

(χ)
++(k, τ, τ ′)G

(φ)
++(k, τ ′, τ)−G(χ)

+−(k, τ, τ ′)G
(φ)
−+(k, τ ′, τ)

]

= −i

∫ τ

−∞

dτ ′

(Hτ ′)4

[
χk(τ)χ∗k(τ

′)φ∗k(τ
′)φk(τ)− c.c.

]

=
−iπ2

16

[
H(1)
νχ (−kτ)H(1)

νφ
(−kτ)

∫ τ

−∞

dτ ′

(−τ ′)3
H(1)∗
νχ (−kτ)H(1)∗

νφ
(−kτ)− c.c.

]

=
−π

4(ν2
χ − ν2

φ)

[∣∣H(1)
νχ (−kτ)

∣∣2 −
∣∣H(1)

νφ
(−kτ)

∣∣2
]

=
1

M2
χ −M2

φ

[
G

(χ)
++(k, τ, τ)−G(φ)

++(k, τ, τ)
]
, (A.24)
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in which we have used φ and χ to denote the two scalar fields with mass Mχ and Mφ.

Although this relation may look trivial, it can bring significant simplifications in loop

calculation, as shown in several examples in section 2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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