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1 Introduction

We consider the SU(2) gauge theory with Nf = 2 flavors of Dirac fundamental fermions, and

study the finite-temperature behavior by using numerical methods based on formulating the

theory on anisotropic lattices. The main purpose of this work is to collect evidence that the

global symmetries of the model are implemented à la Wigner at high-temperature, where

the condensate breaking global symmetry is expected to melt and the global symmetries

to be linearly realized.

This model has been considered before in three different contexts, as it represents the

prototype of non-trivial gauge theory in which lattice numerical methods have concrete

potential to provide useful information about the dynamics of the underlying theory. First

of all, it is a useful toy model for the study of generalizations of Quantum Chromo-Dynamics

(QCD) at finite temperature T and finite chemical potential µ. One trivial reason for

this is that the number of fundamental degrees of freedom is smaller than for two-flavor
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QCD, making the numerical treatment easier. Most importantly though, the fundamental

representation of SU(2) is pseudo-real, and hence there is no sign problem. It is then

possible to study the phase diagram of the model in the (T, µ)-plane, and to apply numerical

techniques to extract its detailed structure. For an incomplete list of useful references on

the subject see [1–3].

A second context in which this model is important is that of traditional technicolor

(TC) [4–12]. The choice of SU(2) with 2 fundamental Dirac fermions yields the minimal

model such that one can embed the electro-weak SU(2)L × U(1)Y group of the Standard

Model of particle physics (SM) within the global symmetries of the matter field content.

One expects spontaneous symmetry breaking to arise dynamically at the scale Λ, hence

providing a natural way to implement the Higgs mechanism for giving mass to the elec-

troweak bosons within a fundamental theory. Aside from the fact that, once more, the

small number of degrees of freedom makes practical applications amenable to numerical

treatment, the fact that the field content is minimal also minimizes the potentially prob-

lematic contributions to precision parameters such as the oblique S and T as defined by

Peskin and Takeuchi [13], that on the basis of perturbative arguments one expects to grow

with Nf and Nc, and that are not dynamically suppressed when one identifies Λ with the

electroweak scale vW ∼ 246 GeV. The dynamics preserves a custodial SU(2) that further

suppresses the T parameter, as the underlying masses of the fermions vanish.

The model has received some attention in a third context [14–27], as a concrete re-

alization of the idea of Higgs compositeness [28]. This is a quite distinct framework in

respect to traditional TC. The underlying dynamics is the same, being based upon a gauge

theory with a given global symmetry, for which one expects the formation of a non-trivial

symmetry-breaking condensate. Yet, one chooses to embed the electroweak gauge group

into the global symmetry group of the theory in such a way that the fermion condensate

does not break it.1 The long-distance behavior of the theory is hence captured by an

Effective Field Theory (EFT) that includes the SM gauge theory, supplemented by a set

of light, composite pseudo-Goldstone bosons arising at the scale Λ, a subset of which is

interpreted as the Higgs doublet field.

The gauging of the SM group explicitly breaks the global symmetries, and hence pro-

vides a potential for the Higgs fields. Additional ingredients, not arising from the SU(2)

fundamental gauge theory, are invoked in order to drive spontaneous symmetry breaking

in the Higgs sector, which ultimately yields electro-weak symmetry breaking (EWSB) at

the scale vW � Λ. For example, one has to introduce a mechanism to give mass to the

SM fermions, which requires coupling the Higgs field to the quarks and leptons. It is well

known that, as a byproduct of doing so, the theory yields radiative corrections to the Higgs

potential due to loops of the top quark, naive estimates of which show that they can desta-

bilize the minimum of the Higgs potential. In the following we will not discuss any of these

points, related to realistic model-building in the electro-weak sector.

The reason why composite scenarios are viable within this model originates from

the pseudo-real nature of the fundamental representation of SU(2). In particular, in

1We ignore the problem of vacuum alignment [29].
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the presence of two Dirac fermions, the global symmetry of the Lagrangian is enhanced

from the U(1)A × U(1)tB × SU(2)tL × SU(2)tR global symmetry of QCD and TC to a

U(1)A × SU(4) global symmetry, and the condensate breaks it to the Sp(4) subgroup.

Excluding for the time being the anomalous U(1)A from the discussion, this yields 5

(pseudo-)Goldstone bosons, that form a multiplet of the unbroken Sp(4) ∼ SO(5). The

gauging of SU(2)L × U(1)Y ⊂ SO(4) ⊂ Sp(4) splits the 5 into a 4 of SO(4), which is

identified with the Higgs doublet, and an additional singlet, that may have important

phenomenological implications.

In this paper, we compute the masses of the composite (meson) states created and

annihilated by operators of the form Q̄ΓQ, with Γ = 1, γ5 · · · , and discuss their dependence

on temperature T .2 In particular we track how the mass-splittings between parity partners

change by going to high-temperature. In order to do so, we formulate the theory on

anisotropic lattices, and use Monte Carlo methods to extract the spectral masses as a

function of T . We are looking for clear signals of the restoration in the thermal bath of

the much larger global symmetry of the underlying theory. This is the first step of a more

ambitious and long-term program, which we envision will include also the study of the

effects due to the presence of explicit symmetry-breaking terms, in particular due to the

chemical potential µ, and to the weakly-coupled gauging of the SM electroweak group.

The paper is organized as follows. In section 2 we describe the model and summarize

effective field theory and symmetry arguments that play a role in the rest of the paper.

In section 3 we describe the lattice set-up used in the numerical calculations, particularly

by explaining in details how the bare parameters are tuned in the presence of anisotropic

lattices. In section 4 we report our results, which we critically discuss in section 5. Ap-

pendix A contains some useful notation about spinors, and we show explicitly how the

enhanced global symmetry emerges. In appendix B we summarize the algebraic properties

of SU(4) and Sp(4), by providing an explicit example of generators for SU(4). Examples

of the renormalized versus bare parameters are given in appendix C.

2 The model: symmetry considerations

The matter field content consists of two (massive) Dirac fermions Qi a, where a = 1, 2 is

the SU(2) color index and i = 1, 2 the flavor index. The covariant derivative is

(DµQ
i)a = ∂µQ

i a + igV A
µ (TA)abQ

i b , (2.1)

with V A
µ the gauge fields, g the coupling, and TA the generators of SU(2) obeying

TrTATB = 1
2δ
AB, so that TA = τA/2. The Lagrangian density is

L = iQi a γ
µ (DµQ

i)a − mQi aQ
i a − 1

2
TrVµνV

µν , (2.2)

where the summations over flavor index i = 1, 2 and color index a = 1, 2 are understood,

and where the field-strength tensors are defined in terms of the gauge bosons as Vµν ≡
∂µVν − ∂νVµ + ig [Vµ , Vν ].

2We refer the reader to the works in [30–32]: while these papers study SU(3) gauge theory, some of their

results and ideas play a role in the present paper.
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Fields SU(2) SU(4)

Vµ 3 1

q 2 4

Σ0 1 6

M 1 6

Table 1. The field content of the model. Vµ are gauge bosons, q are two-component spinors, Σ0 is

a composite scalar, M a scalar spurion.

We collect in appendix A and B several useful relations between 2-component spinors

q and 4-component spinors Q, as well as details about the algebra of SU(4) and Sp(4)

(see also [14–27]). The global symmetry acting on the matter fields is U(1)A × SU(4), and

we explicitly list the transformation properties of the fields in table 1. It is convenient

to define:

Σ nm
0 =

∑
ab

εabq
naT C̃qmb , (2.3)

and to write the mass explicitly as a matrix M ≡ mΩ, with Ω the symplectic matrix in

eq. (B.1). The index n,m = 1, · · · , 4 and C̃ = −iτ2 acts on spinor indexes. In the lower

half of table 1 we list the transformation properties of the composite field Σ0, as well as

the (symmetry-breaking) spurion M .

In the body of the paper, we will describe the finite-temperature properties of com-

posite states that we identify with the pions π, ρ vector, a1 axial-vector, and a0 scalar

mesons. In the rest of this section, we summarize the basic properties of these objects,

using the language of effective field theory (EFT). What results is a Lagrangian density

that includes potentially heavy and strongly-coupled degrees of freedom, and hence does

not yield a calculable weakly-coupled low-energy EFT in the usual sense. We use this

language to guide our book-keeping exercise, focused on classifying the physical particles,

their quantum numbers, and the degeneracies — in particular the difference of mass be-

tween the ρ and a1 vectors and between the π and a0 scalars — that are consequences only

of the symmetry structure of the theory and its vacuum.

2.1 Composite states: scalars

In the low-energy EFT description, the real antisymmetric field Σ transforms as

Σ → UΣUT (2.4)

under the action of an element U of SU(4). The VEV 〈Σ〉 ∝ Ω breaks SU(4) to the Sp(4)

subgroup. The generators TA with A = 1, · · · , 5 are broken, while TA with A = 6, · · · , 15

are unbroken. For instance, see eq. (B.4) in appendix B.

In terms of the matrix-valued π(x) =
∑5

A=1 π
A(x)TA, the convenient parameterization

Σ = e
iπ
f Ωe

iπT

f = e
2iπ
f Ω = Ω e

2iπT

f , (2.5)
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automatically satisfies the non-linear constraint Σ†Σ = I4. The leading-order term of the

low-energy EFT is

L0 =
f2

4
Tr
{
∂µΣ (∂µΣ)†

}
(2.6)

= Tr
{
∂µπ ∂

µπ
}

+
1

3f2
Tr
{

[∂µπ , π] [∂µπ , π]
}

+ · · · . (2.7)

The pion fields are canonically normalized and hence f = fπ is the pion decay constant.

The quark mass is incorporated in the EFT by adding the symmetry-breaking term

Lm = −v
3

4
Tr {M Σ} + h.c. = 2mv3 − mv3

f2
Trπ2 + · · · . (2.8)

The expansion in pion fields confirms that the 5 pions are still degenerate, if not massless,

in the presence of the explicit breaking given by the Dirac mass for the fermions, with

m2
πf

2
π = mv3 . (2.9)

The degeneracy of the five pions is a consequence of the unbroken Sp(4) ∼ SO(5) symmetry.

The spurion M formally transforms as M → U∗MU †, so that if it were promoted to a field

then Lm would be manifestly invariant under the full SU(4) symmetry.

Here we pause to make two general observations. In the context of composite-Higgs

models, the presence of a (small) mass term for the quarks is allowed, contrary to the

TC case. While in the latter the quark mass explicitly breaks the gauge symmetries, in

the composite-Higgs case the SM gauge group is a subgroup of Sp(4), and hence the term

in eq. (2.8) does not break it. The distinction between TC and composite-Higgs cases

reduces (in the massless case) to a vacuum alignment issue driven by the weak gauging of

the SU(2)L × U(1)Y symmetry. In the presence of a mass of the form in eq. (2.8), this

problem has a trivial solution: the mass m stabilizes the composite-Higgs vacuum. Yet,

some caution is in order: if mπ is large, it might become impossible to induce electro-weak

symmetry breaking. We leave these and similar issue out of this study (see [33]), as in our

numerical work all calculations are done with the SU(2) theory in isolation.

To describe the regime in which the symmetry is restored, which is expected to be

realized at high temperature, we remove the non-linear constraint, and hence replace Σ

by the field H ∼ 6, that transforms as a complete antisymmetric representation of SU(4).

The kinetic term is

LH =
1

2
Tr ∂µH∂

µH . (2.10)

The Lagrangian density contains a potential as any arbitrary function V (H†H) is allowed

by the symmetries. The minimization of V yields the identification 〈H〉 = f√
2
〈Σ〉 = f√

2
Ω.

The small fluctuations of H are parameterized in terms of the 5 pion fields along the broken

directions, plus an additional real scalar σ:

H =
f + σ√

2
Σ =

f + σ√
2
e

2iπ
f Ω , (2.11)
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where the normalizations are chosen so that all the fields have canonical kinetic terms.

Unconstrained by symmetry considerations, the scalar σ (singlet of Sp(4)) is expected to

have a large mass mσ, and in general decay fast to pions.

Besides the SU(4) → Sp(4) breaking, the vacuum also induces the breaking of the

(anomalous) U(1)A. To discuss it, we need to promote H a complex field, hence doubling

the field content. We define

H̃ ≡ H + iH ′ , (2.12)

with H ′ a second real antisymmetric representation of SU(4). The action of U(1)A is

U(1)A : H̃ → eiθH̃ , (2.13)

where θ is the parameter of the U(1)A transformation. The field H ′ introduces an additional

Sp(4) singlet that is the analog of the η′ in QCD and 5 additional scalars that form a

multiplet of the SO(5) unbroken symmetry, and are the analogue of the a0 isovectors of

QCD. The treatment presented here is indeed a generalization of what done in the context

of the linear-sigma-model description of low-energy QCD [34–38].

The presence of the anomaly produces a large mass for η′. At high temperatures both

the fermion condensate and the effect of the anomaly are suppressed. Hence, the mass

splitting between a0 and π provides a measure of the level of breaking of U(1)A in addition

to global SU(4), and can be used to look for SU(4) × U(1)A thermal restoration. Similar

arguments hold in the case of QCD (see for example [39, 40] and references therein).

Because the σ and η′ are flavor singlets, and the flavor-singlet sector of the spectrum is

more difficult to study numerically than the flavored channels, we will study the a0-π mass

splitting in order to discuss the restoration of the axial U(1)A at high temperatures. We

will do so in the body of the paper, using numerical techniques based on the formulation

of the theory on anisotropic lattices.

2.2 Composite states: vectors

The full set of spin-1 vector and axial-vector mesons spans the adjoint representation of

the SU(4) global symmetry. A cartoon representing the EFT description of their long-

distance dynamics is depicted in figure 1, and represents a generalization of hidden local

symmetry [41–46]. One extends the symmetry from SU(4) to SU(4)A × SU(4)B, with

SU(4)A weakly gauged, with coupling gρ. Then one enlarges the field content to include

two non-linear sigma-model fields S and Σ. The non-linear sigma-model S transforms as

the bifundamental of SU(4)B × SU(4)A, while the field Σ transforms on the antisymmetric

of SU(4)A:

S → UB S U
†
A , Σ → UAΣUTA . (2.14)

In a composite-Higgs model, the SM gauge group SU(2)L×U(1)Y is a subgroup of SU(4)B.

The gauging of the SU(4)A symmetry means that (for global SU(4)B) one has to

introduce the covariant derivatives

DµS = ∂µS − i gρSAµ , (2.15)

DµΣ = ∂µΣ + i gρ
(
AµΣ + ΣATµ

)
, (2.16)
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Figure 1. The moose diagram representing the EFT description of the vector mesons in the model.

Label Operator Meson JP

S QiQj a0 0+

PS Qiγ5Q
j π 0−

V QiγµQ
j ρ 1−

AV Qiγ5γµQ
j a1 1+

Table 2. Interpolating operators, and corresponding flavored particles (i.e. i 6= j in the interpo-

lating operators), studied in the body of the paper. Color and spinor indexes (summed over) are

understood.

and then L0 is replaced by all possible 2-derivative invariant operators made by S, Σ, DS,

DΣ, together with the kinetic term for the gauge bosons. Both S and Σ are non-vanishing

in the vacuum, inducing the symmetry breaking pattern SU(4)A × SU(4)B → Sp(4), and

all vectors are massive. 〈Σ〉 splits the mass of the 5 a1 and the 10 ρ mesons.

In unitary gauge, besides the heavy vectors only the physical pions are retained. They

are linear combinations of the fluctuations of S and Σ. The mass term for the pions is

Lm = −v
3

4
Tr
{
M S ΣST

}
+ h.c. . (2.17)

The quark masses also contribute to the masses of the spin-1 states in a more complicated

way, that will be discussed elsewhere [47].

In the absence of the antisymmetric condensate (for 〈Σ〉 = 0), ρ and a1 mesons would

be exactly degenerate. Their mass splitting is hence a measure of the amount of breaking

SU(4) → Sp(4). In the main body of the paper we use the mass splitting between ρ

(vector) and a1 (axial-vector) as a way to test whether the global symmetry is restored at

high temperatures. The generalization to the case in which Σ is replaced by H̃ does not

require any new ingredients. In particular the restoration of the axial U(1)A and of the

global SU(4) can, at least in principle, be treated independently. We summarize in table 2

the properties of the states discussed in the body of the paper. One of the purposes of this

paper is to make the first steps towards a quantitative assessment of the relation between

the two phenomena at high temperature, in the specific theory of interest here.

3 Numerical results: anisotropic lattice

3.1 Lattice action

In this section, we describe the discretized Euclidean lattice action used for our numerical

study. For the gauge sector, we modify the standard plaquette action by treating the oper-

– 7 –
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ators containing temporal gauge links separately from those solely containing spatial links,

Sg[U ] =
β

ξ0
g

∑
i

(ξ0
g)2

(
1− 1

N
Re trP0i

)
+
∑
i<j

(
1− 1

N
Re trPij

) , (3.1)

where β = 2N/g2 and ξ0
g are the lattice bare gauge coupling and the bare gauge anisotropy,

respectively. The plaquette P is defined by

Pµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x), (3.2)

where Uµ(x) denotes the link variables. For the fermion sector, we use the Wilson action

for fermions in the fundamental represention

Sf [U, Q̄,Q] = a3
sat
∑
x

Q̄(x)DmQ(x), (3.3)

with the massive Wilson-Dirac operator given by

DmQ(x) = m0Q(x) +
1

2

∑
µ

vµ[γµ(∇µ +∇∗µ)− aµ∇∗µ∇µ]Q(x), (3.4)

where ∇ and ∇∗ denote the forward and backward covariant derivatives, respectively:

∇µQ(x) =
1

aµ
[Uµ(x)Q(x+ µ̂)−Q(x)],

∇∗µQ(x) =
1

aµ
[Q(x)− U †µ(x− µ̂)Q(x− µ̂)]. (3.5)

The ratio vµ of the bare fermion to gauge anisotropy is introduced as it can be different

to unity. From the redefinition of the fermion field (Q → √vtQ and m0 → m0/vt), along

with the introduction of the fermion anisotropy ξ0
f = ξ0

g/(vs/vt), we rewrite eq. (3.4) as

DmQ(x) ≡ (D +m0)Q(x) =
1

at

[(
atm0 + 1 +

3

ξ0
f

)
Q(x)

− 1

2

(
(1− γ0)U0(x)Q(x+ 0̂) + (1 + γ0)U †0(x− 0̂)Q(x− 0̂)

)
− 1

2ξ0
f

∑
j

(
(1− γj)Uj(x)Q(x+ ĵ) + (1 + γj)U

†
j (x− ĵ)Q(x− ĵ)

) . (3.6)

For the rest of this paper we do not explicitly show the lattice spacings for convenience,

i.e. at = 1, except when we need to distinguish the spatial and temporal lattice spacings

and to discuss the finite temperature.

The bare anisotropy parameters, ξ0
g and ξ0

f , are renormalized such that physical probes

at scales well below the cut-off ∼ 1/a exhibit Euclidean symmetry, i.e. ξg = ξf = ξ. For

the input quark mass, Mq, we parameterize the renormalized parameters (ξg, ξf ,Mq) as

functions of bare parameters (ξ0
g , ξ

0
f ,m0). For a small region in the parameter space, we

– 8 –
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m0 ξ0
g ξ0

f Nconf MPS MV ξg ξf MPS/MV

−0.195 4.7 4.7 200 0.1659(8) 0.1823(10) 6.19(7) 6.34(10) 0.910(7)

−0.195 4.9 4.7 200 0.1544(6) 0.1709(13) 6.33(8) 6.33(9) 0.903(8)

−0.2 4.5 4.7 300 0.1616(5) 0.1784(8) 6.03(6) 6.28(7) 0.906(5)

−0.2 4.7 4.5 300 0.1743(5) 0.1910(7) 6.07(7) 6.12(6) 0.913(4)

−0.2 4.7 4.7 200 0.1504(6) 0.1678(10) 6.13(6) 6.41(11) 0.896(6)

−0.2 4.9 4.7 300 0.1399(5) 0.1589(7) 6.42(6) 6.35(7) 0.880(5)

−0.2 5.1 4.7 160 0.1279(13) 0.1479(19) 6.58(9) 6.30(15) 0.865(14)

−0.209 4.7 4.5 150 0.1455(7) 0.1643(11) 6.10(6) 6.04(10) 0.885(7)

−0.209 4.7 4.7 300 0.1169(7) 0.1392(13) 6.22(6) 6.35(12) 0.840(10)

−0.209 4.9 4.5 300 0.1336(6) 0.1533(9) 6.34(7) 6.11(9) 0.872(6)

−0.209 4.9 4.7 150 0.1023(9) 0.1243(15) 6.35(6) 6.25(12) 0.823(12)

−0.215a 4.7 4.7 138 0.0904(21) 0.118(5) 6.04(9) · 0.77(3)

−0.209b 4.7 4.7 300 0.1172(7) 0.1382(11) 6.13(6) 6.42(13) ·
a: This ensemble is used only for the determination of ai and ci as the number of configurations is not

large enough to determine ξf in a reliable manner.
b: For this ensemble we carry out the measurements on the 128 × 103 lattice. Note that MPSNs ∼ 7.

Compared to the 128 × 123 lattice, we find no significant differences in all measured quantities. As

MPSNs & 7 for other ensembles, we therefore expect that the finite volume effects are negligible in the

tuning of bare lattice parameters.

Table 3. Simulation parameters and results for the tuning of the lattice bare parameters of

an anisotropic lattice. The masses of pseudoscalar (PS) and vector (V) mesons are measured

in units of at.

assume that the renormalized parameters are linear in the bare parameters. We further

assume that we are in the region of light quark masses, i.e. M2
PS ∼ Mq, and arrive at the

form [48]

ξg(ξ
0
g , ξ

0
f ,m0) = a0 + a1ξ

0
g + a2ξ

0
f + a3m0,

ξf (ξ0
g , ξ

0
f ,m0) = b0 + b1ξ

0
g + b2ξ

0
f + b3m0,

M2
PS(ξ0

g , ξ
0
f ,m0) = c0 + c1ξ

0
g + c2ξ

0
f + c3m0. (3.7)

For each set of bare parameters, nonperturbative determinations of ξg and ξf are carried out

through the interquark potential and the relativistic meson dispersion relation, respectively,

which will be discussed in details in the following subsections.

3.2 Simulation details

We consider the lattice action in eq. (3.1) and eq. (3.3) with two mass-degenerate Wilson

fermions. Configurations are generated using the Hybrid Monte Carlo(HMC) algorithms

with the second order Omelyan integrator for Molecular Dynamics(MD) evolution, where

different lengths of MD time steps δτµ are used for gauge and fermion actions such that the

acceptance rate is in the range of 75− 85%. The simulation codes are developed from the

HiRep code [49] modified by implementing the gauge and fermion anisotropies described

in section 3.1. To optimise the acceptance rate, we also treat the variance of temporal
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and spatial conjugate momenta differently by introducing a new tunable parameter [50],

which is essentially equivalent to the multiscale anisotropic molecular dynamics update [48].

Without changing the validity of the algorithm, such a setup is helpful for the anisotropic

lattice calculations through balancing the temporal and spatial MD forces: typically the

former is larger than the latter approximately by the anisotropy in the lattice spacings.

Except the lattice of Nt × N3
s = 128 × 103 for the investigation of finite volume ef-

fects, all of the numerical calculations for the tuning of bare parameters are performed on

Nt × N3
s = 128 × 123 lattices. We use periodic boundary conditions in each direction of

both link variables and fermion fields.3 Twelve ensembles are created with different bare

quark masses, gauge and fermion anisotropies at β = 2.0, where the details are found in

table 3. Thermalization and autocorrelation times are estimated by monitoring the aver-

age plaquette expectation values. For each ensemble Nconf = 138− 300 configurations are

accumulated after 200 trajectories for thermalization, where every two adjacent configu-

rations are separated by one auto-correlation length of which the typical size is 8 ∼ 12

trajectories. The statistical errors for all quantities extracted in this work are obtained

using the standard bootstrapping technique.

3.3 Gauge anisotropy

The gauge anisotropy ξg is determined from the static potential using Klassen’s method [51].

We first define the ratios of spatial-spatial and spatial-temporal Wilson loops by

Rs(r, y) =
Wss(r, y)

Wss(r + 1, y)
and Rt(r, t) =

Wst(r, t)

Wst(r + 1, t)
, (3.8)

respectively. In an asymptotic region, these ratios fall exponentially with the linear in-

terquark potential and do not depend on r, Rs(r, y) ∼ e−asVs(yas) and Rt(r, t) ∼ e−asVs(tat).
Finite volume effects are expected to be suppressed since they are canceled out in the

ratios [51, 52]. As the interquark potential at the same physical distance should yield the

same value, one can extract the anisotropy ξg by imposing Rs(r, y) ≡ Rt(r, t = ξgy). In

practice, we determine ξg by minimizing [52]

L(ξg) =
∑
r,y

`(ξg; r, y), (3.9)

with

`(ξg; r, y) =
(Rs(r, y)−Rt(r, ξgy))2

(∆Rs)2 + (∆Rt)2
, (3.10)

where ∆Rs and ∆Rt are the statistical errors of Rs and Rt, respectively.

In the original Klassen’s approach, the planar Wilson loops are considered where r is

either x or z. A typical difficulty in this approach is the limited number of data points

as one quickly encounters a severe signal-to-noise problem in the calculations of the large

Wilson loops. By noting that ~r can be any two-dimensional path in the x-z plane with

r =
√
x2 + z2, we extend the Klassen’s method by including nonplanar Wilson loops along

3We have checked that using antipeoriodic boundary conditions in the time direction for fermions give

compatible results as expected in zero-temperature calculations.
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Figure 2. Lattice artefacts due to nonplanar Wilson loops. Different colored points denote the ξg
obtained by using eq. (3.10) with z = 0, · · · , 3 for a given r ∗ y, while the blue band denotes the

extracted value of ξg. The details are found in the main text.

the closed path Cy(x, z, y) and Ct(x, z, t) with x ≥ z. To maximize the overlap with

the physical ground state the shortest paths in the x-z plane are considered using the

Bresenham algorithm which has been applied for the lattice study of quark antiquark

potential, i.e. see [53]. Analogous to the planar case, we define ~r = (x, z) and ~r + 1 =

(x+ 1, z) for a fixed value of z.

Using the generalized Klassen’s method, we are able to secure enough data points

having reasonable statistical errors. As a consequence, not only do we find the clean signal

of an asymptotic region in which ξg converges, but also reduce the statistical error of

the gauge anisotropy ξg. However, due to the breaking of rotational symmetry on the

lattice, results obtained mixing on-axis and off-axis loops might be affected by a large

systematics. To investigate this issue, we calculate ξg by minimizing the function `(ξg; r, y)

with z = 0, · · · , 3, corresponding to the different shapes of the 2-dimensional paths. The

results are shown in figure 2. We find no significant deviations between colored data,

suggesting that any potential effect of the breaking of rotational symmetry cancels in the

ratios of Wilson loops in eq. (3.8). For r ∗ y ≥ 5 all data points are statistically consistent

with one another. The measured value of ξg is denoted by the blue band in the figure,

where its extraction is discussed in the following.

In figure 3 we plot ξg, obtained by using eq. (3.9), as a function of min(r ∗ y) for four

different sets of data: all planar Wilson loops (purple triangle), planar Wilson loops except

y = 1 (blue circle), planar and nonplanar Wilson loops except y = 1 (red square), and

planar and nonplanar Wilson loops except y = 1 and r = 1 (green diamond). The largest

value of r ∗ y is the one before we encounter significant numerical noise.
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Figure 3. Gauge anisotropy ξg extracted from the ratios of Wilson loops. Different colored points

denote the values of ξg obtained by using eq. (3.9) with different sets of data for a given min(r ∗ y),

while the blue band denotes the extracted value of ξg. Details are found in the main body of

the paper.

For all ensembles we find that ξg converges to the asymptotic value at around min(r ∗
y) = 4 ∼ 6 and thus we choose min(r ∗ y) = 6, as for this value we expect the size of

systematic errors to be small compared to the statistical error. Since the inclusion of y = 1

Wilson loops causes significant systematic effects due to short-range lattice artefacts, as

can be seen in the plots (see also the discussion in [48, 52], in the case of QCD), we exclude

these Wilson loops for the determination of ξg. In summary, we calculate the asymptotic

value of ξg using planar and nonplanar Wilson loops, except the ones having y = 1, at

min(r ∗ y) = 6 and the results are reported in table 3.

3.4 Fermion anisotropy

The fermion anisotropy ξf is determined through the leading-order relativistic dispersion

relation of mesons

E2(p2) = m2 +
p2

ξ2
f

, ~p = 2π~n/Ns, (3.11)

where Ns is the spatial lattice size. The energy E and the mass m are in units of at,

while the momentum ~p is in units of as. In the Euclidean formulation, meson two-point

correlation functions exponentially fall off with the lowest energy at an asymptotically large

time. In practice, it is useful to define an effective mass,

meff(t) = cosh−1

(
C(t+ 1) + C(t− 1)

2C(t)

)
, (3.12)

where C(t) is the ensemble average of meson correlators. Then, ground state energies are

obtained from a constant fit to the plateau of meff in the asymptotic region of large t. In the
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Figure 4. Effective mass plots for a pseudoscalar meson mPS
eff and a vector meson mV

eff . Red,

green, yellow, brown colors represent different momenta |~n| = 0, 1, 2, 3, respectively. The blue

bands denote the ground state energies obtained by fitting the effective mass to a constant in

the asymptotic region. The lattice bare parameters used in these plots are β = 2.0, m0 = −0.2,

ξ0
g = 4.7, ξ0

f = 4.7, and Nt ×N3
s = 128× 123.

case of zero momentum these energies are nothing but the meson masses. The measured

masses of pseudoscalar and vector mesons are reported in table 3.

As an example, in figure 4 we show the effective mass plots for pseudoscalar and vector

mesons with m0 = 0.2, ξ0
g = ξ0

f = 4.7 and β = 2.0. We construct the meson interpolating

operators at source and sink using point sources. Various momentum projections with

|~n| = 0, 1, 2, 3 are denoted by red, green, yellow and brown colors, respectively, while the

measured ground state energies are denoted by the blue bands.

In figure 5 we plot the resulting squared energy E2 as a function of |~n|2 and find a good

linearity, consistent with eq. (3.11). In the determination of ξf , to minimize the systematic
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Figure 5. Squared energy as a function of squared momentum |~n|2 for a pseudoscalar meson E2
PS

and a vector meson E2
V . The blue band is obtained by fitting data over n2 = [0, 1] to a linear

function of eq. (3.11). The lattice bare parameters used in these plots are β = 2.0, m0 = −0.2,

ξ0
g = 4.7, ξ0

f = 4.7, and Nt ×N3
s = 128× 123.

effects due to excited state contamination at higher momenta, we only use the lowest four

momentum vectors ~n = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) in the linear fit of E2(|~n|2) to

eq. (3.11). As seen in the figures, the fit results denoted by blue bands explain the data

very well. The extracted value of ξf = 6.41(11) from a pseudoscalar meson is in good

agreement with the one from a vector meson, ξf = 6.36(14), and shows better precision.

Therefore, for the tuning of lattice bare parameters we use ξf from pseudoscalar mesons

which are summarized in table 3.
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3.5 Tuning results

To determine the coefficients, ai, bi, and ci, we perform the simultaneous χ2 fit of the

numerical data in table 3 to the functions in eq. (3.7). The results are

a0 = 0.6(16), a1 = 0.97(13), a2 = 0.31(23), a3 = 2(4),

b0 = 1.8(24), b1 = 0.06(18), b2 = 1.1(3), b3 = 4(7),

c0 = 0.475(5), c1 = − 0.0168(4), c2 = − 0.0375(6), c3 = 0.986(11), (3.13)

where the values of χ2 per degrees of freedom are 1.72, 0.72, 0.23, respectively. In ap-

pendix C we show some examples of the results of the fit in the two-dimensional spaces of

the renormalized and bare parameters.

Our interpretation of the above results requires that we comment on a few impor-

tant features. First of all, renormalized anisotropies are somewhat larger than the bare

anisotropies, which we interpret as a signal of the fact that the calculations are performed

far from the weak coupling limit. Secondly, we find that the coefficients a2 and b1 are small,

in particular, b1 is zero within the statistical errors. In the quenched approximation, one

would expect that the gauge and fermion anisotropies can be determined independently.

The mild dependences of ξf on ξ0
g and ξg on ξ0

f are consistent with the fact that this part

of the numerical study is performed in the regime of heavy quarks. Yet, we note that

over the range of considered lattice parameters our results show a good linear dependence

of the squared mass of a pseudoscalar meson M2
PS on the bare quark mass m0, which is

consistent with our use of eq. (3.7) to extrapolate to the limit of vanishing physical mass

for the quarks.

In order to determine the values of the bare parameters at our chosen reference point

we impose the following renormalization conditions:

ξg(ξ
0∗
g , ξ

0∗
f ,m

∗
0) = ξf (ξ0∗

g , ξ
0∗
f ,m

∗
0) = ξ, M2

PS(ξ0∗
g , ξ

0∗
f ,m

∗
0) = m2

ps. (3.14)

Solving eq. (3.7) with our target renormalized parameters of ξ = 6.3 and m2
ps = 0.005,

we find

ξ0∗
g = 4.84(8), ξ0∗

f = 4.72(12), m∗0 = −0.2148(37). (3.15)

We will use these choices for the lattice parameters in measuring the physical properties

of the field theory. Note that m∗0 falls slightly outside the range of masses used in this

part of the study (see table 3), and hence we expect some (small) residual quark mass and

symmetry-breaking effects to be present in our physical simulations.

4 Numerical results: finite temperature

From now on, the lattice bare parameters are fixed by the central values in eq. (3.15) along

with β = 2.0. We perform finite temperature calculations on the anisotropic lattices of

Nt× 163 and Nt× 162× 24. Simulation details and numerical results for these two lattices

are summarized in tables 4, 5 and 6. Two different values of Nz are considered to estimate

the systematic errors due to excited state contaminations in the calculations of screening
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Nz Nt T/Tc Nconf Nz Nt T/Tc Nconf

16 16 2.44 200 24 8 4.88 200

20 1.95 200 12 3.25 200

24 1.63 200 16 2.44 225

28 1.39 200 20 1.95 150

30 1.30 200 24 1.63 200

36 1.08 200 28 1.39 250

40 0.98 200 36 1.08 380

128 0.30 215 42 0.93 388

48 0.81 390

56 0.70 337

Table 4. Details of the ensembles of the Nt × 163 and Nt × 162 × 24 lattices. All calculations use

ξ0∗
g = 4.84, ξ0∗

f = 4.72, m∗
0 = −0.2148 and β = 2.0.

T/Tc MS
PS MS

S MS
V MS

AV RS RV
2.44 0.3322(2) 0.3823(8) 0.3475(2) 0.3879(10) 0.070(1) 0.0549(13)

1.95 0.2815(6) 0.3292(14) 0.3045(5) 0.340(2) 0.078(2) 0.055(3)

1.63 0.2355(6) 0.281(2) 0.2629(7) 0.2938(18) 0.088(4) 0.056(3)

1.39 0.1937(13) 0.236(5) 0.2272(12) 0.248(4) 0.099(10) 0.045(8)

1.30 0.1783(13) 0.228(5) 0.2110(13) 0.235(5) 0.123(11) 0.054(10)

1.08 0.1312(11) 0.201(6) 0.1699(15) 0.191(5) 0.210(13) 0.057(13)

0.98 0.1147(12) 0.180(4) 0.1525(16) 0.185(6) 0.222(12) 0.096(16)

0.30 0.0758(3) 0.200(8) 0.1068(11) 0.213(9) 0.449(16) 0.331(19)

Table 5. Simulation results for the Nt×163 lattice. To compensate the anisotropy of the Euclidean

lattice, meson screening masses MS are obtained from the measured masses divided by ξ = 6.3.

All calculations use ξ0∗
g = 4.84, ξ0∗

f = 4.72, m∗
0 = −0.2148 and β = 2.0.

T/Tc MS
PS MS

S MS
V MS

AV RS RV
4.88 0.4724(2) 0.5021(8) 0.4770(2) 0.5044(7) 0.0305(9) 0.0279(8)

3.25 0.3885(2) 0.4293(15) 0.3975(3) 0.432(2) 0.0498(18) 0.041(2)

2.44 0.33257(17) 0.3833(8) 0.34760(18) 0.3905(5) 0.0709(11) 0.0581(7)

1.95 0.2813(5) 0.3268(15) 0.3043(4) 0.3371(14) 0.075(3) 0.051(2)

1.63 0.2326(7) 0.275(2) 0.2617(7) 0.290(3) 0.083(4) 0.052(5)

1.39 0.1909(9) 0.234(4) 0.2239(9) 0.251(3) 0.102(10) 0.058(6)

1.08 0.1295(9) 0.202(7) 0.1680(11) 0.194(4) 0.218(17) 0.072(11)

0.93 0.1036(6) 0.181(4) 0.1440(11) 0.170(5) 0.272(10) 0.081(13)

0.81 0.0880(5) 0.191(6) 0.1254(9) 0.186(5) 0.369(15) 0.193(12)

0.70 0.0798(4) 0.183(7) 0.1107(13) 0.199(6) 0.393(17) 0.284(16)

Table 6. Simulation results for a Nt × 162 × 24 lattice. To compensate the anisotropy of the

Euclidean lattice, meson screening masses MS are obtained from the measured masses divided by

ξ = 6.3. All calculations use ξ0∗
g = 4.84, ξ0∗

f = 4.72, m∗
0 = −0.2148 and β = 2.0.
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masses. The algorithms for the generation of gauge ensembles have been discussed in

section 3.2.

Before we discuss the numerical results of finite temperature calculations in details,

we perform a zero temperature calculation in order to check how well the tuned bare

parameters are working. Using the ensemble of 128×163 in table 5, we obtain ξg = 6.29(4),

ξf = 6.1(2), and M2
ps = 0.00517(14). These results are compatible with the renormalized

parameters of ξ = 6.3 and m2
ps = 0.005, where the largest uncertainty occurs in the

detemination of ξf with ∼ 3%. Finite volume effects are expected to be negligible as the

lattice volume is much larger than the size of the pseudo-scalar meson, mpsL ∼ 7.

Adopting anti-periodic boundary condition along the temporal direction, temperature

is defined by T ≡ 1
Ntat

. We will find it convenient to measure the temperature in units of

the (pseudo-)critical temperature Tc, discussed and measured in the next section.

4.1 Deconfinement crossover

As is the case for QCD with small number of quarks, our model is also expected to exhibit

confinement at low temperature and form a quark-gluon plasma across the (pseudo-)critical

temperature Tc. Although the Polyakov loop is not an exact order parameter when the

number of quarks is finite, it is widely used as an indicator of deconfinement. Following

the method used in [54, 55], we define the expectation value of the renormalized Polyakov

loop4 by

LR(T ) = ZNtL L0(T ), (4.1)

where the bare Polyakov loop L0(T ) is related to the bare free energy F0(T ) as L0(T ) =

exp(−F0(T )). The multiplicative renormaliztion constant is defined by ZL = exp(−∆F0),

which only captures the short distant physics and thus is independent on the temperature.

As different choices of ZL denote different renormalization schemes, to incorporate the

scheme dependence on the detemination of Tc we impose a renormalization condition for

a given temperature TR by LR(TR) ≡ constant.

We consider three renormalization schemes, defined by the conditions LR(Nt = 24) =

0.9, LR(Nt = 24) = 0.5, and LR(Nt = 20) = 0.9 respectively. The results are shown

in figure 6. The temperature Tc is determined from the peak of the susceptibility of the

Polyakov loop, χ(LR) = ∂LR/∂T , denoted by dashed lines in the figure. Combining the

statistical uncertainty and the systematic uncertainty of scheme dependences in quadrature,

we find that Tcat = 0.0255(25), or equivalently that N c
t = 39(4). As anticipated, we will

measure temperatures in units of this Tc in the following.

4.2 Temporal correlation functions

At zero temperature, the Euclidean two-point correlation functions of mesonic observables

fall off with a single exponential at a large time so that the ground state energy of mesons

can be extracted in a clear way in principle. In the finite temperature lattice calculations

4For the discussion of the renormalized Polaykov loop and its scheme dependence, we refer the reader

to [56, 57].
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Figure 6. Renormalized Polyakov loop and their susceptibility. The renormalized Polyakov loops

LR denoted by empty squares are obtained from the ensembles of Nt×162×24 with Nt ranged over

[16, 56]. The solid curves are the interpolation of LR connected by cubic splines, while the dashed

curves are the corresponding susceptibility χ(LR), the derivatives of LR with N−1
t . Different colors

are associated with different renormalization conditions, while the blue band denotes the (pseudo-

)critical temperature Tc with uncertainties as described in the text.

this process is affected by some limitations. Firstly, the maximum available physical tem-

poral extent is limited by the inverse of the temperature. In addition, a single exponential

analysis becomes subtle as the spectral function of mesons no longer exhibits a sharp peak

at the mass of mesons. In this case, it is more desirable to investigate the correlation

functions by themselves.

We introduce the normalized correlation function with the reference choice t = Nt/2:

CNt/2(t) =
C(t)

C(Nt/2)
. (4.2)

We consider isovector pseudo-scalar, scalar, vector, and axial-vector mesons, where the

corresponding interpolating fields are defined by

OPS(x) =Q̄(x)γ5Q(x), OS(x) =Q̄(x)Q(x),

OiV (x) =Q̄(x)γiQ(x), OiAV (x) =Q̄(x)γ5γ
iQ(x), (4.3)

respectively (flavour indices selecting non-singlet states are understood). In order to im-

prove the statistics, we use stochastic wall sources [58] for the study of meson spectrum at

finite temperature. Using these mesonic operators we compute the function CNt/2(t). In

figure 7 we show the results of logCNt/2(t) for Nt = 48 and 40, which exemplify the typical

behaviors of CNt/2(t) below and near Tc respectively.

By comparing the two plots in figure 7 one can see that while at low temperature (Nt =

48) the vector and axial-vector correlators are different, they become hard to distinguish
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Figure 7. Temporal correlation functions for pseudoscalar(red), scalar(purple), vector(blue), and

axial vector(green) mesons. For a given Euclidean time t, we plot the logarithms of the correlation

functions normalized by the correlation functions at Nt/2.

from one another in proximity of Tc (Nt = 40). The overlap of CNt/2(t) between vector

and axial-vector mesons can be considered as an indication of the parity doubling in the

vector channel and thus the restoration of the global SU(4) symmetry. By contrast, the

situation for scalar and pseudo-scalar correlators is quite different, as we will discuss better

by looking at spatial correlation functions in the next subsection, and indicates that at this

temperature we do not yet see evidence of the restoration of the U(1)A symmetry. Notice

that the correlation functions still satisfy the Weingarten’s mass inequalities [59].
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4.3 Spatial correlation functions

In contrast to the temporal correlation function, the spatial correlation function at finite

temperature exhibits a single exponential decay at large time. The decay rate is called

screening mass, as it defines the effective length scale associated with the excitation of

mesonic operators in the medium [60]. At zero temperature the screening mass is equivalent

to the meson mass, as the temporal and spatial correlation functions share the same spectral

function.

By using the meson interpolating fields in eq. (4.3), we calculate the ensemble average of

spatial correlators C(z) along the z-direction and extract the masses in units of as using the

analysis method described in section 3.4. Notice that in our anisotropic lattice calculations

the spatial and temporal lengths are measured differently. To have the consistent lattice

unit of mass in at, we therefore define the screening mass MS by multiplying ξ−1 to the

measured spatial masses. In addition to the screening masses, we define the following

normalized mass ratios

RV (T ) =
MS
AV (T )−MS

V (T )

MS
AV (T ) +MS

V (T )
, (4.4)

for the vector channel, and

RS(T ) =
MS
S (T )−MS

PS(T )

MS
S (T ) +MS

PS(T )
, (4.5)

for the scalar channel. These quantities are useful to quantify the level of parity doubling

in the mass spectrum.

Our main results are presented in table 5 and 6, as well as in figure 8 and 9. The

error bar of each data point only represents the statistical uncertainty. We show explicitly

the comparison between Nt × 163 (black) and Nt × 162 × 24 (red) lattices. The level of

agreement of the two ensembles implies that there is no significant systematic uncertainty

due to excited state contaminations.

By looking first at the vector and axial-vector masses, we see a plateau in RV above

Tc, which together with the change of behavior of the masses above Tc strongly suggests

that parity partners are degenerate and the global symmetry is effectively restored. There

is small deviation from zero in the mass ratio at asymptotically large values of T , that may

be the result of finite spacing, finite mass and possibly other small lattice artefacts.

In the case of the scalar channel, the plateau in RS appears at somewhat larger temper-

ature, ∼ 1.5Tc. This result may imply that the axial U(1)A and global SU(4) symmetries

are restored at different temperatures. However, this is not conclusive, for several reasons.

First of all, because we do not know what kind of transition is appearing in the underlying

dynamical model, and it is likely that Tc actually identifies a cross-over. But also because

we do not know how much each of the lattice artefacts affects the results, and it might be

that different observables are affected in different amounts by the finite quark mass, or the

finite value of the coupling. A relevant discussion in the context of two-flavor QCD can be

found in [39], for instance, where the numerical results strongly suggest that the symmetry

restorations occur simultaneously in the massless limit.
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Figure 8. Screening masses of vectors (circles) and axial vector (squares) mesons (top panel) and

the corresponding mass ratio defined in eq. (4.4) (bottom panel). Black and red points are extracted

from ensembles with Nt × 163 and Nt × 162 × 24 lattice points, respectively. The temperature is

expressed in units of Tc. The blue vertical band denotes the uncertainty of Tc itself.
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Figure 9. Screening masses of pseudoscalar (circles) and scalar (squares) mesons (top panel) and

the corresponding mass ratio defined in eq. (4.5) (bottom panel). Black and red points are extracted

from ensembles with Nt × 163 and Nt × 162 × 24 lattice points, respectively. The temperature is

expressed in units of Tc. The blue vertical band denotes the uncertainty of Tc itself.
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Figure 10. Screening masses normalized by temperature for vector (top) and axial vector (bottom)

mesons. Black and red points are extracted from ensembles of Nt×163 andNt×162×24, respectively.

The temperature is in units of Tc, where the blue vertical band denotes the uncertainty of Tc itself.
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Figure 11. Screening masses normalized by temperature for pseudoscalar (top) and scalar (bottom)

mesons. Black and red points are extracted from ensembles of Nt×163 andNt×162×24, respectively.

The temperature is in units of Tc, where the blue vertical band denotes the uncertainty of Tc.
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In the finite temperature calculations, it is often suggested to plot the screening mass

divided by the temperature as it shows linear dependency above Tc. The results are shown

in figure 10 and figure 11. The black dashed line corresponds to 2π which is associated

with the Matsubara frequency for massless free quarks. For all mesonic channels, data

points approach the dashed line as the temperature increases and seem to form a plateau.

However, they start to deviate from the plateau above 2Tc, possibly as a consequence of

the finite lattice spacing.5 This suggests that in looking at RV and RS (and in general in

discussing parity-doubling) one should not include in the physical very high temperatures,

but rather restrict attention to T <∼ 2Tc.

5 Discussion

We collected numerical evidence of the fact that the high-temperature behavior of the SU(2)

theory with Nf = 2 Dirac fundamental fermions differs in three respects from the low-

temperature one. The numerical study of the Polyakov loop and its fit shows the existence

of a pronounced peak in the susceptibility. Its position identifies a temperature Tc, that

we interpret in terms of the deconfinement (cross-over) temperature. While the study of

the details of the transition would require a dedicated program, this result is accurate

enough to allow us to clearly separate the high-T and low-T regimes, and concentrate on

the symmetry properties of the physical spectrum above Tc.

The study of temporal correlation functions shows that for T > Tc the vector and

axial-vector 2-point functions have compatible t-dependence, supporting the hypothesis

that parity doubling is emerging at Tc, and global symmetry is restored. This is confirmed

by the study of spatial correlation functions, in which one clearly sees that the behavior of

the screening masses of vectors and axial-vector mesons changes at T ∼ Tc: while the two

masses are different and depend on T in two different ways when T < Tc, for T > Tc the

masses come close to one another, and, most importantly, show the same T -dependence.

This last observation suggests that the small splitting in the masses we observe is due

to a combination of lattice artefacts (in particular finite spacing and finite quark mass). To

confirm or disprove this statement, one would need to extend the study in this paper, and

consider more than one value of the bare coupling and of the bare quark mass, in order to

extrapolate them both to the physically relevant regime. By doing so, one might not only

be able to show that the mass difference between vectors and axial-vectors vanishes, but

also to study other properties of the transition itself, such as its order.

The numerical study of the scalar and pseudo-scalar masses, in which we focused on

cleaner states that form a fundamental of SO(5), shows qualitative features that are in

broad agreement with the restoration also of the axial U(1)A symmetry at high tempera-

ture. Our data on spatial correlation functions seems to suggest that this is taking place

at a larger temperature T ′ ∼ 1.5Tc. This is also supported by the fact that in the temporal

correlation functions we do not see the effect of parity doubling in the spin-0 correlators,

for the same choice Nt = 40 for which the vector and axial-vector correlators do agree with

one another. This is the most striking element of novelty of this study, although it must

be considered as preliminary.

5As shown in 2 + 1 Lattice QCD calculations using staggered fermions [31], the size of these lattice

artefacts can significantly be reduced if highly improved lattice fermions being used.
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This paper is to be understood as a first step in what is a potentially broad and exten-

sive research program. The results obtained are in good agreement with what expected on

field-theory grounds about the non-trivial behavior of this theory at high temperatures: it

deconfines, and both the global SU(4) and axial U(1)A symmetries are restored. Two main

sets of explorations are interesting to pursue in the future. On the one side, it is interest-

ing to perform precision studies of this system, in which larger statistics, and a broader

set of values of the lattice parameters, are used in order to establish whether the three

transitions we identified are distinct (and in this case how to classify them, and precisely

measure the critical temperatures), or whether they are just three manifestations of the

broader phenomenology related to a cross-over.

On the other hand, it is also interesting to understand how the system reacts to the

introduction of additional sources of symmetry breaking at the Lagrangian level. For

example, the weak gauging of a subgroup of Sp(4) (as in phenomenological composite-

Higgs models), is going to break the global symmetry of the model, and with it the large

degeneracies of states. It would be useful to know how these phenomena depend on finite

temperature. Closely related, although possibly simpler, is the question of what happens at

finite µ: given that SU(2) is pseudo-real, this model is free of the traditional sign problem

of similar models with larger gauge groups. It should hence be possible to attempt a more

general study of the phase diagram as a function of both T and µ.

The richness of the field theory behavior of this model, the wide variety of its possible

applications and the fact that this study shows that its thermal features are amenable to

quantitative numerical studies, all contribute to making it an ideal environment in which

to study highly non-trivial phenomena, which might shed light on many aspects of direct

relevance to QCD, TC and composite-Higgs scenarios. In this paper we performed a first

study along these lines, mainly aimed at collecting evidence of symmetry restoration at

high temperature. We also discussed ways to improve our results, and suggested avenues

for further investigation, which we will pursue in the future.
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A Spinors and global symmetries

We summarise in this appendix some useful notation about spinors, and show explicitly

the origin of the enhanced global SU(4) symmetry of the model.

The space-time metric is ηµν ≡ diag {1,−1,−1,−1} = ηµν , and the Dirac algebra is

defined by the relation {γµ, γν} = 2ηµν , with γ0 hermitian and γi anti-hermitian, such that
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γ0γµγ0 = γµ †. Chirality is related to γ5 ≡ iγ0γ1γ2γ3, the left-handed(LH) chiral projector

is PL = 1
2 (I4 + γ5), and a 4-components LH chiral spinor QL obeys PLQL = QL. The

charge-conjugation matrix C = iγ2γ0 obeys CγµC
−1 = −γµT and C2 = −I4 = −CC†.

The chiral representation for the gamma matrices, in terms of the Pauli matrices τ i, is

γ0 =

(
0 I2
I2 0

)
, γi =

(
0 −τ i

τ i 0

)
, γ5 =

(
I2 0

0 −I2

)
, C =

(
−iτ2 0

0 iτ2

)
. (A.1)

The following is immediate:

γ0γµ =

(
σ̄µ 0

0 σµ

)
, Cγ0γµC−1 =

(
σµ 0

0 σ̄µ

)
, (A.2)

where σµ = (1,−τ i) and σ̄µ = (1, τ i).

A Majorana spinor λ obeys λ = ±λC ≡ ±Cλ̄T = ±Cγ0λ∗ = ±iγ2λ∗. We resolve the

± ambiguity by conventionally choosing the + sign.

Given a 2-component spinor u we can build a 4-component Majorana spinor as

λ =

(
u

iτ2u∗ ≡ −C̃u∗

)
, (A.3)

so that λ = λC = λL + λR, where

λL =

(
u

0

)
, λR =

(
0

iτ2u∗ ≡ −C̃u∗

)
. (A.4)

In 4-component notation this ensures that λL = CλR
T

and λL = λ T
R C = −λ T

R C
−1.

With these definitions in place, and making use of the fact that Grassmann variables

anticommute, after some algebra one finds that

i λRγ
µ∂µλR = i λLγ

µ∂µλL +
1

2
∂µ
(
−i λLγµλL + i λRγ

µλR
)
, (A.5)

which implies that the kinetic term can be written equivalently in terms of λR as of λL
(the total derivative can be dropped), or equivalently one can write it in terms of the

4-component Majorana spinor λ (with an overall factor of 1
2 to avoid double counting).

We specify now the model of interest in this paper, with SU(2) gauge symmetry.

Starting from the 2-component spinors qi a, with i = 1 , · · · , 4 the flavor index and a = 1, 2

the color index, we can build four LH and four right-handed(RH) 4-component spinors as

qj aL =

(
qj a

0

)
, qj aR = εab

(
0

(−C̃qj ∗ )b

)
, (A.6)

with j = 1 , · · · , 4. Notice that the charge-conjugation used for the RH spinors implies to

lower the SU(2) indexes, as it turns a fundamental of SU(2) in its conjugate. The essential

property of SU(2) is that this can be compensated by the εab antisymmetric tensor.

– 27 –



J
H
E
P
0
4
(
2
0
1
7
)
0
3
6

One can define two Dirac spinors Qi a = qi aL + qi+2 a
R , with i = 1, 2. We identify such

Qi a with the Dirac spinors that form the fundamental matter fields of the SU(2) gauge

theory. Because of the structure of the gamma matrices, the kinetic terms do not couple

different chiralities, and hence we can write

LK =
∑
i=1,2

iQi aγ
µ (DµQ

i)a =
∑
i=1,2

(
i qiL aγ

µ (Dµq
i
L)a + i qi+2

R aγ
µ (Dµq

i+2
R )a

)
,(A.7)

which makes it immediately visible that there is a U(Nf )t × U(Nf )t = U(1)A × U(1)tB ×
SU(2)tL × SU(2)tR global symmetry, as would be true in any SU(Nc) gauge theory.

For SU(2) the global symmetry is actually larger: by making use of four LH 4-

component spinors and of eq. (A.5) one has

i qiR aγ
µ (Dµq

i
R)a = i qiL aγ

µ (Dµq
i
L)a , (A.8)

and hence we can write

LK =

4∑
i=1

i qiL aγ
µ (Dµq

i
L)a =

4∑
i=1

i (qi †) aσ̄
µ (Dµq

i)a , (A.9)

which is manifestly SU(4)×U(1)A invariant. Notice that besides the SU(2)t × SU(2)t, the

SU(4) ∼ SO(6) group includes also the U(1)tB associated with baryon number.

For completeness, we can explicitly verify that

Lm = −mQi aQi a = −mεabqi+2 aC̃qi b + h.c. = −m1

2
εabq

naT C̃qmb Ωnm + h.c. , (A.10)

where the fact that Ω is antisymmetric comes from the antisymmetric εab. This is a

Majorana mass, with M = mΩ, which breaks explicitly the symmetry to Sp(4). The U(1)tB
is a subgroup of Sp(4) ∼ SO(5), hence the spectrum of composite states cannot be classified

in terms of baryon number, as mesons and baryons are in common Sp(4) multiplets. In the

case one gauges the baryon number, then the symmetry would be explicitly broken back

to the familiar U(2)2.

B SU(4) and Sp(4) algebra

The N2 − 1 = 15 generators of SU(4) are hermitean traceless 4 × 4 complex matrices TA.

The Sp(4) subgroup is defined as the matrices that leave invariant the symplectic Ω, which

we write as

Ω =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 . (B.1)

Sp(4) is generated by the subset of 10 generators of SU(4) that obey the relation

ΩTA + TATΩ = 0 , forA = 6 , · · · 15 , (B.2)
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while the 5 broken generators obey

ΩTA − TATΩ = 0 , forA = 1 , · · · 5 . (B.3)

By imposing the normalization Tr TATB = 1
2δ
AB, we write the 15 matrices as follows.

T 1 =
1

2
√

2


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , T 2 =
1

2
√

2


0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0

 , T 3 =
1

2
√

2


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 ,

T 4 =
1

2
√

2


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

 , T 5 =
1

2
√

2


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 , T 6 =
1

2
√

2


0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0

 ,

T 7 =
1

2
√

2


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 , T 8 =
1

2
√

2


0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

 , T 9 =
1

2
√

2


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 ,

T 10 =
1

2


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , T 11 =
1

2
√

2


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 , T 12 =
1

2


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 ,

T 13 =
1

2
√

2


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 , T 14 =
1

2
√

2


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 , T 15 =
1

2
√

2


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .

(B.4)

The 5 Goldstone bosons can be written as π(x) =
∑5

A=1 π
A(x)TA, or explicitly as

π(x) ≡ 1

2
√

2


π3(x) π1(x)− iπ2(x) 0 π5(x)− iπ4(x)

π1(x) + iπ2(x) −π3(x) iπ4(x)− π5(x) 0

0 −iπ4(x)− π5(x) π3(x) π1(x) + iπ2(x)

iπ4(x) + π5(x) 0 π1(x)− iπ2(x) −π3(x)

 . (B.5)

The maximal SO(4) ∼ SU(2)L×SU(2)R subgroup of the unbroken Sp(4) can be chosen

to be generated by

T 1
L =

1

2


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , T 2
L =

1

2


0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

 , T 3
L =

1

2


1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

 , (B.6)

T 1
R =

1

2


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 , T 2
R =

1

2


0 0 0 0

0 0 0 −i
0 0 0 0

0 i 0 0

 , T 3
R =

1

2


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1

 . (B.7)

– 29 –



J
H
E
P
0
4
(
2
0
1
7
)
0
3
6

The TL generators satisfy the SU(2)L algebra
[
T iL , T

j
L

]
= iεijk T kL, and similarly[

T iR , T
j
R

]
= iεijk T kR, while

[
TAL , T

B
R

]
= 0. These generators being all unbroken (in a

vacuum aligned with Ω), this is the natural choice of embedding of the SO(4) symmetries

of the Higgs field in the context of composite Higgs.

The same model can be used also to describe traditional technicolor. In this case, the

embedding of the Standard Model symmetries is based on the natural choice of generators

of SO(4)t ∼ SU(2)tL × SU(2)tR as follows:

t1L =
1

2


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , t2L =
1

2


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 , t3L =
1

2


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 , (B.8)

t1R = − 1

2


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 , t2R = − 1

2


0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

 , t3R = − 1

2


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1

 . (B.9)

In this case, one finds that (with the vacuum aligned with Ω) the breaking SU(2)tL ×
SU(2)tR → SU(2)tV emerges, and the unbroken generators are tAV = (tAL+tATR ), or explicitly:

t1V =
1

2


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 =
√

2T 13 , t2V =
1

2


0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

 =
√

2T 8 ,

t3V =
1

2


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 =
√

2T 14 . (B.10)

The normalization is Tr tAV t
B
V = δAB, as in this case we are writing the generators in the

bifundamental representation.

The unbroken U(1)tB associated with baryon number is generated by T 15 = 1√
2
(T 3
L +

T 3
R), while the anomalous axial U(1)A is generated by

TA =
1

2
√

2


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (B.11)
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C Fit results of renormalized parameters

In this appendix, we demonstrate how the fits in section 3.5 work by showing the renormal-

ized parameters in eq. (3.7) along with the fit results of eq. (3.13) in the two-dimentional

slices of the measured and lattice parameters. See figure 12 and figure 13 for the fermion

and gauge anisotropies, and see figure 14 for the squared mass of pseudoscalar meson M2
PS.
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functions in eq. (3.7) where the coefficients are given by eq. (3.13).
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f , and m0. The solid lines denote the fit

functions in eq. (3.7) where the coefficients are given by eq. (3.13).
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