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Abstract: We analyze the timelike supersymmetric solutions of minimal gauged 5-

dimensional supergravity for the case in which the Kähler base manifold admits a holomor-

phic isometry and depends on two real functions satisfying a simple second-order differential

equation. Using this general form of the base space, the equations satisfied by the building

blocks of the solutions become of, at most, fourth degree and can be solved by simple poly-

nomic ansatzs. In this way we construct two 3-parameter families of solutions that contain

almost all the timelike supersymmetric solutions of this theory with one angular momen-

tum known so far and a few more: the (singular) supersymmetric Reissner-Nordström-AdS

solutions, the three exact supersymmetric solutions describing the three near-horizon ge-

ometries found by Gutowski and Reall, three 1-parameter asymptotically-AdS5 black-hole

solutions with those three near-horizon geometries (Gutowski and Reall’s black hole being

one of them), three generalizations of the Gödel universe and a few potentially homoge-

nous solutions. A key rôle in finding these solutions is played by our ability to write AdS5’s

Kähler base space (CP2
or SU(1, 2)/U(2)) is three different, yet simple, forms associated to

three different isometries. Furthermore, our ansatz for the Kähler metric also allows us to

study the dimensional compactification of the theory and its solutions in a systematic way.
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Introduction. The search for exact solutions of theories of gravity has been, and still

is, one of the most fruitful areas of work in gravitational physics. Symmetry has probably

been the main tool in this search and, therefore, it is not surprising that, in gravity the-

ories invariant under supersymmetry transformations (theories of supergravity), unbroken

supersymmetry has become the main tool as well.1

Unbroken supersymmetry is, indeed, a very powerful tool because, beyond the fact that

it implies the existence of ordinary symmetry (standard isometries of the metric which also

leave invariant the matter fields), relates in non-trivial ways all the fields of the theory

and, in particular, it relates all the bosonic matter fields to the metric. This implies that

all the fields of a given solution with unbroken supersymmetry (a.k.a. supersymmetric

or BPS solution) can be constructed from a common set of building blocks (functions, 1-

forms, metrics in some submanifold that satisfy simple equations or geometrical conditions)

using different combinations or rules. These combinations and rules are characteristic of

each supergravity theory and, identifying them, the building blocks and conditions they

satisfy makes it possible to construct large families of interesting solutions and discover

properties which cannot manifest themselves in single members of the family. The attractor

mechanism [2–6] is, perhaps, the best known example of this kind of properties and their

relevance: only the knowledge of families of black-hole solutions with different charges

and values of the scalars at infinity can one realize that their near-horizon values (and,

hence, the entropy formulae) only depend on the charges. The latter being quantized, a

microscopic interpretation of the entropy is, in principle, possible.

The systematic characterization or “classification” of supersymmetric solutions was

pioneered by Gibbons and Hull ref. [7] and, specially, by Tod ref. [8] who showed that

the requirement of existence of just one unbroken supersymmetry in pure N = 2, d = 4

supergravity was strong enough to identify a reduced number of building blocks satisfying

simple equations in terms of which all the components of the fields of the supersymmetric

solutions could be written. Shortly, Kowalski-Glikman found all the solutions of the same

theory admitting the maximal number of unbroken supersymmetries (that is: 8) in ref. [9].

However, since most of the solutions found by Tod were already known2 and he worked

using the Newman-Penrose formalism, it was not until it was realized that the Killing spinor

equations could be rewritten as equations on tensors constructed as spinor bilinears (a

language much better understood by the superstring community) that this line of research

took off. This method was successfully applied to the complete characterization of the

supersymmetric solutions of minimal 5-dimensional supergravity in ref. [15] leading to the

discovery of a host of new and interesting solutions. This procedure was immediately

applied to ever more complex cases. In the framework of N = 2, d = 4 supergravity

theories, it was applied to

1For a comprehensive review of supersymmetric solutions of supergravity theories with many references

see, e.g. ref. [1].
2The bosonic sector of pure, ungauged, N = 2, d = 4 supergravity is the well-known and much studied

Einstein-Maxwell theory. Then, it is no surprise that, for instance, the timelike supersymmetric solutions

corresponded to the Perjés-Israel-Wilson family [10, 11] which, as proven by Hartle and Hawking in ref. [12],

only contains as regular non-trivial subfamily the Majumdar-Papapetrou solutions [13, 14] which describe

extremal Reissner-Nordström black holes in static equilibrium.
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• Gauged, pure supergravity in ref. [16].

• Ungauged but coupled to vector multiplets in ref. [17].

• Ungauged but coupled to vector multiplets and hypermultiplets in ref. [18].

• Coupled only to vector multiplets with Abelian gaugings in refs. [19–21].

• Coupled to vector multiplets with non-Abelian gaugings (excluding SU(2) Fayet-

Iliopoulos terms)in ref. [22].

• Coupled to vector multiplets and hypermultiplets with the most general gauging

(Abelian or not, with Fayet-Iliopoulos terms or not) in ref. [23].3

In the N = 1, d = 5 supergravity theories in which we are interested here it has been

applied to

• Gauged, pure supergravity in ref. [24].

• Coupled to vector multiplets with Abelian gaugings in ref. [25] for the timelike case

(the results for the ungauged case were derived from those of the gauged one in

ref. [26]) and in ref. [27] for the null case.

• Ungauged but coupled to vector multiplets and hypermultiplets in ref. [28].

• Coupled to vector multiplets and hypermultiplets with the most general gauging in

ref. [29].

• Coupled to vector and tensor multiplets and hypermultiplets with the most general

gauging in ref. [30].

A feature of the 5-dimensional case, as compared with 4-dimensional one is that, even

in the simplest theory, some of the building blocks are not defined by differential or al-

gebraic equations but by geometrical conditions whose general solution is not known. In

particular, the most fundamental building block of the 5-dimensional timelike supersym-

metric solutions (which are the ones we will be interested in here) is the so-called base-space

metric, which is a 4-dimensional Euclidean metric that enters in the construction of the

5-dimensional spacetime metric and on which the differential equations satisfied by the

rest of the building blocks are defined, is required to be hyperKähler in the ungauged case

(with no hypers, as we will assume form now on to be the case) or just Kähler when there

is an Abelian gauging. These geometrical conditions are too general: we do not know how

to write a general 4-dimensional Kähler hyperKähler metric in terms of a set of functions,

forms or lower-dimensional metrics satisfying simple equations. This problem was solved

in ref. [15] by considering only 4-dimensional hyperKähler spaces admitting triholomorphic

isometries, which have Gibbons-Hawking metrics [31, 32], a constraint that still allows for

many interesting solutions like rotating and static asymptotically-flat4 (multi) black holes

3Only the timelike supersymmetric solutions have been characterized in the most general case.
4The magic of the Gibbons-Hawking ansatz is that the additional isometry is compatible with spherically-

symmetric (SO(4)-invariant) black-hole solutions and it does not restrict us to work with black strings.
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and black rings. These metrics are defined by a single building block: a function harmonic

in E3, customarily called H, and, on them, the rest of the supersymmetry conditions can

be solved completely in terms of another three harmonic functions. As a bonus, upon di-

mensional reduction along the additional isometry one finds 4-dimensional supersymmetric

black holes.

The same ansatz has recently been used in theories of N = 1, d = 5 with vector

multiplets and non-Abelian gaugings (but no Fayet-Iliopoulos terms), or N = 1, d = 5

Super-Einstein-Yang-Mills (SEYM) theories [33]. The general form of the timelike super-

symmetric solutions is a particular case of that found in ref. [29] and the base space is also

hyperKähler. A piece of the non-Abelian 1-form field is an anti-selfdual instanton on the

hyperKähler base space. If one assumes that this space is Gibbons-Hawking one can then

use Kronheimer’s results [34] to solve the instanton equation on that space in terms of BPS

monopole solutions to the Bogomol’nyi equation on E3 [35]. For the gauge group SU(2) all

the spherically symmetric solutions of the Bogomol’nyi equation were found by Protogenov

in ref. [36] and one can profit from this result to construct anti-selfdual instantons in the

4-dimensional hyperKähler base space.5 Somewhat surprisingly, the only monopoles that

give rise to regular instantons (the BPST one [37], in fact) in the simplest setup belong

to an intriguing class which has vanishing asymptotic charge and a singularity at the ori-

gin and which give rise to regular 4-dimensional non-Abelian black holes whose entropy,

nevertheless, depends on the non-Abelian field [38]. These black holes were called coloured

black holes in ref. [39]. They exist for more general gauge groups (because the correspond-

ing coloured monopoles also exist in more general gauge groups, as shown in ref. [40])

and are associated to 4-dimensional coloured black holes in which the non-Abelian field

configuration is the regular instanton associated to the corresponding coloured monopole.

Given the success of this approach, it is a bit of a mystery that a similar ansatz (i.e. as-

suming that the Kähler base space has a holomorphic isometry) has not yet been used to

simplify the Abelian-gauged case,6 which is known to lead to complicated sixth-order dif-

ferential equations [44]. In that reference, Gutowski and Reall managed to find a supersym-

metric asymptotically-AdS5 black-hole solution with a squashed-S3 near-horizon geometry

plus two additional possible non-compact near-horizon geometries. However, given the

complexity of the problem, they could not identify other supersymmetric asymptotically-

AdS5 black-hole solutions with the alternative near-horizon geometries. Given the connec-

tions between this kind of solutions and the AdS/CFT conjecture, finding them constitutes

an important open problem that could have been addressed by making use of the afore-

mentioned ansatz. Furthermore, as explained at the beginning of this introduction, finding

general families of solutions (or extending the ones already known) is, by itself, an impor-

tant goal.

5Again, the magic of the Gibbons-Hawking ansatz is that the instantons built from the monopoles, which

are only spherically symmetric in E3 (SO(3)) will be spherically symmetric in the 4-dimensional base space

if we make the simplest choice R4
{0}.

6It should be noted however that less general ansatzs have been used in the literature, namely toric [41]

and orthotoric [42] Kähler base spaces. Actually many of the solutions we find here were already included

in those works, either explicitly or as particular cases of more general solutions.
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In a recent paper [45] we have shown how to write any Kähler metric with a holo-

morphic isometry in a generalized Gibbons-Hawking form that depends on just two real

functions H,W the first of which satisfies a W -deformed Laplace equation on E3. In this

paper we are going to use this ansatz to simplify the equations and find more supersym-

metric solutions of minimal gauged 5-dimensional supergravity. We start by reviewing

this theory in section 1 to introduce our notation and conventions. Its bosonic sector is

described in section 1.1 and the conditions found in ref. [24] for a field configuration to be

a timelike supersymmetric solution will be reviewed in our notation in section 1.2. Then

in section 1.3 we study the particular case in which the base space of the timelike super-

symmetric solution (a 4-dimensional Kähler space) has a holomorphic isometry, using the

general ansatz found in ref. [45], finding a simpler set of equations to be solved. Before we

try to solve them, we have found it useful to rewrite in section 2 some well-known timelike

supersymmetric solutions (Reissner-Nordström-AdS5 and AdS5 itself) in a form and coor-

dinates adapted to our ansatz for the base space. We show three different ways of writing

AdS5 in a timelike supersymmetric form, each of them associated to a different form of

writing the common base space CP2
or SU(1, 2)/U(2). In its turn, each of these forms of

AdS5 will inspire a different ansatz for asymptotically-AdS5 timelike supersymmetric so-

lutions. This will allow us to obtain in section 3 two families of solutions characterized by

the parameter ε that constitute the main result of this paper. The ε = 1 family, studied in

section 3.1, describes, among others, two kinds of solutions: asymptotically-AdS5 rotating

black holes with the three possible near-horizon geometries found in ref. [44] and the three

near-horizon geometries as proper timelike supersymmetric solutions. The ε = 0 family,

studied in section 3.2, describes a large number of non-asymptotically-AdS5 solutions of dif-

ficult interpretation. There are three simple solutions in this class that are generalizations

of the Gödel universe. As in the ungauged and non-Abelian-gauged cases, all the solutions

found by using our ansatz can be immediately reduced to d = 4 dimensions and related to

the solutions of some of the theories of N = 2, d = 4 Abelian-gauged supergravity classified

in refs. [19–21]. In the case we are considering in this paper (minimal gauged supergravity),

the corresponding 4-dimensional theory is the Abelian-gauged T3 model and, in section 4

we study the solutions of this theory that arise from the 5-dimensional solutions discussed

in the previous sections. Section 5 contains our conclusions and directions for future work.

Finally, appendices A, B and C contain the connection and curvature of the 3-, 4- and

5-dimensional metrics that occur in this problem and appendix D contains a review of the

construction of the AdS5 metrics used in the body of the paper.

Note added. In the ε = 1 solutions ωz is determined up to an arbitrary constant d.

However this constant d should also appear in ω and, therefore, once we shift the coordinate

t to set ω to zero, the d in ωz is automatically subtracted. In other words: it is not necessary

to set d = 0 by hand to get asymptotically AdS5 solutions since d is always zero.

1 Minimal gauged N = 1, d = 5 supergravity

In this section we give a brief description of minimal gauged N = 1, d = 5 supergravity

and its timelike supersymmetric solutions.
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Minimal (pure) N = 1, d = 5 supergravity contains the supergravity multiplet, only.

This multiplet consists of the graviton eaµ, the gravitino ψiµ and the graviphoton 1-form

Aµ. The spinor ψiµ is a symplectic Majorana spinor and i is a fundamental SU(2) (R-

symmetry) index.7

Since only one 1-form is available, and there are no scalars, at most a U(1) subgroup

of the SU(2) R-symmetry group can be gauged. This is done by adding a Fayet-Iliopoulos

(FI) term gnr, r = 1, 2, 3 where nr is a constant unitary vector which selects the u(1)

generator in su(2) that is going to be gauged: if {Tr} are a basis of the su(2) Lie algebra,

the generator of the U(1) symmetry being gauged will be T ≡ nrTr. g is the gauge coupling

constant and only occurs in the bosonic action as a negative (AdS) cosmological constant

as we are going to see.

1.1 The bosonic sector

The bosonic action of minimal gauged 5-dimensional supergravity takes the form of a

cosmological Einstein-Maxwell theory supplemented by a Chern-Simons term:

S =

∫
d5x
√
g

{
R+ 4g2 − 1

4
FµνFµν +

1

12
√

3

εµνρσα
√
g

FµνFρσAα

}
, (1.1)

where Fµν = 2∂[µAν] and g is the U(1) coupling constant. The cosmological constant Λ is

given in the above action by8

Λ = −4

3
g2 , (1.4)

and this value as well as the coefficient of the Chern-Simons term are fixed

by supersymmetry.

The equations of motion for the bosonic fields that follow from the above action are

Gµν −
1

2

(
Fµ

ρFνρ −
1

4
gµνF

ρσFρσ

)
− 2g2gµν = 0 , (1.5)

∇νF νµ + 1
4
√

3

εµνρσα
√
g

FνρFσα = 0 . (1.6)

1.2 Timelike supersymmetric configurations

The general form of the solutions of minimal, gauged, 5-dimensional supergravity admitting

a timelike Killing spinor9 was found in ref. [24]. In what follows we are going to review

7Our conventions are those in refs. [28, 29] which are those of ref. [46] with minor modifications.
8Our definition of the cosmological constant is such that it occurs in the d-dimensional Einstein-Hilbert

action as

S =

∫
ddx
√
|g| {R− (d− 2)Λ} , (1.2)

giving rise to the equations

Gµν = − (d− 2)

2
Λgµν , and Rµν = Λgµν . (1.3)

9A timelike (commuting) spinor εi is, by definition, such that the real vector bilinear constructed from

it iVµ ∼ ε̄iγµεi is timelike.
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it using the notation and results of ref. [29] in which the most general gauged theory was

considered.

The building blocks of the timelike supersymmetric solutions are the scalar function

f̂ , the 4-dimensional spatial metric hmn,10 an anti-selfdual almost hypercomplex structure

Φ̂(r)
mn,11 a 1-form ω̂m, and the 1-form potential Âm. All these fields are defined on the

4-dimensional spatial manifold usually called “base space”. They are time-independent

and must satisfy a number of conditions:

1. The anti-selfdual almost hypercomplex structure Φ̂(r)
mn, the 1-form potentials

ÂIm and the base space metric hmn (through its Levi-Civita connection) satisfy

the equation

∇̂mΦ̂(r)
np + gεrstnsÂmΦ̂(t)

np = 0 . (1.9)

2. The selfdual part of the spatial vector field strength F̂ ≡ dÂ must be related to the

function f̂ , the 1-form ω̂ by

F̂+ =
2√
3

(f̂dω̂)+ , (1.10)

3. while the anti-selfdual part is related to the almost hypercomplex structure by

F̂− = −2f̂−1nrΦ̂(r) . (1.11)

4. Finally, all the building blocks are related by the equation

∇̂2f̂−1 − 1

6
F̂ · ?̂F̂ − 1

2
√

3
F̂ · (f̂dω̂)− = 0 , (1.12)

where the dots indicate standard contraction of all the indices of the tensors.

Once the building blocks that satisfy the above conditions have been found, the physical

5-dimensional fields can be built out of them as follows:

1. The 5-dimensional (conformastationary) metric is given by

ds2 = f̂ 2(dt+ ω̂)2 − f̂ −1hmndx
mdxn . (1.13)

2. The complete 5-dimensional 1-form field is given by

A = −
√

3 f̂(dt+ ω̂) + Â , (1.14)

10m,n, p = 1, · · · , 4 will be tangent space indices and m,n, p = 1, · · · , 4 will be curved indices. We are

going to denote with hats all objects that naturally live in this 4-dimensional space.
11That is: the 2-forms Φ̂(r)

mn r, s, t = 1, 2, 3 satisfy

Φ̂(r)mn = −1

2
εmnpqΦ̂(r)

pq , or Φ̂(r) = − ?4 Φ̂(r) , (1.7)

Φ̂(r)m
nΦ̂(s)n

p = −δrsδmp + εrstΦ̂(t)m
p . (1.8)
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so that the spatial components are

Am = Âm −
√

3f̂ ω̂m , (1.15)

and the 5-dimensional field strength is

F = −
√

3d[f̂(dt+ ω̂)] + F̂ . (1.16)

As it has already been observed in ref. [24], from eq. (1.9) if follows that there is

one complex structure (generically given by nrΦ̂(r)) which is covariantly constant in the

base space

∇̂m(nrΦ̂(r)
np) = 0 , (1.17)

which, in its turn, implies that the base space metric hmn is Kähler with respect to the

complex structure Ĵmn ≡ nrΦ̂(r)
np (see, e.g. ref. [47]).

It is convenient to choose, for instance, nr = δr1. With this choice, eq. (1.9) splits into

∇̂mΦ̂(1)
np = 0 , (1.18)

∇̂mΦ̂(2)
np = gÂmΦ̂(3)

np , (1.19)

∇̂mΦ̂(3)
np = −gÂmΦ̂(2)

np . (1.20)

The first equation is just eq. (1.17) for our particular choice of FI term, which im-

plies the choice of complex structure Ĵmn ≡ Φ̂(1)
np. Taking this fact into account,12 the

integrability condition of the other two equations is13

R̂mn = −gF̂mn . (1.25)

This equation must be read as a constraint on the 1-form potential Âm posed by the

choice of base space metric.

Eq. (1.11) takes a simpler form as well:

F̂− = −2gf̂−1Ĵ , (1.26)

12We use the integrability condition of eq. (1.18)

R̂mnpq = R̂mnrsĴ
r
pĴ

s
q , (1.21)

which leads to the relation between the Ricci and Riemann tensors

R̂mn = −1

2
R̂mprqĴ

rqĴpn . (1.22)

The Ricci 2-form, defined as

R̂mn ≡ R̂mpĴpn , (1.23)

is, therefore, related to the Riemann tensor by

R̂mn =
1

2
R̂mnpqĴ

pq . (1.24)

13If gAm vanishes (for instance, in the ungauged case), then we have a covariantly constant hyper-Kähler

structure and, then, the base space is hyperKähler.
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Tracing the first of these equations and eq. (1.25) with Ĵmn one finds a simple relation

between the Ricci scalar of the base space metric and the function f̂ :

R̂ = 8g2f̂−1 . (1.27)

The last equation to be simplified by our choice is eq. (1.12). Substituting it in

eq. (1.26) one finds

∇̂2f̂−1 − 1

6
F̂ · ?̂F̂ +

1√
3
gĴ · (dω̂) = 0 . (1.28)

1.3 Timelike supersymmetric solutions with one additional isometry

In order to make progress we need to make assumptions about the base space Kähler metric

so we can write it explicitly in terms of a small number of functions that satisfy certain

equations. In the ungauged [15, 28] and the non-Abelian gauged cases [33] in which the

base space is hyper-Kähler it has proven very useful to assume that the base space metric

has an additional triholomorphic isometry because, then, the metric is a Gibbons-Hawking

metric [31, 32] that depends on only one independent function customarily denoted by H

which is harmonic in E3. Writing the metric in terms of H and other derived functions

simplifies the equations that depend on the metric so much that in the ungauged case the

complete solution can be written in terms of several functions harmonic on E3.

It is natural to try the same strategy in the case at hands. We have shown in ref. [45]

that the most general Kähler metric admitting a holomorphic isometry can be written as14

ds2 = H−1 (dz + χ)2 +H
{

(dx2)2 +W 2(~x)[(dx1)2 + (dx3)2]
}
, (1.30)

with the functions H and W , and the 1-form χ, depending only on the three coordinates

xi and satisfying the constraints

(dχ)12 = ∂3H ,

(dχ)23 = ∂1H ,

(dχ)31 = ∂2

(
W 2H

)
,

(1.31)

whose integrability condition is

D2H ≡ ∂1∂1H + ∂2∂2

(
W 2H

)
+ ∂3∂3H = 0 . (1.32)

As shown in ref. [45], imposing different conditions on W one can recover more re-

stricted classes of metrics. In particular, when W = 1 the 3-dimensional metric is flat and

the constraint eqs. (1.31) reduce to

dχ = ?3dH , (1.33)

14The associated complex structure has been chosen to be the anti-selfdual

(Jmn) ≡

(
02×2 12×2

−12×2 02×2

)
. (1.29)

We will identify it with Φ̂(1).
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which implies that H is harmonic on E3 and the metric eq. (1.30) is a Gibbons-

Hawking metric.

The curvature of these metrics has been computed in appendix B using the results of

appendix A and we have also computed the curvature of the 5-dimensional metric eq. (1.13)

for the above base space in appendix C. In what follows we use the frames defined in

the appendices.

The simplest non-trivial example of Kähler manifold admitting a holomorphic isometry

is the non-compact symmetric space CP2
=SU(1, 2)/U(2) which is the base space of AdS5.15

Written in the conformastationary form eq. (1.13), AdS5 is a U(1) bundle over CP2
[48], the

non-compact version of the Hopf fibrations studied in ref. [49]. For the convenience of the

reader, we revisit this example in appendix D, giving the functions H and W corresponding

to CP2
and describing how to rewrite this metric in more standard coordinates.

Assuming our base space is of the above form, then, we can continue our analysis of the

equations that determine the supersymmetric solutions of minimal gauged supergravity.

To start with, if we choose a particular form for the complex structures Φ̂(2,3) we can

solve for Âm in eqs. (1.19) and (1.20).

In the frame given by eq. (B.2) and taking into account the choice of Φ̂(1) already made

in footnote 14, we can choose16

(Φ̂(2)
mn) =

(
iσ2 02×2

02×2 −iσ2

)
, (Φ̂(3)

mn) =

(
02×2 −iσ2

−iσ2 02×2

)
. (1.34)

Then, we find that the flat components of Â are given by

gÂ] = −H−1/2ω112 , gÂi = −H−1/2ωi13 , (1.35)

and, taking into account the 3-dimensional metric at hands, we find that we can write all

the components of Âm in the compact form

gÂm = Ĵm
n ∂n logW , (1.36)

and, thus, we have solved the three eqs. (1.18)–(1.20) (or, equivalently, the original eq. (1.9))

in terms of the functions that define the base space.

The consistency of this solution can be checked through the relation between the field

strength F̂mn and the Ricci 2-form R̂mn Eq. (1.25): using this relation, we get

R̂mn = −gF̂mn = 2∇̂[m|∇̂p logWĴp|n] , (1.37)

R̂mn = ∇̂m∇̂n logW + Ĵm
pĴn

q∇̂p∇̂q logW , (1.38)

R̂ = ∇̂2 logW 2 . (1.39)

15Actually, it is the only possible base space for AdS5 [25].
16The most general possible form for these matrices would be Φ̂(2) ′ = cos θ Φ̂(2) + sin θ Φ̂(3) and Φ̂(3) ′ =

cos θ Φ̂(3) − sin θ Φ̂(2), for some function θ, in which case Â → Â − 1
g
dθ, which amounts to just a gauge

transformation of the gauge fields.
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These expressions can be compared with the direct computation of the Ricci tensor

and scalar in appendix B. The expression of the Ricci scalar can be used in eq. (1.27) to

obtain a direct expression of the metric function f̂ in terms of the functions that define the

base space:

f̂−1 =
1

8g2
∇̂2 logW 2 . (1.40)

Now eq. (1.26) (or, equivalently, the original eq. (1.11)) is also completely solved by

eqs. (1.36) and (1.40), and the only equations that remain to be solved are eqs. (1.10)

and (1.28). Observe that, since both f̂−1 and F̂mn are given by second-order derivatives,

the remaining equations will be, at most, of fourth order in derivatives, instead of of sixth

order as in ref. [25]. We are going to try to rewrite them in a simpler form as in the

ungauged case.

Every (anti-)selfdual 2-form F± on the four dimensional Kähler base space can be

written in terms of a 1-form living on the 3-dimensional space ϑ = ϑidx
i as

F± = e] ∧ ϑ± 1

2
H ?3 ϑ . (1.41)

The 2-forms we consider here are also z-independent and so will the components of the

corresponding 1-forms be. Thus, we introduce the z-independent 3-dimensional 1-forms Λ,

Σ, and Ω± defined by

F̂+ = −1

2
(dz + χ) ∧ Λ− 1

2
H ?3 Λ , (1.42)

F̂− = −1

2
(dz + χ) ∧ Σ +

1

2
H ?3 Σ , (1.43)

(dω̂)± = (dz + χ) ∧ Ω± ±H ?3 Ω± , (1.44)

Comparing the expression of F̂− with eq. (1.26) and those of F̂+ and (dω)+ with

eq. (1.10) we conclude that

Σ = 4gf̂−1dx2 , (1.45)

Ω+ = −
√

3

4
f̂−1Λ . (1.46)

Requiring the closure of F̂ = F̂+ + F̂− one gets

d (Λ + Σ) = 0 , (1.47)

which means that, locally,

Λ = d (K/H)− Σ , (1.48)

for some functions K.

From the same condition, using eq. (1.32) and the definition of the operator D2 in that

equation, one also gets

D2K = 8g ∂2

(
HW 2f̂−1

)
. (1.49)
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Using eq. (1.25) and the equations in the appendices to compute the Ricci 2-form for

a metric of the kind we are considering here, one finds

gK = ∂2 logW 2 + κH , (1.50)

where κ is an arbitrary constant that reflects the possibility of adding to the solution of the

inhomogeneous equation (1.49) solutions of the homogeneous equation. This expression for

K, together with eq. (1.40), automatically solves the second-order equation eq. (1.49). It

is convenient to rewrite ω̂ as

ω̂ = ωz (dz + χ) + ω , ω = ωidx
i , (1.51)

in terms of which

Ω± = ±1

2
H−1 (ωz ?3 dχ+ ?3dω)− 1

2
dωz . (1.52)

From eqs. (1.46) and (1.48) we find that

Ω+ = −
√

3

4
f̂−1 [d (K/H)− Σ] , (1.53)

and, then, from eq. (1.52), we find that

Ω− = −Ω+ − dωz =

√
3

4
f̂−1 [d (K/H)− Σ]− dωz . (1.54)

Using either of the last two equations in eq. (1.52) one gets an equation for ω:

dω = H ?3 dωz − ωzdχ−
√

3

2
f̂−1H ?3 [d (K/H)− Σ] . (1.55)

Before calculating its integrability condition it is convenient to make a change of

variables (identical to the one made in the ungauged case) to (partially) “symplectic-

diagonalize“ the right-hand side. Thus, we define L and M through

f̂−1 ≡ L+
1

12
K2/H ,

ωz ≡ M +

√
3

4
LK/H +

1

24
√

3
K3/H2 .

(1.56)

Substituting these two expressions into eq. (1.55) and using the relation between the

1-form χ and the functions H and W , eqs. (1.31), the equation for ω takes the form17

dω = ?3

{
HdM −MdH +

√
3

4
(KdL− LdK)−H

(
ωz∂2 logW 2 − 2

√
3gf̂−2

)
dx2

}
,

(1.57)

and its integrability equation is just18

H∇2
M −M∇2

H +

√
3

4

(
K∇2

L− L∇2
K
)

− 1

W 2
∂2

{
HW 2

(
ωz∂2 logW 2 − 2

√
3gf̂−2

)}
= 0 .

(1.58)

17We have left one ωz in order to get a more compact expression.
18One has ?3d ?3 d = ∇2

.
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This equation can be simplified by using the equations satisfied by the functions H

and K (1.32) and (1.49), respectively. We postpone doing this until we derive the equation

for L, which follows from eq. (1.28). First of all, observe that, with our choice of complex

structure eq. (1.29)

Ĵ · (dω̂) = 4(dω̂)−02 = 4Ω−2 =
√

3f̂−1
[
∂2 (K/H)− 4gf̂−1

]
− ∂2ωz . (1.59)

On the other hand, we have

∇̂2f̂−1 = H−1∇2
f̂−1 ,

F̂ · ?̂F̂ = ΛmΛm − ΣmΣm = ∂m(K/H)∂m(K/H)− 2Σm∂m(K/H) ,

H∂m(K/H)∂m(K/H) = ∇2
(
K2

2H

)
+

K2

2H2
∇2
H − K∇2

K

H
,

(1.60)

and, using all these partial results into eq. (1.28), and (not everywhere, for the sake of

simplicity) the new variables eqs. (1.56), we arrive at

∇2
L− 1

12
(K/H)2∇2

H +
1

6
(K/H)∇2

K +
7

3
gHf̂−1∂2(K/H)

− 4√
3
gH∂2ωz − 4g2Hf̂−2 = 0 .

(1.61)

We can now use the relation between the 3-dimensional Laplacian and the D2 operator

and the equations for the functions H and K (1.32) and (1.49)

∇2
H =

D2H

W 2
− ∂2H

∂2W
2

W 2
−H

∂2
2W

2

W 2
= −∂2H

∂2W
2

W 2
−H

∂2
2W

2

W 2
,

∇2
K =

D2K

W 2
− ∂2K

∂2W
2

W 2
−K

∂2
2W

2

W 2
=

8g

W 2
∂2(HW 2f̂−1)− ∂2K

∂2W
2

W 2
−K

∂2
2W

2

W 2
,

(1.62)

and, setting κ = 0 for simplicity from now on, the equation for L becomes

∇2
L = 4H (gL)2 − 2

3
L (gK)2 − 4

3
gL∂2K −

1

3
gK∂2L+

4√
3
Hg∂2M . (1.63)

Using this equation in the integrability condition for the ω equation, eq. (1.58) we get

∇2
M = −

√
3gL

(
gKL+ 2∂2L

)
. (1.64)

While the appearance of these equations is quite compact, we have to take into

account that the functions appearing in them are not totally independent. Using

eqs. (1.32), (1.40), (1.50) and (1.56) we find the following equations that have to be added

to these:

D2H = 0 , (1.65)

gK = ∂2 logW 2 , (1.66)

L =
1

8g2H

{
∇2

logW 2 − 2

3

(
∂2 logW 2

)2}
. (1.67)
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Substituting them in the other two, we get fourth order differential equations for

H,M,W .

As was first noted in ref. [41] not every Kähler base space can give rise to a supersym-

metric solution. This can be seen here as follows: multiplying eq. (1.64) by W 2, differen-

tiating with respect to x2, eliminating ∂2M from the resulting equation with eq. (1.63),

and using eqs. (1.66) and (1.67) one gets a sixth order differential equation involving only

H and W 2, which are the functions that determine the Kähler base space. This is then a

constraint on the admissible base spaces, and while we did not check this explicitly it is

likely to be equivalent to the constraint found in ref. [42] for an arbitrary Kähler base space.

2 Examples

Before we set out to solve the equations, in order to gain some insight, it is convenient to

rewrite some simple and well-known supersymmetric solutions in the form we are propos-

ing here.

2.1 Reissner-Nordström-AdS5

Thus, let us consider the asymptotically AdS5 Reissner-Nordström (RN-AdS5) solutions,

which are given by the metric and vector field

ds2 = [k + h(r) + 1
3g

2r2]dt2 − dr2

[k + h(r) + 1
3g

2r2]
− r2dΩ2

(3,k) ,

A =
3q

r2
dt ,

h(r) = −2M

r2
+

3q2

r4

(2.1)

where M is the mass, q, the electric charge that we will assume to be positive for the

sake of simplicity,19 k = 1, 0,−1 the curvature of the 3-dimensional metric dΩ2
(3,k). More

explicitly, for k = 1 dΩ2
(3,1) ≡ dΩ2

(3) is the metric of the round sphere of unit radius

dΩ2
(3) =

1

4

[
(dψ + cos θ dϕ)2 + dΩ2

(2)

]
, dΩ2

(2) = dθ2 + sin2 θ dϕ2 , (2.4)

for k = 0 dΩ2
(3,0) is the metric of E3 with the normalization

dΩ2
(3,0) =

1

4

[
dψ2 + dΩ2

(2,0)

]
, dΩ2

(2,0) = (dx1)2 + (dx3)2 , (2.5)

19The mass and charge are defined in units in which

16πG
(5)
N

3ω(3)

= 2 , (2.2)

where G
(5)
N is the 5-dimensional Newton constant and ω(3) the volume of the round 3-sphere of unit radius,

for the k = 1 case. Equivalently, we have chosen units such that

3π

4G
(5)
N

= 1 . (2.3)
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and for k = −1 dΩ2
(3,−1) is the metric of H3. We have not succeeded in writing this metric in

the form of a fibration over another 2-dimensional space and, therefore, we will not be able

to rewrite the corresponding solution in the form required by supersymmetry. Actually, it

is well known that supersymmetry requires the following relation between the mass, the

charge and k:20

M2 = 3kq2 , (2.6)

and, therefore, we do not expect supersymmetric solutions for k = −1, except pure AdS5

space. However, pure AdS5 space cannot be described in the form required by k = −1.

We are going to rederive this result by rewriting the metric in the canonical form

eqs. (1.13), (1.30) and (1.31) we are proposing, identifying the functions f̂ , H,W, ωz and

the 1-forms χ, ω and checking that they satisfy the equations that we have derived from

supersymmetry.

First, we transform the coordinate ψ = z − 2√
3
gt and perform a gauge transformation

of the vector field to get

ds2 = (k + h)

[
dt+

1

2
√

3
g

r2

k + h
(dz + χ(k))

]2

− r2

4(k + h)

[
k + h(r) +

1

3
g2r2

]
(dz + χ(k))

2

− dr2

[k + h(r) +
1

3
g2r2]

− 1

4
r2 dΩ2

(2,k) , (2.7)

A = −
√

3

(
δ −
√

3q

r2

)[
dt+

1

2
√

3
g

r2

k + h
(dz + χ(k))

]
+

1

2
g
δr2 −

√
3q

k + h
(dz + χ(k)) ,

where χ(1) = cos θdϕ, χ(0) = 0 and δ is an arbitrary constant. Observe that, for h = 0

(pure AdS5) this transformation can only be made for k = 1. We will have to study more

carefully the asymptotic behaviour of the transformed solution for k = 0.

We also need to rewrite dΩ2
(2,k) and, correspondingly χ(k) as in eq. (D.34). f̂ , ωz, χ,H

and W can be read immediately from gtt, gtz, gzz and g11 = g33, respectively. grr should be

given by f̂−1H, but this only happens after a change of coordinates r = 2%1/2.21 The final

result is

f̂ = [k + h(%)]1/2 ,

H =
[k + h(%)]1/2

%[k + h(%) + 4
3g

2%]
,

W 2 = %2

[
k + h(%) +

4

3
g2%

]
Φ(x1, x3) ,

ωz =
2√
3
g

%

k + h(%)
,

χ = χ(k) ,

20The supersymmetric k = 1 RN-AdS5 solution was first found in ref. [43]. In ref. [42] it was shown that

it is the only supersymmetric solution with R×SO(4) isometry group. Here , we present it in the canoncial

supersymmetric form. The k = 0,−1 cases have isometry groups R×ISO(3) and R×SO(2, 2), respectively.
21We denote by % the coordinate x2 in eq. (1.30).
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ω = 0 ,

A = −
√

3

(
δ −
√

3q

4%

)
[dt+ ωz(dz + χ(k))] +

1

2
g

4δ%−
√

3q

k + h
(dz + χ(k)) , (2.8)

where, now

h(%) = −M
2%

+
3q2

16%2
, (2.9)

and Φ(k)(x
1, x3) and χ(k) have been defined in eqs. (D.34).

Eq. (1.65) is satisfied if

k + h =

(
k −
√

3q

4%

)2

, (2.10)

which implies the supersymmetry relation eq. (2.6).

The 1-form potential coincides with the one in eq. (1.14) if δ = k. In particular, and

eq. (1.36) is satisfied up to a gauge transformation.

The rest of the equations are also satisfied.

To summarize, the supersymmetric RN-AdS5 solutions for k = 0, 1 are given by

f̂ = k −
√

3q

4%
,

H =
k%−

√
3

4 q

4
3g

2%3 + k2%2 −
√

3
2 q%+ 3

16q
2
,

W 2 =

[
4

3
g2%3 + k2%2 −

√
3

2
q%+

3

16
q2

]
Φ(x1, x3) ,

ωz =
2√
3
g

%3

k2%2 −
√

3
2 q%+ 3

16q
2
,

χ = χ(k) ,

ω = 0 ,

A = −
√

3f̂ [dt+ ωz(dz + χ(k))] + 2g%f̂−1(dz + χ(k)) . (2.11)

Setting q = 0 in the k = 1 case we get AdS5 written in the canonical supersymmet-

ric form

ds2 =

[
dt+

2√
3
g%(dz + cos θdϕ)

]2

− %
[
1 +

4

3
g2%

]
(dz + cos θdϕ)2 − d%2

%[1+ 4
3g

2%]
− % dΩ2

(2) .

(2.12)

In appendix D we discuss the relation between this form of AdS5 and more popular

forms of the same metric with g =
√

3. As it is shown there, the base space is the symmetric

Kähler space CP2
. In ref. [44] it has been shown that this is the only possible base space

for AdS5. However, CP2
can be written in different ways, using the metric of S2, E2 or H2,

and we are going to see in the next example that there are 3 associated canonical metrics
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for AdS5 that can be used to construct more general solutions. The construction of these

metrics is explained in appendix D.

In the k = 0 case we also get AdS5, but in different (non-canonical) coordinates:

ds2 = %

[
4√
3
gdtdz + (dx1)2 + (dx3)2

]
− d%2

4
3g

2%2
. (2.13)

The %→∞ limit is, in these solutions, equivalent to setting q = 0. In the %→ 0 limits

both solutions give the following singular geometries

ds2 =
3q2

4%2
dt2 − %

[
16

3q2
d%2 + 4dΩ2

(3)

]
,

ds2 =
3q2

4%2
dt2 − %

[
16

3q2
d%2 + dz2 + (dx1)2 + (dx3)2

]
,

(2.14)

which are also examples of supersymmetric solutions written in the canonical form.

Finally, in the k = 1 case, the supersymmetric Killing vector becomes null at % =
√

3
4 q,

indicating the possible existence of a Killing horizon which would also be a candidate to

event horizon. It is convenient to work with the shifted coordinate %′ = % −
√

3
4 q, which

is zero at the point of interest. The radial coordinate of the solutions that we are going

to present in the next section also vanishes at the same point and, in order to ease the

comparison between the solutions, we rewrite here the k = 1 RN-AdS5 solution in the

shifted radial coordinate (suppressing the primes):

f̂ = %

(
%+

√
3

4
q

)−1

,

H = %

[
4g2

3
%3 + (1 +

√
3g2q)%2 +

3g2q2

4
%+

√
3g2q3

16

]−1

,

W 2H = %Φ(x1, x3) ,

ωz =
2g√

3
%−2

(
%+

√
3q

4

)3

,

(2.15)

and, in the %→ 0 limit, the metric takes the form

ds2 =
16

3q2
%2dt2 + gqdt(dz + χ(1))−

4

g2q2
d%2 −

√
3qdΩ2

(3) , (2.16)

and does not coincide with any of the near-horizon metrics constructed in ref. [25]. In

particular, observe that the metric of the hypersurface % = 0 has rank four, which means

that it cannot be null. It is a well-known fact that the supersymmetric RN-AdS5 solution

has a naked singularity.

2.2 AdS5

We have found three interesting ways of writing AdS5 in the supersymmetric canoni-

cal form:

ds2 =

[
dt+

2√
3
g%(dz + χ(k))

]2

−%
(
k+

4

3
g2%

)
(dz+χ(k))

2− d%2

%(k + 4
3g

2%)
−%dΩ2

(2,k) , (2.17)
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where dΩ2
(2,k) (the metric of the unit 2-sphere, plane and hyperplane for, respectively,

k = 1, 0 and −1) and χ(k) are given by eqs. (D.34). The case k = 1 has been given in

eq. (2.12). The base space has a metric of the form eq. (1.30) with

H−1 = %

(
k +

4

3
g2%

)
, W 2H = %Φ(k)(x

1, x3) χ = χ(k) . (2.18)

It is, by construction, a Kähler space with one holomorphic isometry. In agreement with

ref. [44], this metric is that of CP2
for the three values of k as shown in appendix D. In the

full 5-dimensional metric, the coordinate z has a different causal character in each case:

the norm of the Killing vector ∂z is gzz = −k%, and, since % has to be positive in all cases,

the coordinate z turns out to be null for k = 0 and timelike for k = −1.

For k = 1, as shown in appendix D, we can go to an unrotating coordinate system

with the change z = ψ + 2√
3
gt

ds2 =

(
1 +

4

3
g2%

)
dt2 − %(dψ + χ(1))

2 − d%2

%(1 + 4
3g

2%)
− %dΩ2

(2,1) , (2.19)

which is well defined for all positive values of %. For k = −1, changing z = ψ − 2√
3
gt we

get

ds2 = %(dψ + χ(−1))
2 −

(
4

3
g2%− 1

)
dt2 − d%2

%(4
3g

2%− 1)
− %dΩ2

(2,−1) , (2.20)

which is well defined for % > 3
4g2

and shows the timelike character of ψ and the spacelike

character of t. For k = 0 there is no analogous transformation. It is worth stressing that

the % coordinates of these three AdS5 metrics are different as the z and t coordinates are.

In the next section we are going to find two families of solutions using ansatzs adapted

to these three forms of AdS5. Only by using them the equations of motion become tractable.

Actually, rewriting the solutions found using the k = 0,−1 ansatzs in the k = 1 coordinates

(more conventional and better understood) although possible, leads to very complicated

metrics. Thus, it would be rather convenient to be able to analyze the asymptotic behaviour

of the k = 0,−1 solutions and compute their conserved charges directly in the k = 0,−1

coordinates.

Indeed, naively, some of the k = 0,−1 solutions we are going to present seem to

approach the above k = 0,−1 forms of the AdS5 metric or the naive asymptotic limit of

those metrics. However, given the many subtleties that arise in the study of asymptotically-

AdS solutions, a more rigorous analysis using Penrose’s conformal techniques [50], as in

ref. [51] is required.

Let us first study the three AdS5 metrics since, as we just discussed, their asymptotic

limits appear in the asymptotic limits of the most general solutions.

In the k = 1 case the only spacelike coordinate which is not compact is % ∈ [0,+∞)

and some components of the metric diverge in the % → +∞ limit. Thus, we make the

coordinate transformation % ≡ tan2 ξ, which brings the metric eq. (2.19) to the form

ds2 = 4 cos−2 ξ d̃s2 , (2.21)
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where

d̃s2 =

(
1

4
cos2 ξ + (g/

√
3)2 sin2 ξ

)
dt2− dξ2

4
(

1
4 cos2 ξ + (g/

√
3)2 sin2 ξ

)−sin2 ξ dΩ2
(3) . (2.22)

d̃s2 is regular at ξ = π/2 (%→ +∞) and becomes, at that point

d̃s2(ξ = π/2) = (g/
√

3)2dt2 − 1

4
dΩ2

(3) . (2.23)

This space is just R×S3, whose conformal isometry group is SO(2, 4). Since the conformal

factor relating the metrics Ω = cos ξ vanishes on the boundary ξ = π/2 but ∇aΩ does not,

according to the definition of ref. [51], the AdS5 metric, in the k = 1 form is asymptotically

AdS5 in the direction ρ→∞.22

In the k = −1 case there are two non-compact spacelike coordinates: % and θ. We

make in the metric eq. (2.20) the following changes of coordinates:

% ≡ tan2 ξ , ψ ≡ α+ β , ϕ = α− β , sinh (θ/2) = tan η , (2.24)

finding

ds2 = 4 cos−2 ξ cos−2 η d̃s2 , (2.25)

with

d̃s2 = sin2 ξ
[
dα2 − η2 − sin2 ηdβ2

]
− cos2 η

[(
(g/
√

3)2 sin2 ξ − 1

4
cos2 ξ

)
dt2 +

dξ2

4
(
(g/
√

3)2 sin2 ξ − 1
4 cos2 ξ

)] . (2.26)

In these coordinates, the boundary lies where the conformal factor Ω = cos ξ cos η

vanishes and it seems to correspond to two different pieces: ξ = π/2 and η = π/2. The

first piece has the induced metric

d̃s
2
(ξ = π/2) = dα2 − [dη2 + sin2 η dβ2 + cos2 η d(gt/

√
3)2] , (2.27)

which is the metric of R × S3, but now it is α the coordinate that plays the rôle of time

while t is an angle.

The second piece, though, has a singular metric. To understand the reason for the

existence of an apparent second piece of the boundary we can look at the relation between

the θ, % coordinates of the k = 1 and k = −1 case since, in the k = 1 case the boundary

coincides exactly with the %→∞ limit. This relation can be inferred from the k = 1 and

k = −1 parametrizations of CP2 in appendix D and takes the form

% = %̄ cosh θ̄/2− 3

4g2
, tan θ/2 =

2√
3
g%̄√

4
3g

2%̄− 1
sinh θ̄/2 , (2.28)

where the barred coordinates correspond to the k = −1 case. While %̄ → ∞ limit covers

the same region as the %→∞ limit (the boundary), a subspace of the same %→∞ region

22The Weyl tensor of AdS5 of course vanishes identically.
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with θ = ±π can be also reached in the limits θ̄ → ±∞. This subspace is covered twice.

We could, then, ignore the η = π/2 ξ 6= π/2 piece of the boundary and consider just the

ξ = π/2 one. However, the derivative of the conformal factor vanishes on the boundary at

η = π/2. We could exclude these points to avoid this problem and add the second piece of

the boundary, but, as we have seen, the induced metric is not regular there. Thus, at best,

in the k = −1 coordinates we can only describe part of the boundary and the solutions

that use these coordinates asymptotically will have the same problem.

Things are much more complicated in the k = 0 case. It is convenient to proceed in

two steps. First, we redefine the % coordinate as in the preceding cases in terms of ξ and

set ξ = π/2, getting

d̃s
2
(ξ = π/2) = (g/

√
3)dt[dz + 2(ydx− xdy)]− dx2 − dy2 . (2.29)

Then, we redefine x = ζ
2 cosϕ and y = ζ

2 sinϕ, getting

d̃s
2
(ξ = π/2) = (g/

√
3)dt

[
dz − ζ2

2
dϕ

]
− 1

4
[dζ2 + ζ2dϕ2] , (2.30)

and shift the t coordinate

dt→ dt− 4
(2 + ζ2)dz − 2zζdζ

16z2 + (2 + ζ2)2
, (2.31)

which can be done since the added part is a closed 1-form. Finally, we make the coordinate

transformation23

ψ =
2 cos η sin (δ − gt/

√
3)

3− 4 cos (δ − gt/
√

3) cos η + cos 2η
,

ζ2 =
4 sin2 η

3− 4 cos (δ − gt/
√

3) cos η + cos 2η
,

ϕ = γ − gt/
√

3− arccot

[
cot(δ − gt/

√
3)− 1

cos η sin(δ − gt/
√

3)

]
,

(2.32)

getting

d̃s2 =
1

3− 4 cos(δ − gt/
√

3) cos η + cos 2η

[
d(gt/

√
3)2 − dη2 − cos2 η dδ2 − sin2 η dγ2

]
,

(2.33)

which again is conformal to R× S3. The total conformal factor is now

Ω = cos ξ

√
3− 4 cos(δ − gt/

√
3) cos η + cos 2η , (2.34)

and, again, leads to a description of the boundary in two separate pieces. The analysis if

this case is much more involved and we will leave it for future work.
23To obtain these coordinate changes one can consider the embedding of AdS5 in C1,2 in terms of complex

coordinates Z0, Z1, Z2. The “correct” limit giving the asymptotic boundary of AdS is the one obtained

by sending |Z0| to infinity while leaving Z1, Z2 and the phase of Z0 independent. For any fixed value

of |Z0|, Z1 and Z2 parametrize a 3-sphere. One then wants to choose coordinates such that, at infinity,

Z1 ∼ sin η eiγ and Z2 ∼ cos η eiδ. In this way one manifestly recovers the wanted R×S3 structure, where the

S3 is parametrized by Z1 and Z2 in terms of the coordinates η, δ and γ, while the R factor is parametrized

by the phase t of Z0. The shift eq. (2.31) is necessary because, for k = 0, the t coordinate in eq. (2.29) is

not the phase of Z0, but was shifted to remove an additional term in χ.
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3 Solutions

In this section we are going to try to solve eqs. (1.63)–(1.67) to find supersymmetric solu-

tions of minimal gauged 5-dimensional supergravity.

We are going to search for solutions in which the functions H,L,M,K only depend on

the coordinate x2 which will play the rôle of “radial” coordinate and will be denoted by %

as in the previous section. This is possible if W 2 factorizes as follows

W 2 = Ψ(%)Φ(x1, x3) , (3.1)

where, in order to solve eq. (1.65) Ψ must take the form

H = (α%+ β)/Ψ , (3.2)

for some constants α and β. When α 6= 0 we can eliminate β by shifting % and we can set

α to 1 by rescaling %. However, if α = 0, we cannot eliminate completely β: at most we

can set it to 1 by rescaling Ψ. Thus, there are two possible cases to be considered that we

can parametrize with ε = 0, 1:

H = %ε/Ψ . (3.3)

If we assume that the metric function f̂ is a function of % only, then it follows from

eq. (1.40) that Φ is a solution of Liouville’s equation(
∂2

1 + ∂2
3

)
log Φ = −2kΦ , (3.4)

so that, for k = 1, 0,−1 it is given by the first of eqs. (D.34), then eqs. (1.64)–(1.67) simplify

considerably: first, eq. (1.66) gives

gK = Ψ′/Ψ , (3.5)

where primes denote derivation with respect to %. Then, eq. (1.64) M can be integrated

once to give

M ′ =
α

Ψ
−
√

3gL2 . (3.6)

This result can be used to eliminate M from eq. (1.63), giving

L′′ +
4

3
L′

Ψ′

Ψ
+

4

3
L

Ψ′′

Ψ
− 2

3
L

(
Ψ′

Ψ

)2

− 4√
3
αg

%ε

Ψ2
= 0 . (3.7)

This equation has to be supplemented by eq. (1.67), that now takes the form

L =
Ψ

8g2%ε

{
−2k

Ψ
− 2

3

(
Ψ′

Ψ

)2

+
Ψ′′

Ψ

}
. (3.8)

Using the last equation to eliminate L from the previous one, we get the promised

fourth order differential equation in Ψ

− 96
√

3αg3%2+2ε + 4%(Ψ′)2
(
3k%− εΨ′

)
+ 6Ψ

[
−ε(1 + ε)(Ψ′)2 − 4k%2Ψ′′ + 2ε%Ψ′

(
2k + Ψ′′

)]
+ 9Ψ2

{
ε (1 + ε) Ψ′′ − 2ε

[
k(1 + ε) + %Ψ′′′

]
+ %2Ψ′′′′

}
= 0 . (3.9)
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It is convenient to study the ε = 0 and ε = 1 cases separately. The respective equations

take the form

ε = 0 , ⇒ −32
√

3αg3 + 4k(Ψ′)2 − 8kΨΨ′′ + 3Ψ2Ψ′′′′ = 0 , (3.10)

and

ε = 1 , ⇒ 96
√

3αg3%4 + 4%(Ψ′)2 (−3k%+ Ψ′)

+12Ψ (2k%−Ψ′) (−Ψ′ + %Ψ′′) + 9Ψ2
(
4k − 2Ψ′′ + 2%Ψ′′′ − %2Ψ′′′′

)
= 0 .

(3.11)

Our experience with the RN-AdS5 solutions in section 2.1 suggests the use of a poly-

nomic Ansatz to solve eqs. (3.10) and (3.11):

Ψ =
N∑
n=0

cn%
n . (3.12)

In both equation, the term of highest order in % is always proportional to the coefficient

cN term in Ψ and this term only vanishes if cN = 0 or if N ≤ 3, implying that Ψ is at most

of 3rd order.

Let us analyze the ε = 1 and ε = 0 cases separately.

3.1 The ε = 1 case: rotating black holes

Eq. (3.11) (ε = 1) is only solved if either c0 = c1 = 0 or if c2 = k + c12

3c0
. A parametrization

of the solution in terms of three parameters a, b, c that covers both possibilities is24

Ψ =
1

a

[
c%3 + %2 + b%+

b2

3(1− ak)

]
, (3.13)

and the constant α in eq. (3.6) is constrained to take the value

α =
1 + 3ak + 3bc

[
3bc

1−ak − 2 (1− 2ak)
]

24
√

3a3g3
. (3.14)

Given the above values of Ψ and α, one can immediately compute W 2 using eqs. (3.1)

and (D.34), H using eq. (3.3) (with ε = 1), L using eq. (3.8), K using eq. (3.5) and M using

eq. (3.6). The latter, in particular, being the solution of a first-order differential equation,

contains an additional integration constant that we call d.

24For k = 1 this is the same as a solution found in [42] for a particular case of a scaling limit of the

orthotoric base ansatz the authors use. The other particular case of this limit analyzed in the same paper

leads to a solution which was already known [41] and that includes all known supersymmetric black hole

solutions. As it turns out, this very general solution also includes our solution for b = 0 and all three values

of k, even if this was not shown explicitly in those papers. Our approach is in any case more systematic,

since we have shown that these are the only possible solutions with polynomial Ψ compatible with the

assumptions we made.
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The functions that appear in the metric and 1-form field are

f̂ =
4a

c
(g/
√

3)2 %

%+ (1−ak)
3c

,

H =
a%

c%3 + %2 + b%+ b2

3(1−ka)

,

W 2H = %Φ(k) ,

χ = χ(k) ,

ωz = d+
b [9c%+ 2(1− ak)] + 3%

[
6c2%2 + 3c%(2− ak) + (1− ak)2

]
16
√

3g3a2%2
,

ω = −3
√

3ck

16g3a
χ(k) .

(3.15)

Notice that, since ω is given by a constant times χ(k), it can be reabsorbed in ωz with

a shift in the t coordinate, so that

ω = 0 , ωz = d+
18c2%3 + 18c(1− ak)%2 + [9bc+ 3(1− ak)2]%+ 2b(1− ak)

16
√

3g3a2%2
. (3.16)

Notice also that the full 5-dimensional metric is invariant under the rescaling t→ t/α,

% → α%, b → αb, c → c/α, d → d/α. This allows to set one of the constants b, c, d to 1,

provided it is not zero, leaving only three independent parameters. Then, assuming c 6= 0

(the c = 0 case will be dealt with later) we can use this freedom to normalize the metric

so that f̂ → 1 for large values of %, setting

4a

c
(g/
√

3)2 = 1 . (3.17)

Eliminating in this way c from the non-vanishing functions that define the family of

solutions, we get

f̂ = %

[
%+

(1− ak)

4ag2

]−1

H = %

{
4g2

3
%3 +

1

a
%2 +

b

a
%+

b2

3a(1− ka)

}−1

,

W 2H = %Φ(k) ,

χ = χ(k) ,

ωz = d+ %−2

{
2g√

3
%3 +

√
3(1− ak)

2ag
%2 +

[√
3b

4ag
+

√
3(1− ak)2

16a2g3

]
%+

b(1− ak)

8
√

3a2g3

}
.

(3.18)

Comparing this family of solutions with the supersymmetric RN-AdS5 solution in

eqs. (2.15) we find that the latter are included in the former for the following values of the

independent integration constants:

k = 1 , a = (1 +
√

3g2q)−1 , b =
3g2q2

4(1 +
√

3g2q)
, d = 0 . (3.19)
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Since the integration constant d is independent of the rest, we could extend the RN-

AdS5 solution by switching it on. The resulting solutions are no longer asymptotically

AdS5. This is true for the whole family of solutions presented here and, henceforth, we

will set d = 0 in what follows.

Taking

a−1 → k , b = d = 0 , (3.20)

we get the 3 different forms of the AdS5 metrics eq. (2.17).

Perhaps more interestingly, for

k = 1 , a =
1

4α2
, b = d = 0 , (3.21)

one recovers the asymptotically-AdS5, supersymmetric, charged, rotating black holes found

in ref. [44].25 The mass M , the non-vanishing angular momentum J and the electric charge

q of these solutions are given in terms of the only independent parameter a by26

M = R2
0 +

g2

2
R4

0 +
2g4

27
R6

0 , J =
g

2
√

3
R4

0 +
g3

9
√

3
R6

0 , q =
1√
3
R2

0 +
g

6
√

3
R4

0 , (3.22)

where R2
0 = (1− a)/(ag2), so that

M − 2g√
3
|J | =

√
3|q| . (3.23)

These black-hole solutions have a regular near-horizon geometry, and the horizon is a

squashed 3-sphere. This is just one of the three possible near-horizon geometries found in

ref. [44]. We are going to show that there are k = 0,−1 solutions which have the other two

near-horizon geometries. In particular, for

k = 0 , b = d = 0 , (3.24)

the remaining parameter a can be set to 1 with a rescaling of the coordinates and one

gets the solution obtained in ref. [44] as the “large black-hole limit” (R0 → ∞) of the

k = 1 solution.

3.1.1 Near-horizon geometries

The event horizon, if it exists, must be placed at % = 0. When the parameter b 6= 0,

our experience with the supersymmetric RN-AdS5 solution suggests that there is no event

horizon and the % → 0 limit is not a near-horizon geometry even if it is a regular one.

Therefore, we are going to study separately the b = 0 and b 6= 0 cases.

25To compare our solution with the solution described in section 4.1 of ref. [44] we first have to identify

the constants g/
√

3 = `−1, transform our radial coordinate x2 ≡ % = α2`2 sinh (ρ/`) and our isometric

coordinate z = φ. Furthermore, we have to make the usual coordinate transformation to go from conformally

flat coordinates x1, x3 to spherical ones (θ, ψ in ref. [44]) on the 2-sphere: x1 + ix3 = tan (θ/2) eiψ.
26Our normalization of the electric charge differs by a factor of 2 from that of ref. [44], so, for J = 0, we

get eq. (2.6). Furthermore, we remind the reader that we have chosen units such that eq. (2.3) holds.
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When b = 0, defining first the coordinates u, v

dt = ∓(1− ak)1/2(1 + 3ak)1/2

4ag

[
du− (1− ak)

4g2

d%

%2

]
,

dz = dv ±
√

3a
(1− ak)1/2

(1 + 3ak)1/2

d%

%
,

(3.25)

the near-horizon geometry can be written in a form that generalizes the one obtained for

the k = 1 case in ref. [44]

ds2 = ∆2%2du2 − 2dud%+
6k∆

`(∆2 − 3`−2)
%du(dv + χ(k))

− k

∆2 − 3`−2

[
k∆2

∆2 − 3`−2
(dv + χ(k))

2 + dΩ2
(2,k)

]
, (3.26)

where 3`−2 = g2 and we have defined

∆2 =
1 + 3ak

1− ak
g2 . (3.27)

Observe that the combination k/(∆2 − 3`−2) = (1− ak)/(4ag2) does not vanish for k = 0.

it does not become negative for k = −1 either.

For the k = 0 case, a rescaling of the coordinates v ≡ 4gω, x1 ≡ gx, x3 ≡ gy brings

the above near-horizon metric into the form

ds2 =
3

`2
%2du2 − 2dud%+

6

`
%du

[
dv′ +

√
3

2`
(ydx− xdy)

]

−

[
dv′ +

√
3

2`
(ydx− xdy)

]2

− dx2 − dy2 , (3.28)

which, at % = 0 gives the standard metric of the homogeneous Nil group manifold and

which, upon dimensional reduction along v′ gives the metric of AdS2 × E2.27

For k = −1 we rescale v ≡ −(∆2 − 3`−2)v′/∆ to obtain

ds2 = ∆2%2du2 − 2dud%+
6

`
%du

[
dv′ − ∆

∆2 − 3`−2
χ(k)

]
−
[
dv′ − ∆

∆2 − 3`−2
χ(k)

]2

+
∆

∆2 − 3`−2
dΩ2

(2,−1) , (3.29)

27The solution in eqs. (4.62) of ref. [44], which corresponds to our k = b = d = 0 solution, obtained as

the “large black-hole limit” (R0 →∞) of the k = 1 solution, has a horizon with precisely this near-horizon

geometry. However, the solution was considered by the authors to be not asymptotically-AdS5 because, the

asymptotic geometry, written in eq. (4.63) of that reference, was interpreted as a supersymmetric plane-

fronted wave. It is not difficult to see that, actually, is the k = 0 form of AdS5 as given in eq. (2.17) upon

the coordinate change % = S2. Thus, the “large black-hole limit” of the k = +1 black hole gives the k = 0

black hole.
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which, upon dimensional reduction along v′ gives the metric of AdS2 ×H2 and which, for

∆ = 0, gives the metric of AdS3 × H2 which arises as the near-horizon geometry of the

black strings of ref. [52].

When b 6= 0 we obtain in the %→ 0 limit a completely regular geometry that does not

correspond to a horizon:

ds2 =
16a2g4%2

(1− ak)2
dt2 +

4bg√
3(1− ak)

dt(dz + χ(k))−
3(1− ak)2

4b2g2
d%2 (3.30)

−1− ak
4ag2

{
9b2c2 + (1− ak)3(1 + 3ak)− 6bc(1− ak)2

4a(1− ak)3
(dz + χ(k))

2 + dΩ2
(2,k)

}
.

3.1.2 Asymptotic limits

The naive asymptotic limits of these solutions are the different forms of AdS5 presented

in section 2.2. However, these limits are very subtle and must be analyzed using the same

methods we used for the different forms of AdS5 at the end of section 2.2. We can use

exactly the same changes of coordinates. Then, it can be seen that only for c 6= 0 and

d = 0 these solutions can be asymptotically AdS5.

Notice however that for k = 0,−1 the conformal 4-dimensional metric presents a

singularity where the conformal factor multiplying the R×S3 metric diverges. For pure

AdS5 this problem can of course be solved by simply changing to the usual (k = 1) global

coordinates, which amounts to taking a slightly different asymptotic limit. For the full

solutions however this is not the case: we have verified that for k = −1 a simple k = 1

AdS5-like coordinate transformation leads to a Weyl tensor that diverges in η = π
2 for all

values of ξ, while it vanishes in ξ = π
2 if η 6= π

2 . The situation can be improved with

a modified coordinate transformation giving a regular Weyl tensor, which however still

diverges as one approaches (ξ, η) = (π2 ,
π
2 ). This could indicate that these solutions do not

asymptote to AdS5 globally, but only locally.

The k = 0 case is more complicated, due to the more involved transformation between

the correspondent AdS parametrization and the k = 1 one, and we have not studied this

case in detail. One could expect however a similar behaviour as in the k = −1 case.

3.1.3 The conserved charges

For k = 1 we can compute the conserved charges of the solutions following the prescription

given in [51]. The mass is given by the conserved charge associated to the Killing vector

pointing along the time direction of the conformal boundary R×S3 metric, and is

M =
−31a4 + a3(43− 76g2b) + a2(3 + 44g2b− 64g4b2) + a(−11 + 32g2b)− 4

54g2a3(a− 1)
. (3.31)

The angular momenta associated to ∂ψ and ∂φ are

Jψ =

[
a2 − 2a(1 + 2g2b) + 1

] [
7a2 + a(−5 + 8g2b)− 2

]
18
√

3a3g3(a− 1)
, Jφ = 0 . (3.32)
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The electric charge can be computed integrating the Hodge dual of the gauge field

strength over a 3-sphere at infinity, and is given by

Q =
−5a2 + 4a(1− g2b) + 1

6
√

3a2g2
. (3.33)

It is straightforward to verify that these expressions reduce to the expected values for

the Gutowski-Reall black hole and for RN-AdS5, and that the BPS bound eq. (3.23) is

satisfied for all values of the parameters a and b.

3.1.4 A homogeneous solution?

Besides the three different parametrizations of AdS5 mentioned above, there is another

choice of the parameters giving a solution apparently free of curvature singularities, for

which in particular the Ricci and Kretschmann scalars and the Ricci tensor fully contracted

with itself are all constant. It is given by k = 0, d = 0 and b = 1
3c = 1

4ag2
, and its metric,

after a rescaling of the coordinates, is given by

ds2 =
3

4g2

[
%2

(1 + %)2
dt2 + 2(1 + %)dt(dz + χ(0))−

d%2

(1 + %)2
− (1 + %)dΩ2

(0)

]
(3.34)

with gauge field strength

F = − 3

2g

d% ∧ dt
(1 + %)2

. (3.35)

Since b 6= 0 the solution is horizonless, and since d = 0 it is asymptotically, at least

locally, AdS5.

In terms of a Vielbein

F = −2g
e2 ∧ (e0 − e1)

%
. (3.36)

3.1.5 The c = 0 solutions

The c = 0 solutions (with d = b = 0) can be seen to coincide identically with the near-

horizon geometries recovered in section 3.1.1: setting b = c = d = 0 in eqs. (3.15) and (3.16)

we get a metric that coincides exactly with that determined by the leading terms in the

%→ 0 limit. The change of coordinates eq. (3.25) and the replacement of the parameter a

by ∆ defined in eq. (3.27) brings it into the form eq. (3.26). The near-horizon configuration

is a supersymmetric solution in its own right ad it is included in the general solution that

we have presented.

3.2 The ε = 0 case: Gödel universes

First of all, in this case, eq. (1.31) implies dχ = 0, and one can set χ = 0. Thus, we

can absorb any constant term in ωz in a redefinition on t. Furthermore, the integration

constant α in eq. (3.6) must take the value

α = k
c1

2 − 4c0c2

8
√

3g3
, (3.37)
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and one has to distinguish between the k = 0 case, in which Ψ can be an arbitrary 3rd

order polynomial, and the k 6= 0 one, in which c3 must vanish, meaning that Ψ must be of

just 2nd order.

For ε = 0 and k = 0 this gives (after the integration to obtain M)

f̂−1 =
c2 + 3c3%

4g2
,

H−1 = c0 + c1%+ c2%
2 + c3%

3 ,

W 2H = Φ(0) ,

χ = 0 ,

ωz =

√
3

16g3

[
(c2

2 + 3c1c3)%+ 6c2c3%
2 + 6c2

3%
3
]
,

ω = −
√

3
c2

2 − 3c1c3

16g3
χ(0) ,

(3.38)

so that, in particular, the metric takes the form

ds2 =
16g4

(c2 + 3c3%)2

{
dt+

√
3

16g3

[
(c2

2 + 3c1c3)%+ 6c2c3%
2 + 6c2

3%
3
]
dz

+

√
3

8g3
(c2

2 − 3c1c3)(xdy − ydx)

}2

− 1

4g2
(c2 + 3c3%)(c0 + c1%+ c2%

2 + c3%
3)dz2

− 1

4g2

(c2 + 3c3%)

(c0 + c1%+ c2%2 + c3%3)
d%2 − 1

g2
(c2 + 3c3%)(dx2 + dy2) . (3.39)

For ε = 0 and k 6= 0, the functions that define the solution are given by

f̂−1 =
c2 − k

4g2
,

H−1 = c0 + c1%+ c2%
2 ,

W 2H = Φ(k) ,

χ = 0 ,

ωz = −(3k − c2) (k + 3c2)

16
√

3g3
% ,

ω =
(k − 3c2) (3k + c2)

16
√

3g3
χ(k) ,

(3.40)

so that the metric, in particular, takes the form

ds2 =
16g4

(c2 − k)2

{
dt− (3k − c2)(k + 3c2)

16
√

3g3
%dz +

(3k + c2)(k − 3c2)

16
√

3g3
χ(k)

}2

− (c2 − k)

4g2
(c0 + c1%+ c2%

2)dz2 − (c2 − k)

4g2(c0 + c1%+ c2%2)
d%2 − (c2 − k)

4g2
dΩ2

(k) . (3.41)

The parameters of the solutions above can be reduced by shifting and rescaling %. The

remaining independent possibilities are:
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1. k = 0, c3 = 1, c2 = 0, c1 and c0 arbitrary.

2. k = 0,±1, c3 = 0, c2 6= 0, c2 > k, c1 = 0 and c0 = 0.

3. k = 0,±1, c3 = 0, c2 6= 0, c2 > k, c1 = 0 and c0 = 1.

4. k = −1, c3 = 0, c2 = 0, c1 = 1 and c0 = 0.

5. k = −1, c3 = 0, c2 = 0, c1 = 0 and c0 = 1.

Furthermore, for the cases 2. and 3., if k = 0, it is possible to set c2 = 1.

Case 1. is in general of difficult interpretation, however if c1 = c0 = 0 the solution after

a rescaling of the t coordinate takes the form

ds2 =
3

4g2

[
dt2

%2
+ 2%dtdz − d%2

%2
− %dΩ2

(0)

]
(3.42)

F =
3

2g

d%

%2
∧ dt . (3.43)

The Ricci and Kretschmann scalars and the Ricci tensor fully contracted with itself

are constant for this metric, suggesting it may represent a homogeneous space. The gauge

field strength is constant if expressed in terms of a Vielbein, and represents a homogeneous

electric field directed along %.

In all the remaining cases the abovementioned curvature scalars are constant.

Cases 2. and 3.:

ds2 =

(
4g2

c2 − k

)2 [
dt− (3k − c2)(k + 3c2)

16
√

3g3c2

χ(−1) +
(k − 3c2)(3k + c2)

16
√

3g3
χ(k)

]2

− c2 − k
4g2c2

[
dΩ2

(−1) + c2dΩ2
(k)

]
. (3.44)

Cases 4. and 5.:

ds2 = 16g4

[
dt+

√
3

16g3

(
χ(−1) − χ(0)

) ]2

− 1

4g2

[
dΩ2

(0) + dΩ2
(−1)

]
. (3.45)

The general expression of the gauge field strength for c3 = 0 is

F =
1

4g(c2 − k)

[(
3k2 + 4c2k + c2

2

)
d% ∧ dz +

(
k2 + 4kc2 + 3c2

2

)
Φ(k)dx

3 ∧ dx1
]
. (3.46)

Notice that the metric and gauge field for cases 4. and 5. can actually be seen as the

particular case k = 0 of the ones for cases 2. and 3., so that all cases with c3 = 0 have

metric (3.44) and gauge field strength that can be rewritten as

F =
1

4gc2(c2 − k)

[(
3k2 + 4c2k + c2

2

)
dχ(−1) +

(
k2 + 4kc2 + 3c2

2

)
c2dχ(k)

]
. (3.47)

These solutions are 5-dimensional supersymmetric generalizations of the 4-dimensional

Gödel’s rotating universe [53], which also solves Einstein’s equations with a cosmological
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constant and contain the 2-dimensional metric dΩ2
(−1) and the associated 1-form χ(−1).

As in that case and also in the case of the 5-dimensional Gödel solution of the ungauged

theory [15, 54], the solution contains closed timelike curves. Those solutions are also

homogeneous spaces and it would be interesting to know if the three solutions presented

share this property, as the constancy of their curvature invariants seems to indicate. In

the ungauged 5-dimensional case [55], the dimensional reduction over the time direction

gives rise to a solution of Euclidean N = 2, d = 4 supergravity with an anti-selfdual

Abelian instanton field and a geometry which, instead of E4 is given by H2 × (S2,E2,H2)

geometry. It is also likely that these 3 Gödel solutions can be obtained from the 3 near-

horizon geometries discussed above by the limiting procedure proposed in ref. [55], since

the standard Penrose limit cannot be used in gauged supergravity.28

4 Reduction to d = 4

The dimensional reduction over a circle of the theory of minimal 5-dimensional supergravity

gives a theory of N = 2, d = 4 supergravity coupled to one vector multiplet and determined

by the cubic prepotential F = −(X 1)3/X 0. The complex scalar t ≡ −X 1/X 0 parametrizes

an SL(2,R)/SO(2) σ-model with Kähler potential eK = (=m t)3. The relation between this

and the rest of the 4-dimensional fields and the 5-dimensional ones (for which we use hats

here: ĝµ̂ν̂ and Âµ̂, where µ̂ = µ, z) is given by

gµν = k

(
ĝµν +

ĝµz ĝνz
k2

)
, (4.1)

A0
µ = − 1

2
√

2

ĝµz
k2

, (4.2)

A1
µ = − 1

2
√

6
Âµ +

1√
3
ÂzA

0
µ , (4.3)

t =
1

2
√

3
Âz +

i

2
k , (4.4)

where

k2 = −ĝzz , (4.5)

is the Kaluza-Klein (KK) scalar measuring the local size of the compactification circle. It

is assumed to be positive so the isometric coordinate z is spacelike.

The dimensional reduction of bosonic sector of the minimal, gauged, 5-dimensional the-

ory of supergravity gives exactly the same action with the same relations between the 5- and

the 4-dimensional fields except for an additional term corresponding to the 5-dimensional

constant.29 In d = 4 it appears multiplied by the KK scalar and becomes a negative-

definite (but unbound) scalar potential. Taking into account the relation between the 5-

and the 4-dimensional gauge coupling constants g = −g4/
√

24, the 4-dimensional scalar

potential is

V4 = −(g4/
√

3)2(=m t)−1 . (4.6)

28We thank P. Meessen for comments on this point.
29In presence of hypermultiplets one can get additional terms in the scalar potential using generalized

dimensional reduction [56].

– 30 –



J
H
E
P
0
4
(
2
0
1
7
)
0
1
7

This potential does not have any extremum at regular points of the scalar manifold

and, therefore, the theory does not admit an AdS4 vacuum.30 The most symmetric super-

symmetric vacuum solution is probably the one obtained by dimensional reduction of the

AdS5 which we are going to review shortly. Since AdS5 is the only maximally supersym-

metric solution of minimal, gauged, 5-dimensional supergravity, this is only solution that

could be maximally supersymmetric in the 4-dimensional theory.31 All the asymptotically-

AdS5 solutions become 4-dimensional solutions that have the same asymptotic behaviour

as that solution.

Using the above rules for the dimensional reduction, the metric and 2-form potential

of the timelike supersymmetric solutions give rise to the following 4-dimensional fields:

ds2 = e2U (dt+ ω)2 − e−2Uγrsdx
rdxs , (4.8)

A0 =
1

2
√

2

{
− f̂

2ωz
k2

(dt+ ω) + χ

}
, (4.9)

A1 = − 1

2
√

6

{
f̂2ωz
k2

[
−
√

3f̂ωz +
∂2 logW 2

2gH

]
(dt+ ω)

}
,

− 1

2g

(
∂1 logW 2dx3 − ∂3 logW 2dx1

)
, (4.10)

t =
1

2

[
−f̂ωz +

∂2 logW 2

2
√

3gH

]
+
i

2
k , (4.11)

where

k2 = f̂−1H−1 − f̂2ω2
z , (4.12)

γrsdx
rdxs = (dx2)2 +W 2[(dx1)2 + (dx3)2] , (4.13)

e−2U = kf̂−1H =

√
HL3 +

1

16
L2K2 −M2H2 −

√
3

2
MLKH +

1

12
√

3
MK3 , (4.14)

and H,K,L,M,W,ω and χ are the same functions and 1-form that occur in the 5-

dimensional metric. The functions H,K,L,M can be identified with the building blocks

of the 4-dimensional timelike supersymmetric solutions (harmonic functions on E3 in the

ungauged case).

The most interesting examples we can apply these relations to are AdS5 and the

Gutowski-Reall black hole.32

30In the dimensional reduction of a non-minimal gauged theory with vector supermultiplets and a 5-

dimensional scalar potential V5(φ) we obtain a 4-dimensional scalar potential which will always be of

the form

V4 = k−1V5(φ) , (4.7)

and analogous observations apply as well.
31Any maximally supersymmetric solution of the 4-dimensional solution must necessarily correspond to

a maximally supersymmetric solution of the 5-dimensional theory. The converse is not true.
32The dimensional reduction of the supersymmetric Reissner-Nordström-AdS5 solution gives a singular

solution.
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4.1 Reduction of AdS5

Applying the above relations to the k = 1 supersymmetric form of AdS5 in eq. (2.12) we

get the 4-dimensional solution

ds2 = %1/2(1 +
1

18
g2

4%)dt2 − d%2

%1/2(1 + 1
18g

2
4%)
− %3/2dΩ2

(2,1) , (4.15)

A0 =
1

2
√

2
χ(1) , (4.16)

A1 =
1

g4
χ(1) , (4.17)

t = − 2

g4
+
i

2
%1/2 . (4.18)

This solution is singular at % = 0 In particular, the imaginary part of the scalar t

vanishes there. The underlying reason is that the compactification circle’s radius, measured

by the KK scalar, shrinks to zero at ρ = 0. Asymptotically, the metric is conformal to

that of R× S2, but it cannot be considered asymptotically-AdS4 because the Weyl tensor

diverges in this limit [51]. This asymptotic behaviour is shared by all the asymptotically-

AdS5 solutions written in the k = 1 form, such as the Gutowski-Reall black hole.

Typically, some supersymmetry is always broken in the dimensional reduction of AdS5.

This will happen if the 5-dimensional Killing vector depends on the isometric coordinate

z. To find whether this is the case and how much supersymmetry can be preserved in

4 dimensions one has to solve explicitly the Killing spinor equation which, for vanishing

vector field strength, with our choice of FI term, and setting g =
√

3, is given by

δεψ
i
µ = ∇µεi +

i

2
σ1 i

jγµε
j = 0 , (4.19)

where σ1 is the first Pauli matrix.

The t component of this equation is{
∂t +

1

4
Ĵmnγ

mn +
i

2
γ0σ1

}
ε = 0 , (4.20)

and is solved by

ε = e−{
1
4
Ĵmnγmn+ i

2
γ0σ1}t η(%, z, x1, x3) . (4.21)

The % component of the Killing spinor equation reduces to the following equation for

the t-independent spinor η:{
∂% −H1/2 1

2

(
γ0] + iγ2σ1

)}
η = 0 , (4.22)

where H−1 = %(1 + 4%), which is solved by

η = e
∫
d%H1/2 1

2(γ0]+iγ2σ1)ξ(z, x1, x3) . (4.23)

The z component, then, reduces to

{∂z +A} ξ = 0 , (4.24)
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where
A = −e−B

{
1
8 Ĵmnγ

mn +
(
2%+H−1/2γ0]

)
1
2

(
γ]2 − iγ0σ1

)}
eB ,

B =

∫
d%H1/2 1

2

(
γ0] + iγ2σ1

)
.

(4.25)

Since the Killing spinor equations are integrable, we know that A is %-independent, but its

actual value is important to determine whether ξ, and hence ε, is z-dependent or not. A

long calculation gives A = −1
8 Ĵmnγ

mn and

ξ = e
1
8
Ĵmnγmnz ζ(x1, x3) . (4.26)

The z-independent part of this spinor (and of the whole Killing spinor ε) is the one

satisfying the projection

1

2
Ĵmnγ

mnε = γ]2
1

2
(1 + γ]123)ε = γ]2

1

2
(1 + γ0)ε = 0 , (4.27)

which is the condition generically satisfied by the timelike Killing spinors of N = 2, d = 4

theories. Most of the timelike supersymmetric solutions of the minimal, gauged 5-

dimensional supergravity must satisfy this condition as well.

4.2 Reduction of the Gutowski-Reall black hole

The Gutowski-Reall black hole is determined by

f̂ =
%

%+ 4α2−1
4g2

, H−1 =
4

3
%(3α2 + g%) , W 2 = %H−1Φ(1) ,

ωz =
3(4α2 − 1)2 + 24(4α2 − 1)g2%+ 32g4%2

16
√

3%
, ω = 0 ,

and, according to the general rules, we get a 4-dimensional in which the two 1-form fields

and the scalar field take non-trivial expressions. We are just interested in the metric

function and the KK scalar, which take the form

k2 =
3(4α2 − 1)3 + 64(4α2 − 1)2(α2 + 2)g2%+ 576(4α2 − 1)g4%2 + 768g6%3

48g2[(4α2 − 1) + 4g2%]2
, (4.28)

e−2U =
3k[(4α2 − 1) + 4g2%]

16g2%2(3α2 + g%)
, (4.29)

e−2UW 2 = k

[
%+

4α2 − 1

4g2

]
Φ(1) . (4.30)

In the % → ∞ limit the metric of this solution has the same behaviour as that of the

previous one. More interestingly, in the %→ 0 limit

k2 ∼ 4α2 − 1

16g2
≡ k2

fix , e−2U ∼
k3

fix

α2

1

%2
, e−2UW 2 ∼ 4k3

fix , (4.31)

corresponding to an AdS2×S2 near-horizon geometry in which the two factor spaces have

different radii.

Thus, the Gutowski-Reall black hole reduces to a static, extremal, 4-dimensional black

hole with exotic asymptotics.
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5 Conclusions

In this paper we have shown how the metric ansatz of ref. [45] simplifies the equations the

determine the timelike supersymmetric solutions of 5-dimensional minimal gauged super-

gravity and allows one to find quite general families of interesting solutions such as the

black holes with non-compact horizons and the Gödel-like solutions.

Our ansatz was inspired by the Gibbons-Hawking ansatz for the base space made in

ref. [15] in the ungauged theory. However, there is a very important difference between

the gauged and ungauged cases (beyond the Kähler and hyper-Kähler nature of the base

spaces): in the ungauged case, given a choice of base space, it is possible to construct

many different solutions which can be seen as “excitations” over the vacuum defined by the

choice: the choice of metric function f̂ and of the harmonic function H that determines the

Gibbons-Hawking metric are independent. In the gauged case the situation is much more

complicated because the base space is different for each different solution: the functions

H and W that define the Kähler metric with one isometry depend on the metric function

f̂ and there is a different Kähler geometry for each solution. Of course, this also happens

for other Kähler metric ansatzs. With our ansatz this dependence can be controlled more

efficiently and it is possible to generate systematically all the required Kähler solutions.

The search for new solutions is necessarily the search for new Kähler geometries or new

forms for the same Kähler geometries.

Another surprise we have found (in particular, in the study of the vacuum solutions

AdS5) is the convenience (or even necessity) of using different forms of the same base and

how the coordinates of the base space (all Euclidean in the base space) can have very

different causal characters in the full 5-dimensional metric.

The scope of our investigations was restricted to the simplest solutions with an event

horizon. These are black holes with only one independent angular momentum. However,

supersymmetric rotating black-hole solutions with more independent angular momenta

have also been constructed in ref. [57] and, associated to the general form of their base

space which can be adapted to our ansatz, we expect to find other families of solutions.

Furthermore, we would like to extend our results to matter-coupled theories to reproduce

and extend the results found in ref. [58]. Work in these directions is in progress [59].
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A 3-d metrics

Let us consider 3-dimensional Riemannian metrics of the form

ds2 = γijdx
idxj = (dx2)2 +W 2[(dx1)2 + (dx3)2] , (A.1)

where W depends on the three coordinates xi, i = 1, 2, 3 in an arbitrary way. A convenient

basis of Dreibeins is{
v1,3 = Wdx1,3 ,

v2 = dx2 ,

{
v1,3 = W−1∂1,3 ,

v2 = ∂2 .
(A.2)

The non-vanishing components of the spin connection are

ω112 = ω332 = −∂2 logW , ω113 = −∂3 logW , ω331 = −∂1 logW , (A.3)

and those of the Riemann curvature tensor are

R1212 = R2323 = W−1∂2
2W , R1213 = W−1∂2∂3 logW ,

R1313 = W−2
(
∂2

1 + ∂2
3

)
logW +

(
∂2W

)2
, R1323 = W−1∂2∂1 logW ,

(A.4)

those of the Ricci tensor are

R11 =
1

2
W−2

(
∂2

1 + ∂2
3 +W 2∂2

2

)
logW 2 +

1

2

(
∂2 logW 2

)2
, R22 = W−1∂2

2W ,

R12 =
1

2
W−1∂1∂2 logW 2 , R23 =

1

2
W−1∂3∂2 logW 2 ,

R33 = R11 .

(A.5)

The Ricci scalar is given by

R = W−2
(
∂2

1 + ∂2
3 + 2W 2∂2

2

)
logW 2 + 2

(
∂2 logW 2

)2
. (A.6)

B 4-d Euclidean metrics with one isometry

Any 4-dimensional Euclidean metric admitting one isometry can be written in the form

dŝ2 = H−1(dz + χ)2 +Hγijdx
idxj , (B.1)

where z = x] is the coordinate adapted to the isometry and where the 3-dimensional func-

tion H, the 1-form χ = χidx
i and the metric γijdx

idxj , i, j = 1, 2, 3 are z-independent and

orthogonal to the Killing vector km = δz
m. We denote the world indices by {m} = {z, i}

and the flat indices by {m} = {], i}. We will denote 3-dimensional structures (connec-

tion, curvature etc.) by an overline, as in the previous appendix. For the moment, the

3-dimensional structures will be completely general and only later on we will assume the

3-dimensional metric to have the form eq. (A.1) and H, χ and W to be related by th
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W -deformed monopole equation (1.31) which holds when the 4-dimensional metric above

is a Kähler metric with respect to the complex structure eq. (1.29).

A convenient basis of Vierbeins is{
V̂ ] = H−1/2(dz + χ) ,

V̂ i = H1/2vi ,

{
V̂] = H1/2∂z ,

V̂i = H−1/2(∂i − χi∂z) ,
(B.2)

where vi = vijdx
j are Dreibeins of the metric γij , ∂i ≡ vij∂j and χi ≡ vijχj .

The non-vanishing components of the spin connection 1-form, defined through the

structure equation Dem ≡ dem −$m
n ∧ en = 0 are

$]]i =
1

2
H−3/2∂iH , $]ij =

1

2
H−3/2(dχ)ij ,

$i]j = $]ij , $kij = H−1/2ωkij +H−3/2∂[iHδj]k ,

(B.3)

where (dχ)ij = 2vi
kvj

l∂[jχl] and ωkij is the 3-dimensional connection defined by Dvi =

dvi − ωij ∧ vj = 0.

Those of the curvature 2-form, defined through R̂mn ≡ d$m
n −$m

p ∧$p
n, are

R̂]i]j = −1

2
H−2∇j∂iH +

1

4
H−3

[
5∂iH∂jH − δij(∂H)2 − (dχ)jl(dχ)il

]
,

R̂kj]i = ∇k[H−2(dχ)ji] +
1

2
H−3

[
2∂[kH(dχ)j]i + ∂lH(dχ)l[kδj]i

]
,

R̂klij = H−1

{
Rklij + 2H−1∇[k∂

[iHδj]l] + 3H−2∂[iHδj][k∂l]H

+
1

2
H−2(∂H)2δij , kl +

1

2
H−2

[
(dχ)ij(dχ)kl − (dχ)i[k(dχ)l]j

]}
.

(B.4)

The components of the Ricci tensor are

R̂]] = −1

2
H−2∇2

H +
1

2
H−3(∂H)2 − 1

4
H−3(dχ)2 ,

R̂]i =
1

2
∇j
[
H−2(dχ)ji

]
,

R̂ij = H−1Rij +
1

2
δijH

−2∇2
H +

1

2
H−3

[
∂iH∂jH − δij(∂H)2 + (dχ)ik(dχ)jk

]
,

(B.5)

and the Ricci scalar is given by

R̂ = H−1R+H−2∇2
H − 1

2
H−3

[
(∂H)2 − 1

2
(dχ)2

]
. (B.6)

Observe that if the conditions

Rij = 0 , (dχ)ij = εijk∂lH , (B.7)

are satisfied the metric eq. (B.1) is a Gibbons-Hawking metric (a hyperKähler metric

admitting a triholomorphic isometry) [31, 32] and it is Ricci-flat. If the metric is Kähler

with respect to the complex structure eq. (1.29) so that the 3-dimensional metric has the
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form eq. (A.1) and H, χ and W are related by the W -deformed monopole equation (1.31),

then we can use the results in appendix A to find that the non-vanishing components of

the Ricci tensor are given by

R̂]] = R̂22 =
1

2
∂2

(
H−1∂2 logW 2

)
,

R̂11 = R̂33 =
1

2
H−1W−2

(
∂2

1 + ∂2
3

)
logW 2 +

1

2
H−1

(
∂2 logW 2

)2
+

1

2
H−2∂2H∂2 logW 2 ,

R̂01 = R̂23 = −1

2
H−2W−1∂3H∂2 logW 2 +

1

2
H−1W−1∂3∂2 logW 2 ,

R̂03 = −R̂12 =
1

2
H−2W−1∂1H∂2 logW 2 − 1

2
H−1W−1∂1∂2 logW 2 .

(B.8)

Exactly the same result is obtained by using eq. (1.38).

Finally, the Ricci scalar is given by

R̂ = ∇̂2 logW 2 = H−1∇2
logW 2

= H−1W−2
{(
∂2

1 + ∂2
3

)
logW 2 + ∂2

(
W 2∂2 logW 2

)}
.

(B.9)

C 5-d metrics

Let us consider the time-independent 5-dimensional Lorentzian conformastationary metric

ds2 = f̂2 (dt+ ω̂)2 − f̂−1hmndx
mdxn , m, n = ], 1, 2, 3 . (C.1)

The function f̂ and the 1-form ω̂ = ω̂mdx
m can be understood as objects living in the

4-dimensional Euclidean metric hmn. We will denote this kind of objects with hats.

We choose the Vielbein basis

e0 = f̂(dt+ ω̂) , e0 = f̂−1∂t ,

em = f̂−1/2V̂ m , em = f̂1/2(∂m − ω̂m∂t) .
(C.2)

where the V̂m
ps are a Vierbein for the 4-dimensional Euclidean metric hmn and, just as we

did with the 3- and 4-dimensional metrics studied before, all the objects in the r.h.s. of

all the equations refer to the 4-dimensional metric hmn and the Vierbein basis V̂ p (∂m =

Vm
p∂p).

With this choice of Vielbein, the non-vanishing components of the spin connection are

ω00m = −2∂mf̂
1/2 , ω0mn =

1

2
f̂2 (dω̂)mn ,

ωm0n =
1

2
f̂2 (dω̂)mn , ωmnp = −f̂1/2$mnp − 2δm[n∂p]f̂

1/2 ,

(C.3)

where we are denoting by $mnp the 4-dimensional spin connection.
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The non-vanishing components of the Ricci tensor are

R00 = −∇̂2f̂ + f̂−1(∂f̂)2 − 1

4
f̂4(dω̂)2 ,

R0m = −1

2
f̂−1/2∇̂n[f̂3(dω̂)nm] ,

Rmn = f̂ R̂mn −
1

2
(dω̂)mp(dω̂)np +

3

2
f̂−1∂mf̂∂nf̂ −

1

2
δmn[∇2f̂ − f̂−1(∂f̂)2] ,

(C.4)

and the Ricci scalar is given by

R = −f̂ R̂+
1

4
(dω̂)2 + ∇̂2f̂ − 5

2
f̂−1(∂f̂)2 . (C.5)

D AdS5

It is well known that (the unit radius) AdS5 can be embedded in R2,4 or equivalently in

C1,2 as the set of points satisfying

Z0Z∗ 0 − ZiZ∗ i = 1 , i = 1, 2 (D.1)

with its metric being induced from the ambient metric

ds2 = dZ0dZ∗ 0 − dZidZ∗ i . (D.2)

Setting Z0 = |Z0|eit, Zi = Z0ζi we can solve for Z0 in terms of t and ζi

|Z0|−2 = 1− ζiζ∗ i∗ , (D.3)

and the induced metric takes the form

ds2 = (dt+Q)2 − 2Gij∗dζidζ∗ j
∗
, (D.4)

where

2Gij∗ =
δij∗

1− ζkζ∗ k∗
+

ζ∗ i
∗
ζj

(1− ζkζ∗ k∗)2
, (D.5)

is the metric of the Kähler space CP2
=SU(1, 2)/U(2) and

Q =
i

2

ζ∗ i
∗
dζi − ζidζ∗ i∗

1− ζiζ∗ i∗
, (D.6)

is its corresponding Kähler 1-form connection. The Kähler 2-form is given by

Jij∗ = ∂iQj∗ − ∂j∗Qi = 2iGij∗ . (D.7)

This form of the metric makes manifest that AdS5 can be seen as a U(1) fibration

over the Kähler manifold CP2
. As shown in ref. [44] this is the only base space that can

be used to construct AdS5 as a supersymmetric solution of minimal gauged 5-dimensional

supergravity. There are different ways of writing CP2
in the canonical form eqs. (1.30)

and (1.31), associated to the different holomorphic Killing vectors of the manifold which,

being the symmetric space SU(2, 1)/U(2), are 8. We are not going to explore all of them

here. We will content ourselves with those in which the metric contains the metric of a 2-

dimensional space of constant curvature k that we will denote by dΩ(2,k), where k = 1, 0,−1

for, respectively, S2, E2 or H2.
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D.1 k = 1

In the k = 1 case we can use the real coordinates

ζ1 = tanh ρ cos
θ

2
e−

i
2

(z+ϕ) , ζ2 = tanh ρ sin
θ

2
e−

i
2

(z−ϕ) , (D.8)

for which the metric of CP2
and the Kähler 1-form connection are given by

ds2

CP2 = dρ2 +
1

4
sinh2 ρ cosh2 ρ (dz + cos θdϕ)2 +

1

4
sinh2 ρdΩ2

(2,1) ,

QCP2 =
1

2
sinh2 ρ (dz + cos θ dϕ) .

(D.9)

where

dΩ2
(2,1) = dθ2 + sin2 θ dϕ2 , (D.10)

is the metric of S2.

The metric for the four-dimensional base space can be cast in the form eq. (1.30) by

defining the new coordinates

x1 = tan
θ

2
cosϕ , x2 =

1

4
sinh2 ρ , x3 = tan

θ

2
sinϕ , (D.11)

so that the functions H,W and 1-form χ(1) that define it are given by33

H−1 = x2(1 + 4x2) ,

W 2 =
4x2

H[1 + (x1)2 + (x3)2]2
,

χ = χ(1) ≡
[1− (x1)2 − (x3)2]

[1 + (x1)2 + (x3)2]

x1dx3 − x3dx1

(x1)2 + (x3)2
,

(D.12)

and34

dχ(1) = − 4

[1 + (x1)2 + (x3)2]2
dx1 ∧ dx3 . (D.14)

From these expressions it is trivial to verify that the constraints (1.31) are satisfied.

Using the parametrization (D.8) for CP2
we find the following line element of AdS5

ds2 =

[
dt+

1

2
sinh2 ρ (dz + cos θ dϕ)

]2

−dρ2 − 1

4
sinh2 ρ cosh2 ρ (dz + cos θdϕ)2 − 1

4
sinh2 ρdΩ2

(2,1) . (D.15)

33These functions have been determined for CP2
in ref. [60].

34The 1-form χ(1) is defined up to a total derivative that can be absorbed in a redefinition of the co-

ordinate z. The expression given above for χ(1) is exactly the one that appears in the metric. A simpler

expression is

χ(1) =
x3dx1 − x1dx3

1 + (x1)2 + (x3)2
. (D.13)
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The off-diagonal components can be eliminated by redefining the angular coordinate

z = ψ + 2t:

ds2 = cosh2 ρ dt2 − dρ2 − sinh2 ρ dΩ2
(3,1) , (D.16)

where

dΩ2
(3,1) =

1

4

[(
dψ′ + cos θ dϕ

)2
+ dΩ2

(2,1)

]
(D.17)

is the metric of the round 3-sphere of unit radius. This is one of the standard expressions

for the metric of AdS5 in global coordinates. The coordinates used in the supersymmetric

form (rotating frame ψ → z) also cover the whole AdS5 spacetime.

Redefining the radial coordinate r = sinh ρ the metric takes the standard form

ds2 = (1 + r2)dt2 − dr2

1 + r2
− r2dΩ2

(3) . (D.18)

Using the results in the previous appendices one finds that the Ricci tensor of this

metric is Rab = −4ηab. In order to get a metric satisfying Rab = Ληab (for Λ < 0) where

Λ is the cosmological constant as defined in footnote 8 we just have to multiply the whole

metric by 4/|Λ|. In particular, if we multiply the AdS5 metric in eq. (D.16) by that factor

and make the coordinate redefinitions r =
√

4/|Λ| sinh ρ and t′ =
√

4/|Λ| t we get, instead

of eq. (D.18)

ds2 =

(
1 +
|Λ|
4
r2

)
dt′ 2 −

(
1 +
|Λ|
4
r2

)−1

dr2 − r2dΩ2
(3) . (D.19)

D.2 k = 0

In the k = 0 case the real coordinates one has to use for CP2
are essentially the ones

customarily used to parametrize the universal hypermultiplet:35

ζ1 =
1− S
1 + S

, ζ2 =
2C

1 + S
, with

 S =
1

x2
+ 4iz + CC∗ ,

C = 2(x1 + ix3) .

(D.20)

In terms of these coordinates, the metric of CP2
and the Kähler 1-form connection are

given by

ds2

CP2 =
(dx2)2

4(x2)2
+ 4(x2)2

[
dz + 2(x3dx1 − x1dx3)

]2
+ x2dΩ2

(2,0) ,

QCP2 = 2x2
[
dz + 2(x3dx1 − x1dx3)

]
.

(D.21)

where

dΩ2
(2,0) = 4[(dx1)2 + (dx3)2] , (D.22)

is the metric of E2 with a convenient normalization.

35See, for instance, ref. [61] and references therein.
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This metric is already in the form eq. (1.30) and so that the functions H,W and 1-form

χ that define it are given by36

H−1 = 4(x2)2 ,

W 2 =
x2

H
Φ(0) ,

χ = χ(0) ≡ 2(x3dx1 − x1dx3) .

(D.23)

Using these coordinates for CP2
we find the following line element of AdS5

ds2 =
{
dt+ 2x2

[
dz + 2(x3dx1 − x1dx3)

]}2

−(dx2)2

4(x2)2
− 4(x2)2

[
dz + 2(x3dx1 − x1dx3)

]2 − x2dΩ2
(2,0) . (D.24)

In this case we cannot eliminate the off-diagonal components of the metric with a

simple coordinate transformation.

D.3 k = −1

In the k = −1 case we can use the real coordinates

ζ1 = tanh (θ/2) eiϕ , ζ2 =
tanh ρ

cosh (θ/2)
e−

i
2

(z−ϕ) , (D.25)

for which the metric of CP2
and the Kähler 1-form connection are given by

ds2

CP2 = dρ2 +
1

4
sinh2 ρ cosh2 ρ (dz − cosh θdϕ)2 +

1

4
cosh2 ρ dΩ2

(2,−1) ,

QCP2 =
1

2
cosh2 ρ (dz − cosh θ dϕ) .

(D.26)

where

dΩ2
(2,−1) = dθ2 + sinh2 θ dϕ2 , (D.27)

is the metric of the H2. Observe that now θ is a non-compact coordinate.

To cast the above metric in the form eq. (1.30) we define

x1 = tanh
θ

2
cosϕ , x2 =

1

4
cosh2 ρ , x3 = tanh

θ

2
sinϕ . (D.28)

Then, the functions H,W and 1-form χ that define it are given by37

H−1 = x2(−1 + 4x2) ,

W 2 =
4x2

H[1− (x1)2 − (x3)2]2
,

χ = χ(−1) ≡
[1 + (x1)2 + (x3)2]

[1− (x1)2 − (x3)2]

x1dx3 − x3dx1

(x1)2 + (x3)2
.

(D.30)

36These functions have been determined for CP2
with k = 1 in ref. [60].

37Again, the expression given above for χ(−1) is exactly the one that appears in the metric. A simpler

expression is

χ(−1) =
x3dx1 − x1dx3

1− (x1)2 − (x3)2
. (D.29)
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The line element for AdS5 corresponding to the choice of coordinates (D.25) is

ds2 =

[
dt+

1

2
cosh2 ρ (dz − cosh θ dϕ)

]2

−dρ2 − 1

4
sinh2 ρ cosh2 ρ (dz − cosh θdϕ)2 − 1

4
cosh2 ρ dΩ2

(2,−1) . (D.31)

Observe that, if we eliminate the dtdz terms in the k = −1 metric using the same trick

as in the k = 1 case, namely shifting the z coordinate z = ψ − 2t, we get the metric

ds2 = − sinh2 ρdt2 +
1

4
cosh2 ρ (dψ + cosh θdϕ)2 − dρ2 − 1

4
cosh2 ρ dΩ2

(2,−1) , (D.32)

in which t and ψ have interchanged their rôles.

The functions corresponding to the three different canonical metrics for CP2
can be

written in a unified form:
H−1 = x2(k + 4x2) ,

W 2 =
x2

H
Φ(k) ,

χ = χ(k)

(D.33)

with

dΩ2
(2,k) =

4[(dx1)2 + (dx3)2]

{1 + k[(x1)2 + (x3)2]}2
≡ Φ(k)(x

1, x3)[(dx1)2 + (dx3)2] ,

χ(k) =
2[x3dx1 − x1dx3]

1 + k[(x1)2 + (x3)2]
.

(D.34)

Then, the metric of AdS5 in the supersymmetric canonical form is given by

ds2 =
[
dt+ 2x2(dz + χ(k))

]2− x2(k+ 4x2)(dz+χ(k))
2− (dx2)2

x2(k + 4x2)
− x2dΩ2

(2,k) . (D.35)
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