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1 Introduction

Deformation quantization [1, 2] has been explored much in the associative setting. If one

drops the condition that the star product be associative, some of the usual methods are no

longer available. The classification of such star products therefore remains open. In this

paper, we present one general result in this direction, motivated by a recent resurgence of

interest in magnetic-monopole systems [3–8], where standard quantization methods show

that associative algebras cannot constitute consistent quantizations of the relevant observ-

ables [9, 10].

In the original version of deformation quantization, associativity of the star product

represents an important condition on the coefficients in the formal power series of the prod-

uct. If one works with star products without the condition of associativity, at first sight it

may seem easier to find acceptable versions because they may appear to be subject to fewer

consistency requirements. However, if one is forced to use a non-associative star product

for physical reasons, one is not fully liberated from imposing conditions on the associator

[a, b, c] = a ∗ (b ∗ c)− (a ∗ b) ∗ c . (1.1)

For a specific set of basic observables, the associator, like the usual commutator

[a, b] = a ∗ b− b ∗ a , (1.2)

is prescribed based on physical arguments.
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Formulated for position and momentum components as basic observables, the com-

mutator of an acceptable star product should be [qi, pj ] = i~{qi, pj} = i~δij , mimick-

ing the Poisson bracket. If these are coordinates of a charged particle (with electric

charge e) moving in the magnetic field Bl(qi) of a magnetic monopole distribution, so that

divB = ∂lB
l 6= 0, the classical brackets are modified: they are twisted Poisson brackets

for which the Jacobi identity does not hold [11–13]. An algebra that quantizes the bracket

endows phase-space functions with a new product ⋆ and the associated commutator (1.2)

and associator (1.1). The Jacobiator of the commutator is proportional to the totally an-

tisymmetric part of the associator and can be non-zero for non-associative ⋆-products. In

the present context, one is led to the relations [9, 10]

[qi, qj ] = 0 (1.3)

[qi, pj ] = i~δij (1.4)

[pi, pj ] = i~eǫijkB
k (1.5)

[

qi, x
I , xJ

]

= 0 (1.6)

[pi, pj , pk] = −~
2eǫijk∂lB

l (1.7)

to be realized by a star product. Here (xI)6I=1 is a collective notation for the Cartesian coor-

dinates (qi, pi)
3
i=1. In the absence of a magnetic charge density, one can introduce a canon-

ical momentum πi with zero brackets for its components. However, the definition, πi :=

pi +Ai, makes use of a vector potential A through B = rotA, which does not exist if divB

does not vanish. Instead of a zero associator in standard star products, the specific form

of (1.7) imposes restrictions on acceptable star products for magnetic-monopole systems.

Most of the usual properties of quantum mechanics are no longer valid and must be

modified when observables cannot be represented as associative operators on a Hilbert

space. In some studies, a weaker condition given by an alternative algebra has been found

advantageous [14–16] — if it can be realized. An alternative algebra is one where the

associator (1.1) is completely antisymmetric, or, equivalently, where the ∗-product obeys

a ∗ (a ∗ b) = (a ∗ a) ∗ b

(a ∗ b) ∗ b = a ∗ (b ∗ b) (1.8)

for any a, b in the algebra. Many well-known non-associative algebras are of this form, such

as the octonionic ones. Requiring an algebra to be alternative, provides a priori a tempting

option for the case of a charged particle in the background of magnetic monopoles, in

particular in view of the total anti-symmetry of the basic relation (1.7).

However, in this report we demonstrate the impossibility of such an algebra as a set

of quantized observables of a charged particle in the presence of magnetic monopole den-

sities, obtained by deformation quantization. While (1.7) implies a totally antisymmetric

associator for linear functions of the basic observables, the associator of general algebra

elements is not guaranteed to be totally antisymmetric. Different examples for algebras

consistent with the relations (1.3)–(1.7) have been constructed using star products [3–8],

one of which has explicitly been shown to be non-alternative [17, 18]. In what follows, we
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will analyze the possibility of alternative monopole star products in general terms, using

deformation theory, the basics of which we first recall in the next section.

2 Deformation quantization with non-associativity

The classical theory is described by the commutative algebra of smooth functions on T ∗
R
3,

equipped with the bivector field1

Π =

(

∂

∂qi
+ ǫjikB

k(q)
∂

∂pj

)

∧
∂

∂pi
, (2.1)

in the canonical linear coordinates (xI)6I=1 ≡ (q1, q2, q3, p1, p2, p3). For a vector field B with

non-vanishing divergence, this is only a twisted Poisson bivector: its Schouten bracket with

itself does not vanish but is given by

1

2
[Π,Π] = Π♯(H) (2.2)

where the 3-form H takes the form

H = π∗dB . (2.3)

Here the magnetic field B is considered a 2-form on R
3 by means of B = ǫijkB

idqj ∧ dqk

and π : T ∗
R
3 → R

3 is the canonical projection. Maxwell’s equations link dB directly to

the magnetic monopole density: dB = ∗ρmagnetic.

The bivector field Π then induces the following bracket on the functions f, g ∈

C∞(T ∗
R
3),

{f, g} =
1

2
ΠIJ(x)

∂f

∂xI
∂g

∂xJ
. (2.4)

This bracket is an antisymmetric bi-derivation, but no longer a Lie bracket and thus not a

Poisson bracket: the r.h.s. of (2.2) provides precisely the non-zero Jacobiator.

2.1 Star product

Deformation quantization turns the classical commutative algebra (C∞(T ∗
R
3), ·) into the

quantum algebra A := (C∞(T ∗
R
3)[[λ]], ⋆), where λ = 1

2 i~ is considered as a formal defor-

mation or expansion parameter:

f ⋆ g =
∞
∑

j=0

λjBj(f, g) . (2.5)

Here Bj : A×A → C are bilinear maps on A.2 To zeroth order in λ, we have the classical

product given by pointwise multiplication, B0(f, g) = f · g ≡ fg. Following [1], we will

1We set the electric charge to e = 1 from now on.
2Using the same letter for these bilinear maps and the magnetic field should not cause confusion.
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assume that Bj is a bi-differential operator of maximum degree j which is zero on constants

for strictly positive j:

Bj(f, g) =

j
∑

k,l=1

Bk,l
j (f, g) for j ≥ 1 (2.6)

Bk,l
j (f, g) =

6
∑

I1,...,Ik,J1,...,Jl=1

Bk,l
j;I1,...,Ik,J1,...,Jl

(q)
∂kf

∂xI1 · · · ∂xIk
∂lg

∂xJ1 · · · ∂xJl
(2.7)

The property implies in particular that the star product defines a unital algebra, with the

unit function as unit.

Let us for a moment assume that ⋆ would be associative. In this case, we would have

that the commutator (1.2) evidently satisfies the Jacobi identity and also that [f, g ⋆ h] =

[f, g] ⋆ h + g ⋆ [f, h]. Both equations together, evaluated at lowest non-vanishing order in

λ, imply that the antisymmetric part B−

1 (f, g) = 1
2(B1(f, g) − B1(g, f)) of B1(f, g) is a

Poisson bivector. On the other hand, for physical reasons, we want that the antisymmetric

part of the first order deformation is determined by the classical bracket:

B−

1 (f, g) = {f, g} . (2.8)

This then shows that the ⋆-product cannot be associative for the deformation quantization

of the above classical system, cf., in particular, eq. (2.2) — as anticipated already in the

Introduction.

In fact, in the present article, we want to strengthen eq. (2.8) in a two-fold way: first,

we require in addition that B1 is antisymmetric itself already, so that

B1(f, g) = {f, g} . (2.9)

This, in fact, is not really a restriction: it can be shown that every star product either

satisfies this condition or has an equivalent deformation for which (2.9) is fulfilled. We

will come back to this below and assume it for now in any case. Second, we want that

for linear coordinate functions on T ∗
R
3 the bracket determines the commutator even to

next-to-leading order, i.e. we require

xI ⋆ xJ − xJ ⋆ xI

i~
= {xI , xJ}+O(~2) . (2.10)

The first condition is equivalent to requiring B+
1 (f, g) = 0 for all functions f, g, the second

one to demanding

B−

2 (x
I , xJ) = 0 . (2.11)

We remark in parenthesis that the equation (2.10) is implied if the xI are implemented as

distinguished observables in the sense of [2].
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2.2 Monopole star products

Since we found above that the associator of the monopole star product cannot be zero, we

also expand it into a formal power series in λ:

A(f, g, h) = f ⋆ (g ⋆ h)− (f ⋆ g) ⋆ h :=
∞
∑

j=0

λjAj(f, g, h) . (2.12)

The maps Bi and Aj are not independent; in fact, Aj is determined by the Bi with i ≤ j.

It is easy to evaluate the low orders: we always have A0 = 0, because the point-wise

multiplication of phase-space functions is associative. At first order, we have

A1(f, g, h) = fB1(g, h)−B1(f, g)h+B1(f, gh)−B1(fg, h) = 0 (2.13)

simply since B1 is bi-differential of order (1, 1).

At second order, one finds

A2(f, g, h) = fB2(g, h)−B2(f, g)h+B2(f, gh)−B2(fg, h)

+B1(f,B1(g, h))−B1(B1(f, g), h) . (2.14)

For a non-associative star product, the coefficient A2, as the first non-zero one in the ex-

pansion (2.12), plays a role similar to the coefficient B1 in specifying conditions on the star

product as a quantization of the classical bracket. The totally antisymmetric contribution

A−

2 (f, g, h) :=
1

6
(A2(f, g, h) +A2(h, f, g) +A2(g, h, f)

−A2(f, h, g)−A2(g, f, h)−A2(h, g, f))

to A2, in view of (2.11), only depends on B1 if it is evaluated on linear functions of the

basic variables xI : we have

A−

2 (x
I , xJ , xK) =

1

2
J(xI , xJ , xK) (2.15)

where J(f, g, h) is the Jacobiator of B1, i.e. of the classical bracket {·, ·}. In particular,

A−

2 (p1, p2, p3) = 4π∗dB for a star product that quantizes a twisted Poisson bivector

obeying (2.2). It is then consistent to assume that A2(p1, p2, p3) = A−

2 (p1, p2, p3) is totally

antisymmetric, as written in the basic relation (1.7). The basic relations do not give us

direct statements about A2 evaluated on functions not linear in the global coordinates xI .

We will assume that A2(f, g, h) can be chosen totally antisymmetric even in this case —

since our aim is to prove that monopole star products cannot be alternative, there would

be nothing to show if this assumption were violated. However, this condition does not

already imply that the star product is alternative, since non-linear functions generically

lead to contributions to A(f, g, h) of higher order in λ, which do not directly follow from

simple combinations of the basic relations (1.7).

We summarize our conditions on A2 in

Definition 1. A monopole star product is a non-associative star product ⋆ on

C∞(T ∗
R
3)[[λ]] such that (2.10) holds, its associator to second order in λ is totally an-

tisymmetric and further obeys the following conditions:
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1. A2(p1, p2, p3) 6= 0,

2. A2(qi, x
I , xJ) = 0 for all i = 1, 2, 3 and I, J = 1, . . . , 6, and

3. B1(qi, A2(p1, p2, p3)) = 0 for i = 1, 2, 3.

where (xI)6I=1 = (q1, q2, q2, p1, p2, p3) are the canonical linear coordinates on T ∗
R
3.

2.3 Hochschild cohomology

For an associative algebra A, the space of multilinear maps from A to itself can be equipped

with a coboundary operator d, used in Hochschild cohomology. For a multilinear map

φ : A⊗n → A of n arguments, dφ is a multilinear function of n+ 1 arguments given by

dφ(a0, a1, . . . , an) = a0 · φ(a1, . . . , an) +
n−1
∑

j=0

(−1)jφ(a0, . . . , aj−1, aj · aj+1, aj+2, . . . , an)

+(−1)nφ(a0, . . . , an−1) · an . (2.16)

Hochschild cohomology plays an important role in classifying equivalent star products

with respect to a redefinition of higher orders in a λ-expansion: if

D(f) =
∞
∑

j=0

Dj(f)λ
j (2.17)

with linear differential operators Dj starting with D0 = id, for any given star product ⋆ a

new product ⋆′ can be defined by means of

D(f) ⋆′ D(g) = D(f ⋆ g) . (2.18)

The condition on D0 ensures that D is invertible as a map on formal power series. If

functions in C∞(M) are written as symbols of operators, for instance by a Weyl correspon-

dence, a non-trivial map D changes the factor-ordering choice in the correspondence. To

first order, B′
1 = B1 − dD1 while dB1 = 0; see (2.13). The first Hochschild cohomology

therefore classifies inequivalent choices of B1 which cannot be related by a different choice

of factor ordering. For a given bracket {·, ·}, all star products quantizing it respect the

condition (2.8), but not necessarily (2.9).

If A is not associative, 6 d, defined just like d for an associative algebra, is not a

coboundary operator: for a linear function φ : A → A, we have

6dφ(a0, a1) = a0 ⋆ φ(a1)− φ(a0 ⋆ a1) + φ(a0) ⋆ a1 (2.19)

and

6d2φ(a0, a1, a2) = A(a0, a1, φ(a2)) +A(a0, φ0(a1), a2) +A(φ(a0), a1, a2)− φ0(A(a0, a1, a2))

(2.20)

with the associator A. Therefore, Hochschild cohomology is not available for non-

associative algebras. However, the coboundary operator d of the classical associative com-

mutative algebra of smooth functions may still be used in constructing non-associative
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deformations, as we will do below. For instance, the product in (2.13) refers to ·, not

to ⋆. Moreover, we can refer to the standard argument [19] for changing the star product

within its equivalence class to show that the symmetric part in B1 can always be set to zero

and (2.9) be achieved. Thus, up to operator ordering, we can always assume that B1 is given

by the classical bracket, even if it is not Poisson, but for example twisted Poisson as here.

3 The main result

Our main result is

Theorem 1. Let ⋆ be a monopole star product as defined above, cf. Definition 1. Then

the associator A(f, g, h) ≡ f ⋆ (g ⋆ h) − (f ⋆ g) ⋆ h cannot be totally antisymmetric in its

arguments.

We will prove this result by making use of three lemmas:

Lemma 1. Let ⋆ be a star product obeying (2.10). If ⋆ is flexible at second order, that is

A2(f, g, h) = −A2(h, g, f), then B2 is symmetric.

Proof: We evaluate A2 in (2.14) on functions with f = h, writing the result as

A2(f, g, f) = fB2(g, f)−B2(f, g)f +B2(f, gf)−B2(fg, f)

= −2fB−

2 (f, g) + 2B−

2 (f, fg) (3.1)

using the antisymmetric part B−

2 (f, g) := 1
2(B2(f, g) − B2(g, f)) of B2. If A2(f, g, h) =

−A2(h, g, f) holds, A2(f, g, f) = 0, and we obtain

B−

2 (f, fg) = fB−

2 (f, g) . (3.2)

For an antisymmetric bi-differential form, this equation can hold only if the degree is (1, 1).

However, if B−

2 has a contribution of degree (1, 1), (2.11) cannot hold. Therefore, B−

2 = 0

and B2 is symmetric.

In particular, the conclusion holds for a monopole star product (2.5). All explicit star

products that have been constructed for monopole systems indeed have a symmetric B2.

For associative star products, Kontsevich’s formula [20] has the same property. If symmetry

of Bj holds at all even orders j, the star product gives rise to a formal deformation of the

twisted Poisson bracket by powers of λ2, or a Vey deformation as defined in [1].

Lemma 2. If (2.5) is a star product with symmetric B2, then the totally anti-symmetric

part of A3 is equal to zero.

Proof: Using the definition of the associator and the star product, we derive

A3(f, g, h) = dB3(f, g, h) +B2(f,B1(g, h))

−B2(B1(f, g), h) +B1(f,B2(g, h))−B1(B2(f, g), h) , (3.3)
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where d is the coboundary operator of Hochschild cohomology, cf. eq. (2.16). In particular,

dB3(f, g, h) ≡ fB3(g, h) + B3(f, gh) − hB3(f, g) − B3(fg, h). The totally anti-symmetric

part A−

3 of A3, defined as in (2.15), is given by

3A−

3 (f, g, h) = B−

2 (f, 2B
−

1 (g, h)) +B−

2 (h, 2B
−

1 (f, g)) +B−

2 (g, 2B
−

1 (h, f)) (3.4)

+B−

1 (f, 2B
−

2 (g, h)) +B−

1 (f, 2B
−

2 (g, h)) +B−

1 (f, 2B
−

2 (g, h))

where, as before, B−

j (f, g) =
1
2 (Bj(f, g)−Bj(g, f)) is the antisymmetric part of Bj .

3 Since

all terms on the right-hand side of (3.4) contain a B−

2 , B
−

2 = 0 implies A−

3 = 0.

We remark that for the last conclusion it is important that the antisymmetric part of A3,

unlike the full A3, does not depend on B3.

Lemma 3. Let ⋆ be a star product such that

O(f, g, h, k) := A2(f, g, B1(h, k))−A2(f,B1(g, h), k) +A2(B1(f, g), h, k)

+B1(A2(g, h, k), f)−B1(A2(f, g, h), k) (3.5)

is not identically zero. Then the third-order contribution A3 to the associator is non-zero.

Proof: Again, we use the Hochschild coboundary operator and consider

dA3(f, g, h, k) = fA3(g, h, k)−A3(fg, h, k)+A3(f, gh, k)−A3(f, g, hk)+kA3(f, g, h) . (3.6)

Our goal is to show that dA3 is non-zero for algebras with non-zero O, which implies

immediately also that A3 6= 0. The Pentagon identity

f ⋆ A(g, h, k) +A(f, g, h) ⋆ k = A(f ⋆ g, h, k)−A(f, g ⋆ h, k) +A(f, g, h ⋆ k) (3.7)

for non-associative algebras can be used for a compact proof of this statement. Expanding

it to third order in λ, we obtain

fA3(g, h, k) +B1(f,A2(g, h, k)) + kA3(f, g, h) +B1(A2(f, g, h), k)

= A3(fg, h, k)−A3(f, gh, k) +A3(f, g, hk)

+A2(B1(f, g), h, k)−A2(f,B1(g, h), k) +A2(f, g, B1(h, k)) (3.8)

where we used A1 = 0, cf. eq. (2.13). These terms can be organized to obtain

dA3(f, g, h, k) = A2(f, g, B1(h, k))−A2(f,B1(g, h), k) +A2(B1(f, g), h, k)

+B1(A2(g, h, k), f)−B1(A2(f, g, h), k) . (3.9)

Alternatively, one can prove directly that dA3 is of this form without invoking the Pen-

tagon identity, as shown in appendix B. The right-hand side of this equation is equal to

O(f, g, h, k). If it is not identically zero, A3 is non-zero.

We are now ready to prove our main result:

3See appendix A for a detailed derivation of (3.4).
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Proof (of Theorem 1): by Lemmas 1 and 2, a monopole star product has an A3 with zero

totally antisymmetric part. If the star product is alternative, we must then have A3 = 0. If

the obstruction O provided by Lemma 3 is not identically zero, however, it is not possible

that A3 = 0. We now show that O 6= 0 for a monopole star product, discussing two cases

separately depending on whether the associator (the monopole density) is constant or a

function of the position.

For a constant associator, we may choose f = p1, g = p2, h = p3 and k = q3p3. Using

the twisted Poisson bracket for B1, all but the first term in O(f, g, h, k) are zero, while

A2(f, g, B1(h, k)) is proportional to the monopole density and therefore non-zero.

If the monopole density is not constant, we specialize O(f, g, h, k) to

O(f, g, h, g) = A2(B1(f, g), h, g)−B1(A2(f, g, h), g) . (3.10)

Since the associator is not constant, it depends on at least one position coordinate, say

q1 without loss of generality. If we then choose f = p2, g = p1 and h = p3 we have

B1(A2(f, g, h), g) 6= 0 while A2(B1(f, g), h, g) = 0. �

The conclusion is independent of the choice of the star product within an equivalence

class, with [4] or [8] as concrete examples, because alternativity is independent of the choice

of the ordering (the “gauge”) [21].

More generally, Lemma 3 gives us an obstruction to alternativity which only depends

on B1 and A2, and therefore can be tested for general non-associative star products more

easily than the full associator.

4 Monopole Weyl star product

Two different star products have been proposed recently for the magnetic-monopole system,

one by using the Kontsevich formula [3–7], and one from Weyl products [8]. The former

is known to be non-alternative [17, 18]. Since it satisfies our assumptions, it provides an

explicit example for our general result. We now discuss the star product of [8] in more detail.

Example (Weyl star product): The star product of [8] has the first coefficient B1(f, g) =
1
2{f, g} with an atisymmetric bracket {f, g} = 1

2Π
IJ∂If∂Jg given by an arbitrary bivector

ΠIJ . It can therefore be applied to monopole star products. The second coefficient is

B2(f, g) = −
1

2
ΠIJΠKL(∂I∂Kf)(∂J∂Lg)−

1

3
ΠIJ∂JΠ

KL ((∂I∂Kf)(∂Lg)− (∂Kf)(∂I∂Lg)) ,

(4.1)

transferred to our notation. It obeys our assumptions. In particular, B2 has no contribution

of bi-differential degree (1, 1), and it is symmetric thanks to the antisymmetry of the twisted

Poisson tensor ΠIJ . Therefore, our conditions on monopole star products are satisfied and

the algebra cannot be alternative.

In [21, 22], an explicit expression for B3 is given as well. It is therefore possible

to compute A3 in specific examples and show that it is not totally antisymmetric. In

particular, for monopole star products, it is not difficult to find functions f(p1, p2, p3) such

that A3(f, f, f) 6= 0.
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Lemma 4. Let ⋆ be a Weyl star product on C∞(T ∗
R
3)[[λ]] according to [8] which quantizes

a twisted Poisson tensor (2.1), and let f(p1, p2, p3) be a function of the fiber coordinates

of T ∗
R
3 such that ∂pi∂pjf = 0 whenever i 6= j. The third coefficient of the associator of ⋆

then obeys

A3(f, f, f) =
4

3
i (∂q1Π

p2p3 + ∂q2Π
p3p1 + ∂q3Π

p1p2)
∑

σ∈Z3

Πpσ(1)pσ(2)∂pσ(3)
f∂2

pσ(1)
f∂2

pσ(2)
f ,

(4.2)

summing over elements of the alternating group A3 = Z3 of cyclic permutations.

Proof: We have explicitly computed A3(f, f, f) for arbitrary f using Cadabra software [23,

24]:

A3(f, f, f) =
2i

3

(

ΠLM∂LΠ
NO ∂NΠPQ ∂Mf ∂P f ∂O∂Qf

−ΠLM∂LΠ
NO ∂NΠPQ ∂Of ∂P f ∂M∂Qf

−2 ΠLMΠNO∂LΠ
PQ ∂P f ∂M∂Nf ∂O∂Qf

+ΠLMΠNO∂LΠ
PQ ∂Mf ∂NP f ∂O∂Qf

)

. (4.3)

For a monopole star product, the bivector Π is a function only of the position coordinates

qi via the magnetic field. Therefore, L and N must be position indices for non-zero contri-

butions in the first two terms of (4.3). These terms are then identically zero because each

contains a factor of ∂LΠ
NO, which is zero for a bivector of the form (2.1).

In the third term, only L is required to be a position index, while M , N , O, P , and Q

are momentum indices if f depends only on momenta. The components ΠLM then equal

δLM since they contain one position and one momentum index. The remaining terms

in (4.3) yield

3

2i
A3(f, f, f) = −2ΠNO(∂q1Π

UQ ∂Uf ∂p1∂Nf ∂O∂Qf + ∂q2Π
UQ ∂Uf ∂p2∂Nf ∂O∂Qf

+∂q3Π
UQ ∂Uf ∂p3∂Nf ∂O∂Qf )

+ΠNO(∂q1Π
UQ ∂p1f ∂N∂Uf ∂O∂Qf + ∂q2Π

UQ ∂p2f ∂N∂Uf ∂O∂Qf

+∂q3Π
UQ ∂p3f ∂N∂Uf ∂O∂Qf)

We collect terms with the same factor of ∂qiΠ
IJ from derivatives of the bivector. Such

a contribution with ∂q1Π
IJ is of the form

ΠNO
(

−2∂q1Π
UQ ∂Uf ∂p1∂Nf ∂O∂Qf + ∂q1Π

UQ ∂p1f ∂N∂Uf ∂O∂Qf
)

= ΠNO
(

∂p1f
(

−∂q1Π
p1Q∂p1∂Nf + ∂q1Π

p2Q ∂N∂p2f + ∂q1Π
p3Q ∂N∂p3f

)

−2∂p2f∂q1Π
p2Q ∂p1∂Nf − 2∂p3f∂q1Π

p3Q ∂p1∂Nf
)

∂O∂Qf ,

arranging by factors of first-order derivatives ∂pif . By our assumptions on f , the index N
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is determined in all terms for non-zero contributions and we obtain

(

∂p1f
(

−Πp1O∂q1Π
p1Q∂2

p1
f +Πp2O∂q1Π

p2Q ∂2
p2
f +Πp3O∂q1Π

p3Q ∂2
p3
f
)

−2∂p2fΠ
p1O∂q1Π

p2Q ∂2
p1
f − 2∂p3fΠ

p1O∂q1Π
p3Q ∂2

p1
f
)

)

∂O∂Qf

=
∑

O

(

∂p1f
(

−Πp1O∂q1Π
p1O∂2

p1
f +Πp2O∂q1Π

p2O ∂2
p2
f +Πp3O∂q1Π

p3O ∂2
p3
f
)

−2∂p2fΠ
p1O∂q1Π

p2O ∂2
p1
f − 2∂p3fΠ

p1O∂q1Π
p3O ∂2

p1
f
)

∂2
Of

)

setting O = Q in the last step, again by our assumptions on f . We now go through all

remaining choices of the only free index O. All contributions to terms containing ∂q1Π
p1O

cancel out. We arrive at

2∂p1fΠ
p2p3∂q1Π

p2p3∂2
p2
f∂2

p3
f−2∂p2fΠ

p1p3∂q1Π
p2p3∂2

p1
f∂2

p3
f−2∂p3fΠ

p1p2∂q1Π
p3p2∂2

p1
f∂2

p2
f

= 2∂q1Π
p2p3

∑

σ∈Z3

Πpσ(1)pσ(2)∂pσ(3)
f∂2

pσ(1)
f∂2

pσ(2)
f .

Bringing back contributions with the remaining ∂qiΠ
IJ , we have (4.2).

For specific choices of f obeying the condition stated in the Lemma, we can compute

A3(f, f, f) more explicitly. The first parenthesis in (4.2) is half the Jacobiator of the

bivector, which is non-zero for a monopole star product. The sum over cyclic permutations

depends on the specific f .

Example: Let Π be a bivector as stated in the conditions on a monopole star product.

1. Let f = |p|2 = p21 + p22 + p23. We have

∑

σ∈Z3

Πpσ(1)pσ(2)∂pσ(3)
f∂2

pσ(1)
f∂2

pσ(2)
f = 8

∑

σ∈Z3

Πpσ(1)pσ(2)pσ(3) .

With a bivector as implied by (1.5),

A3(|p|
2, |p|2, |p|2) =

32

3
i(p ·B) divB . (4.4)

For a monopole star product, divB 6= 0, and p · B is generically non-zero for a

charged particle with momentum p moving in the magnetic field B. Therefore, a

monopole star product obtained from a Weyl star product cannot be alternative to

third order in λ.

2. Another example in which (4.2) can be used is f = eiα1p1 + eiα2p2 + eiα
3p3 for

(α1, α2, α3) ∈ R
3, a family of bounded functions. The sum over cyclic permutations

then equals

∑

σ∈Z3

Πpσ(1)pσ(2)∂pσ(3)
f∂2

pσ(1)
f∂2

pσ(2)
f= iα2

1α
2
2α

2
3

(

Πp1p2

α3
+

Πp2p3

α1
+

Πp3p1

α2

)

ei(p1+p2+p3) .
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For a bivector as in (1.5), we have

A3(e
ip1 + eip2 + eip3 , eip1 + eip2 + eip3 , eip1 + eip2 + eip3) (4.5)

= −
4

3
α2
1α

2
2α

2
3e

i(α1p1+α2p2+α3p3)

(

B1

α1
+

B2

α2
+

B3

α3

)

divB .

For any non-zero B, there is a triple (α1, α2, α3) such that B1/α1 +B2/α2 +B3/α3

is not identically zero. Therefore, every magnetic field with non-zero divergence

gives rise to an f with A3(f, f, f) 6= 0.

The Lemma implies non-alternativity of monopole star products obtained from a Weyl

star product quantizing (2.1), but this already follows from Theorem 1. Having explicit

examples with A3(f, f, f) 6= 0 implies further results.

A property weaker than alternativity is flexibility, for which, by definition, only anti-

symmetry with respect to the first and third entry is required:

A(f, g, h) = −A(h, g, f) . (4.6)

Flexibility is important for quantum mechanics because it is a necessary and sufficient

condition [25] for the commutator

[f, g] = f ⋆ g − g ⋆ f (4.7)

to be a derivation of the Jordan product

f ◦ g :=
1

2
(f ⋆ g − g ⋆ f) . (4.8)

Heisenberg equations of motion
df

dt
=

[f,H]

i~
(4.9)

with a Hamiltonian H then obey a product rule of the form

d(f ◦ g)

dt
=

df

dt
◦ g + f ◦

dg

dt
. (4.10)

To second order in λ, flexibility of the associator follows from (2.14) for any star product

with symmetric B2. However, as with alternativity, this fact does not guarantee that

flexibility is realized at higher orders.

Another condition weaker than alternativity is power-associativity: a power-associative

algebra is defined as an algebra A such that the subalgebra generated by any single element

a ∈ A is associative. For any positive integer n, the n-th power an is then uniquely

defined even though the algebra product may be non-associative. For Weyl star products

of monopole systems, we have

Theorem 2. A Weyl star product which quantizes (2.1) with divB 6= 0 cannot be flexible

or power associative.
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Proof: Since there is an f such that A3(f, f, f) 6= 0, the associator cannot be antisymmetric

in its first and last arguments. Moreover, we have f ⋆ (f ⋆ f)− (f ⋆ f) ⋆ f = A3(f, f, f)λ
3+

O(λ4) and the subalgebra generated by f cannot be associative.

5 Conclusions

We have shown that, under rather weak conditions, star products that quantize the phase

space of a charged particle in the presence of a magnetic monopole density cannot be

alternative. More generally, we have provided obstructions for a non-associative star prod-

uct with symmetric B2 being alternative. By the non-associative Gelfand-Naimark theo-

rem [26], this result, together with the fact that the algebra is unital, implies that there is

no norm that would turn the quantum algebra into a C∗-algebra, even if the algebra can be

restricted to bounded functions; see (4.5). This version of our result strengthens the usual

statement that non-associative systems cannot be quantized in the standard way by repre-

senting observables on a Hilbert space. One way to circumvent the use of Hilbert spaces in

associative systems is to take an algebraic view point and define quantum states as posi-

tive linear functionals on the C∗-algebra of bounded observables; see for instance [27]. For

non-associative systems of the kind studied here, this route must be generalized because

the star-product algebra cannot be turned into a C∗-algebra. One can still use positive

linear functionals, but only on a ∗-algebra.

Non-alternativity rules out the use of octonions as realizations of observable algebras

of the relevant physical systems. Recently, in [28], octonions have been used to realize the

relations (1.5) and (1.7) for linear functions of the momentum components. An extension

to non-linear functions would encounter the same obstructions found here for star products,

and a purely octonionic construction would no longer suffice.
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A Details on a derivation

Starting from (3.3), and using all its cyclic permutations, we can write the fully anti-

symmetric part of A3 as

6A3(f, g, h)
− = B2(f,B1(g, h))−B2(B1(f, g), h) +B2(h,B1(f, g)) (A.1)

−B2(B1(h, f)g) +B2(g,B1(h, f))−B2(B1(g, h), f)

−B2(f,B1(h, g)) +B2(B1(f, h), g)−B2(g,B1(f, h))

+B2(B1(g, f), h)−B2(h,B1(g, f)) +B2(B1(h, g), f) + (B1 ↔ B2) .
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Using the definition of the anti-symmetric parts of the Bi, we have

6A3(f, g, h)
− = 2B−

2 (f,B1(g, h)) + 2B−

2 (h,B1(f, g)) + 2B−

2 (g,B1(h, f)) (A.2)

−2B−

2 (f,B1(h, g))− 2B2(g,B1(f, h))− 2B−

2 (h,B1(g, f)) + (B1 ↔ B2) .

Finally, using the fact that the Bi are linear in their arguments, we obtain the required

form for the fully anti-symmetric part of A3 as in (3.4).

B Proof of lemma without Pentagon identity

To begin with, let us write the third-order associator as before:

A3(f, g, h) = dB3(f, g, h) +B2(f,B1(g, h))

−B2(B1(f, g), h) +B1(f,B2(g, h))−B1(B2(f, g), h) , (B.1)

where dBn = fBn(g, h) + Bn(f, gh) − hBn(f, g) − Bn(fg, h). If we apply the Hochschild

coboundary operator to A3, the first term in (B.1) should give zero because d2 = 0. (Again,

when applied to coefficients in an λ-expansion of a non-assocative star product, only the

associative multiplication of smooth functions is used in the definition of d.) However, for

completeness we will explicitly show this. The part in dA3(f, g, h, k) involving contributions

only from the B3 terms has the form

f dB3(g, h, k)− dB3(fg, h, k) + dB3(f, gh, k)− dB3(f, g, hk) + k dB3(f, g, h) . (B.2)

Using the definition of dBn for n = 3 gives

f

(

g B3(h, k) +B3(g, hk)− k B3(g, h)−B3(gh, k)

)

−

(

f g B3(h, k) +B3(fg, hk)− k B3(fg, h)−B3(fgh, k)

)

+

(

f B3(gh, k) +B3(f, ghk)− k B3(f, gh)−B3(fgh, k)

)

−

(

f B3(g, hk) +B3(f, ghk)− h k B3(f, g)−B3(fg, hk)

)

+k

(

f B3(g, h) +B3(f, gh)− hB3(f, g)−B3(fg, h)

)

.

Upon a close inspection of this expression, we see that there is a counterterm for each term,

and thus it is zero. We are left with the action of the coboundary operator on the last four

terms in (B.1). Concentrating, for now, on its action on the B2 terms, using the generic

definition of dBn for n = 2, we obtain a part in dA3(f, g, h, k) that is of the form:

−f

(

B2(g,B1(h, k))− B2(B1(g, h), k)

)

−B2(fg,B1(h, k)) +B2(B1(fg, h), k)

+B2(f,B1(gh, k))−B2(B1(f, gh), k)

−B2(f,B1(g, hk)) +B2(B1(f, g), hk)

+k

(

B2(f,B1(g, h))−B2(B1(f, g), h)

)

. (B.3)
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Using the Leibniz property of B1, and removing terms that identically cancel out, we are

left with

−f B2(g,B1(h, k))− f B2(B1(g, h), k)−B2(fg,B1(h, k))

+B2(fB1(g, h), k) +B2(f, gB1(h, k))−B2(hB1(f, g), k)

−B2(f, kB1(g, h)) +B2(B1(f, g), hk) + k B2(f,B1(g, h))− k B2(B1(f, g), h) .

This expression can be cast into a more succinct form in terms of dA2, by adding and

subracting a few terms as follows:

dB2(f, g, B1(h, k))− dB2(f,B1(g, h), k) + dB2(B1(f, g), h, k) (B.4)

+B1(h, k)B2(f, g)−B2(h, k)B1(f, g) .

The action of the differential on the B1 terms in (B.1) gives an expression similar to (B.3),

with the roles of B1 and B2 exchanged. Again upon using the Leibniz property of B1 and

cancelling terms, we have the contribution to dA3 as

−f B1(B2(g, h), k)− g B1(f,B2(h, k)) +B1(B2(fg, h), k) +B1(f,B2(gh, k))

−B1(B2(f, gh), k)−B1(f,B2(g, hk)) + hB1(B2(f, g), k) + k B1(f,B2(g, h)) .

Using anti-symmetry and linearity in either of the arguments of B1, and again adding and

subtracting a few terms, we introduce dB2 as

B1(dB2(g, h, k), f)−B1(dB2(f, g, h), k)−B2(f, g)B1(h, k) +B2(h, k)B1(f, g) . (B.5)

As the final result, (B.4) and (B.5) give

dA3(f, g, h, k) = dB2(f, g, B1(h, k))− dB2(f,B1(g, h), k) + dB2(B1(f, g), h, k)

+B1(dB2(g, h, k), f)−B1(dB2(f, g, h), k) . (B.6)

To get the same result as in (3.9), which was obtained using the Pentagon identity, we

just use the definition of dB2 in terms of the second-order associator as dB2(f, g, h) =

A2(f, g, h)−B1(f,B1(g, h))+B1(B1(f, g), h), and use the linearity ofB1 in its first argument

in the last two terms.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory

and quantization. 1. Deformations of symplectic structures, Annals Phys. 111 (1978) 61

[INSPIRE].

[2] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory

and quantization. 2. Physical applications, Annals Phys. 111 (1978) 111 [INSPIRE].

– 15 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0003-4916(78)90224-5
http://inspirehep.net/search?p=find+J+%22Ann.Phys.,111,61%22
http://dx.doi.org/10.1016/0003-4916(78)90225-7
http://inspirehep.net/search?p=find+J+%22Ann.Phys.,111,111%22


J
H
E
P
0
4
(
2
0
1
7
)
0
2
8
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