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1 Introduction

The calculation of Feynman integrals with massive particles both as external legs and as

internal lines is not an easy task. Indeed, the combination of external kinematic invariants

and internal masses may give rise to physical and non-physical singularities which require

the use of special functions, with non-trivial arguments, embedding them. Identifying the

rise of such functions within the parametric representation of Feynman integrals is very

challenging. Therefore, rather than by direct integration, multivariate Feynman integrals

may be more simply determined by solving differential equations (DEs) [1–3].

In general, Feynman integrals in dimensional regularization obey relations that can be

used, on the one side, to identify a basis of independent integrals, dubbed master integrals
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(MIs), and, on the other side, to write special equations satisfied by the MIs themselves.

MIs are found to obey systems of linear, first-order partial DEs in the kinematic variables.

Solving these equations, provided that their values or behavior at special points is known,

becomes a method to completely determine MIs, hence to compute Feynman integrals

alternatively to their direct integration (as reviewed in [4, 5]).

The entries of the matrix associated to the system of DEs depend, in general, on the

kinematic invariants and on the space-time dimension d. Although it is a mathematically

interesting problem, finding the expression of the MIs for arbitrary values of d is not always

possible and, according to the physical context, it may be sufficient to know the MIs around

a critical dimension dc, with d = dc+ε and ε→ 0. In a perturbative approach, the solution

of the system around d = dc may admit a representation in terms of iterated integrals (as

reviewed in [6, 7]), where the matrix associated to the system constitutes the integration

kernel. Therefore, the structure of such a matrix has a direct impact on the form of the

solutions, namely on the functions required to classify them: simplifying the matrix means

simplifying the solutions.

The idea of finding MIs that obey canonical systems of DEs, i.e. systems with an

associated matrix where the dependence on the space-time dimensions is decoupled from the

kinematics [8, 9], has led to a substantial improvement of the system-solving strategy [10–

19], and to the availability of many novel results. In the case of Feynman integrals that

depend on several scales, we have shown that the Magnus exponential [11] is an efficient

tool to derive MIs obeying canonical systems starting from a basis of MIs that obey systems

of DEs whose matrix has a linear dependence on the space-time dimension [20–22].

In the Standard Model, the coupling between two W bosons and one neutral boson

X0 = H,Z, γ∗ is present in the tree-level Lagrangian.1 At one-loop, the X0W+W− in-

teraction receives electro-weak (EW) corrections, either via bosonic- or via fermionic-loop.

Strong (QCD) corrections must proceed through a closed quark-loop so that they can first

occur at the two-loop level. In this article, we present the calculation of the two-loop

three-point integrals required for the determination of the leading QCD corrections to the

interaction vertex between a neutral boson X0 with arbitrary mass and a pair of W bosons

of arbitrary squared four-momenta (X0W+W−), mediated by a fermion loop of a SU(2)L
quark doublet, with one massive and one massless flavors. In what follows, we refer to the

massive flavor as to the top (mt = m), and to the massless one as to the bottom (mb = 0).

Representative Feynman graphs for the considered integrals are shown in figure 1. The

MIs for the case in which only massless quarks propagate in the loops has been previously

studied in [23–25].

Our results represent the full set of MIs needed to compute the O(ααs) corrections to

the Higgs decay into a pair of W bosons, and to the triple gauge boson processes Z∗WW

and γ∗WW , with leptonic final states, at e+e− colliders. As for the latter process with

1Several motivated extensions of the Standard Model feature an extended Higgs sector with Yukawa

couplings to the SU(2) fermion doublets. In particular, one or more neutral pseudoscalar bosons might be

part of the spectrum, together with other neutral scalar bosons. While we do not refer explicitly to this

possibility, our results would also be applicable to the case X0 = S0, A0, where we schematically indicate

with S0 the scalars and with A0 the pseudoscalars.
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semi-leptonic or hadronic final states, our MIs would only be a subset of the needed MIs.

They are also a subset of the MIs needed for the computation of the two-loop mixed EW-

QCD corrections to the Higgs production cross section either in the WW -fusion channel

or in association with a W boson, and to WW production in higher multiplicity processes.

The same MIs would also be needed for the computation of a class of diagrams entering

the NNLO EW corrections. Except for the first-generation quarks (that are approximately

degenerate), the fermionic one-loop diagrams always involve an SU(2)L doublet with a

(nearly or exactly) massless flavor. Is is then clear that the corrections due to photon

exchange between the fermionic lines share the same topologies as the ones of the leading

QCD corrections.

We distinguish two sets of integrals, according to the flavor that couples to the X0

boson, i.e. either the massive or the massless one, for which integration-by-parts reduction

returns 24 and 23 MIs, respectively. The calculation of the MIs proceeds according to the

following strategy. We identify a set of MIs that obey systems of DEs whose matrix has a

linear dependence on d = 4 − 2ε, and, by means of the Magnus exponential, we derive a

canonical set of master integrals. The matrices associated to the canonical systems admit a

logarithmic-differential form (d log) with rational arguments, therefore, the canonical MIs

can be cast in Taylor series around d = 4 with coefficients written as combinations of

Goncharov polylogarithms (GPLs) [26–29]. Boundary conditions are imposed by requiring

the regularity of the solutions at special kinematics points, and by using simpler integrals as

independent input. The analytic expressions of the MIs have been numerically evaluated

with the help of GiNaC [30] and successfully tested against the values provided by the

public computer code SecDec [31]. The package Reduze [32] has been used throughout the

calculations.

The paper is organized as follows. In section 2 we fix our notation and conventions.

In section 3 we discuss the general features of the systems of DEs satisfied by the master

integrals and its general solution in terms of iterated integrals. In section 4 we describe the

computation of the two-loop MIs for X0W+W− in Euclidean kinematics and in section 5

we discuss the analytic continuation of our result. Conclusions are given in section 6. In

appendix A we recall the main properties of iterated integrals. In appendix B we list the

coefficients of the linear combinations of MIs that satisfy a canonical system of DEs and

finally, in appendix C, we give the expressions of the d log-form of the matrices associated

to such systems. The analytic expressions of the canonical MIs up to O(ε5) are attached

to the arXiv version of the manuscript as ancillary files.

2 Notation and conventions

In this paper we will consider the two-loop three-point functions of a X0 boson with

momentum q, and two W bosons with momenta p1 and p2,

X0(q)→W+(p1) +W−(p2) (2.1)

where

s = q2 = (p1 + p2)2 and p2
1 6= p2

2 6= 0 . (2.2)
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Figure 1. Representative two-loop Feynman diagrams contributing to the X0W+W− interaction,

where X0 = H,Z, γ∗. Similar diagrams where t and b quarks are exchanged are also taken into

account. The diagrams have been generated using FeynArts [33].

The calculation involves the evaluation of Feynman integrals in d = 4 − 2ε dimensions of

the type ∫
d̃dk1d̃dk2

1

Dn1
a1 . . . D

np
ap

. (2.3)

In our conventions, the integration measure is defined as

d̃dki =
ddki
(2π)d

(
i Sε

16π2

)−1(m2

µ2

)ε
, (2.4)

where m2 is the mass of the top quark circulating in the loops, µ the ’t Hooft scale of

dimensional regularization and

Sε = (4π)ε Γ(1 + ε) . (2.5)

3 System of differential equations for master integrals

In this section we briefly discuss the general features of the systems of DEs obeyed by the

MIs and the properties of the corresponding solutions. The details of the calculations of

the MIs for X0W+W− are described in section 4.

The two-loop Feynman diagrams contributing to X0W+W− can be reduced to four

parent topologies, which are depicted in figure 2. The integrals belonging to these topologies

depend on the three external invariants

p2
1 , p2

2 , s, (3.1)

as well as on the top mass m2. These four dimensionful parameters can be combined

into three independent dimensionless variables, ~x = (u, z, z̄) for topologies (a)-(b) and

~x = (v, z, z̄) for topologies (c)-(d), whose explicit definition will be later specified. The MIs

satisfy a linear system of partial DEs in these variables, which, if we organize the MIs into

a vector F, can be combined into a matrix equation for the total differential of F,

dF = KF . (3.2)

In general, the matrix-valued differential form K = Kadx
a (a = 1, 2, 3) depends both on

the kinematic variables and on the spacetime dimension d = 4 − 2ε. Since the left-hand
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(a) (b) (c) (d)

Figure 2. Two-loop topologies for X0W+W− interactions. Thin lines represent massless propa-

gators and thick lines stand for massive ones. The dashed external line corresponds to the off-shell

leg with squared momentum equal to s whereas the red and blue lines represent the two external

vector bosons with off-shell momenta p21 and p22 respectively.

side of the system in eq. (3.2) is a total differential by construction, it is easy to show that

K satisfies the (matrix) integrability condition

∂aKb − ∂bKa − [Ka,Kb] = 0 , a, b = 1, 2, 3 . (3.3)

Starting from a basis of MIs associated to a matrix K with a linear dependence on ε,

one can use the Magnus exponential [11, 20] and apply the procedure outlined in section 2

of [21] in order to perform a basis transformation and obtain a canonical set of MIs [8] I

enjoying two remarkable features: first, the canonical basis I obeys a system of DEs where

the dependence on ε is factorized from the kinematics and, in addition, the kinematic

matrices can be organized into a logarithmic differential form, referred to as canonical

d log-form. Thus, the canonical basis I satisfies a system of equations of the form

dI = ε dA I , (3.4)

where

dA =

n∑
i=1

Mi d log ηi , (3.5)

is the d log matrix written in terms of the differentials d log ηi, whose arguments ηi = ηi(~x)

solely enclose the kinematic dependence and form the so called alphabet of the problem.

The coefficient matrices Mi have rational-number entries. Due to the ε-factorization, the

integrability condition for eq. (3.4) splits into

∂a∂bA− ∂a∂bA = 0 , [∂aA, ∂bA] = 0 , a, b = 1, 2, 3 . (3.6)

3.1 General solution

At any point ~x, the general solution of the canonical system of DEs (3.4) can be expressed

in terms of Chen’s iterated integrals [34] as the path-ordered exponential

I(ε, ~x) = P exp

{
ε

∫
γ
dA
}

I(ε, ~x0) , (3.7)
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where I(ε, ~x0) is a constant vector depending on ε only and γ is a piecewise-smooth path

connecting ~x0 to ~x, 
γ : [0, 1] 3 t 7→ γ(t) = (γ1(t), γ2(t), γ3(t))

γ(0) = ~x0

γ(1) = ~x.

(3.8)

In the limit ~x → ~x0 the integration path γ shrinks to a point and I(ε, ~x) → I(ε, ~x0). In

this perspective, the integration constants I(ε, ~x0) which, together with dA, completely

specify the solution, can be thought as the initial values of the MIs, which then evolve to

arbitrary points ~x under the action of the path-ordered exponential. It can be proven that,

whenever γ does not cross any singularity or branch cuts of dA (but at its endpoints), the

path-ordered exponential is independent of the explicit choice of the path. By choosing a

proper normalization, we can assume all canonical MIs to be finite in the ε → 0 limit, in

such a way that I(~x) admits a Taylor expansion in ε,

I(ε, ~x) = I(0)(~x) + ε I(1)(~x) + ε2I(2)(~x) + . . . (3.9)

and, according to eq. (3.7), the n-th order coefficient is given by

I(n)(~x) =

n∑
i=0

∆(n−i)(~x, ~x0)I(i)(~x0), (3.10)

where we introduced the weight-k operator

∆(k)(~x, ~x0) =

∫
γ
dA . . . dA︸ ︷︷ ︸

k times

, ∆(0)(~x, ~x0) = 1 , (3.11)

which iterates k ordered integrations of the matrix-valued 1-form dA along the path γ.

According to eq. (3.5), each entry of ∆(k) is a linear combination of Chen’s iterated integrals

of the type

C [γ]
ik,...,i1

=

∫
γ

d log ηik . . . d log ηi1 =

∫
0≤t1≤...≤tk≤1

gγik(tk) . . . g
γ
i1

(t1) dt1 . . . dtk , (3.12)

being

gγi (t) =
d

dt
log ηi(γ(t)) . (3.13)

It should be remarked that, as explicitly indicated in (3.12), individual Chen’s iterated

integrals are, in general, functionals of the path and that only the full combinations ap-

pearing as entries of ∆(k) are independent of the particular choice of γ. The most relevant

properties of Chen’s iterated integrals are summarized in appendix A.

4 Two-loop master integrals for X0W+W−

In this section we present the solution of the system of DEs for the MIs associated to the

four topologies (a)-(d). Since topologies (a)-(b) and (c)-(d) belong to two distinct integral

families, we discuss their evaluation separately.
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4.1 Topologies (a)–(b)

The two topologies (a) and (b) belong to the 7-denominator integral family identified by

the set of denominators

D1 = k2
1, D2 = k2

2, D3 = (k1 − p2)2 −m2, D4 = (k2 − p2)2 −m2,

D5 = (k1 − p1 − p2)2, D6 = (k2 − p1 − p2)2, D7 = (k1 − k2)2, (4.1)

where k1 and k2 are the two loop momenta. The integrals belonging to this family can be

reduced to a set of 29 MIs which are conveniently expressed in terms of the dimensionless

variables u, z and z̄ defined by

− s

m2
= u ,

p2
1

s
= z z̄ ,

p2
2

s
= (1− z)(1− z̄) . (4.2)

The same parametrization for p2
1 and p2

2 was used also for the massless triangles considered

in [25]. The following set of MIs obeys a system of DEs which is linear in ε:

F1 = ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,

F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε2 T6 ,

F7 = ε2 T7 , F8 = ε2 T8 , F9 = ε2 T9 ,

F10 = ε3 T10 , F11 = ε2 T11 , F12 = ε2 T12 ,

F13 = ε2 T13 , F14 = ε2 T14 , F15 = ε2 T15 ,

F16 = ε3 T16 , F17 = ε2 T17 , F18 = ε3 T18 ,

F19 = ε3 T19 , F20 = ε2 T20 , F21 = ε3 T21 ,

F22 = ε2 T22 , F23 = ε3 T23 , F24 = ε3 T24 ,

F25 = ε4 T25 , F26 = ε4 T26 , F27 = ε3 T27 ,

F28 = ε3 T28 , F29 = ε2 T29 , (4.3)

where the Ti are depicted in figure 3. We observe that some of integrals Ti are trivially

related by p2
1 ↔ p2

2 symmetry,

T4 ↔ T2 , T8 ↔ T5 , T9 ↔ T6 , T14 ↔ T12 , T21 ↔ T16 , T22 ↔ T17 , (4.4)

so that the actual number of independent integrals is reduced to 23. However, in order

to determine the solution of the DEs with the method described in section 3, i.e. by

simultaneously integrating the whole system of equations, one has to consider the full set

of integrals given in eq. (4.3).

The Magnus exponential allow us to obtain a set of canonical MIs obeying a system

of equations of the form (3.4)

I1 = F1 , I2 = −p2
2 F2 ,

I3 = −sF3 , I4 = −p2
1F4 ,

– 7 –
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T1 T2 T3 T4 T5 T6

T7 T8 T9 T10 T11 T12

T13 T14 T15 T16 T17 T18

T19 T20 T21 T22 T23 T24

T25 T26 T27 T28 T29

Figure 3. Two-loop MIs T1,...,29 for topologies (a)-(b). Graphical conventions are the same as in

figure 2. Dots indicate squared propagators.

I5 = −p2
2 F5 , I6 = 2m2 F5 + (m2 − p2

2) F6 ,

I7 = −sF7 , I8 = −p2
1F8 ,

I9 = 2m2 F8 + (m2 − p2
1) F9 , I10 = −

√
λF10 ,

I11 = p2
1 p

2
2 F11 , I12 = p2

1 sF12 ,

I13 = p4
2 F13 , I14 = p2

1 sF14 ,

I15 = s2 F15 , I16 = −
√
λF16 ,

I17 = c16, 17 F16 + c17, 17 F17 , I18 = −
√
λF18 ,

I19 = −
√
λF19 , I20 = c18, 20 F18 + c19, 20 F19 + c20, 20 F20 ,
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I21 = −
√
λF21 , I22 = c21, 22 F21 + c22, 22 F22 ,

I23 = s
√
λF23 , I24 = p2

2

√
λF24 ,

I25 = −
√
λF25 , I26 = −

√
λF26 ,

I27 = (p2
2 −m2)

√
λF27 , I28 = (p2

1 −m2)
√
λF28 ,

I29= c1, 29 F1+c2, 29 F2+c4, 29 F4+c11, 29 F11+c27, 29 F27+c28, 29 F28+c29, 29 F29 , (4.5)

where λ is the Källén function related to the external kinematics,

λ ≡ λ(s, p2
1, p

2
2) = (s− p2

1 − p2
2)2 − 4 p2

1 p
2
2. (4.6)

Explicit expressions for the coefficients ci, j are given in appendix B.1. The alphabet of the

corresponding d log-form contains the following 10 letters:

η1 = u , η2 = z ,

η3 = 1− z , η4 = z̄ ,

η5 = 1− z̄ , η6 = z − z̄ ,
η7 = 1 + u z z̄ , η8 = 1− u z(1− z̄),

η9 = 1− u z̄(1− z) , η10 = 1 + u (1− z)(1− z̄) . (4.7)

The coefficient matrices Mi are collected in the appendix C.1. It can be easily checked that

all letters are real and positive in the region

0 < z < 1 , 0 < z̄ < z , 0 < u <
1

z(1− z̄)
. (4.8)

If one fixes m2 > 0, this corresponds to a patch of the Euclidean region, s , p2
1 , p

2
2 < 0,

defined by the following constraints√
−p2

1

√
−p2

2 > m2 ,

−
(
p2

1 −m2
) (
p2

2 −m2
)

m2
< s < p2

1 + p2
2 − 2

√
−p2

1

√
−p2

2 . (4.9)

Since the alphabet is rational, the solution can be directly expressed in terms of GPLs

with argument depending on the kinematics variables u, z and z̄. The prescriptions for

the analytic continuation to the other patches of the Euclidean region (s, p2
1, p

2
2 < 0) and

to the physical regions are given in section 5.

Imposing the regularity of our solutions at the unphysical thresholds, z, z̄ = 0 (corre-

sponding to p2
1 = 0) and z, z̄ = 1 (corresponding to p2

2 = 0) entails relations between the

boundary constants. These relations allow us to derive all boundary constants from five

simpler integrals I1,3,6,7,15, which are obtained in the following way:

• I1 is a constant to be determined by direct integration and, due to the normalization

of the integration measure (2.4), it is simply set to

I1(ε, ~x) = 1. (4.10)

– 9 –
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• I3 can be obtained by direct integration

I3(ε, ~x) =
Γ(1− ε)2

Γ(1− 2ε)
u−ε , (4.11)

• Besides being regular in the massless kinematic limit z → 1 (p2
2 → 0), I6 is reduced,

through IBPs, to a two-loop vacuum diagram,

I6(ε, z = 1) = −2ε2(1− ε)(1− 2ε)

m2
. (4.12)

Therefore, by using as an input the analytic expression of the two-loop vacuum graph,

= −m
2Γ(−ε)Γ(−1 + 2ε)

(1− ε)Γ(1 + ε)
, (4.13)

we can fix the boundary constants by matching the z → 1 limit of the expression of

I6 obtained from the solution of the DE against the ε-expansion of eq. (4.12),

I6(ε, z = 1) = −1− 1

3
π2ε2 + 2ζ3ε

3 − 1

10
π4ε4 +O(ε5). (4.14)

• I7 and I15 can be directly integrated

I7(ε, ~x) = − Γ(1− ε)3Γ(1 + 2ε)

Γ(1− 3ε)Γ(1 + ε)2
u−2ε, (4.15)

I15(ε, ~x) =
Γ(1− ε)4

Γ(1− 2ε)2
u−2ε . (4.16)

The results have been numerically checked, in both the Euclidean and the physical regions,

with the help of the public computer codes GiNaC and SecDec 3.0, and their analytic

expressions are given in electronic form in the ancillary files attached to the arXiv version

of the manuscript.

4.2 Topologies (c)–(d)

The topologies (c) and (d) belong to the 7-denominator family defined by the set of de-

nominators

D1 = k2
1 −m2, D2 = k2

2 −m2, D3 = (k1 − p2)2, D4 = (k2 − p2)2,

D5 = (k1 − p1 − p2)2 −m2, D6 = (k2 − p1 − p2)2 −m2, D7 = (k1 − k2)2,

(4.17)

where k1 and k2 are the two loop momenta. The integrals belonging to this integral family

can be reduced to a set of 31 MIs which are conveniently expressed in terms of the variables

v, z and z̄, defined by

− s

m2
=

(1− v)2

v
,

p2
1

s
= zz̄,

p2
2

s
= (1− z)(1− z̄). (4.18)
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T1 T2 T3 T4 T5 T6

T7 T8 T9 T10 T11 T12

T13 T14 T15 T16 T17 T18

T19 T20 T21 T22 T23 T24

T25 T26 T27 T28 T29 T30

T31

Figure 4. Two-loop MIs T1,...,31 for the topologies (c)-(d). Graphical conventions are the same as

in figure 2. Dots indicate squared propagators.
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The following set of MIs obeys a system of DEs which is linear in ε:

F1 = ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,

F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε2 T6 ,

F7 = ε2 T7 , F8 = ε2 T8 , F9 = ε2 T9 ,

F10 = ε2 T10 , F11 = ε2 T11 , F12 = ε2 T12 ,

F13 = ε2 T13 , F14 = ε2 T14 , F15 = ε2 T15 ,

F16 = ε2 T16 , F17 = ε3 T17 , F18 = ε3 T18 ,

F19 = ε2 T19 , F20 = ε3 T20 , F21 = −ε2(1− 2ε) T21 ,

F22 = ε3 T22 , F23 = ε3 T34 , F24 = ε2 T24 ,

F25 = ε2 T25 , F26 = ε2 T26 , F27 = ε4 T27 ,

F28 = ε3 T28 , F29 = ε3 T29 , F30 = ε2 T30 ,

F31 = ε4 T31 , (4.19)

where the Ti are depicted in figure 4. As for the case of topologies (a)-(b), some of integrals

Ti are related by p2
1 ↔ p2

2,

T4 ↔ T2 , T9 ↔ T5 , T10 ↔ T6 , T15 ↔ T12 , T22 ↔ T17 , T23 ↔ T18 , T24 ↔ T19 ,

(4.20)

so that the total number of independent integrals is 24. However, as discussed already

after eq. (4.4), we work with the complete set of integrals given in eq. (4.19).

The Magnus exponential allows us to obtain a set of canonical MIs obeying a system

of equations of the form (3.4),

I1 = F1 , I2 = −p2
2 F2 ,

I3 = ρF3 , I4 = −p2
1F4 ,

I5 = (m2 − p2
2) F5 + 2m2 F6 , I6 = −p2

2 F6

I7 = ρF7 +
1

2
(ρ− s) F8 , I8 = −sF8 ,

I9 = −p2
1 F9 , I10 = 2m2 F9 + (m2 − p2

1) F10 ,

I11 = p4
2 F11 , I12 = −p2

2ρF12 ,

I13 = p2
1p

2
2 F13 I14 = ρ2 F14 ,

I15 = −p2
1ρF15 ,

I16 = c2, 16 F2 + c3, 16 F3 + c4, 16 F4 + c16, 16 F16 ,

I17 = −
√
λF17 , I18 = −

√
λF18 ,

I19 = c17, 19 F17 + c18, 19 F18 + c19, 19 F19 , I20 = −
√
λF20 ,

I21= c5, 21 F5 + c6, 21 F6 + c9, 21 F9 + c10, 21 F10 + c20, 21 F20 + c21, 21 F21 ,

I22 = −
√
λF22 , I23 = −

√
λF23 ,

I24= c22, 24 F22 + c23, 24 F23 + c24, 24 F24 ,
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I25= c11, 25 F11 + c12, 25 F12 + c13, 25 F13 + c25, 25 F25 ,

I26= c12, 26 F12 + c14, 26 F14 + c15, 26 F15 + c26, 26 F26 ,

I27 = −
√
λF27 , I28 = −ρ

√
λF28 ,

I29 = (p2
2 −m2)

√
λF29 ,

I30= c3, 30 F3 + c12, 30 F12 + c28, 30 F28 + c29, 30 F29 + c30, 30 F30 ,

I31 = −
√
λF31 , (4.21)

where ρ ≡
√
−s
√

4m2 − s and λ is defined as in eq. (4.6). The expression of the coefficients

ci, j is given in appendix B.2. The alphabet of the corresponding d log-form contains the

following 18 letters

η1 = v , η2 = 1− v ,
η3 = 1 + v , η4 = z ,

η5 = 1− z , η6 = z̄ ,

η7 = 1− z̄ , η8 = z − z̄ ,
η9 = z + v(1− z) , η10 = 1− z(1− v) ,

η11 = z̄ + v(1− z̄) , η12 = 1− z̄(1− v) ,

η13 = v + zz̄(1− v)2 , η14 = v + (1− z − z̄ + zz̄)(1− v)2 ,

η15 = v + z(1− v)2 , η16 = v + (1− z)(1− v)2 ,

η17 = v + z̄(1− v)2 , η18 = v + (1− z̄)(1− v)2 . (4.22)

The coefficient matrices Mi are collected in the appendix C.2. In this case, all the letters

are real and positive in the region

0 < v < 1 , 0 < z < 1 , 0 < z̄ < z . (4.23)

If one fixes m2 > 0, this corresponds to a patch of the Euclidean region, s , p2
1 , p

2
2 < 0,

defined by the following constraint

s < −
(√
−p2

1 +
√
−p2

2

)2

< 0 . (4.24)

The solution of the system of DEs is straightforwardly obtained in terms of Chen’s

iterated integrals. Moreover, since the alphabet is rational, the solution can be converted

in terms of GPLs of argument 1, with kinematic-dependent weights, as we discuss in

appendix A. The prescriptions for the analytic continuation to the other patches of the

Euclidean region and to the physical regions are given in section 5.

The boundary constants can be fixed by demanding the regularity of the basis (4.19)

for vanishing external momenta, s = p2
1 = p2

2 = 0. In particular, if we choose as a base-point

for the integration

~x0 = (1, 1, 1), (4.25)
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then the prefactors appearing in the definitions (4.21) of the canonical MIs I vanish, with

the only exceptions of I1,5,10,19,21,24. Therefore the boundaries of the former MIs are deter-

mined by demanding their vanishing at ~x→ ~x0,

Ii(ε, ~x0) = 0, i 6= 1, 5, 10, 19, 21, 24. (4.26)

The boundary constants of integrals I1, 5, 10 can be taken from the previous topologies in

equations (4.10), (4.14), whereas for integrals I19, 21, 24 the boundary constants are fixed as

follows:

• The boundary constants for I19 and I24 can be determined by imposing regularity at

the pseudothresholds v → 1 (s = p2
1 = p2

2 = 0) and, respectively, z → 1, z̄ → 1 (both

corresponding to p2
2 = 0),

I19, 24(ε, ~x0) =
1

6
π2ε2 − ζ3ε

3 +
1

20
π4ε4 +O(ε5). (4.27)

• Finally, the boundary constants for I21 can be fixed by observing that, from (4.21),

we can derive

F21(ε, ~x0) = lim
~x→~x0

v

m2(1− v2)
I21(ε, ~x0). (4.28)

Therefore, in order for F21(ε, ~x0) to be regular we must demand

I21(ε, ~x0) = 0, (4.29)

All results have been numerically checked, in both the Euclidean and the physical regions,

with the help of the computer codes GiNaC and SecDec 3.0, and the analytic expressions

of the MIs are given in electronic form in the ancillary files attached to the arXiv version

of the manuscript.

5 Change of variables and analytic continuation

In this section we discuss in detail the variables used to parametrize the dependence of

the MIs on the kinematic invariants. In particular, we elaborate on the prescriptions to

analytically continue our results to arbitrary values of s, p2
1, p

2
2. Both topologies (a)-(b) and

(c)-(d) feature two independent, kinematic structures:

1. the off-shell external legs are responsible for the presence in the DEs of the square

root of the Källén function,
√
λ(s, p2

1, p
2
2);

2. the presence of massive internal lines can generate square roots in the DEs, as in the

case of topologies (c)-(d) where one has also
√
−s
√

4m2 − s.

In the following we separately discuss the variable changes that rationalize the two types

of square roots.
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5.1 Off-shell external legs: the z, z̄ variables

To deal with the square root of the Källén function, we begin by choosing one of the

external legs as reference, s, and trading the other squared momenta for dimensionless

ratios

τ1,2 =
p2

1,2

s
. (5.1)

In the (s, τ1, τ2) variables, the square root of the Källén function is proportional to√
λ(1, τ1, τ2) =

√
(1− τ1 − τ2)2 − 4τ1τ2 (5.2)

and is rationalized by the following change of variables [25]

τ1 = zz̄ , (5.3)

τ2 = (1− z)(1− z̄) , (5.4)

(see eqs. (4.2) and (4.18)), that leads to

λ (1, τ1(z, z̄), τ2(z, z̄)) = (z − z̄)2 . (5.5)

Without loss of generality, we choose the following root of eq. (5.4)

z =
1

2

(
1 + τ1 − τ2 +

√
λ(1, τ1, τ2)

)
, (5.6)

z̄ =
1

2

(
1 + τ1 − τ2 −

√
λ(1, τ1, τ2)

)
. (5.7)

Varying the pair (τ1, τ2) in the real plane, we identify the following possibilities for z, z̄

z̄ = z∗ λ(1, τ1, τ2) < 0 , τ1, τ2 > 0 (region I)

0 < z̄ < z < 1
√
τ1 +

√
τ2 < 1 , 0 < τ1 , τ2 < 1 (region II)

z̄ < z < 0
√
τ2 > 1 +

√
τ1 , τ1 > 0 (region III)

z > z̄ > 1
√
τ1 > 1 +

√
τ2 , τ2 > 0 (region IV)

z = z̄ = ±√τ1 τ2 =
(
1±√τ1

)2
, τ1, τ2 > 0 (region V)

z > 1 , z̄ < 0 τ1, τ2 < 0 (region VI)

0 < z < 1 , z̄ < 0 τ1 < 0 , τ2 > 0 (region VII)

z > 1 , 0 < z̄ < 1 τ1 > 0 , τ2 < 0 (region VIII)

(5.8)

where the first five regions were discussed also in [25]. A graphical representation of these

eight regions in the (τ1, τ2)-plane is shown if fig 5.

The variables z, z̄ are complex conjugates in region I, where λ(1, τ1, τ2) < 0, and

real in all the other regions. In regions I-V one has τ1,2 > 0, which requires that either

s, p2
1, p

2
2 < 0 or s, p2

1, p
2
2 > 0. The former case defines the Euclidean region. The latter case,

for λ(1, τ1, τ2) > 0, describes 1 → 2 or 2 → 1 processes involving three timelike particles.

Region V is where λ(1, τ1, τ2) = 0, so that z = z̄. Since our expressions are obtained in
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Figure 5. Regions of the (τ1, τ2)-plane classified in eq (5.8). Region V, which is identified by the

condition λ(1, τ1, τ2) = 0, corresponds to the blue curve.

general for z 6= z̄, the limit z̄ → z has to be taken carefully. Regions VI-VIII have at least

one of the τi < 0, which requires either two external legs to be spacelike and the remaining

one to be timelike, or vice versa. The former configuration, in the 2 → 1 kinematics,

describes the vertex entering the production of a timelike particle via the “fusion” of two

spacelike particles.

In regions other than II, the variables z, z̄ are not in the half of the unit square where

all the letters are real, therefore analytic continuation is required. A consistent physical

prescription is inherited in regions VI-VIII from the Feynman prescription on the kinematic

invariants, and it is naturally extended to the other regions, as we argue below. For the

moment we hold s < 0, and we will discuss later the case s > 0.

In region VI, s < 0 and p2
1, p

2
2 > 0, then

τi → −|τi| − iε , (5.9)

so that the vanishing imaginary parts outside the square root in eq (5.7) cancel against

each other, and only the one stemming from the square root is left:

z → z + iε , z̄ → z̄ − iε . (5.10)

In region VII, p2
1 > 0 and s, p2

2 < 0, then

τ1 → −|τ1| − iε , τ2 → |τ2| , (5.11)
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so that

z → z + i
ε

2

(
1 + |τ1|+ τ2√
λ(1,−|τ1|, τ2)

− 1

)
' z + iε ,

z̄ → z̄ − i ε
2

(
1 + |τ1|+ τ2√
λ(1,−|τ1|, τ2)

+ 1

)
' z̄ − iε , (5.12)

where the approximate equalities are allowed because the factor in the bracket is always

positive, and a redefinition of ε is understood.

In region VIII, p2
2 > 0 and s, p2

1 < 0, then

τ1 → |τ1| , τ2 → −|τ2| − iε , (5.13)

so that

z → z + i
ε

2

(
1 + τ1 + |τ2|√
λ(1, τ1,−|τ2|)

+ 1

)
' z + iε ,

z̄ → z̄ − i ε
2

(
1 + τ1 + |τ2|√
λ(1, τ1,−|τ2|)

− 1

)
' z̄ − iε , (5.14)

where again the approximate equalities are allowed because the factor in the bracket is

always positive, and a redefinition of ε is understood.

We have so far only discussed the case in which s < 0. It is easy to see that, if instead

s > 0, the prescription on z, z̄ is the opposite.

In regions I-V there is no physical prescription for the analytic continuation of z, z̄.

Indeed, if s, p2
1, p

2
2 > 0, then the vanishing imaginary parts of the Feynman prescription

cancel out in the ratios τ1 and τ2:

τi →
p2
i (1 + iε)

s (1 + iε)
= τi . (5.15)

This cancellation affects also region I, where
√
λ(1, τ1, τ2) < 0 and z∗ = z̄. Indeed, while

this condition fixes the relative sign of their imaginary parts, the sign of Im z depends

on the choice of the branch of the square root in eq. (5.7), which is not fixed. This last

statement holds true also in the Euclidean region.

This ambiguity is resolved by the definite iε prescription in regions VI-VIII discussed

above. In order to have a smooth analytic continuation in the Euclidean, in region I, one

chooses the branch of the square root that gives Im
√
λ(1, τ1, τ2) > 0, and in regions III-IV,

one assigns vanishing imaginary parts for z, z̄ according to the previous discussion. The

opposite prescription should be used if the three external legs are timelike.

Summarizing, according to the sign of s, we choose the following analytic continuation

prescriptions for z, z̄ in the whole real (p2
1, p

2
2) plane

z → z + iε , z̄ → z̄ − iε s < 0 , (5.16)

z → z − iε , z̄ → z̄ + iε s > 0 . (5.17)
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5.2 Internal massive lines: the u, v variables

For topologies (a)-(b), the change of variables eq. (5.4) is actually enough to rationalize the

DEs completely. In eq. (4.2) we simply rescale s by the internal mass (m2 > 0), −s/m2 = u,

to deal with a dimensionless variable. If s < 0, u > 0. If s > 0, the Feynman prescription

s→ s+ iε fixes the analytic continuation for u

u→ −u′ − iε , with u′ > 0 . (5.18)

In the case of topologies (c)-(d), the DEs still contain the square roots related to the

s-channel threshold at s = 4m2. They are rationalized by the usual variable change (see

eq. (4.18)),

− s

m2
=

(1− v)2

v
, (5.19)

of which we choose the following root

v =

√
4m2 − s−

√
−s√

4m2 − s+
√
−s

. (5.20)

For completeness, we discuss how v varies with s. Holding m2 > 0, and keeping in mind

the Feynman prescription for s > 0, one finds the following cases

• For s < 0, v is on the unit interval, 0 ≤ v ≤ 1;

• For 0 ≤ s ≤ 4m2, v is a pure phase, v = eiφ, with 0 < φ < π;

• For s > 4m2, v is on the negative unit interval, and one must replace

v → −v′ + iε , 0 ≤ v′ ≤ 1 . (5.21)

5.3 Analytic continuation of the master integrals

As discussed in section 4, for all the topologies we start in the patch of the Euclidean

region where the alphabet is real and positive (see eqs. (4.8) and (4.23)), and we solve the

DEs there. As far as the variables z, z̄ are concerned, the conditions of positivity of the

alphabet are the same for all our topologies,

0 < z < 1 , 0 < z̄ < z , (5.22)

i.e. we start from region II (see eq. (5.8)). Regarding the condition on the variables as-

sociated to s, i.e. u and v (respectively for topologies (a)-(b) and topologies (c)-(d)), we

require

0 < u <
1

z(1− z̄)
, 0 < v < 1 , (5.23)

It is clear from eq. (5.8) that, if these conditions are satisfied, one does not have access

even to the full Euclidean region. Results in the remaining patches of the latter, as well

as in the physical regions, are obtained by analytic continuation using the prescriptions

described in sections 5.1 and 5.1.
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In the present work we performed the analytic continuation numerically, i.e. we as-

signed to u, v, z, z̄ the vanishing imaginary parts discussed above choosing sufficiently small

numerical values. For convenience, we summarize the analytic continuation prescription

for the physically interesting cases.

• X0→WW : in this region a particle of mass s > 0 decays in two (possibly off-shell)

particles with invariant masses p2
1 > 0 and p2

2 > 0, so that

√
s ≥

√
p2

1 +
√
p2

2 . (5.24)

Regarding z, z̄, this corresponds to region II (see eq. (5.8)), therefore no analytic

continuation is needed. Furthermore, for topologies (a)-(b) one must replace

u→ −u′ − iε

irrespectively of the value of s, according to eq. (5.18). Instead, for topologies (c)-(d),

if 0 < s < 4m2 then v is on the unit circle in the complex plane, while if s > 4m2,

one has to replace

v → −v + iε ,

according to eq. (5.21).

• W → WX0: this is again a 1 → 2 process involving timelike particles, the only

difference being that now √
p2

1 ≥
√
s+

√
p2

2 > 0 , (5.25)

or √
p2

2 ≥
√
s+

√
p2

1 > 0 . (5.26)

The former case corresponds to region IV, the latter to region III (see eq. (5.8)).

Therefore, in addition to the analytic continuation in u, v discussed already for the

X0-decay, one must further use the replacement (5.17)

z → z − iε , z̄ → z̄ + iε . (5.27)

• WW →X0: here

p2
1, p

2
2 < 0 , s > 0 , (5.28)

corresponding to region VI, so that z, z̄ inherit the analytic continuation prescription

eq. (5.17) from s→ s+ iε

z → z − iε , z̄ → z̄ + iε .

Concerning u, v, the discussion is the same as for X0-decay.
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• X0W →W : here

p2
1, s < 0 , p2

2 > 0 , (5.29)

or

p2
2, s < 0 , p2

1 > 0 , (5.30)

corresponding to region VII and VIII respectively, so that z, z̄ inherit from p2
i → p2

i+iε

the prescription (5.16)

z → z + iε , z̄ → z̄ − iε .

Since s < 0, no continuation is due on u, v.

6 Conclusions

In this paper we have computed the two-loop master integrals required for the leading

QCD corrections to the interaction vertex between a massive neutral boson X0, such as

H,Z or γ∗, and pair of W bosons, mediated by a SU(2)L quark doublet composed of

one massive and one massless flavor. We considered external legs with arbitrary invariant

masses. The master integrals were computed by means of the differential equation method.

After identifying a set of master integrals obeying a system of equations which depends

linearly on the space-time dimension d, we used the Magnus exponential in order to to

find a novel set of integrals that, around d = 4 dimensions, obey a canonical system of

differential equations. The canonical master integrals were finally obtained as a Taylor

series in ε = (4 − d)/2, up to order four, with coefficients written as combination of

Goncharov polylogarithms, respectively up to weight four.

In the context of the Standard Model, our results are relevant for the mixed EW-QCD

corrections to the Higgs decay to a W pair, as well as the production channels obtained by

crossing, and to the triple gauge boson vertices ZWW and γ∗WW .
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A Properties of Chen’s iterated integrals

In this appendix we recall the main properties of Chen’s iterated integrals [34]. We closely

follow the notation of [22]. Chen’s iterated integrals are defined by

C [γ]
ik,...,i1

=

∫
γ

d log ηik . . . d log ηi1 =

∫
0≤t1≤...≤tk≤1

gγik(tk) . . . g
γ
i1

(t1) dt1 . . . dtk , (A.1)
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where γ is a piecewise-smooth path connecting ~x0 to ~x,
γ : [0, 1] 3 t 7→ γ(t) = (γ1(t), γ2(t), γ3(t))

γ(0) = ~x0

γ(1) = ~x .

(A.2)

and

gγi (t) =
d

dt
log ηi(γ(t)) . (A.3)

• Invariance under path reparametrization. The integral C [γ]
ik,...,i1

does not depend on

the way one chooses to parametrize the path γ.

• Reverse path formula. If the path γ−1 is the path γ traversed in the opposite direction,

then

C [γ−1]
ik,...,i1

= (−1)kC [γ]
ik,...,i1

. (A.4)

• Recursive structure. From (A.1) and (A.3) it follows that the line integral of one d log

is defined, as usual, by∫
γ

d log η =

∫
0≤t≤1

d log η(γ(t))

dt
dt = log η(~x)− log η(~x0) , (A.5)

and only depends on the endpoints ~x0, ~x.

It is convenient to introduce the path integral “up to some point along γ”: given

some path γ and a parameter s ∈ [0, 1], one can define the 1-parameter family of

paths

γs : [0, 1] 3 t 7→ ~x = (γ1(s t), γ2(s t), γ3(s t)) . (A.6)

If s = 1, then trivially γs = γ whereas if s = 0 the image of the interval [0, 1] is just

{~x0}. If s ∈ (0, 1), then the curve γs([0, 1]) starts at γ(0) = ~x0 and overlaps with the

curve γ([0, 1]) up to the point γ(s), where it ends. It can be easily shown that the

path integral along γs can be written as

C [γs]
ik,...,i1

=

∫
0≤t1≤...≤tk≤s

gγik(tk) . . . g
γ
i1

(t1) dt1 . . . dtk , (A.7)

which differs from eq. (3.12) by the fact that the outer integration (i.e. the one in dtk)

is performed over [0, s] instead of [0, 1]. Having introduced γs, we can rewrite (3.12)

in a recursive manner:

C [γ]
ik,...,i1

=

∫ 1

0
gγik(s) C [γs]

ik−1,...,i1
ds . (A.8)

In addition, eq. (A.7) can be used in order to derive the identity

d

ds
C [γs]
ik,...,i1

= gγik(s) C [γs]
ik−1,...,i1

. (A.9)
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• Shuffle algebra. Chen’s iterated integrals fulfill shuffle algebra relations: if ~m =

(mM , . . . ,m1) and ~n = (nN , . . . , n1), with M and N natural numbers, one has

C [γ]
~m C

[γ]
~n =

∑
shuffles σ

C [γ]
σ(mM ),...,σ(m1),σ(nN ),...,σ(n1) , (A.10)

where the sum runs over all the permutations σ that preserve the relative order of ~m

and ~n.

• Path composition formula. If α, β : [0, 1] → M are two paths such that α(0) = ~x0,

α(1) = β(0), and β(1) = ~x, then the composed path γ = αβ is obtained by first

traversing α and then β. One can prove that the integral over such a composed path

satisfies

C [αβ]
ik,...,i1

=

k∑
p=0

C [β]
ik,...,ip+1

C [α]
ip,...,i1

. (A.11)

• Integration-by-parts formula. The computation of eq. (A.1) requires, in principle,

the evaluation of k nested integrals. Nevertheless, we observe that the innermost

integration is always reduced to (A.5), so that one has k − 1 actual integrations to

perform. For instance, at weight k = 2, we have

C [γ]
m,n =

∫ 1

0
gm(t) C [γt]

n dt

=

∫ 1

0
gm(t)(log ηn(~x(t))− log ηn(~x0)) dt (A.12)

and one is left with a single integral to be evaluated, either analytically or numerically.

Moreover, one can show that the integration involving the outermost weight gk can

be performed by parts, returning

C [γ]
ik,...,i1

= log ηik(~x) C [γ]
ik−1,...,i1

−
∫ 1

0
log ηik(~x(t)) gik−1

(t) C [γt]
ik−2,...,i1

dt . (A.13)

The combined use of eqs. (A.12) and (A.13) allows, for instance, a remarkable sim-

plification in the numerical evaluation of weight k ≥ 3 iterated integrals, since the

analytic calculation of the inner- and outermost integrals leaves only k−2 integrations

to be performed via numerical methods.

• Conversion to GPLs formula. If all letters appearing in a Chen’s iterated integral are

rational functions with algebraic roots, then the iterated integral can be converted in

terms of GPLs.

Suppose we connect the endpoints ~x0 = (a1, a2, a3) and ~x1 = (b1, b2, b3) through a

piecewise path of the type
γ1(t) : (a1 + t(b1 − a1), a2, a3)

γ2(t) : (b1, a2 + t(b2 − a2), a3)

γ3(t) : (b1, b2, a3 + t(b3 − a3)) .

(A.14)
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the conversion of the iterated integral to GPLs can be achieved by factorizing all

letters such that the dependence on the varied variable xi, becomes linear. Any

weight-k integral can then be transformed by∫
γi

d log(xi − wk) . . . d log(xi − w1) = G

(
ai − wk
ai − bi

, . . . ,
ai − w1

ai − bi
; 1

)
, (A.15)

where wi are weights which may depend on the constant variables along the path γi.

B Canonical master integrals for X0W+W−

In this appendix we give the explicit expression of the kinematic coefficients appearing in

the definition of canonical master integrals defined by eq. (4.5) and eq. (4.21).

B.1 Topologies (a)–(b)

The coefficients of the canonical MIs listed in eq. (4.5) are given by

c16, 17 =
3

2

(√
λ+ s− p2

1 − p2
2 + 2m2

)
, (B.1)

c17, 17 = p2
1p

2
2 − (p2

1 + p2
2)m2 +m4 +m2s , (B.2)

c21, 21 =
3

2

(√
λ+ s− p2

1 − p2
2 + 2m2

)
, (B.3)

c22, 22 = p2
1p

2
2 − (p2

1 + p2
2)m2 +m4 +m2s , (B.4)

c1, 29 =
m2s

(p2
1 −m2)(p2

2 −m2)
, (B.5)

c2, 29 = − m2sp2
2

(p2
1 −m2)(p2

2 −m2)
, (B.6)

c4, 29 = − m2sp2
1

(p2
1 −m2)(p2

2 −m2)
, (B.7)

c27, 29 = p2
1

(
p2

2 −m2
)

+ p2
2

(√
λ+m2 + s− p2

2

)
+m2

(
s−
√
λ
)
, (B.8)

c28, 29 = p2
1

(
p2

2 −
√
λ+m2 + s− p2

1

)
+m2(

√
λ+ s− p2

2) , (B.9)

c29, 29 = − s
(
p2

1(p2
2 −m2) +m2(s+m2 − p2

2)
)
, (B.10)

where the Källén function λ is defined in eq. (4.6).

B.2 Topologies (c)–(d)

The coefficients of the canonical MIs listed in eq. (4.21) are given by

c2, 16 = −
p2

2

(
−m2

(
p2

2 − s+
√
λ
)
− p2

1

(
p2

2 − p2
1 + s−m2 −

√
λ
))

(p2
1 − p2

2)(p2
1 +m2)− s(p2

1 −m2)
, (B.11)

c3, 16 =

√
λ
(
p2

1(2m2 − s)−m2(2p2
2 − s)

)
(p2

1 − p2
2)(p2

1 +m2)− (p2
1 −m2)s

− ρ, (B.12)
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c4, 16 = −
p2

1

(
m2
(
p2

2 − s+
√
λ
)

+ p2
1

(
p2

2 − p2
1 + s−m2 −

√
λ
))

(p2
1 − p2

2)(p2
1 +m2)− (p2

1 −m2)s
, (B.13)

c16, 16 =

√
λ
(
m2(p2

1 − p2
2)2 + s(p2

1 −m2)(p2
2 −m2)

)
(p2

1 − p2
2)(p2

1 +m2)− (p2
1 −m2)s

, (B.14)

c17, 19 =
(
p2

2 − p2
1 + 2m2 − s−

√
λ
)
, (B.15)

c18, 19 =
1

2

(
p2

2 − p2
1 + 2m2 − s−

√
λ
)
, (B.16)

c19, 19 = m2(p2
2 +m2 − s) + p2

1(s−m2), (B.17)

c5, 21 =
m2(p2

2 −m2)

s+ ρ
, (B.18)

c6, 21 = − 2m2(p2
2 +m2)

s+ ρ
, (B.19)

c9, 21 =
2m2(p2

1 +m2)

s+ ρ
, (B.20)

c10, 21 = − m2(p2
1 −m2)

s+ ρ
, (B.21)

c20, 21 = − 1

2

√
λ+

1

2s
(s+ p2

2 − p2
1)ρ, (B.22)

c21, 21 = ρ, (B.23)

c22, 24 = p2
1 − p2

2 − s+ 2m2 +
√
λ, (B.24)

c23, 24 =
1

2
(p2

1 − p2
2 − s+ 2m2 +

√
λ), (B.25)

c24, 24 = m2p2
1 − (p2

2 −m2)(m2 − s), (B.26)

c11, 25 = −
p2

2

(
m2
(
p2

2 − s+
√
λ
)

+ p2
1

(
p2

2 − p2
1 + s−m2 −

√
λ
))

(p2
1 − p2

2)(p2
1 +m2)− s(p2

1 −m2)
, (B.27)

c12, 25 =
p2

2

√
λ
(
s(p2

1 −m2)− 2m2(p2
1 − p2

2)
)

(p2
1 − p2

2)(p2
1 +m2)− (p2

1 −m2)s
+ p2

2ρ, (B.28)

c13, 25 =
p2

1p
2
2

(
p2

1

(
p2

2 − p2
1 + s−m2 −

√
λ
)

+m2
(
p2

2 − s+
√
λ
))

(p2
1 − p2

2)(p2
1 +m2)− (p2

1 −m2)s
, (B.29)

c25, 25 = −
p2

2

√
λ
(
m2(p2

1 − p2
2)2 + s(p2

1 −m2)(p2
2 −m2)

)
(p2

1 − p2
2)(p2

1 +m2)− (p2
1 −m2)s

, (B.30)

c12, 26 =
p2

2ρ
(
p2

1

(
p2

2 − p2
1 + s−m2 −

√
λ
)

+m2
(
p2

2 − s+
√
λ
))

(p2
1 − p2

2)(p2
1 +m2)− (p2

1 −m2)s
, (B.31)

c14, 26 = ρ2 +
ρ
√
λ
(
p2

1

(
2m2 − s

)
+m2

(
s− 2p2

2

))
(p2

1 − p2
2)(p2

1 +m2)− (p2
1 −m2)s

, (B.32)

c15, 26 = −
p2

1ρ
(
p2

1

(
p2

2 − p2
1 − s+

√
λ
)

+m2
(
p2

2 − s+
√
λ
))

(p2
1 − p2

2)(p2
1 +m2)− (p2

1 −m2)s
, (B.33)
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c26, 26 =
8
√
λ
(
m2(p2

1 − p2
2)2 + s(p2

1 −m2)(p2
2 −m2)

)(
(p2

1 − p2
2)(p2

1 +m2)− (p2
1 −m2)s

)
(s− 2m2 + ρ)4

×

×
(
s4 (s+ ρ) + 2m8 (8s+ ρ)−m2s3 (5s+ 4ρ)− 4m6s (11s+ 4ρ)

+ 2m4s2 (17s+ 10ρ)
)
, (B.34)

c3, 30 = 2(p2
1 − p2

2)− 2p2
2(p2

1 − p2
2)

p1
2 −m2

− s+ ρ , (B.35)

c12, 30 = 2p2
2

(
−2(p2

1 − p2
2) +

2p2
2(p2

1 − p2
2)

p2
2 −m2

+ s− ρ
)
, (B.36)

c28, 30 = s(p2
1 + p2

2 + 2m2 − s)− ρ
√
λ, (B.37)

c29, 30 =
(
p2

2(s−m2 − p2
2) + p2

1(p2
2 −m2)−m2s

)
+ (p2

2 −m2)
√
λ , (B.38)

c30, 30 = −m2(p2
1 − p2

2)2 − (p2
1 −m2)(p2

2 −m2)s , (B.39)

where ρ is defined after eq. (4.21) and the Källén function λ is given in eq. (4.6).

C d log-forms

In this appendix we collect the coefficient matrices of the d log-forms for the master inte-

grals (4.5) and (4.21).

C.1 Topologies (a)–(b)

For the two-loop integrals discussed in section 4.1 we have

dA = M1 d log(u) + M2 d log(z) + M3 d log(1− z)

+ M4 d log(z̄) + M5 d log(1− z̄) + M6 d log(z − z̄)

+ M7 d log(1 + u z z̄) + M8 d log (1− u z(1− z̄))

+ M9 d log (1− u z̄(1− z)) + M10 d log (1 + u(1− z)(1− z̄)) , (C.1)

with

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −2 1
2 −

3
2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −3
2 −2 1

2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 1

2 0 0 0 0 0 1
2

1
2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −2 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −2 1 2 0

0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



, (C.2)
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M2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2 −1

2 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 −1
2 0 −1 1

2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 −2 1
2 0 0 −1

2 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1
2 0 −1

2 −
1
2 0 1

2 −1
2 0 0 −1 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 −1 1
2 0 −1

2

0 0 0 −1 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 −1 −1
2

3
2 0 0 0 −2 0 0 0 0 −2 −1 0 0 0 1 0 0 0 0 −2 1 0 −1

0 2 0 −2 2 1 −3 0 0 0 0 0 0 0 0 4 2 0 0 0 −2 0 0 0 0 4 −2 0 2



, (C.3)

M3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2 0 −1

2 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 −3
2 0 3

2 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 −1
2 0 1

2 0 0 −1 0 0 0 0 0 2 1 1 1 1 0 0 0 0 0 0 0

0 1
2 0 1

2
1
2 0 −1

2
1
2 0 0 1 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 −1 0 1
2

1
2

0 0 0 1 0 0 −3
2 1 1

2 0 2 0 0 0 0 1 0 0 0 0 1 1 0 0 0 −2 0 1 1

0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 −2 0 −2 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −2 −1

−1 −2 0 −2 0 0 0 0 0 0 −4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −2 −1

−1 −2 0 −2 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 −2 −1
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M10 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3
2 −1 −1

2 0 0 0 0 0 0 0 0 0 0 0 −3 −2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 1 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 0 2 2 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
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C.2 Topologies (c)–(d)

For the two-loop integrals discussed in section 4.2 we have

dA = M1 d log(v) + M2 d log(1− v) + M3 d log(1 + v) + M4 d log(z)

+ M5 d log(1− z) + M6 d log(z̄) + M7 d log(1− z̄)

+ M8 d log(z − z̄) + M9 d log (z + v(1− z)) + M10 d log (1− z(1− v))

+ M11 d log (z̄ + v(1− z̄)) + M12 d log (1− z̄(1− v))

+ M13 d log
(
v + zz̄(1− v)2

)
+ M14 d log

(
v + (1− z − z̄ + zz̄)(1− v)2

)
+ M15 d log

(
v + z(1− v)2

)
+ M16 d log

(
v + (1− z)(1− v)2

)
+ M17 d log

(
v + z̄(1− v)2

)
+ M18 d log

(
v + (1− z̄)(1− v)2

)
, (C.12)

with

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 5 −6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 −1 −2 4 0 0 0 0 0 0 0 0 −1 1 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

1 1 0 0 0 0 −2 4 −1 1 0 0 0 0 0 0 0 0 0 0 0 1 −1 2 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
2 0 −1

2 0 0 0 0 0 −1
2 −

1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 −2 0 0 0 2 2 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 1 0 0 0 2 1 2 0 0

1 2 4 0 0 −2 −2 1 2 0 0 4 0 0 0 0 0 0 0 0 2 0 −2 −2 0 0 4 2 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
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M2 =
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 −4 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 −4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 −4 0 4 0 0

0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 −4 0 2 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 4
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M3 =
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1
2 1 0 0 −1 1

2 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −2 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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M4 =
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1
2 0 0 0 −1

2 1 0 −1
2 0 0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

−1
2 0 0 −1 −1

2 1 0 −1
2 0 0 0 0 0 0 0 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1
2 0 0 0 0 0 0 −3

2 1 −1
2 0 0 0 0 0 0 0 0 0 0 0 −2 −1 −1 0 0 0 0 0 0 0

1
2 0 0 0 0 0 0 3

2 0 1
2 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0

1
2 0 0 0 0 0 0 3

2 −2 1
2 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 3

2 −2 1
2 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1
2 −1 0 2 −1 1

2 0 0 −1 0 0 0 −1 −1 1 0 0 2 1 1 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 −2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 −1 −1 1 −1 −1 0 0 0 0 0 0 0 0 1 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 −1 −1 1 −1 −1 0 0 0 0 0 0 0 0 1 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1
2 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1
2 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 −1 2 −1 1 0 0 0 0 0 0 0 0 0 0 0 1 −1 2 0 0 0 0 0 0 0

−1 −1 0 0 0 0 1 −2 1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 −2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1
2 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 −3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 −1 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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2 0 0 0 0 0 0 0 0 2 1 −2 0 0 0 0 0 0 0 0 0 0 0 0
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