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1 Introduction and conclusions

The traditional order parameters for the phases of four dimensional gauge theories are the

Wilson [1] and ’t Hooft [2] operators. In recent years, the construction of nonlocal surface

operators [3], which insert probe strings, have enlarged the space of order parameters

of gauge theories. Indeed, surface operators can distinguish phases which are otherwise

indistinguishable using the Wilson-’t Hooft criteria [4].

A surface operator can be defined either by specifying a codimension-two singularity

for the elementary fields or by coupling a two dimensional field theory to the bulk four

dimensional one [3]. The couplings between bulk and defect degrees of freedom can result

in rich dynamics for the combined system, arising from the synergy of two dimensional and

four dimensional strong coupling dynamics. For a sample of early references on surface

operators see [5–12].

Surface operators also play a fundamental role in the six dimensional N = (2, 0)

supersymmetric field theory living on the worldvolume of a collection of Nf coincident and

flat M5-branes. A class of surface operators in this theory are labeled by a representation

R of ANf−1 and admit an M-theory realization as a collection of M2-branes ending on the

M5-branes along the domain of support of the surface operator.

In this paper we give a microscopic two dimensional gauge theory description of all

such surface operators when the M5-branes wrap a punctured Riemann surface C [13].

This realizes a surface operator in a four dimensional N = 2 gauge theory.
C

M5 0 1 2 3 4 5

M2 0 1 6

The surface operator associated to a collection of M2-branes labeled by a representation

R of ANf−1 corresponds to the following two dimensional N = (2, 2) gauge theory

R ←→
N1· · ·Nn−1Nn

Nf

Nf

(1.1)
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coupled to the bulk theory. A cubic superpotential couples each adjoint chiral multiplet to

the neighboring bifundamental chiral multiplets. The FI parameters associated to U(Nj)

for j < n vanish. The ranks Nj encode the representation R whose Young diagram

· · ·

Nn−Nn−1

Nn−1−Nn−2

N2−N1

N1

n

(1.2)

has n columns with Nn −Nn−1 ≥ Nn−1 −Nn−2 ≥ · · · ≥ N2 −N1 ≥ N1 ≥ 0 boxes.1

Advances in the computation of supersymmetric partition functions of four dimensional

N = 2 gauge theories on the squashed four-sphere S4
b [14, 15] have resulted in exact

formulas for the expectation value of Wilson [14] and ’t Hooft operators [16] as functions

of the gauge couplings and masses of the hypermultiplets. The gauge theory computation

of the expectation value of surface operators supported on a squashed S2 ⊂ S4
b are not

yet available. However, recent results in the exact computation of the two-sphere partition

function ofN = (2, 2) supersymmetric field theories [17–20], when suitably coupled to those

in [14, 15], provide a concrete avenue of investigation of the expectation value of half-BPS

surface operators in four dimensional N = 2 theories on S4
b using Feynman path integrals.

For the four dimensionalN = 2 theories obtained by wrapping M5-branes on punctured

Riemann surfaces, also known as class S theories [13], the S4
b partition function in [14, 15]

admits an elegant representation [21] (see also [22]) in terms of two dimensional Toda CFT

correlation functions. In the correspondence between four dimensional N = 2 theories and

Toda CFT, the expectation value of Wilson and ’t Hooft operators on S4
b are realized as

Toda CFT correlators in the presence of loops operators and topological webs [23–25] (see

also [26–28]). Degenerate vertex operators in ANf−1 Toda CFT are conjectured to realize

the insertion of a supersymmetric surface operator [23] (see also [18, 29–32]).

In this paper we identify the two dimensional N = (2, 2) gauge theory that realizes

an arbitrary degenerate operator in Toda CFT, which in turn corresponds to an arbi-

trary M2-brane configuration ending on wrapped M5-branes.2 A degenerate operator with

Toda momentum α = −bΩ, where Ω is the highest weight vector of a representation R(Ω)

of ANf−1, corresponds to the quiver gauge theory (1.1). The complexified FI/theta param-

eter associated to the U(Nn) gauge group encodes the position of the degenerate puncture

1The highest weight of R is Ω =
∑n

j=1 ωNj−Nj−1
in terms of the fundamental weights ωK of ANf−1.

2Another class of surface operators can be realized by M5-branes, and are labeled by a partition ρ of Nf .

It was conjectured in [33] that the instanton partition function of four dimensional N = 2 SU(Nf ) SYM in

the presence of such an M5-defect labeled by ρ is the norm of a Whittaker vector in the W -algebra Wρ. Some

checks of this conjecture and generalizations have appeared in [34–41]. We propose that the surface operator

associated to an M5-defect labeled by ρ, with Nf = K1 + · · ·+Kn, corresponds to coupling the bulk N = 2

superconformal field theory to the two dimensional N = (2, 2) gauge theory N1N2
. . .Nn−1

Nf

Nf

with Nj = K1 + · · · + Kj : vacua of this theory yield a monodromy for the 4d gauge field, which breaks

SU(Nf ) to S[U(K1)× · · · ×U(Kn)]. Surface operators labeled by a Young diagram have appeared in [42].

– 2 –
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(the other FI parameters must vanish in this correspondence). The surface operator is

supported on an S2 ⊂ S4
b invariant under the U(1)×U(1) isometries of S4

b .
3

The quiver gauge theory (1.1) can be used to construct a surface operator in any four

dimensional N = 2 gauge theory that contains an SU(Nf )×SU(Nf )×U(1) flavour or gauge

symmetry group. This is the flavour symmetry of the chiral multiplets charged only under

the U(Nn) gauge group factor in (1.1). A surface operator is constructed by identifying

the common SU(Nf ) × SU(Nf ) × U(1) symmetry groups of the four dimensional and two

dimensional theories.

The simplest four dimensional N = 2 class S theory in which we can include a surface

defect is the theory of N2
f hypermultiplets. This theory is realized by wrapping Nf M5-

branes on a trinion with two full and one simple puncture. We explicitly show that the

partition function of this theory in the presence of the surface operator labeled by a repre-

sentation R(Ω) is given by the Toda four-point function4 obtained by adding to the trinion

a degenerate field with momentum α = −bΩ

Z
R(Ω)

S2⊂S4
b
=

Ω
. (1.3)

The two dimensional quiver gauge theory (1.1) is coupled to the four dimensional field

theory by (weakly) gauging the SU(Nf ) × SU(Nf ) × U(1) flavour symmetry associated to

the trinion. The coupling can also be described by a cubic superpotential between the bulk

hypermultiplets and the fundamental and antifundamental chiral multiplets on the defect.

The combined 4d/2d quiver diagram describing the insertion of the surface operator in this

four dimensional theory is

N1· · ·Nn−1Nn

Nf

Nf

4d 2d

. (1.4)

This construction can be enriched by allowing one (or both) of the SU(Nf ) flavour

symmetry groups of (1.1) to be coupled to one (or two) SU(Nf ) gauge group factors of a

four dimensional theory. An interesting theory where such surface operators can be inserted

is four dimensional N = 2 superconformal SQCD. The SQCD quiver description

SU(Nf )

U(1)

SU(Nf )

U(1)

SU(Nf )

(1.5)

3Degenerate operators with momentum α = −Ω/b correspond to the same quiver gauge theory but

now supported on the other U(1) × U(1) invariant S2 ⊂ S4
b . The most general degenerate momentum

α = −bΩ − Ω′/b corresponds to the insertion of the associated surface operators on both S2’s, but with a

non-trivial coupling at their intersection points, namely the poles of S4
b .

4The four point function in (1.3) contains full , simple , and degenerate punctures.
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makes an U(Nf )
2 flavour symmetry manifest. Both sides of the quiver represent a hyper-

multiplet transforming in the bifundamental representation of the SU(Nf ) gauge group and

a U(Nf ) flavour group. The two dimensional gauge theory (1.1) can now be coupled to

SQCD by identifying the two dimensional flavour symmetry with the U(Nf ) flavour sym-

metry of either of these hypermultiplets and the SU(Nf ) gauge group. The two resulting

surface operators in SQCD are realized by the following 4d/2d quiver diagrams (we intro-

duce the hybrid node to denote a four dimensional gauge group which gauges a two

dimensional flavour symmetry):

Nf

Nf

Nf

Nn · · · N1

4d 2d

and

Nf

Nf

Nf

Nn · · · N1

4d 2d

. (1.6)

The correspondence we propose between these surface operators and Toda CFT cor-

relators predicts a duality between the two coupled 4d/2d theories in (1.6), since SU(Nf )

SQCD is the theory on Nf M5-branes wrapping a sphere with two full and two simple punc-

tures. The weakly coupled regime of SQCD corresponds to a pants decomposition where

the two simple punctures belong to distinct trinions, which are joined by a thin tube. In

this framework, coupling the two dimensional theory (1.1) to either of the two hypermul-

tiplets in SQCD correspond to inserting a degenerate operator with momentum α = −bΩ

in either trinion. The partition functions of the two surface operators in SQCD are thus

both realized as the same five-point function of two full, two simple, and an additional

degenerate puncture:

Z[(1.6)] =
Ω

. (1.7)

In this language, the two 4d/2d quiver diagrams (1.6) correspond to two different degen-

eration limits of the five-point function. It is important to note that this “node-hopping”

duality of the 4d/2d theory is distinct from the usual S-duality of four dimensional N = 2

SQCD. The node-hopping duality was first observed in the superconformal index of some

4d/2d theories in [42], whose 4d/2d quiver notation we have borrowed. The superconformal

index with surface operators has been considered in [43–46].

More generally, the surface operator (1.1) can be inserted in an arbitrary class S

theory whenever the corresponding Riemann surface has at least one simple puncture.5

5Inserting multiple degenerate punctures near distinct simple punctures corresponds to including mul-

tiple surface operators built using distinct SU(Nf ) × SU(Nf ) × U(1) groups of the four dimensional the-

ory. In a pants decomposition where the degenerate punctures are all inserted near the same simple

puncture, the surface operator describes a single two dimensional gauge theory coupled through a given

SU(Nf )× SU(Nf )×U(1) symmetry group.
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The generalized S-duality symmetry groupoid of a class S theory, which is realized as the

Moore-Seiberg groupoid of the punctured Riemann surface, is enriched in the presence of

surface operators. The addition of a degenerate puncture to the Riemann surface allows

for further pants decomposition of the enriched Riemann surface, and thereby more duality

transformations, that go beyond the dualities of the purely four dimensional theory. The

node-hopping duality (1.6) provides an example of a new duality of the 4d/2d system.

In the second part of the paper we “geometrize” dualities of two dimensional N = (2, 2)

quiver gauge theories in terms of symmetries of Toda CFT correlation functions. The quiver

gauge theories we consider are

N1N2· · ·Nn

Nf

Nf

(1.8)

where an adjoint chiral multiplet can be added to any gauge group factor. Each adjoint

chiral multiplet is coupled to the neighboring bifundamental chiral multiplets through a

cubic superpotential, while nodes without an adjoint chiral multiplet have a quartic super-

potential for the neighboring bifundamental chiral multiplets. Finally, the Nf fundamental

and antifundamental chiral multiplets have no superpotential coupling.

We show that surface operators obtained by coupling these two dimensional gauge

theories (1.8) to class S theories have a Toda CFT realization. The quiver with n gauge

nodes corresponds to the insertion of n degenerate fields labeled by either symmetric or

antisymmetric representations of ANf−1. The n complexified FI parameters encode the po-

sition of the n degenerate punctures. We now build the representations labeling degenerate

punctures recursively from the matter content of (1.8). If the U(Nn) factor has an adjoint

chiral multiplet, then the representation carried by the n-th puncture is of symmetric type,

and otherwise of antisymmetric type. Then sequentially for each gauge group factor U(Nj)

from j = n−1 to 1, the j-th puncture is labeled by a representation of the same type as the

(j+1)-th puncture if there is an adjoint chiral multiplet, and otherwise by a representation

of the other type. The Young diagram labeling the j-th puncture has Nj −Nj−1 boxes for

1 ≤ j ≤ n, where N0 = 0. See table 1 for useful special cases and figure 1 for a concrete

example. The sphere partition function of the surface operator inserted by (1.8) in the

trinion theory of free hypermultiplets is the Toda CFT correlator

Z
(1.8)

S2⊂S4
b
= Ω1Ωn

· · ·
. (1.9)

We also identify the gauge theory corresponding to multiple degenerate punctures labeled

by arbitrary representations of ANf−1.

We consider several dualities in two dimensional N = (2, 2) theories, realized as sym-

metries of the corresponding Toda CFT degenerate operators. As described below (see also

table 2), some dualities correspond to the crossing symmetry exchanging two degenerate

operators, while others correspond to conjugating all Toda CFT momenta, under which

– 5 –
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2d Gauge theory Field content Representation Equation

SQED 1Nf Nf Fundamental (2.19) p. 17

SQCD NNf Nf Antisymmetric (2.51) p. 24

SQCDA

NNf Nf

Symmetric (2.88) p. 33

with W =
∑

t q̃tX
ltqt Two symmetrics (2.106) p. 37

with W = TrX l+1 Quasi-rectangular (2.111) p. 38
∏

j U(Nj) quiver

with some adjoints
N1. . .Nn−1Nn

Nf

Nf

Antisymmetrics

and symmetrics
(2.114) p. 41

∏
j U(Nj) quiver

ẑ1 = · · · = ẑn−1 = 1
N1. . .Nn−1Nn

Nf

Nf

Arbitrary (2.146) p. 48

Table 1. Correspondence between surface operators defined by N = (2, 2) gauge theories and

degenerate vertex operators labeled by representations of ANf−1. The positions of degenerate

operators are controlled by a combination ẑ of FI and theta parameters for each gauge group U(N),

which differs from z = e−2πξ+iϑ by a sign: (−1)nf if the group has an adjoint chiral multiplet and

otherwise (−1)nf+N−1, where nf is the number of fundamental chiral multiplets for that group.

The U(N1) × · · · × U(N4) linear quiver given below has adjoint chiral multiplets for

U(N1) and U(N4), hence two cubic superpotential terms coupling these to neighbor-

ing bifundamental multiplets. It also has two quartic superpotential terms coupling

bifundamentals charged under U(N2), and those charged under U(N3). The partition

function of the surface operator inserted by coupling the theory to N2
f hypermultiplets is

captured by a Toda CFT correlator with two full punctures at 0 and ∞, one simple at 1

and four degenerate punctures at x4 = ẑ4, x3 = ẑ4ẑ3, x2 = ẑ4ẑ3ẑ2, x1 = ẑ4ẑ3ẑ2ẑ1, where

ẑ4 = (−1)N3+Nf z4, ẑ3 = (−1)N2+N4+N3−1z3, ẑ2 = (−1)N1+N3+N2−1z2, ẑ1 = (−1)N2z1.

ZS2⊂S4
b


 N1N2N3N4

Nf

Nf


 =

x4 x3 x2 x1
.

The degenerate punctures are labelled by the (N4−N3)-th symmetric, the (N3−N2)-th

antisymmetric, the (N2 −N1)-th symmetric, and the N1-th symmetric representations,

depicted by cartoons of their Young diagrams. Whenever two neighboring punctures

have a different type of representation the corresponding gauge theory node has no

adjoint, while neighbors of the same type yield an adjoint. The end node U(N4) is

special and has an adjoint because the first puncture is symmetric.

Figure 1. Example of how multiple Toda CFT degenerate punctures map to a quiver gauge theory.

the fundamental weights of ANf−1 transform as (ωN )C = ωNf−N . We also establish these

dualities through explicit evaluation of the exact two-sphere partition function [17, 18] of

dual theories. This completes the dictionary between symmetries of Toda CFT correlators

and dualities of 4d/2d gauge theories (see table 3).

– 6 –
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Duality Quiver W Dual parameters Toda symmetry

Seiberg

Nf

Ñf

N 0
ND = Nf −N , zD = (−1)Ñf z,

qD = 1− q, mD = −m

Conjugation p. 51

(−bωN )C = −bωND

(2, 2)∗-like
Nf

Nf

N

∑
t q̃tX

ltqt
ND =

∑
t lt −N , zD = z−1,

qD = q, mD = m

Crossing p. 56

simple → degenerate

Kutasov–

Schwimmer

Nf

Ñf

N TrX l+1

ND = lNf −N ,

zD = (−1)Nf−Ñf z,

qD = 2
l+1 − q, mD = −m

Conjugation p. 59

(−Nbh1)
C ≡ −NDbh1

Quiver N1. . .Nn−1Nn

Nf

Nf

ND
j = Nj−1 +Nj+1 −Nj

ẑDj = ẑ−1
j , ẑDj±1 = ẑj ẑj±1

Crossing p. 63

ωNj−Nj−1 ↔ ωNj+1−Nj

Quiver N1. . .Nn−1Nn

Nf

Nf

ND
j = jNf −Nj ∀j

qD = 1− q, mD = −m

Conjugation p. 66

ωC
Nj−Nj−1

= ωND
j −ND

j−1

Table 2. Dualities of N = (2, 2) quiver gauge theories realized as symmetries in the Toda CFT.

Chiral multiplets are denoted by qt (fundamentals), q̃t (antifundamentals), and X (adjoint). Each

has a twisted mass m and an R-charge q. FI and theta parameters combine into z = e−2πξ+iϑ

for each gauge group U(N); denoting nf and na the numbers of fundamental and of adjoint chiral

multiplets, we also define ẑ = (−1)nf+(na−1)(N−1)z. For Seiberg and Kutasov-Schwimmer dualities,

the magnetic theory contains extra free chiral multiplets whose charges are identical to those of

mesons in the electric theory. We assume Ñf < Nf .

Toda CFT move ⇐⇒ Gauge theory duality

↔ ⇐⇒ 4d generalized S-duality [13]; [21]

↔ ⇐⇒ 4d/2d node-hopping [42]

↔ ⇐⇒
2d flop transition [47]; [18]

↔

( )C

⇐⇒
2d Seiberg duality [17]: our section 3.1

Kutasov-Schwimmer: our section 3.2

↔ ⇐⇒
2d Seiberg and (2, 2)∗ dualities

for quivers [48]: our section 3.3

Table 3. The effect of a few Toda CFT moves on the corresponding 4d/2d gauge theory. Besides

the symmetry under changing trinion decomposition, Toda CFT correlators are also invariant under

conjugation of all momenta. Full punctures are drawn as solid lines, simple punctures as dashed

lines, and degenerate punctures as dotted lines. References are to papers describing the gauge

theory duality and to papers giving its relation to Toda CFT.

The detailed description of the rest of the paper follows. Section 2 is devoted to

the correspondence between surface operators labeled by two dimensional quiver gauge

theories and Toda CFT degenerate operators. We derive the identification by coupling

– 7 –
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the two dimensional theories to the trinion theory of free hypermultiplets, as this choice

of a free four dimensional theory lets us concentrate on the two dimensional theories. The

S2 ⊂ S4
b partition function of these surface operators corresponds to Toda CFT correlators

involving one simple, two full, and additional degenerate operators.

After describing our gauge theory setup, and recalling explicit expressions for the

S4
b and S2 contributions, we proceed to expand S2 partition functions in various limits and

compare them with Toda CFT results. First, we review the case of SQED in some detail in

section 2.1: this U(1) gauge theory corresponds to the insertion of the simplest Toda CFT

degenerate vertex operator, labeled by the fundamental representation of ANf−1 [18]. Then,

we move on to U(N) SQCD in section 2.2, which corresponds to inserting a degenerate

operator labeled by an antisymmetric representation of ANf−1. Using new braiding matrices

derived in appendix A.3, we prove that the Toda CFT correlator and the partition function

of the 4d/2d theory are equal. We then describe in section 2.2.3 how one can decouple

some free hypermultiplets from the four dimensional theory and chiral multiplets from

the two dimensional theory: the procedure translates to a collision limit where two Toda

CFT vertex operators combine into an irregular puncture (see also appendix A.6). In

section 2.3, we add adjoint matter to SQCD to get SQCDA, and find that it corresponds to a

degenerate operator labeled by a symmetric representation. We then consider SQCDA with

different superpotentials in section 2.3.3 and give their Toda CFT interpretation. Finally,

in section 2.4, we show that the previous results arise as special cases of surface operators

described by the quivers (1.8), which correspond to the insertion of several (symmetric and

antisymmetric) degenerate operators. We briefly discuss a brane diagram interpretation of

the dictionary. By fusing representations, we deduce in section 2.4.2 which surface operator

corresponds to an arbitrary degenerate operator. All cases are summarized in table 1.

Section 3 describes dualities of two dimensional N = (2, 2) gauge theories which can

be obtained as manifest Toda CFT symmetries. The dualities relate the IR limits of these

theories, and we probe them by comparing S2 partition functions of proposed duals. The

contribution of free hypermultiplets to the partition function of the 4d/2d theory plays

little role. We find several Seiberg-like dualities (generalizing the duality found by Hori

and Tong [49]) relating theories with similar matter content but different gauge groups (see

table 2). The dualities are most clearly seen through the matching with the Toda CFT,

but we also show directly in appendix B that the S2 partition functions of dual theories

are equal.6

We start in section 3.1 with the two dimensional analogue of Seiberg duality [50], be-

tween N = (2, 2) U(N) SQCD with Nf flavours, and U(Nf −N) SQCD with Nf flavours.

The corresponding Toda CFT correlators are simply related by conjugating all momenta.

This operation provides us with the precise map of parameters: ND = Nf − N , zD =

(−1)Nf z, and mD = i/2 − m for the complexified twisted masses of every chiral multi-

plet.7 In addition to fundamental and antifundamental chiral multiplets, the U(Nf − N)

6This was shown previously for SQCD with Nf fundamental and Ñf ≤ Nf − 2 antifundamental chiral

multiplets [17], and generalized very recently to arbitrary Ñf in [48]. Our proofs follow the same logic but

also apply to theories with an adjoint chiral multiplet and a superpotential.
7By coupling the flavour symmetry to a constant background vector multiplet, chiral multiplets can be

given twisted masses and R-charges, which combine into a complex parameter m for each chiral multiplet.
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theory involves a free chiral multiplet transforming in the bifundamental representation

of the flavour symmetry group S[U(Nf ) × U(Nf )]. These free chiral multiplets couple to

the charged multiplets through a cubic superpotential, which must have total R-charge 2

(complexified twisted mass i) to be supersymmetric. As was also observed recently in [48],

the theories differ by a shift in the FI parameter associated to the U(1) flavour symmetry.

In section 3.1.2, we deduce Seiberg duality relations between theories with Nf fundamental

and Ñf < Nf antifundamental chiral multiplets (with zD = (−1)Ñf z). For this, we let some

of the twisted masses of antifundamental multiplets go to infinity and take into account

the renormalization of the FI parameter: this limit precisely corresponds to merging the

Toda CFT operators inserted at ∞ and 1 into an irregular puncture [51].

We then move on in section 3.2 to dualities of U(N) SQCDA, which has fundamental,

antifundamental, and adjoint chiral multiplets. Without further restriction, the theory

features no duality. We find two choices of superpotentials for which the theory has a dual

description: both dualities appear to be new in two dimensional N = (2, 2) theories.

In section 3.2.1, we consider SQCDA with the superpotential

W =

Nf∑

t=1

q̃tX
ltqt , (1.10)

described by a choice of Nf integers lt ≥ 0, where qt, q̃t and X are the fundamental,

antifundamental, and adjoint chiral multiplets. The theory is a simple generalization of

N = (2, 2)∗ SQCD.8 The constraint on R-charges due to the superpotential translates to

a very natural constraint in the Toda CFT language. Namely, the momentum labeling the

simple puncture gets fine-tuned to become a degenerate operator, labeled by a symmetric

representation of ANf−1. The crossing symmetry exchanging these two degenerate vertex

operators thus provides us with a duality between two dimensional SQCDA theories with

the superpotential (1.10). The U(ND) dual theory features the same chiral multiplets

and superpotential as the U(N) theory, with identical complexified twisted masses, ND =∑
t lt −N , and zD = z−1.

In section 3.2.2, we consider SQCDA with the superpotential

W = TrX l+1 (1.11)

for some integer l ≥ 0, where X is the adjoint chiral multiplet. We find a direct analogue

of the four dimensional Kutasov-Schwimmer duality [52, 53]. It turns out that given the

superpotential constraint, conjugation maps the (symmetric) degenerate operator describ-

ing U(N) SQCDA to the degenerate operator describing U(ND) SQCDA. The dual gauge

theory has ND = lNf −N , zD = z, mD
t = mX −mt, m̃

D
t = mX − m̃t, and mD

X = mX . As

in four dimensions [52, 53], the dual theory features l additional free chiral multiplets in

the bifundamental representation of S[U(Nf )×U(Nf )], which correspond to mesons of the

electric theory. As for SQCD, the limit where twisted masses of some chiral multiplets are

8N = (2, 2)∗ SQCD is the mass deformation of the N = (4, 4) theory of a U(N) vector multiplet

coupled to Nf fundamental hypermultiplets. Its cubic superpotential W =
∑

t q̃tXqt corresponds to taking

all lt = 1.
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very large yields similar dualities between theories with a different number of fundamental

and antifundamental chiral multiplets.

Lastly, we describe dualities of quiver gauge theories in section 3.3. We consider the

U(N1) × · · · × U(Nn) quiver theories (1.8) which correspond in the Toda CFT to the

insertion of n degenerate vertex operators. Dualities of another type of N = (2, 2) quiver

gauge theories were considered recently in [48].

In section 3.3.1 we apply Seiberg duality or the N = (2, 2)∗ duality (depending on the

presence or absence of an adjoint chiral multiplet) to gauge group factors U(Nj) with j < n.

We show that the duality translates to the exchange of degenerate punctures numbered

j and j + 1 in the Toda CFT. Each permutation of the n degenerate punctures is thus

realized as a combination of such Seiberg and N = (2, 2)∗ dualities.

Based on this geometric realization of dualities for j < n, we construct in section 3.3.2

the full set of dual theories obtained through Seiberg and N = (2, 2)∗ dualities acting

on any gauge group. We find no Toda CFT description of the duality acting on U(Nn),

except when all degenerate vertex operators are labeled by antisymmetric representations

of ANf−1. Then, conjugating all Toda CFT momenta yields a different set of degenerate

operators of the same type, and it turns out that the corresponding dual gauge theories

are related by a sequence of Seiberg and N = (2, 2)∗ dualities on all nodes. A particular

case is the quiver (1.1) which corresponds to a single degenerate vertex operator labeled

by an arbitrary representation R: applying the same sequence of Seiberg and N = (2, 2)∗

dualities corresponds to conjugating R and all Toda CFT momenta. This result concludes

the description of dualities of two dimensional N = (2, 2) gauge theories which correspond

to manifest symmetries of the Toda CFT.

Many new Toda CFT results are presented in appendix A. We describe notations and

the normalization of vertex operators (appendix A.1), compare one-loop determinants and

three-point functions (appendix A.2), work out new braiding matrices (appendix A.3), give

new fusion rules (appendix A.4), deduce new conformal blocks from the correspondence

(appendix A.5), and collide vertex operators to build irregular punctures of theWNf
algebra

(appendix A.6). Finally, appendix B features analytic proofs that vortex partition of dual

theories are equal, for Seiberg duality (appendix B.1), and for dualities of SQCD with an

adjoint (appendix B.2).

2 Surface operators as Toda degenerate operators

In this section, we consider half-BPS surface operators obtained by coupling two dimen-

sional N = (2, 2) gauge theories to four dimensional N = 2 theories of class S. We enrich

the dictionary between class S theories and Riemann surfaces by identifying surface oper-

ators which correspond to the insertion of arbitrary degenerate punctures.

To make the two dimensional features most visible, we restrict ourselves to surface

operators in the simplest class S theory, which is the theory on Nf M5-branes wrapping a

sphere with two full and one simple puncture, namely the theory of N2
f free hypermulti-

plets Φ4d. The M-theory description makes an SU(Nf )× SU(Nf )×U(1) flavour symmetry

manifest, and the hypermultiplets transform in the trifundamental representation of this
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group. All two dimensional theories we study contain Nf fundamental chiral multiplets q

and Nf antifundamental chiral multiplets q̃ of a U(N) gauge group factor. The 4d/2d cou-

pling takes the form of a superpotential term
∑

s,t q̃tqs
(
Φ4d
st |2d

)
in two dimensions, which

identifies the flavour symmetries S[U(Nf ) × U(Nf )] of these chiral multiplets9 and of the

hypermultiplets. To write the superpotential term explicitly, the four dimensional N = 2

hypermultiplets should be decomposed into two dimensional N = (2, 2) components. Cou-

pling the common flavour group to a constant background vector multiplet then gives

twisted masses to the two dimensional chiral multiplets and masses to the four dimensional

hypermultiplets, related by (2.17).

For definiteness, we place the four dimensional theory on a squashed sphere S4
b

x20
r

+
x21 + x22

ℓ2
+

x23 + x24
ℓ̃2

= 1 (2.1)

where b2 = ℓ/ℓ̃, and we place surface operators at x3 = x4 = 0, hence on the squashed

two-sphere10

x20
r

+
x21 + x22

ℓ2
= 1 . (2.2)

The full partition function of the 4d/2d theory is then the product

ZS2⊂S4
b
= Z free

S4
b
ZS2 (2.3)

of the partition functions of the free hypermultiplets on S4
b [15] and of the two dimensional

gauge theory on the squashed two-sphere [17–19]. The two factors do not dependent on r,

but only on the equatorial radii ℓ and ℓ̃.

The S4
b partition function of a single free hypermultiplet of mass m only depends on

the dimensionless mass11 m =
√
ℓℓ̃m. It reads [15]12

Z free
S4
b
(m) =

1

Υ( b2 + 1
2b − im)

. (2.4)

The S4
b partition function of the four dimensional theory is the product of N2

f such in-

verses of Upsilon functions. The complexified masses mst of the N
2
f hypermultiplets in this

class S theory arise from coupling to a background vector multiplet the S[U(Nf )×U(Nf )]

flavour subgroup which is made manifest in the description as M5-branes wrapping a trin-

ion. With such masses, the S4
b partition function is then equal to a Toda CFT correlator

with one simple and two full punctures. Inserting one or more degenerate punctures in the

correlator corresponds to including the associated surface operator in the theory of N2
f hy-

permultiplets: for given degenerate punctures, we will find the gauge theory description of

9The full flavour symmetry of the two dimensional quiver gauge theories we consider also contains a

U(1) factor, under which adjoint chiral multiplets have charge ±2 and bifundamental chiral multiplets have

charge ∓1.
10Inserting the surface operators at x1 = x2 = 0 instead would exchange ℓ ↔ ℓ̃: we would find degenerate

operators with momenta − 1
b
Ω instead of −bΩ, where Ω is a highest weight of ANf−1.

11In our correspondence m also has an imaginary part, which is linked to the U(1) R-charges of the two

dimensional chiral multiplets.
12The sign of m is irrelevant since the Upsilon function (A.9) obeys Υ(b+ 1

b
− x) = Υ(x).
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the associated surface operator by comparing the enriched Toda CFT correlator with the

partition function of the 4d/2d theory on S2 ⊂ S4
b .

The second contribution to the partition function of the S2 ⊂ S4
b system is the partition

function of the two dimensional theory. We recall now the data defining an N = (2, 2) the-

ory of vector and chiral multiplets, and expressions for its partition function on S2. Besides

the gauge group G (throughout the paper, G = U(N) or a product of such factors) and

the representation R of G in which matter multiplets transform, the S2 partition function

depends on a (real) twisted mass m and a U(1) R-charge q for each chiral multiplet, that

is, for each irreducible factor in R. Those are conveniently combined as the dimensionless

complexified twisted mass

m = ℓm+
iq

2
, (2.5)

where ℓ is the equatorial radius of the squashed S2. Furthermore, for each U(1) factor of G,

an FI parameter ξ and a theta angle ϑ can be turned on. It will be practical to consider

the complex combination

z = e−2πξ+iϑ (2.6)

for each U(1) gauge group factor. Unless stated otherwise, the parameters m and z are

generic. We also assume that R-charges are small and positive, 0 < Re(−2im) < 1, and

otherwise define the partition function by analytic continuation.

For a choice of supercharge Q in the supersymmetry algebra, and of a Q-exact defor-

mation term QV such that Q2V = 0, supersymmetric localization reduces the partition

function to an integral over saddle points of QV . When QV is chosen appropriately, in

particular with a positive semidefinite bosonic part, the integral is finite dimensional and

more tractable than the original path integral.

One choice of deformation term leads to an expression of the partition function as an

integral over the Coulomb branch [17, 18] ([54, 55] corrected a sign):13

Z =
1

W

∑

B∈hZ

∫

h

dσ

(2π)dim h
Zcl

∏

α>0

[
(−1)αB

(
(ασ)2+

(αB)2

4

)] ∏

w∈R

[
Γ(−w(im+ iσ + B

2 ))

Γ(1 + w(im+ iσ − B
2 ))

]
.

(2.7)

Here, W is the order of the Weyl group of G, the sum is restricted to GNO quantized

fluxes B ∈ h, and the integral over the lowest component σ of the vector multiplet ranges

in the Cartan algebra h of G. The vector multiplet one-loop determinant is a product over

all positive roots α of G, and the chiral multiplet one-loop determinant, a product over all

weights w of R, involves the complexified twisted mass w ·m of the irreducible factor of R

containing w.14 When G = U(N1)× · · · ×U(Nn), the classical contribution is

Zcl(σ,B, z, z̄) =

n∏

i=1

[
z
Tr

(
iσi+

Bi
2

)

i z̄
Tr

(
iσi−

Bi
2

)

i

]
=

n∏

i=1

e−4πξi Tr(iσi)+iϑi Tr(Bi) , (2.8)

and it is invariant under any ϑi → ϑi + 2π since Bi are Ni × Ni (diagonal) matrices of

integers. The vector multiplet sign simply shifts ϑi → ϑi + (Ni − 1)π.

13Our normalization differs by (2π)dim h from [18] as this will simplify the expression of dualities.
14Roots and weights are linear forms on h, and we use the notation ασ = α(σ) ∈ R.
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A different choice of deformation term [17, 18] localizes the path integral to the Higgs

branch of the theory rather than its Coulomb branch, yielding a finite sum

Z =
∑

v∈{Higgs vacua}

(zz̄)iv res
σ=v

[
∏

α

(iασ)
∏

w∈R

γ(−w(im+ iσ))

]
Zv(v,m, z)Zv̄(v,m, z̄) (2.9)

which includes a vortex contribution Zv depending holomorphically on z and an antivortex

contribution depending on z̄. Here, γ(x) = Γ(x)
Γ(1−x) , and factors other than Zv and Zv̄ are

obtained as the residue at σ = v and B = 0 of the Coulomb branch integrand. Higgs branch

vacua are defined as having non-zero vevs for the lowest component φ of some chiral fields.

They are labeled by solutions (σ, φ) of the D-term equation φφ† = ξ and of (σ +m)φ = 0,

where σ and m act on φ through the action of G and of the flavour symmetry group Gf .

The set of values of σ for which the D-term equation has a solution depends on signs of

the FI parameters ξj for each U(1) factor in G: each choice of signs leads to a different

expansion (2.9). Even after solving these equations, one must in principle evaluate Zv as

the volume of a moduli space of vortices. However, the Coulomb branch representation

provides a convenient short-cut: closing the dσ integrals (2.7) towards σ → ±i∞ depending

on the matter content and on signs of FI parameters expresses the partition function as

a sum over poles, which is then rewritten as a finite sum of factorized terms (2.9). The

manipulations are most easily done on specific examples, as we will see, but work for an

arbitrary gauge group and matter representation (see [18, appendix F]).

In the coming sections we associate a two dimensional N = (2, 2) gauge theory, hence

a surface operator, to each choice of representation R(Ω) of ANf−1. We work out equalities

of the form

Z
(Ω)

S2⊂S4
b
= A|x|2γ0 |1− x|2γ1

〈
V̂α∞(∞)V̂m̂(1)V̂α0(0)V̂−bΩ(x, x̄)

〉
(2.10)

between the partition function on S2 ⊂ S4
b of the 4d/2d system associated to a given

representation R(Ω) and Toda CFT correlators with two full punctures at 0 and ∞, one

simple at 1, and one degenerate.15 The position x of the degenerate puncture is related to

a complexified FI parameter z. The two dimensional theories we consider involve Nf fun-

damental and Nf antifundamental chiral multiplets of a gauge group factor U(Nn), whose

twisted masses we denote by mt and m̃t.

Let us first explain how the factor A|x|2γ0 |1− x|2γ1 can be absorbed into the partition

function (specifically the S2 contribution). In the coming sections it will be easier to

manipulate explicit expressions of partition functions and correlators, hence we will keep

the factor explicitly, with the understanding that it has no physical content. In terms of

15Toda CFT notations are reviewed in appendix A.1. Vertex operators V̂α are labeled by their momen-

tum α, a linear combination of the weights hs (1 ≤ s ≤ Nf ) of the fundamental representation of ANf−1.

They are primary operators for the WNf
chiral algebra. Generic momenta depend on Nf − 1 parameters

and label full punctures. Semi-degenerate vertex operators, with momentum κh1 (or its conjugate −κhNf
),

have null descendants under WNf
and label simple punctures. Degenerate vertex operators have momentum

−bΩ− Ω′/b for a pair of highest weights Ω and Ω′ of representations of ANf−1.
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gauge theory data, it turns out that we can split

γ0 = γ◦0(Ω, b)−
Nn

Nf

Nf∑

t=1

imt , γ1 = γ◦1(Ω, b) +
Nn

Nf

Nf∑

t=1

(imt + im̃t) , (2.11)

and A = A◦(Ω, b) b−2Nn
∑

t(imt+im̃t), where A◦, γ◦0 and γ◦1 depend only on b and Ω. The

factor decomposes as

A|x|2γ0 |1− x|2γ1 =
[
A◦|x|2γ

◦
0 |1− x|2γ

◦
1

][
|x|−2(Nn/Nf )

∑
t imt

][ |1− x|2Nn

b2NnNf

]∑
t(imt+im̃t)/Nf

(2.12)

and can be absorbed in the partition function through three different mechanisms. Firstly,

the two-sphere partition function is subject to certain ambiguities [19] (see also [56]). These

are captured by local supergravity counterterms [57]. A change in the renormalization

scheme changes the partition function by

Z → f(z)f̄(z̄)Z , (2.13)

where f is a holomorphic function of the complexified FI parameter z. This lets us absorb

the first factor in (2.12) as a renormalization ambiguity of ZS2⊂S4
b
. Secondly, a constant

U(1) gauge transformation lets us shift the partition function by any power of |z|2 =

|x|2 hence absorb the second factor in (2.12). Finally, the third factor can be absorbed

through a complexified FI parameter zfl = b2NnNf /(1− x)2Nn for the U(1) subgroup of the

flavour group S[U(Nf )×U(Nf )] which acts on the fundamental and antifundamental chiral

multiplets. Indeed, such an FI parameter multiplies the partition function by (zflz̄fl)
iσfl ,

where σfl is the bottom component of the background vector multiplet coupled to the U(1)

flavour symmetry, that is, σfl =
∑

t(mt + m̃t)/(2Nf ).

We are now ready to discuss how we will derive equalities of the form (2.10), or more

generally for a set of highest weights Ωj of ANf−1:

Z
{Ωj}

S2⊂S4
b
=

〈
V̂α∞(∞)V̂m̂(1)V̂α0(0)

n∏

j=1

V̂−bΩj (xj , x̄j)

〉
(2.14)

where α0 and α∞ are generic, m̂ is semi-degenerate, and we have omitted the factors which

can be absorbed into the partition function. The dictionary between gauge theory and

Toda CFT data identifies the momenta α0, α∞, and m̂ to the three factors of the flavour

symmetry group SU(Nf ) × SU(Nf ) × U(1) acting on fundamental and antifundamental

chiral multiplets:

α0 = Q−
1

b

Nf∑

s=1

imshs , m̂ = (κ +Nb)h1 ,

α∞ = Q−
1

b

Nf∑

s=1

im̃shs , κ =
1

b

Nf∑

s=1

(1 + ims + im̃s) ,

(2.15)
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with Toda CFT notations given in appendix A.1. The degenerate operators encode the

choice of gauge groups and matter content of the gauge theory.

As explained below, we will start in each case by matching the dependence of the

S2 partition function on FI parameters zj with the dependence of Toda CFT correlators

on the position of degenerate operators xj . Once this is done, there remains a universal

relative factor between the S2 partition function and the Toda CFT correlator, which turns

out to be a Toda CFT three-point function of two generic and one semi-degenerate vertex

operators16

Ĉ(α0, α∞,κh1) =

Nf∏

s=1

Nf∏

t=1

1

Υ
(
1
b (1 + ims + im̃t)

) . (2.16)

These Upsilon functions are precisely reproduced by the S4
b partition function (2.4) of

N2
f free hypermultiplets with (dimensionless) masses

mst = i
1− b2

2b
−

1

b
(ms + m̃t) . (2.17)

The dimensionful masses (ℓℓ̃)
−1
2 mst and twisted masses ℓ−1ms and ℓ−1m̃t both originate

from coupling the common flavour symmetry group SU(Nf ) × SU(Nf ) × U(1) to a back-

ground vector multiplet, and indeed, the relation between dimensionful masses has no

relative factor of b: [
mst√
ℓℓ̃

+
i

2ℓ
+

i

2ℓ̃

]
+

ms + m̃t

ℓ
=

i

ℓ
. (2.18)

The masses mst can also be found by requiring that the two dimensional superpotential∑
s,t q̃tqsΦ

4d
st |2d is supersymmetric hence has R-charge 2 (complexified twisted mass i).

From this perspective, the shift in the four dimensional masses likely arises from mixing

the U(1)R symmetry with geometrical symmetries.

In section 2.1 and section 2.2, we identify degenerate vertex operators labeled by the

fundamental (resp. antisymmetric) representation of ANf−1 to SQED (resp. SQCD). The

Toda CFT correlator is a four-point function which depends on a single cross-ratio x,

while the two dimensional theory has a single U(1) gauge group factor hence a single

complexified FI parameter z = e−2πξ+iϑ. We prove as follows that the Toda correlator is

equal to the S2 ⊂ S4
b partition function. First, we write the Higgs branch expressions of

the S2 partition function in the regions ξ > 0 and ξ < 0, that is, |z| < 1 and |z| > 1.

The two expressions match with expansions of the Toda CFT correlator in the s-channel

|x| < 1 and u-channel |x| > 1 as described in table 4: the Higgs branch vacua correspond to

choices of internal momenta and we match the leading powers of |z|2 = |x|2. On the gauge

theory side, the exponents of |z|2 are read from the classical contribution, while on the

Toda CFT side the exponents of |x|2 are sums of dimensions of vertex operators. We then

16Note the shift between κh1 in the three-point function (2.16) and m̂ in the (n+3)-point function (2.14).

The insertion of degenerate operators near a simple puncture thus shifts the dictionary between the semi-

degenerate momentum of the puncture and the corresponding hypermultiplet mass. As a result, the node-

hopping duality relates surface operators in four dimensional theories which differ by shifts in complexified

masses of hypermultiplets.
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Gauge theory Toda CFT

Terms in the sum Higgs vacua Internal momenta

Asymptotics at 0 Classical contribution (zz̄)iv (xx̄)∆(α0−bh)−∆(α0)−∆(−bω)

Leading coefficient One-loop determinant Z1l Three-point functions

Holomorphic series Vortex partition function Zv Conformal blocks (normalized)

Table 4. Relation between parts of the Higgs branch decomposition of the S2 partition function,

and the s-channel decomposition of corresponding Toda CFT correlators. Explicit expressions differ

by A|x|2γ0 |1− x|2γ1 , an ambiguity in Z.

derive the braiding matrices which relate s-channel and u-channel conformal blocks and

show that they are equal to the corresponding gauge theory data. These braiding matrices

let us express the monodromy around ∞ as a matrix in the basis of s-channel conformal

blocks (the monodromy around 0 is diagonal in this basis). Finally, we prove that the

S2 partition function has only one branch point besides z = 0 and z = ∞, and identify

gauge theory exponents with those in the t-channel x → 1 of the Toda correlator. Therefore

the monodromy matrix around 1 is simply the inverse product of the monodromies around

0 and ∞. Since their monodromy matrices around all three branch points coincide, the

S2 partition function and Toda CFT four-point function must be equal up to a factor with

no monodromy. Since in expansions around 0, 1 and ∞ the exponents match, the factor has

no pole on the sphere hence is a constant: it is precisely given by the S4
b contribution (2.16)

of N2
f hypermultiplets.

When the FI parameter ξ is changed continuously from ξ < 0 to ξ > 0, the two dimen-

sional gauge theory experiences a flop transition between vortices carried by fundamental

matter and vortices carried by antifundamental matter. The flop transition is realized

in the Toda CFT as crossing symmetry from the s-channel to the u-channel [18]. This

geometric approach implies that the results for ξ < 0 and ξ > 0 are related by analytic

continuation. There is no Higgs branch expansion as ξ → 0: instead, we build a decom-

position of the Coulomb branch integral in this limit. It would be interesting to provide a

gauge theory interpretation of this “t-channel” decomposition, and of the braiding matrices

relating ξ > 0 and ξ < 0 vortex partition functions.

In section 2.3, we identify degenerate vertex operators labeled by symmetric repre-

sentations of ANf−1 to SQCD with an additional adjoint chiral multiplet (SQCDA). The

discussion is very similar to the previous cases, but braiding matrices are not available.17

Instead, we check that the leading coefficients and powers of |x|2 coincide, both in the

s-channel and in the u-channel. We then check that the S2 partition function has a branch

point corresponding to the t-channel, and that the leading powers of |1− x|2 coincide. As

before, the Toda CFT four-point function is equal to the S2 partition function up to a

constant, which is the S4
b partition function of N2

f free hypermultiplets.

17It is technically difficult to write down braiding matrices in this case. On the gauge theory side, the

Mellin-Barnes integral (used for SQED and SQCD to interpolate between |z| ≶ 1 expansions) is much more

involved. On the Toda CFT side, recursion relations for the braiding matrices contain many more terms

than for the antisymmetric case.
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In section 2.4 we identify the quiver gauge theory which corresponds to sets of de-

generate operators labeled by symmetric or antisymmetric representations of ANf−1. The

identification is checked by comparing the expansion of the S2 ⊂ S4
b partition function and

of the Toda CFT correlator in various limits. Seiberg-like dualities let us probe further lim-

its: as seen in section 3.3.1, permutations of the n degenerate vertex operators relate dual

gauge theories. First, we equate exponents and leading coefficients in the channel where

degenerate punctures are at 0 < |x1| < · · · < |xn| < 1. Thanks to dualities, exponents and

leading coefficients also match for all other orderings of the n degenerate punctures. By

symmetry, the gauge theory and Toda CFT exponents and leading coefficients also match

in all channels with 1 < |x1|, . . . , |xn| < ∞. In each of the 2(N !) channels the decom-

positions involve many exponents and factors, and all match. We then equate exponents

which appear in any of the limits xn → 1 or xj → xj+1, hence also in the limits xj → 1 or

xj → xk thanks to dualities.

Building upon the identification of the quiver which corresponds to the insertion of

any number of antisymmetric degenerate vertex operators, we show in section 2.4.2 that

bringing all punctures xj = x to the same position yields a degenerate vertex operator

labeled by an arbitrary representation of ANf−1: all other terms in the fusion of antisym-

metric degenerate vertex operators appear with higher powers of some |xj − xk|
2 hence

are suppressed. This determines the quiver gauge theory corresponding to an arbitrary

degenerate vertex operator V̂−bΩ.

The surface operators we consider are constructed by coupling Nf fundamental and

Nf antifundamental chiral multiplets of an N = (2, 2) theory to N2
f hypermultiplets. Mak-

ing some antifundamental chiral multiplets and some hypermultiplets massive yields surface

operators described by N = (2, 2) theories with Nf fundamental and Ñf < Nf antifunda-

mental chiral multiplets, coupled to Nf Ñf free hypermultiplets. The limit corresponds to

a collision limit of the punctures V̂m̂ and V̂α∞ in (2.14), which builds an irregular punc-

ture (see appendix A.6 and for Nf = 2 see [51]). We only study this limit for SQCD (see

section 2.2.3), but the discussion applies to all our surface operators.

2.1 SQED and Toda fundamental degenerate

We review in this section the case ofN = (2, 2) SQED on S2, namely a U(1) vector multiplet

coupled to Nf fundamental and Nf antifundamental chiral multiplets, whose twisted masses

(plus R-charges) we denote by ms and m̃s for 1 ≤ s ≤ Nf . It was shown [18] that the

S2 partition function of SQED matches an ANf−1 Toda CFT four-point function, up to a

constant. We find that the constant factor reproduces the S4
b partition function of N2

f free

hypermultiplets with masses (2.17), hence the Toda correlator in fact captures the partition

function of the surface operator inserted in this free four dimensional theory. The precise

relation is18

ZSQED
S2⊂S4

b
(m, m̃, z, z̄) = A|x|2γ0 |1− x|2γ1

〈
V̂α∞(∞)V̂m̂(1)V̂−bh1(x, x̄)V̂α0(0)

〉
. (2.19)

18As explained below (2.10), the factor A|x|2γ0 |1− x|2γ1 can be absorbed into the partition function. To

compare gauge theory and Toda CFT results it is best to keep the factor explicitly.

– 17 –



J
H
E
P
0
4
(
2
0
1
6
)
1
8
3

The Toda CFT correlator (see appendix A.1 for conventions) features a degenerate field

V̂−bh1 inserted at x = (−1)Nf z and labeled by the fundamental representation R(h1) of

ANf−1, a semi-degenerate field V̂m̂ at 1, and two generic fields V̂α0 and V̂α∞ . Momenta are

related to twisted masses through

α0 = Q−
1

b

Nf∑

s=1

imshs , m̂ = (κ + b)h1 ,

α∞ = Q−
1

b

Nf∑

s=1

im̃shs , κ =
1

b

Nf∑

s=1

(1 + ims + im̃s) ,

(2.20)

and the exponents and coefficient are

γ0 = −
1

Nf

Nf∑

s=1

ims −
Nf − 1

2
(b2 + 1) , (2.21)

γ1 = −
Nf − 1

Nf
b2 +

1

Nf

Nf∑

s=1

(ims + im̃s) , (2.22)

A = bNf (1+b2)−b2−2bκ . (2.23)

Permuting the ms, or the m̃s, does not affect the partition function. This is reproduced

in the Toda CFT by the invariance of V̂α0 and V̂α∞ under Weyl transformations (the

normalization is chosen to cancel reflection amplitudes). The similarity between α0 and α∞

is also expected, as swapping them and changing x to its inverse amounts in gauge theory

to charge conjugation, which swaps ms and m̃s, and changes z to its inverse. Under this

transformation, ZS2 is invariant, while the Toda correlator receives a small shift controlled

by the dimension ∆(−bh1) of the degenerate insertion: this shift is absorbed by the factor

|x|2γ0 |1− x|2γ1 .

In [18], the equality was shown directly thanks to known expressions [58] for the

WNf
conformal block involved. The approach does not generalize, because conformal blocks

with higher degenerate insertions were not previously known.19 Instead, we prove the corre-

spondence for SQED (treated here) and SQCD (see section 2.2) by comparing monodromy

matrices around branch points. In the main text, we find expansions around all branch

points and compare leading terms, as this is enough to fix uniquely the dictionary between

gauge theory and Toda CFT parameters. In appendix A.3 we derive the braiding matrices

relating s-channel and u-channel expansions of the Toda CFT correlator, and their gauge

theory analogues. The braiding matrices match. From this we deduce the matching of

monodromy matrices around all branch points, expressed in a single basis, and not only

of their eigenvalues compared in the main text. These results suffice to prove that the

partition function and the correlator are equal.

To prepare for the somewhat technical computations ahead, we first go through the

various steps here in the well-controlled case of SQED and Toda CFT fundamental degen-

erate fields. The expansions near z = 0 and z = ∞ follow [18] closely, while the expansion

near z = (−1)Nf is new. All three play an important role in later sections.

19We derive such explicit conformal blocks from our matchings in appendix A.5.
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2.1.1 Expanding the SQED partition function

The Coulomb branch expression for the partition function of SQED is

ZSQED
S2 =

∑

B∈Z

∫

R

dσ

2π
ziσ+

B
2 z̄iσ−

B
2

Nf∏

s=1

[
Γ(−ims − iσ − B

2 )

Γ(1 + ims + iσ − B
2 )

Γ(−im̃s + iσ + B
2 )

Γ(1 + im̃s − iσ + B
2 )

]
. (2.24)

As we will see shortly, the contour of integration for σ can be closed in the lower or upper

half plane depending on whether |z| ≶ 1, leading to distinct expressions of Z as a sum over

poles lying in either half plane. We will match the resulting expressions with the s-channel

and u-channel decompositions of the Toda CFT four-point correlator.

To find out which half-plane the contour should enclose, we study the asymptotic be-

havior of the integrand. First, rewrite the ratios of Gamma functions so that the numerator

and denominator have no common poles,

Γ(−υ ± B
2 )

Γ(1 + υ ± B
2 )

= (−1)
B∓|B|

2
Γ(−υ + |B|

2 )

Γ(1 + υ + |B|
2 )

, (2.25)

and absorb the resulting sign (−1)NfB by introducing

x = (−1)Nf z , x̄ = (−1)Nf z̄ . (2.26)

Thanks to Γ(υ+a)
Γ(υ+b) ∼ υa−b, valid when |υ| → ∞ away from the negative real axis, the

integrand is

xiσ+
B
2 x̄iσ−

B
2

Nf∏

s=1

[
Γ(−ims − iσ + |B|

2 )

Γ(1 + ims + iσ + |B|
2 )

Γ(−im̃s + iσ + |B|
2 )

Γ(1 + im̃s − iσ + |B|
2 )

]

∼ xiσ+
B
2 x̄iσ−

B
2

(
σ2 +

B2

4

)−
∑Nf

s=1(1+ims+im̃s)

(2.27)

as |iσ ± B
2 | → ∞.

As long as we keep σ ∈ R on the integration contour, the factor xiσ+
B
2 x̄iσ−

B
2 is simply

a phase. If |x| = |z| < 1, this factor decays exponentially towards σ → −i∞, hence the

contour of integration can be closed in this half-plane. On the other hand, for |x| = |z| > 1,

the integrand decays exponentially in the σ → i∞ half-plane.

The integrand (2.27) has poles whenever one of −imp − iσ + |B|
2 or −im̃p + iσ + |B|

2 is

a non-positive integer, that is, at

iσ = −imp + k +
|B|

2
or im̃p − k −

|B|

2
(2.28)

for a fundamental or antifundamental flavour 1 ≤ p ≤ Nf and an integer k ≥ 0. Since

R-charges are positive, −imp has a positive real part and im̃p a negative real part, hence

the poles of the fundamental multiplets’ one-loop determinants lie in the half-plane towards

σ → −i∞, while the other half plane contains those of antifundamental multiplets.
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Let us focus on the case |x| = |z| < 1. We then sum residues of the integrand of (2.24)

over poles (2.28) where iσ has a positive real part. This yields

Z =

Nf∑

p=1

∑

k≥0

∑

B∈Z

{
z−imp+k+

|B|+B
2 z̄−imp+k+

|B|−B
2

·

Nf∏′

s=1

[
Γ(−ims + imp − k − |B|+B

2 )

Γ(1 + ims − imp + k + |B|−B
2 )

Γ(−im̃s − imp + k + |B|+B
2 )

Γ(1 + im̃s + imp − k − |B|−B
2 )

]}
,

(2.29)

where the singular factor Γ(−k − |B|+B
2 ) appearing for s = p should be replaced by its

residue (−1)k+
|B|+B

2 /Γ(1 + k + |B|+B
2 ). Note that k and B appear as the combinations

k± = k+ |B|±B
2 only, and that the sums over k ≥ 0 and B ∈ Z are equivalent to sums over

k+ ≥ 0 and k− ≥ 0. Hence,

Z =

Nf∑

p=1

∑

k±≥0

(zz̄)−impzk
+
z̄k

−

Nf∏′

s=1

[
Γ(−ims + imp − k+)

Γ(1 + ims − imp + k−)

Γ(−im̃s − imp + k+)

Γ(1 + im̃s + imp − k−)

]
,

(2.30)

with the same caveat as above, namely, Γ(−k+) → (−1)k
+
/Γ(1 + k+). Since each Gamma

function argument depends on only one of k+ and k−, the contribution from each flavour p

factorizes as the product of two series in (positive) powers of z and of z̄. We extract from

the series a normalization factor (the value at k± = 0), by writing the Gamma functions

in terms of Pochhammer symbols (a)n = Γ(a+n)
Γ(a) and of γ(x) = Γ(x)

Γ(1−x) ,

Γ(−ims + imp − k+)

Γ(1 + ims − imp + k−)
=

(−1)k
+
γ(−ims + imp)

(1 + ims − imp)k+(1 + ims − imp)k−
. (2.31)

We deduce the partition function for |x| = |z| < 1 in terms of “s-channel” vortex

partition functions

Z =

Nf∑

p=1

{
(xx̄)−imp

∏Nf

s 6=p γ(−ims + imp)
∏Nf

s=1 γ(1 + im̃s + imp)
f (s)
p (m, m̃, x)f (s)

p (m, m̃, x̄)

}
, (2.32)

f (s)
p (m, m̃, x) =

∑

k≥0

xk
Nf∏

s=1

(−im̃s − imp)k
(1 + ims − imp)k

= F
(

(−im̃s−imp), 1≤s≤Nf

(1+ims−imp), s 6=p

∣∣∣x
)
. (2.33)

The f
(s)
p are hypergeometric functions, related later on to s-channel conformal blocks in

the Toda CFT. Similar computations for |x| = |z| > 1 convert the sum over poles at

iσ = im̃p−· · · to a factorized form, related to the u-channel decomposition of a Toda CFT

correlator,

Z =

Nf∑

p=1

{
(xx̄)im̃p

∏Nf

s 6=p γ(−im̃s + im̃p)
∏Nf

s=1 γ(1 + ims + im̃p)
f (u)
p (m, m̃, x)f (u)

p (m, m̃, x̄)

}
, (2.34)

f (u)
p (m, m̃, x) =

∑

k≥0

x−k

Nf∏

s=1

(−ims − im̃p)k
(1 + im̃s − im̃p)k

= F

(
(−ims−im̃p), 1≤s≤Nf

(1+im̃s−im̃p), s 6=p

∣∣∣∣
1

x

)
. (2.35)
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The factorized results (2.32) and (2.34) reproduce the general form (2.9)

Z =
∑

vacua

res
[
Zcl(σ, 0, z, z̄)Z1l(m,σ, 0)

]
Zv,p(m, z)Zv̄,p(m, z̄) (2.36)

obtained when localizing to the Higgs branch of the theory for positive and for negative FI

parameter ξ, respectively. Indeed, Higgs branch vacua are labeled by solutions of

Nf∑

s=1

(
|qs|

2 − |q̃s|
2
)
= ξ = −

1

2π
ln|z| (2.37)

and (σ + ms)qs = 0 = (σ − m̃s)q̃s for all s. For |z| < 1, that is, ξ > 0, at least one of

the positively charged fields qs is non-zero, thus σ = −ms. For |z| > 1, that is, ξ < 0,

one of the negatively charged fields is non-zero, and σ = m̃s. One easily checks that

evaluating the classical contribution, and the residue of the one-loop contribution
(
which

is the integrand of the Coulomb branch representation (2.24)
)
at those values of σ and

at B = 0 yields the relevant factors in (2.32) and (2.34). The hypergeometric functions

f
(s)
p and f

(u)
p obtained from factorization also match with known vortex and anti-vortex

partition functions (see [17, 18]). For more general theories, factorization always yields

explicit expressions for the vortex partition functions, while earlier methods soon become

intractable.

The s-channel factors in (2.32) also have a Mellin-Barnes integral representation

(−x)−impf (s)
p (x)

=

Nf∏

s=1

[
Γ(1 + ims − imp)

Γ(−im̃s − imp)

] ∫ i∞

−i∞

dκ

2πi

∏Nf

s=1 Γ(−im̃s + κ)
∏Nf

s 6=p Γ(1 + ims + κ)
Γ(−κ− imp)(−x)κ

(2.38)

which converges for |arg(−x)| < π, that is, away from the positive real axis. On the other

hand, the s- and u-channel expansions found above imply that the partition function has

branch points at 0 and ∞, but is otherwise smooth away from the unit circle. Hence, the

partition function can only have branch points at x ∈ {0, 1,∞}.

We have already given expansions near 0 and ∞, so we now focus on powers of |1−x|2

as x → 1. The Higgs branch localization has no analogue at x = 1, because the FI

parameter ξ = − 1
2π ln|z| vanishes and the manifold of solutions of

∑Nf

s=1

(
|qs|

2 − |q̃s|
2) = ξ

experiences a flop transition. Instead, we find an explicit decomposition starting from the

Coulomb branch integral.

As x → 1, split the Coulomb branch representation (2.24) into the two regions, |iσ +
B
2 | ≶ |lnx|−1. In the first, xiσ+

B
2 x̄iσ−

B
2 is given by a convergent series in integer powers of

lnx and ln x̄ thanks to

xiσ+
B
2 =

∑

k≥0

(iσ + B
2 )

k

k!
(lnx)k . (2.39)

In the second, the product of Gamma functions in the integrand can be approximated

as (2.27) through Stirling’s approximation, and the sum over B can be replaced by a
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continuous integral, leading to a contribution

∫
dB

dσ

2π
e(iσ+

B
2
) lnxe(iσ−

B
2
) ln x̄

(
σ2 +

B2

4

)−Σ

=
1

π

∫
dρ ρ dθ e2iρ cos θ|lnx|ρ−2Σ , (2.40)

where Σ =
∑Nf

s=1(1 + ims + im̃s) and we applied the change of variables ρeiθ|lnx| =

(σ − iB2 ) lnx. Rescaling then ρ by |lnx|, we find that the contribution behaves as

|lnx|2Σ−2 ∼ |1− x|2
[
−1+

∑Nf
s=1(1+ims+im̃s)

]
, (2.41)

as x → 1, multiplied by a series in powers of (1− x) and (1− x̄). We thus find

Z = |1− x|0G(1− x, 1− x̄) + |1− x|2
[
−1+

∑Nf
s=1(1+ims+im̃s)

]
H(1− x, 1− x̄) (2.42)

for some series G and H in positive integer powers of 1− x and 1− x̄. Since the Nf terms

of the Higgs branch expansions around x = 0 and ∞ are linearly independent, the series

G and H cannot both factorize. When studying the gauge theory analogue of the braiding

matrix relating the s- and u-channel expansions in appendix A.3, we find that H factorizes

as h(1 − x)h̄(1 − x̄), while G is a sum of Nf − 1 such factorized terms, with no preferred

choice of splitting. We can expect the factorization of H because in the limit |iσ± B
2 | → ∞

the integrand (2.40) factorizes into functions of iσ ± B
2 .

2.1.2 Matching parameters for SQED

We wish to equate the expansions of Z obtained so far with an ANf−1 Toda CFT correlator.

Since the S2 partition function has branch points at (−1)Nf z ∈
{
0, 1,∞

}
, and factorizes

when expanded around each of those points, the Toda correlator must be a four-point func-

tion with insertions at 0, 1, ∞, and x = (−1)Nf z. The expansions near branch points have

finitely many terms, hence the operator inserted at x must be a degenerate operator V̂−bω

(labeled by the highest weight ω of a representation R(ω) of ANf−1), and the correlator

has the form
〈
V̂α∞(∞)V̂m̂(1)V̂−bω(x, x̄)V̂α0(0)

〉
. (2.43)

The number of internal momenta allowed by the fusion rule for V̂−bω with a generic operator

is equal to the dimension of R(ω), hence R(ω) must be the fundamental or antifundamen-

tal representation, to match the number of terms in (2.32) and (2.34). Without loss of

generality (we can at this point conjugate all momenta), we choose the operator V̂−bh1 ,

where h1 is the highest weight of the fundamental representation. The momenta α0, m̂

and α∞ can then be obtained by comparing dimensions of Toda CFT operators with the

powers of |x|2 and of |1 − x|2 appearing in the expansions of Z around x = 0, x = 1,

and x = ∞.
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The s-channel decomposition of the Toda correlator is a sum over internal momenta

α0 − bhp labeling WNf
primary operators:

〈
V̂α∞(∞)V̂m̂(1)V̂−bh1(x, x̄)V̂α0(0)

〉

=

Nf∑

p=1

Ĉ(α∞, m̂, α0 − bhp)Ĉ
α0−bhp

−bh1,α0
F

(s)
α0−bhp

[
m̂ −bh1
α∞ α0

]
(x)F

(s)
α0−bhp

[
m̂ −bh1
α∞ α0

]
(x̄) ,

(2.44)

where Ĉ denote three-point functions and F
(s)
α0−bhp

(x) areWNf
conformal blocks. Conformal

invariance fixes F
(s)
α0−bhp

(x) = x∆(α0−bhp)−∆(α0)−∆(−bh1)(1 + · · · ), with a series (1 + · · · ) in

positive integer powers of x. We compute

∆(α0 − bhp)−∆(α0)−∆(−bh1) = b〈α0 −Q, hp〉+
Nf − 1

2
(b2 + 1) . (2.45)

This should be compared with the powers x−imp appearing in (2.32). Since the weights hp
sum to zero,

∑
p〈α−Q, hp〉 = 0, and we must allow for an overall shift by xγ0 between the

partition function and the correlator. Power matching then dictates

b〈α0 −Q, hp〉+
Nf − 1

2
(b2 + 1) + γ0 = −imp , (2.46)

up to permutations, from which we deduce α0 and γ0 given in (2.20) and (2.21). Permuting

the mp is equivalent to permuting the components of α0−Q, a Weyl reflection under which

the primary operator V̂α0 is invariant.

Next, the u-channel decomposition is a sum over the internal momenta α∞ − bhp.

Conformal invariance fixes F
(u)
α∞−bhp

(x) = x∆(α∞)−∆(α∞−bhp)−∆(−bh1)(1+ · · · ), with a series

(1 + · · · ) in negative integer powers of x. We compute

∆(α∞)−∆(α∞− bhp)−∆(−bh1) = −b〈α∞−Q, hp〉+
Nf − 1

2
(b2+1)+

Nf − 1

Nf
b2 , (2.47)

which should be compared with xim̃p−γ0 . Once more, we must allow for an overall am-

biguity: besides xγ0 , the only other factor that can appear is (1 − x)γ1 , since the Toda

correlator is only singular at 0, 1, and ∞. This factor does not alter powers at x = 0, and

the power matching at x = ∞ reads

− b〈α∞ −Q, hp〉+
Nf − 1

2
(b2 + 1) +

Nf − 1

Nf
b2 + γ0 + γ1 = im̃p , (2.48)

up to permutations: this fixes α∞ and γ1 to (2.20) and (2.22).

Third, the expansion of Z near x = 1 involves the leading powers (1 − x)0 with

multiplicity Nf − 1 and (1−x)−1+
∑Nf

p=1(1+imp+im̃p) with no multiplicity. On the Toda CFT

side, the exponents that can appear in the t-channel are

∆(α1 − bhp)−∆(α1)−∆(−bh1) + γ1

= b〈α1 −Q, hp〉+
Nf − 1

2
(b2 + 1)−

Nf − 1

Nf
b2 +

1

Nf

Nf∑

p=1

(imp + im̃p) .
(2.49)
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If α1 were generic, all shifts −bhp would be allowed by the fusion, but summing the pow-

ers (2.49) for 1 ≤ p ≤ Nf does not yield the similar gauge theory sum −1 +
∑Nf

p=1(1 +

imp + im̃p). Instead, we take α1 = m̂ = (κ + b)h1 to be a semi-degenerate momentum

(with a shift by b to simplify expressions), so that the fusion rule only allows shifts to

m̂− bh2 and m̂− bh1. Setting the exponent for a shift m̂− bh2 to 0 fixes κ to (2.20), and

the second power matches (setting m̂ − bh1 to 0 instead would fail to match the second

power). The SU(Nf )× SU(Nf )×U(1) flavour symmetry of the gauge theory is reproduced

by the two generic and one semi-degenerate operators in the correlator, allowing us to pack-

age the twisted masses of fundamental chiral multiplets into α0, those of antifundamental

multiplets into α∞, and the axial mass into m̂.

Finally, the overall constant A is fixed in appendix A.2 by comparing gauge theory

one-loop determinants and Toda three-point functions: for A given by (2.23),

Z free
S4
b

∏Nf

s 6=p γ(imp − ims)
∏Nf

t=1 γ(1 + imp + im̃t)
= AĈ(α∞, (κ + b)h1, α0 − bhp)Ĉ

α0−bhp

−bh1,α0
. (2.50)

The same relation holds for u-channel constant factors (with an identical value of A), as

we can obtain most readily thanks to the invariance of Z under mp ↔ m̃p and z ↔ 1
z

(gauge theory charge conjugation) and equivalently of the Toda correlator (up to a shift in

exponents) under α0 ↔ α∞ and x ↔ 1
x .

We have thus fixed how gauge theory and Toda CFT parameters match. One way

to prove the matching is to directly equate gauge theory factors with conformal blocks as

done in [18], but this approach does not generalize. Instead, we show in appendix A.3

that the matrix to change basis from s-channel factors x−impf
(s)
p (x) to u-channel factors

is identical to the appropriate braiding matrix in the Toda CFT. Since the eigenvalues

of monodromies around 0 and ∞ also match up to shifts by the γi as we just saw, the

monodromy matrices themselves agree. The last monodromy matrix, around x = 1, thus

also matches. Therefore, the partition function and the correlator differ by a factor with

no monodromy. Since the precise exponents match, the relative factor is in fact constant,

and comparing constant coefficients establishes the matching (2.19).

2.2 SQCD and Toda antisymmetric degenerate

We now extend the matching to the case of N = (2, 2) SQCD, that is, a U(N) vector mul-

tiplet coupled to Nf fundamental and Nf antifundamental chiral multiplets, with twisted

masses (plus R-charges) ms and m̃s. The partition function of the S2 surface operator

defined by this theory coupled to N2
f hypermultiplets with masses (2.17) on S4

b is captured

by a Toda CFT four-point function with a degenerate operator V̂−bωN
labeled by the N -th

antisymmetric representation of ANf−1. Explicitly, we prove that20

Z
U(N) SQCD

S2⊂S4
b

(m, m̃, z, z̄) = A|x|2γ0 |1− x|2γ1
〈
V̂α∞(∞)V̂m̂(1)V̂−bωN

(x, x̄)V̂α0(0)
〉

(2.51)

20As explained below (2.10), the factor A|x|2γ0 |1− x|2γ1 can be absorbed into the partition function. To

compare gauge theory and Toda CFT results it is best to keep the factor explicitly.
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with x = (−1)Nf+N−1z, momenta

α0 = Q−
1

b

Nf∑

s=1

imshs , m̂ = (κ +Nb)h1 ,

α∞ = Q−
1

b

Nf∑

s=1

im̃shs , κ =
1

b

Nf∑

s=1

(1 + ims + im̃s) ,

(2.52)

and coefficients

γ0 = −
N

Nf

Nf∑

s=1

ims −
N(Nf −N)

2
(b2 + 1) , (2.53)

γ1 = −
N(Nf −N)

Nf
b2 +

N

Nf

Nf∑

s=1

(ims + im̃s) , (2.54)

A = bNNf (1+b2)−N2b2−2Nbκ . (2.55)

Setting N = 1 in (2.51) reproduces the SQED matching (2.19). We recognize the same

symmetries as SQED. Permuting twisted masses ms or m̃s amounts to a Weyl transfor-

mation of α0 or α∞. Gauge theory charge conjugation, which swaps ms ↔ m̃s and z ↔ 1
z ,

corresponds to the conformal map (∞, 1, x, 0) → (0, 1, 1x ,∞), which exchanges α0 ↔ α∞

and x ↔ 1
x in the Toda CFT correlator.

We start the analysis from the Coulomb branch representation

ZSQCD
S2 =

1

N !

∑

B∈ZN

∫

RN

dNσ

(2π)N

{
[
(−1)N−1z

]Tr(iσ+B
2
)[
(−1)N−1z̄

]Tr(iσ−B
2
)

·
∏

i<j

[
(σi − σj)

2 +
(Bi −Bj)

2

4

] N∏

j=1

Nf∏

s=1

[
Γ(−ims − iσj −

Bj

2 )

Γ(1 + ims + iσj −
Bj

2 )

Γ(−im̃s + iσj +
Bj

2 )

Γ(1 + im̃s − iσj +
Bj

2 )

]}
.

(2.56)

The partition function can be studied in the same way as that of SQED, by closing the

integration contours towards either half-plane depending on whether |z| ≶ 1, thus obtaining

an s-channel and a u-channel decompositions akin to (2.32) and (2.34). Interestingly, there

is a shortcut, as the SQCD partition function can be expressed as a differential operator

acting on the product of N copies of the SQED partition function:

ZSQCD
S2 =

1

N !

[
∏

i<j

[
−(zi∂zi − zj∂zj )(z̄i∂z̄i − z̄j∂z̄j )

] N∏

j=1

ZSQED
S2 (m, m̃, zj , z̄j)

]

zj=(−1)N−1z

z̄j=(−1)N−1z̄

.

(2.57)

Since the differential operator cannot introduce branch points, the SQCD partition function

has the same branch points (−1)N−1z ∈ {0, (−1)Nf ,∞} as the SQED partition function,

and we switch to using the coordinate x = (−1)Nf+N−1z.
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2.2.1 Expanding the SQCD partition function

Using the s-channel decomposition (2.32) of ZSQED in the above yields a sum over flavours

1 ≤ p1, . . . , pN ≤ Nf . The summand factorizes, since both the differential operator and

the terms in ZSQED are products of a holomorphic and an antiholomorphic parts. The

holomorphic and the antiholomorphic factors are each totally antisymmetric in the pj ,

hence reducing the sum to 1 ≤ p1 < · · · < pN ≤ Nf . Explicitly,

Z =
∑

1≤p1<···<pN≤Nf

[
(xx̄)−

∑N
j=1 impj

N∏

j=1

∏Nf

s 6∈{p} γ(−ims + impj )
∏Nf

s=1 γ(1 + im̃s + impj )
f
(s)
{p}(x)f

(s)
{p}(x̄)

]
(2.58)

where we have canceled
∏

i 6=j γ(−impi + impj ) =
∏

i 6=j(impi − impj )
−1 and defined

f
(s)
{p}(x) =

[∏

i<j

−impi + impj + xi∂xi − xj∂xj

−impi + impj

N∏

j=1

f (s)
pj (xj)

]

xj=x

(2.59)

=
∑

k1,...,kN≥0

x
∑N

j=1 kj

∏N
j=1 kj !

∏N
j=1

∏Nf

s=1(−im̃s − impj )kj
∏N

i 6=j(impi − impj − ki)kj
∏N

j=1

∏Nf

s 6∈{p}(1 + ims − impj )kj
,

(2.60)

a series in positive integer powers of x, with radius of convergence 1, and whose first term

is normalized to be 1. Similarly, the u-channel expansion near x = ∞ reads

Z =
∑

1≤p1<···<pN≤Nf

[
(xx̄)

∑N
j=1 im̃pj

∏N
j=1

∏Nf

s 6∈{p} γ(−im̃s + im̃pj )
∏N

j=1

∏Nf

s=1 γ(1 + ims + im̃pj )
f
(u)
{p}(x)f

(u)
{p}(x̄)

]
(2.61)

where

f
(u)
{p}(x) =

∑

k1,...,kN≥0

x−
∑N

j=1 kj

∏N
j=1 kj !

∏N
j=1

∏Nf

s=1(−ims − im̃pj )kj
∏N

i 6=j(im̃pi − im̃pj − ki)kj
∏N

j=1

∏Nf

s 6∈{p}(1 + im̃s − im̃pj )kj
(2.62)

are series in negative integer powers of x.

The s- and u-channel decompositions above can also be obtained by localizing to the

Higgs branch of the theory, with a positive or a negative FI parameter. In this setting,

they arise as sums over Higgs branch vacua, labeled by solutions (σ, qs, q̃s) of

(σ +ms)qs = 0

(−σ + m̃s)q̃s = 0

Nf∑

s=1

(qsq
†
s − q̃†s q̃s) = ξ idN , (2.63)

up to gauge transformations. In the region |x| = |z| < 1, that is, ξ > 0, the D-term

equation (2.63) can be rewritten as

Nf∑

s=1

qsq
†
s = ξ idN +

Nf∑

s=1

q̃†s q̃s , (2.64)
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which is positive definite, hence has full rank N . Therefore, the non-zero vectors qs, which

are eigenvectors of σ, span C
Nf . The eigenvalues of σ are thus completely fixed to be −mpj

for a choice of N distinct flavours pj . On the contrary, for |x| = |z| > 1, that is, ξ < 0, the

antifundamental chiral fields q̃s span C
Nf , and σ has eigenvalues m̃pj . The classical and

one-loop contributions derived for each of those vacua is equal to those appearing in (2.58)

and (2.61). More tediously, one checks that the vortex partition functions are indeed given

by f
(s)
{p}(x) and f

(u)
{p}(x).

Once more, the t-channel is the most troublesome. We know from (2.42) the expansion

of the SQED partition function near x = 1, leading to

ZSQED = G(1− x, 1− x̄) + |1− x|2(γ−1)h(1− x)h̄(1− x̄) , (2.65)

where

γ =

Nf∑

s=1

(1 + ims + im̃s) . (2.66)

The functions G and hh̄ are series in positive integer powers of 1−x and 1− x̄, and G does

not factorize because the eigenvalue 1 of the monodromy has multiplicity Nf −1. Plug this

t-channel expansion into (2.57):

ZSQCD(z, z̄) =
1

N !

[
∏

i<j

[
−(xi∂xi − xj∂xj )(x̄i∂x̄i − x̄j∂x̄j )

]

·
N∏

j=1

{
G(1− xj , 1− x̄j) + |1− xj |

2γ−2h(1− xj)h̄(1− x̄j)
}]

xj=x
x̄j=x̄

.

(2.67)

Among the 2N terms in the product of SQED partition functions, any which contains the

factor |1−xj |
2γ−2h(1−xj)h̄(1− x̄j) for two indices i and j is annihilated by xi∂xi −xj∂xj ,

hence does not contribute. The annihilation does not take place when G(1 − xj , 1 − x̄j)

appears twice, as it relies on separating the holomorphic and antiholomorphic parts. Thus,

1 +N terms remain, and we can replace the product by

N∏

j=1

G(1− xj , 1− x̄j) +
N∑

j=1

|1− xj |
2γ−2h(1− xj)h̄(1− x̄j)

N∏

i 6=j

G(1− xi, 1− x̄i) . (2.68)

Derivatives acting on G, h and h̄ yield other series in positive integer powers of 1 − xj
and 1 − x̄j , hence for the purpose of finding exponents for |1 − x|2 we only need to keep

track of |1−xj |
2γ−2. At most (N−1) xj derivatives can affect it, hence the SQCD partition

function takes the form

ZSQCD(z, z̄) = G′(1− x, 1− x̄) + |1− x|2(γ−N)H ′(1− x, 1− x̄) , (2.69)

for some series G′ and H ′. The two terms correspond to eigenvalues 1 and e2πi(γ−N) of

the monodromy around x = 1. We find out the multiplicities with which the powers

appear by doing a finer expansion: split G(1 − xj , 1 − x̄j) =
∑Nf−1

i=1 gi(1 − xj)ḡi(1 − x̄j)
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non-canonically. Antisymmetry restricts the sum of NN
f terms to

(Nf

N

)
, each of which is a

product of N distinct terms of ZSQED among hh̄ and the giḡi. The exponent for a given

combination is 2(γ−N) if hh̄ appears, and 0 otherwise. The multiplicity of |1−x|0 is thus(Nf−1
N

)
, and that of |1− x|2(γ−N) is

(Nf−1
N−1

)
.

2.2.2 Matching parameters for SQCD

We are at last ready to match SQCD and Toda CFT parameters. The partition function

depends on a single parameter x encoded as the position of a puncture, hence we expect a

four-point function on the Toda side. The s-channel and u-channel decompositions involve(Nf

N

)
terms, hence the Toda degenerate operator is labeled by the N -th antisymmetric

representation R(ωN ) of ANf−1, which has the correct dimension. The highest weight of

this representation is ωN = h1+ · · ·+hN , and its weights are h{p} = hp1+ · · ·+hpN , labeled

by N -element sets 1 ≤ p1 < · · · < pN ≤ Nf .

The s-channel Toda exponents

∆(α0 − bh{p})−∆(α0)−∆(−bωN ) + γ0

= b
N∑

j=1

〈α0 −Q, hpj 〉+
N(Nf −N)

2
(b2 + 1) + γ0

(2.70)

must be equal to −
∑N

j=1 impj from gauge theory (up to permutations): this constraint

fixes α0 and γ0 as given in (2.52) and (2.53). Matching powers in the u-channel,

N∑

j=1

im̃pj = ∆(α∞)−∆(α∞ − bh{p})−∆(−bωN ) + γ0 + γ1 (2.71)

= −b
N∑

j=1

〈α∞ −Q, hpj 〉+
N(Nf −N)

2
(b2 + 1) +

N(Nf −N)

Nf
b2 + γ0 + γ1

fixes α∞ and γ1.

We finally match powers in the t-channel. From our SQED experience, we expect the

momentum at 1 to be the semi-degenerate m̂ = (κ + Nb)h1 (the shift by Nb simplifies

expressions). We compute the exponents

∆
(
(κ +Nb)h1 − bh{p}

)
−∆

(
(κ +Nb)h1

)
−∆(−bωN ) + γ1

= (bκ +Nb2)〈h1, h{p}〉+
N

Nf

[ Nf∑

s=1

(1 + ims + im̃s) +Nb2

]

+ (1 + b2)
N∑

j=1

(pj − j − 1) ,

(2.72)

where 〈h1, h{p}〉 = δ1∈{p}−N/Nf . Two different sets {p} must reproduce the gauge theory

exponents 0 and −N +
∑Nf

s=1(1 + ims + im̃s). One set must contain 1 and the other not,

since the exponents would otherwise only differ by an integer multiple of 1 + b2: this fixes
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κ = ±
∑Nf

s=1(1 + ims + im̃s) + n(b + 1
b ) for some integer n. Comparing the coefficients

of
∑Nf

s=1(1 + ims + im̃s) selects the positive sign, and also implies that the exponent 0

corresponds to a case where 1 6∈ {p} while the other exponent has 1 ∈ {p′}. Comparing

the coefficients of b2 + 1, the Toda CFT and gauge exponents match if

−
N

Nf
n+

∑

j=1

(pj − j − 1) = 0 and
Nf −N

Nf
n+

∑

j=1

(p′j − j − 1) = −N (2.73)

for the choices of {p} and {p′} corresponding to the two exponents. Since 1 6∈ {p}, pj ≥ j+1

and the first relation implies n ≤ 0. Since p′j ≥ j, the second implies n ≥ 0, and we conclude

that κ is given by (2.52), that {p} = J2, N + 1K and that {p′} = J1, NK.21 After we show

independently that the partition function and Toda correlator are equal, we deduce that

the fusion of V̂−bωN
with V̂κ′h1 allows the momenta κ

′h1 − bωN and κ
′h1 + bh1 − bωN+1.

This is consistent with the case κ
′ = −kb for which the semi-degenerate insertion becomes

a degenerate field labeled by the k-th antisymmetric representation: the tensor product

of this representation with the N -th antisymmetric splits as a sum of two irreducible

representations of ANf−1, with highest weights kh1+ωN and (k−1)h1+ωN+1. We discuss

such fusion rules further in appendix A.4.

Last, we fix the constant A. We check in appendix A.2 that the one-loop determinant

and the three-point functions appearing in the s-channel decompositions of ZSQCD and of

the Toda correlator match, for A given in (2.55):

Z free
S4
b

∏Nf

s 6∈{p}

∏
t∈{p} γ(imt − ims)

∏Nf

s=1

∏
t∈{p} γ(1 + imt + im̃s)

= AĈ(α∞, (κ +Nb)h1, α0 − bh{p})Ĉ
α0−bh{p}

−bωN ,α0
. (2.74)

Having settled the dictionary above, we know that gauge theory and Toda CFT mon-

odromy matrices around each of 0, 1 and ∞ have matching eigenvalues. In appendix A.3,

we compute the braiding matrix of V̂−bωN
and V̂m̂ by combining the fusion of N operators

V̂−bh1 into V̂−bωN
with the braiding matrices for each individual V̂−bh1 with V̂m̂. The re-

sult agrees with the analogue for SQCD, an antisymmetric combination of the matrix for

SQED, worked out in the same appendix. Therefore, the monodromy matrices around 0

and around ∞ are equal for SQCD and the Toda CFT. Monodromy matrices around 1

then also match, hence the Toda CFT correlator and gauge theory partition function are

equal up to a factor with no monodromy, which is constant since the precise exponents at

0, 1 and ∞ match. The constant factors work out, thereby concluding the proof of the

matching (2.51).

2.2.3 Decoupled multiplets and irregular puncture

In this section, we give large twisted masses to Nf − Ñf of the Nf antifundamental chiral

multiplets of the SQCD surface operator, hence to Nf (Nf − Ñf ) of the four dimensional

hypermultiplets. The massive multiplets decouple, and we obtain in this limit (2.76) a

surface operator described by a U(N) vector multiplet, Nf fundamental and Ñf < Nf

21Here and later we denote integer intervals by Ja, bK = [a, b] ∩ Z.
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antifundamental chiral multiplets, coupled to the remaining Nf Ñf free hypermultiplets.

On the Toda CFT side of the matching (2.51), the limit amounts to building a Toda

CFT irregular puncture from the collision of two vertex operators. We give the precise

matching (2.83) in the case Ñf = Nf − 1, and claim that further limits for Ñf ≤ Nf − 2

also lead to well-defined irregular punctures.

In a two dimensional N = (2, 2) gauge theory, whenever the total charge Q =
∑

iQi

of all chiral multiplets under a given U(1) gauge group factor is non-zero (in our case, Q =

Nf − Ñf > 0), the corresponding FI parameter runs logarithmically, and the theta angle is

shifted. An ultraviolet cutoff can be introduced supersymmetrically by enriching the theory

with a single “spectator” chiral multiplet of large twisted mass22 Λ ∈ R and U(1) charge

−Q, or with Q antifundamental spectator chiral multiplets of twisted masses Λ. We take

the latter approach, as the resulting enriched theory is simply SQCD with Nf fundamental

and Nf antifundamental chiral multiplets. Each spectator chiral multiplet brings a one-loop

contribution

N∏

j=1

Γ(−iΛ + iσj +
Bj

2 )

Γ(1 + iΛ− iσj +
Bj

2 )

Λ→∞
∼

N∏

j=1

(
Γ(−iΛ)

Γ(1 + iΛ)
(−iΛ)iσj+Bj/2(iΛ)iσj−Bj/2

)
(2.75)

to the Coulomb branch expression for the enriched theory. The original partition function

is thus a limit of the enriched partition function,

Z(m, m̃, z, z̄) = lim
Λ→∞

[
1

γ(−iΛ)N(Nf−Ñf )
Zenr

(
m, {m̃,Λ}, zbare, z̄bare

)
]
, (2.76)

where the factor γ(−iΛ)−N(Nf−Ñf ) has no physical effect, and the bare parameter zbare
appearing in the enriched theory is related to the renormalized z = zren (at the scale ℓ

given by the equatorial radius of the squashed sphere) via

zbare =
zren

(−iΛ)Nf−Ñf

and z̄bare =
z̄ren

(iΛ)Nf−Ñf

. (2.77)

In particular, the FI parameter runs logarithmically, and the theta angle is shifted:

ξren = ξbare −
1

2π
(Nf − Ñf ) lnΛ and ϑren = ϑbare +

π

2
(Nf − Ñf ) . (2.78)

Since the Coulomb branch representation involves an integral over arbitrarily large values

of σ ± iB2 , our derivation of (2.76) above is not rigorous. However, one can split the

integral into a region
∣∣σ ± iB2

∣∣ ≪ Λ and its complement, and check that the contribution

from large σ ± iB2 becomes negligible as Λ → ∞. It is more convenient to perform such

steps on the Higgs branch decomposition (2.58) of Zenr near 0. Regardless of the value

of z, the series expansions of vortex partition functions converges for Λ large enough that

|zbare| = |z|/ΛNf−Ñf < 1. Then each term in the series for the enriched theory converges to

the appropriate term for the Ñf < Nf theory. Since the sum of terms with
∑N

j=1 kj > K

22The dimensionful cutoff is Λ/ℓ in terms of the equatorial radius ℓ of the squashed two-sphere.
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decreases exponentially with K in both series, Zv,enr(zbare) → Zv(z). Other factors work

out as for the Coulomb branch representation.

In the limit above, Nf (Nf − Ñf ) of the N
2
f free hypermultiplets on S4

b become infinitely

massive, and the corresponding factors must be removed from the enriched partition func-

tion to retain a finite result. The partition function of the surface operator with Ñf < Nf

in a theory of Nf Ñf free hypermultiplets of masses (2.17) is thus the limit

Z
U(N)

S2⊂S4
b
(z, z̄) = lim

Λ→∞

[(∏Nf

s=1Υ
(
1
b (1 + ims + iΛ)

)

γ(−iΛ)N

)Nf−Ñf

Z
U(N)

S2⊂S4
b ,enr

(
zbare, z̄bare

)
]
. (2.79)

We now provide a Toda CFT interpretation of the limit for Nf − Ñf = 1. For sim-

plicity, label antifundamental multiplets of the enriched theory starting with the spectator

multiplet, so that m̃1 = Λ → ∞. Replace the partition function of the enriched defect

in (2.79) by its corresponding Toda CFT four-point function through the matching (2.51).

After a conformal transformation which maps (∞, 1, x/(−iΛ), 0) to (0, x/(−iΛ), 1,∞),

Z
U(N)

S2⊂S4
b
(z, z̄) = lim

Λ→∞

[
Aenr

∣∣∣ x
Λ

∣∣∣
2γ0,enr−2∆(α0)−2∆(−bωN )+2∆(α∞)+2∆(m̂)

∣∣∣∣1−
x

−iΛ

∣∣∣∣
2γ1,enr

·

∏Nf

s=1Υ
(
1
b (1 + ims + iΛ)

)

γ(−iΛ)N

〈
V̂α0(∞)V̂−bωN

(1)V̂m̂

(
x

−iΛ
,
x̄

iΛ

)
V̂α∞(0)

〉]

(2.80)

with x = (−1)Nf+N−1z, and parameters α0, m̂ = (κ + Nb)h1, α∞, Aenr, γ0,enr and γ1,enr
given below (2.51). As Λ → ∞, γ1,enr ∼

N
Nf

iΛ, thus |1− x/(−iΛ)|2γ1,enr → e(N/Nf )(x+x̄).

In the same limit, the punctures V̂m̂ and V̂α∞ collide, with momenta growing as the

inverse of the distance, keeping a constant sum c0 + Nbh1 = (κ + Nb)h1 + α∞ given

in (2.84). We study such collision limits in appendix A.6 and define (A.113)

V̂c0+Nbh1;−(x/b)h1,(x̄/b)h1
(0) = lim

Λ→∞

[
Υ
(
κ +Nb+ 〈Q− c0 −Nbh1, h1〉

)Nf

·

[
Λ

b

]〈Q,Q〉−2∆(c0+Nbh1) ∣∣∣ x
Λ

∣∣∣
2〈(κ+Nb)h1,c0−κh1〉

V̂(κ+Nb)h1

(
x

−iΛ
,
x̄

iΛ

)
V̂c0−κh1(0)

]

κ∼iΛ/b

.

(2.81)

The Upsilon functions and gamma functions in (2.80) and (2.81) can be recast in the same

form through the asymptotics (A.11), (A.10), and γ(1 + iΛ + a) ∼ γ(1 + iΛ)Λ2a. Let

im = 1
Nf

∑Nf

s=1 ims. Then,

γ(1 + iΛ)N
Nf∏

s=1

Υ
(
1
b (1 + iΛ + ims)

)
= γ(1 + iΛ)N

Nf∏

s=1

Υ
(
1
b (1 + iΛ + im) + 〈Q− α0, hs〉

)

∼ γ(1 + iΛ)NΥ
(
1
b (1 + iΛ + im)

)Nf [Λ/b]〈Q,Q〉−2∆(α0)

∼ Υ
(
1
b (1 + iΛ + im) + bN/Nf

)Nf bN+2N iΛ[Λ/b]〈Q,Q〉−2∆(α0)−2N im+N(Nf−N)b2/Nf .

(2.82)
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The last Upsilon functions are precisely those appearing in (2.81). Plugging back

into (2.80), all powers of Λ and bΛ cancel, and we can drop the limit.

All in all, the partition function of a surface operator describing a U(N) vector multi-

plet with Nf fundamental and Ñf = Nf − 1 antifundamental chiral multiplets, coupled to

Nf (Nf −1) hypermultiplets on S4
b is equal to a Toda CFT correlator with an antisymmetric

degenerate insertion and a rank 1 irregular puncture:23

Z
U(N),Nf ,Nf−1

S2⊂S4
b

(z, z̄) = A|x|2γ0e
N
Nf

(x+x̄)
〈
V̂α0(∞)V̂−bωN

(1)V̂c0+Nbh1;c1,c̄1(0)
〉
. (2.83)

As before, x = (−1)Nf+N−1z. The irregular puncture V̂ is defined above and studied in

appendix A.6. The momenta c0, c1, c̄1, and α0 are

c0 = Q+
1

b

Nf∑

s=1

(1 + ims)h1 +
1

b

Nf∑

s=2

im̃s(h1 − hs) ,

c1 = −
x

b
h1 , c̄1 =

x̄

b
h1 , α0 = Q−

1

b

Nf∑

s=1

imshs ,

(2.84)

and the constant A and exponent γ0 are24

A = bN(Nf−1)(b2+1)+2∆(α0)−2∆(c0) , (2.85)

γ0 = ∆(c0)−∆(α0)−N

Nf∑

s=1

ims −N

Nf∑

s=2

(1 + im̃s)−
N(N − 1)

2
b2 . (2.86)

As we have seen, it is natural from the gauge theory point of view to decouple further

antifundamental chiral multiplets by making them massive. Specifically, from (2.79) we

know that the partition function of a surface operator described by a U(N) vector multiplet

coupled to Nf fundamental and Ñf = Nf − k ≤ Nf − 2 antifundamental chiral multiplets is

a limit of Z
U(N),Nf ,Nf−1

S2⊂S4
b

(
z/(−iΛ)k−1, z̄/(iΛ)k−1

)
with twisted masses m̃2 = · · · = m̃k = Λ,

multiplied by some factor. On the Toda CFT side of the matching (2.83), the limit amounts

to taking 〈c0, hs〉 ∼ iΛ/b for 2 ≤ s ≤ k and letting c1 and c̄1 decrease as Λ−(k−1). Such a

limit does not fit in the framework described in appendix A.6, since the parameter c0 blows

up. However, translating the gauge theory factors to the Toda CFT and setting N = 0 for

simplicity, we find that the two-point function of a generic vertex operator V̂α0 with

[
|ν|2∆(c0)−〈Q,Q〉

k∏

t=2

Υ
(
〈Q− c0, ht〉

)Nf
V̂c0;−νh1,ν̄h1

]

ν=x/[b(−iΛ)k−1]

c0∼
iΛ
b
(kh1−ωk)

(2.87)

23Following the argument below (2.10), the factor A|x|2γ0e(N/Nf )(x+x̄) can be absorbed in the S2 partition

function. We keep the factor explicitly to compare gauge theory and Toda CFT results.
24Mapping {0, 1,∞} to {∞, x, 0} gives a closer analogue of the Ñf = Nf matching. This replaces γ0

by the simpler γ0 − ∆(c0 + Nbh1) + ∆(α0) + ∆(−bωN ) = − N
Nf

∑Nf

s=1 ims −
N(Nf−N)

2
(b2 + 1). However,

the transformation properties (A.98) of rank 1 irregular punctures would make the parameters c1 and c̄1
infinite. The best convention to cancel this infinity is not clear.
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remains finite as Λ → ∞. This suggests that the operator (2.87) itself has a limit. Ad-

ditionally, the OPE (A.93) of the stress-energy tensor with a rank 1 puncture includes a

term ∆(c0)+ 〈c1, ∂c1〉, and the normalization factor |ν|2∆(c0) ensures that the singular term

∆(c0) is absorbed in 〈c1, ∂c1〉. Unfortunately, it is difficult to go further, as the OPE with

higher currents of the WNf
algebra contain many singular terms, and all must be carefully

canceled by the choice of normalization before taking the limit.

Having dissected the partition function of theories with fundamental and antifunda-

mental matter, we consider next theories with an adjoint chiral multiplet.

2.3 SQCDA and Toda symmetric degenerate

We focus in this section on N = (2, 2) SQCDA: a U(N) vector multiplet coupled to an

adjoint chiral multiplet X and Nf fundamental and Nf antifundamental chiral multiplets.

Twisted masses (plus R-charges) are mX , ms, and m̃s. This theory, coupled to N2
f hyper-

multiplets with masses given by (2.17), defines a surface operator. We equate the S2 ⊂ S4
b

partition function of the 4d/2d system to a Toda CFT correlator with a degenerate field

V̂−Nbh1 labeled by the N -th symmetric representation of ANf−1. Namely, we check that25

Z
U(N) SQCDA

S2⊂S4
b

(m, m̃,mX , z, z̄) = A|y|2γ0 |1− y|2γ1
〈
V̂α∞(∞)V̂m̂(1)V̂−Nbh1(y, ȳ)V̂α0(0)

〉

(2.88)

with y = (−1)Nf z and26 b2 = imX , momenta

α0 = Q−
1

b

Nf∑

s=1

imshs , m̂ = (κ +Nb)h1 ,

α∞ = Q−
1

b

Nf∑

s=1

im̃shs , κ =
1

b

Nf∑

s=1

(1 + ims + im̃s) ,

(2.89)

and coefficients

γ0 = −
N

Nf

Nf∑

s=1

ims −
N(Nf − 1)

2
(b2 + 1)−

N(N − 1)

2
b2 , (2.90)

γ1 = −
N(Nf −N)

Nf
b2 +

N

Nf

Nf∑

s=1

(ims + im̃s) , (2.91)

A = bNNf (1+b2)−N2b2−2Nbκ
N∏

ν=1

γ(−νb2) . (2.92)

We recognize the same symmetries as for SQED and SQCD, under permutations of the

ms or the m̃s, and under z ↔ 1
z and exchanging those two sets of masses. Setting N = 1

25As explained below (2.10), the factor A|x|2γ0 |1− x|2γ1 can be absorbed into the partition function. To

compare gauge theory and Toda CFT results it is best to keep the factor explicitly.
26The full flavour group of SQCDA is U(1) × S[U(Nf ) × U(Nf )], where the factors act on the adjoint,

fundamental, and antifundamental chiral multiplets. The relation b2 = imX identifies the first U(1) flavour

symmetry with rotations transverse to the surface operator.
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reproduces the matching (2.19) of SQED, but A has an additional factor of γ(−b2) =

γ(−imX): this is the one-loop determinant of the adjoint chiral multiplet, which decouples

in an abelian theory.

Given the geometrical origin of the deformation parameter, one has b2 > 0. On the

other hand, the S2 partition function is defined with positive R-charges Re(−2im). The

two requirements are incompatible with b2 = imX , hence one of those two parameters must

be continued beyond its usual range. For now, we analytically continue the R-charge: it

is easier because the partition function depends holomorphically on imX , as deduced from

explicit expressions. However, we will encounter in section 2.3.3 a setting where b2 = imX

is fixed to a real negative value. Given that the Upsilon function which appears in Z free
S4
b

and in Toda correlators cannot be continued to negative b2, we will have to first recast the

relation (2.88) in the form ZS2 = 〈· · ·〉/Z free
S4
b

for the analytic continuation in b to make sense.

Once more, we fix the dictionary and demonstrate the equality by comparing exponents

in the s-, t- and u-channels. The equality of Toda CFT three-point functions and gauge

theory one-loop determinants (for the s- and u-channels) is checked in appendix A.2, and

the expression of A is found there.

The Coulomb branch representation reads

ZSQCDA =
1

N !

∑

B∈ZN

∫

RN

dNσ

(2π)N

{
[
(−1)N−1z

]Tr(iσ+B
2
)[
(−1)N−1z̄

]Tr(iσ−B
2
)

·
∏

i<j

[
(σi − σj)

2 +
(Bi −Bj)

2

4

] N∏

j=1

Nf∏

s=1

[
Γ(−ims − iσj −

Bj

2 )

Γ(1 + ims + iσj −
Bj

2 )

Γ(−im̃s + iσj +
Bj

2 )

Γ(1 + im̃s − iσj +
Bj

2 )

]

·
N∏

i=1

N∏

j=1

[
Γ(−imX − iσi + iσj −

Bi−Bj

2 )

Γ(1 + imX + iσi − iσj −
Bi−Bj

2 )

]}
.

(2.93)

We will expand this partition function around the points 0, (−1)Nf and ∞, where, as a

function of z, it has branch points. This follows the path we traced for SQED: the behaviors

near z = 0 and ∞ are probed by closing integration contours towards ±i∞. The partition

function is then expressed as a sum over poles of the integrand, which are characterized

up to integers by the set of Gamma functions which are singular for those values of iσ.

The behavior near (−1)Nf is found by splitting the Coulomb branch integral depending on

whether each |σj ±
iBj

2 | ≶ ln|z|.

2.3.1 Expanding the SQCDA partition function

We start with the s-channel expansion for |z| < 1. Ignoring for a moment the magnetic

flux B, and integer shifts due to the infinite set of poles of the Gamma function, we find that

poles enclosed by the contour must be such that each iσj is either −ims for some flavour s,

or iσi − imX for some other color i. As in the case of SQCD, the vector multiplet one-loop

determinant enforces iσi 6= iσj for any two distinct colors, hence {iσj} is {−ims − µimX |

1 ≤ s ≤ Nf , 0 ≤ µ < ns} for some choice of integers ns with n1 + · · · + nNf
= N . It is

convenient to label colors with indices (s, µ) instead of j ∈ J1, NK, and denote I = {(s, µ)}.
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The sums over B and over poles of Gamma functions introduce shifts, in the form of sums

over 2N integers k±sµ ≥ 0, and poles are

iσsµ ±
Bsµ

2
= −ims − µimX + k±sµ (2.94)

for (s, µ) ∈ I. The partition function can then be recast as a sum over residues at those

values of iσ ± B
2 . It turns out that the residues vanish unless k±sµ ≤ k±s(µ+1) for every

(s, µ) ∈ I and sign ±: this indicates that (2.94) also labels some points which are not

poles; thankfully, the residue formula is robust against such overcounting.

Since every factor in the Coulomb branch formula depends only on iσ+ B
2 hence on k+,

or on iσ− B
2 hence on k−, the series over k+ and over k− decouple, and ZSQCDA splits into

a sum of factorized terms labeled by the choice of {ns},

ZSQCDA
S2 =

∑

n1+···+nNf
=N

(zz̄)
∑

(s,µ)∈I(−ims−µimX)Z1l,{n}Zv,{n}

[
(−1)Nf z

]
Zv,{n}

[
(−1)Nf z̄

]
(2.95)

Z1l,{n} =
∏

(s,µ)∈I

Nf∏

t=1

γ(−imt − ntimX + ims + µimX)

γ(1 + im̃t + ims + µimX)
, (2.96)

Zv,{n}(y) =
∑

k:I→Z≥0

∏

(s,µ)∈I

[
yksµ

Nf∏

t=1

(−im̃t − ims − µimX)ksµ
(1 + imt − ims + (nt − µ)imX)ksµ

·

∏Nf

t=1(1 + imt − ims + (nt − µ)imX + ksµ − kt(nt−1))kt(nt−1)∏
(t,ν)∈I(1 + imt − ims + (ν − µ)imX + ksµ − ktν)ktν−kt(ν−1)

]

(2.97)

where we define kt,−1 = 0 for convenience. Carrying through the same procedure for

|z| > 1 yields a u-channel decomposition similar to the s-channel decomposition (2.95),

with ms ↔ m̃s, z → z−1 and z̄ → z̄−1.

Having found powers of |z| in the s-channel and u-channel decompositions of ZSQCDA,

we now expand the Coulomb branch integral in the t-channel. The first step is to use

the identity Γ(−ia−B/2)
Γ(1+ia−B/2) = (−1)B Γ(−ia+B/2)

Γ(1+ia+B/2) on the one-loop determinants of fundamental

chiral multiplets, and on half of the Gamma functions stemming from the adjoint chiral

multiplet, and absorb the resulting signs into

y = (−1)Nf z and ȳ = (−1)Nf z̄ . (2.98)

The integrand resulting from this operation can be recast as

yTr(iσ+
B
2
)ȳTr(iσ−

B
2
)

N∏

j=1

Nf∏

s=1

[
Γ(−ims − iσj +

Bj

2 )

Γ(1 + im̃s − iσj +
Bj

2 )

Γ(−im̃s + iσj +
Bj

2 )

Γ(1 + ims + iσj +
Bj

2 )

]

· γ(−imX)N
∏

±

N∏

i<j

[(
±(iσi − iσj) +

Bi−Bj

2

)
Γ(−imX ± (iσi − iσj) +

Bi−Bj

2 )

Γ(1 + imX ± (iσi − iσj) +
Bi−Bj

2 )

] (2.99)

by writing the vector multiplet one-loop determinant as a product of ±(iσi− iσj)+
Bi−Bj

2 .

We now split the sums and integrals in the same way as for SQED on page 21, one
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pair (σj , Bj) at a time. For |iσj +
Bj

2 | < |ln y|−1, we expand the classical contribution

yiσj+
Bj
2 ȳiσj−

Bj
2 as a series in ln y and ln ȳ; the integral and sum only contributes a constant

factor. For |iσj +
Bj

2 | > |ln y|−1, the sum over Bj is well approximated by an integral,

and we expand the Gamma functions which involve this particular combination as a power

of |iσj +
Bj

2 | times a power series in (iσj ±
Bj

2 )−1. Rescaling iσj +
Bj

2 by ln y makes the

classical contribution independent of y, and extracting a power of |ln y| leaves a series in

ln y and ln ȳ as the sole dependence in y. After performing this procedure for all pairs

(σj , Bj), we obtain 2N contributions, labeled by the set K ⊆ {1, . . . , N} of colors j such

that |iσj +
Bj

2 | > |ln y|−1 is large. The contribution for a given set K behaves as

ZK ∼ |1− y|−2k+2k
∑Nf

s=1(1+ims+im̃s)+2k[2N−k−1]imX , (2.100)

multiplied by a constant and by a series in powers of 1− y and 1− ȳ, where k = #K is the

number of elements in K and we used (ln y)α = (1− y)α · (series). There are N +1 distinct

exponents, corresponding to values k ∈ J0, NK. This approach does not seem amenable to

finding multiplicities attached to each power of 1 − y, hence we will not be able to probe

that aspect of the correspondence.

2.3.2 Matching parameters for SQCDA

We are now ready to match the gauge theory data to Toda CFT data. The s- and u-channel

decompositions of ZSQCDA have

(
Nf +N − 1

N

)
= dim

(
R(Nh1)

)
(2.101)

terms, which is the dimension of the N -th symmetric representation R(Nh1) of ANf−1,

with highest weight Nh1. Thus, in analogy with SQCD, we expect ZSQCDA to match a

Toda four-point correlation function involving the degenerate operator V̂−Nbh1 . The fusion

rule then allows shifts of generic momenta by −bh = −b
∑Nf

s=1 nshs for a choice of integers

n1 + · · ·+ nNf
= N . We thus wish to match the s-channel exponents

∆(α0 − bh)−∆(α0)−∆(−Nbh1) + γ0 = −

Nf∑

s=1

[
nsims +

ns(ns − 1)

2
imX

]
. (2.102)

This equality holds if imX = b2, and α0 and γ0 are as given in (2.89) and (2.90). The

u-channel powers are similar,

∆(α∞)−∆(α∞ − bh)−∆(−Nbh1) + γ0 + γ1 =

Nf∑

s=1

[
nsim̃s +

ns(ns − 1)

2
imX

]
, (2.103)

and the equality holds for values of α∞ and γ1 in (2.89) and (2.91).

We find in appendix A.4 that the fusion of (κ+Nb)h1 with −Nbh1 allows the t-channel

internal momenta (κ + nb)h1 − nbh2 for 0 ≤ n ≤ N . This fusion rule (A.64) provides the
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powers of 1− y for the t-channel of the Toda correlator, and power matching then requires

∆((κ + nb)h1 − nbh2)−∆((κ +Nb)h1)−∆(−Nbh1) + γ1

= k

[ Nf∑

s=1

(ims + im̃s) + (Nf − 1) + (2N − k − 1)imX

]
.

(2.104)

The exponents are equal if n = N − k, and κ is as given in (2.89).

Finally, as checked in appendix A.2, the Toda CFT three-point functions which appear

in the s-channel decomposition of the correlator reproduce the corresponding one-loop

determinants in (2.95), provided A is as given in (2.92). For any given N , the techniques

of appendix A.3 can yield the Toda CFT braiding matrix of V̂−Nbh1 with V̂m̂. However, we

did not find a closed form of those matrices or their gauge theory analogues to provide a

proof of the matching (2.88).

2.3.3 Adding a superpotential to SQCDA

We now discuss the effect of adding to SQCDA a superpotential term of the form

W =
∑Nf

t=1 q̃tX
ltqt or W = TrX l+1, where qt, q̃t, and X denote the fundamental, an-

tifundamental, and adjoint chiral multiplets, and lt and l are non-negative integers.

The deformation term which localizes to the Higgs branch of the theory with no su-

perpotential can still be used in the presence of a superpotential, and it yields the same

decomposition into vortex and anti-vortex partition functions. Hence, the only effect of the

superpotential on the partition function is to constrain the (complexified) twisted masses

of chiral multiplets. On the other hand, the superpotential term is in fact Q-exact for the

choice of localization supercharge Q, thus one can include it into the deformation term.

This lifts some vacua of the deformation term through F-term constraints, thus removes

some terms from the sum over Higgs branch vacua. The two deformation terms must

yield equal results for the partition function. Therefore, the terms forbidden by F-term

constraints must vanish in the larger sum: they must have zero one-loop determinant. As

a result, we can either solve D-term and F-term equations to find vacua of the enhanced

deformation term, or remove vacua of the original deformation term whose one-loop deter-

minant vanishes when imposing the superpotential constraint on R-charges.

First, we focus on a generalization of the superpotential q̃Xq of N = (2, 2)∗ SQCD,27

W =

Nf∑

t=1

q̃tX
ltqt , (2.105)

where lt ≥ 0 is an integer for each flavour 1 ≤ t ≤ Nf . We let L =
∑Nf

t=1 lt. The

superpotential must have a total R-charge of 2 and a vanishing twisted mass, hence im̃t +

ltimX + imt = −1 for each 1 ≤ t ≤ Nf . The one-loop determinant (2.96) then contains

a vanishing factor 1/γ(1 + im̃t + imt + ltimX) = 0 whenever any nt > lt, thus those

terms do not contribute to the partition function. An equivalent point of view is that

the corresponding Higgs branch vacua have Xnt−1qt 6= 0 and are forbidden by the F-term

27N = (2, 2)∗ SQCD is the mass deformation of N = (4, 4) SQCD.
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equation X ltqt = 0. Terms in the Higgs branch representation of the partition function are

thus labeled by integers 0 ≤ nt ≤ lt with
∑Nf

t=1 nt = N . Note that nt ≤ lt implies N ≤ L,

analogous to the condition N ≤ Nf for SQCD.

The constraint on (complexified) twisted masses translates to a constraint on the

momenta of operators appearing in the corresponding Toda CFT correlator. The semi-

degenerate operator becomes degenerate:

m̂ =

[
1

b

Nf∑

t=1

(1 + imt + im̃t) +Nb

]
h1 = −(L−N)bh1 , (2.106)

where we used imX = b2. Thus, the outgoing momentum 2Q − α∞ must take the form

α0 − bh − bh′, where h =
∑

t ntht is a weight of R(Nh1) and h′ =
∑

t n
′
tht is a weight of

R((L−N)h1). The superpotential ensures that this is the case:

2Q− α∞ = Q+
1

b

Nf∑

t=1

im̃tht = Q−
1

b

Nf∑

t=1

(imt + ltb
2 + 1)ht = α0 − b

Nf∑

t=1

ltht . (2.107)

The conformal block decomposition contains one term for each way of splitting
∑

t ltht
into a sum h + h′ of weights of R(Nh1) and R((L − N)h1), that is, each set of integers

0 ≤ nt ≤ lt with
∑

t nt = N . In section 3.2.1, we note that the vertex operators V̂−(L−N)bh1

and V̂−Nbh1 have the same form with N ↔ L−N , and deduce a duality between theories

with gauge groups U(N) and U(L − N). This duality reduces when all lt = 1 to an

N = (2, 2)∗ analogue of Seiberg duality.

Our second example of superpotential only involves the adjoint chiral multiplet, and

constrains its complexified twisted mass:

W = TrX l+1 , b2 = imX =
−1

l + 1
(2.108)

for some l ≥ 1. The superpotential constraint sets b to an imaginary value, for which

S4
b does not make sense. Instead of a surface operator on S2 ⊂ S4

b we must thus manipulate

the two dimensional theory on S2 only. Correspondingly, the matching (2.111) with the

Toda CFT is written in the form ZS2 =
[
〈· · ·〉/Z free

S4
b

]
b2=−1/(l+1)

, where the right-hand side

is analytically continued after taking the ratio.28

For imX = −1
l+1 , the one-loop determinant (2.96) vanishes whenever any ns > l: the

numerator factor for t = s and µ = ns−l−1 is γ(ims−ims+(ns−l−1−ns)imX) = γ(1) = 0.

Equivalently, Higgs branch vacua have Xns−1qs 6= 0 and are forbidden if ns > l by the

F-term equation X l = 0. The S2 partition function in the presence of W = TrX l+1 is thus

a sum over choices of integers 0 ≤ ns ≤ l with
∑Nf

s=1 ns = N .

We see that introducing the superpotential W = TrX l+1 replaces the sum over weights∑Nf

s=1 nshs of the symmetric representation R(Nh1) by a sum over a restricted set of

28The central charge c = (Nf − 1)
[
1+Nf (Nf +1)(b2 +2+ b−2)

]
= −(Nf − 1)(Nf l− 1)(Nf l+ l+1)/(l+1)

is negative for the value b2 = −1/(l + 1) we consider.
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weights, with 0 ≤ ns ≤ l. Those are precisely the weights of the representation with

highest weight

ωN,l = lωk + (N − lk)hk+1 and Young diagram

l

N − lk

k , (2.109)

where k is defined by kl ≤ N < (k + 1)l. The “quasi-rectangular” Young diagram is

obtained by placing N boxes into as many l-box rows as possible followed by a row with

any remaining box. For l ≥ N , none of the one-loop determinants vanish, and the Young

diagram is that of the N -th symmetric representation: this is the same as for SQCDA.

For l = 1, the Young diagram becomes a column, hence we sum over weights of the

N -th antisymmetric representation, as for SQCD with no adjoint: correspondingly, the

superpotential W = TrX2 lets us integrate out the adjoint chiral multiplet.

From our experience with SQCD and SQCDA, we expect the sum over weights

of R(ωN,l) to have a Toda CFT analogue involving the degenerate operator V̂−bωN,l
. This

is confirmed by the observation that the momenta −Nbh1 and −bωN,l are Weyl conjugate

when b2 = −1
l+1 since

{
1

b
〈−Nbh1 −Q, hp〉

∣∣∣ 1 ≤ p ≤ Nf

}

=

{
N

Nf
+

Nf − 1

2
l −N

}
∪

{
N

Nf
+

Nf − 1

2
l − kl

∣∣∣ 1 ≤ k ≤ Nf − 1

}

=

{
1

b
〈−bωN,l −Q, hp〉

∣∣∣ 1 ≤ p ≤ Nf

}
.

(2.110)

Therefore, V̂−Nbh1 and V̂−bωN,l
are equal up to a scalar factor for this value of b2. This

assertion should be handled with care, as the Toda CFT is ill defined for b2 < 0.

Trusting the assertion leads us to the proposal29

Z
U(N) SQCDA,W=TrXl+1

S2

(
m, m̃,mX =

i

l + 1
, z, z̄

)

= A|y|2γ0 |1− y|2γ1




〈
V̂α∞(∞)V̂(κ+Nb)h1

(1)V̂−bωN,l
(y, ȳ)V̂α0(0)

〉

〈
V̂α∞(∞)V̂κh1(1)V̂α0(0)

〉




b2→ −1
l+1

(2.111)

for some A, and with other parameters given below the SQCDA matching (2.88). Im-

portantly, we have moved the S4
b partition function of N = 2 free hypermultiplets to the

right-hand side (in the form of a Toda CFT three-point function), and we only set b2 = −1
l+1

after evaluating the ratio of Toda CFT correlators. We can thus expect Upsilon functions

29As explained below (2.10), the factor A|x|2γ0 |1− x|2γ1 can be absorbed into the partition function. To

compare gauge theory and Toda CFT results it is best to keep the factor explicitly.
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in the numerator and denominator to cancel, leaving a product of gamma functions which

can be analytically continued to b2 = −1
l+1 and should reproduce one-loop determinants in

the left-hand side.

When l ≥ N , (2.111) is simply the SQCDA matching (2.88) at imX = b2 = −1
l+1 , with

the same value of A. When l = 1, we expect the claim to reproduce the SQCD result (2.51),

and indeed the SQCDA parameters which appear in (2.111) are equal for imX = b2 = −1
2

to the corresponding SQCD parameters, with the exception of A.

It is difficult to find A in general, because three-point functions involving V̂−bωN,l
take

complicated forms for 1 < l < N . Using [58, equations (1.53) and (1.56)], we tested the

proposal (2.111) for Nf = N = 3 and l = 2, which corresponds to the adjoint represen-

tation of SU(3). Three-point functions Ĉα−bh
−b(h1−h3),α

associated to non-zero weights h of

the adjoint representation are ratios of Gamma functions. When b2 = −1
l+1 = −1

3 , they

yield the expected one-loop determinants up to a factor A = b9−6bκγ(1/3). For general b,

the three-point function Ĉα
−b(h1−h3),α

associated to the zero weight is expressed in terms

of hypergeometric functions evaluated at 1, but at the point b2 = −1
3 the value agrees

numerically with the Gamma functions expected from gauge theory:

ĈQ−ia
−b(h1−hNf

),Q−ia =

Nf∑

p=1

Nf∏

s 6=p

(
γ(b〈ia, hp − hs〉)

γ(1 + b2 + b〈ia, hp − hs〉)

)
F
(

−b2+b〈ia,hs−hp〉, 1≤s≤Nf

1+b〈ia,hs−hp〉, s 6=p

∣∣∣1
)2

(2.112)

Nf=3,b2→−1/3
−−−−−−−−−−→

numerically

γ(−b2)

γ(−2b2)

∏

1≤s 6=t≤3

γ(b〈ia, hs − ht〉 − b2) . (2.113)

More generally, a Toda CFT four-point function with a fully degenerate vertex operator

other than V̂−bωN
or V̂−Nbh1 (and the usual two generic and one semi-degenerate vertex

operators) cannot coincide with the partition function of a surface operator described by

a single N = (2, 2) U(N) vector multiplet coupled to some chiral multiplets, except for

special values of b as is the case here. Indeed, as described by Fateev and Litvinov [58],

the Toda three-point function Ĉα−bh
−bω,α only takes the form of a ratio of Gamma functions

if the weight h appears with no multiplicity in R(ω). Since one-loop determinants are

always such ratios, they can only reproduce Toda CFT three-point functions for general b

if weights have no multiplicities.

However, higher degenerate fields can be obtained by considering the collision limit of

simpler degenerate fields. For instance, the three-point function Ĉα
−b(h1−h3),α

mentioned

above is equal to a four-point function involving a fundamental and an antifundamen-

tal degenerate fields, in the limit where the two punctures collide. In the next section,

we match Toda CFT correlators involving more than one (symmetric or antisymmetric)

degenerate vertex operator with S2 partition functions of quiver gauge theories. Collid-

ing antisymmetric degenerate operators, we obtain expressions for Toda CFT correlators

of arbitrary degenerate operators V̂−bΩ with two generic and one semi-degenerate vertex

operators, for any b.
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357

Nf

Nf

4d 2d D4

Nf
Nf

NS5

NS5’

n = 3

D2

Nf semi-infinite D4 branes ending on each side of a single NS5 brane engineer at low

energies the theory of N2
f free hypermultiplets on their four-dimensional intersection.

Adding D2 branes stretched between the NS5 brane and n additional NS5 branes inserts

a surface operator with support on the boundary of the added D2 branes. Rotating some

NS5 branes (rotated branes are denoted as NS5’ and are all parallel) alters the surface

operator, which is then precisely the one discussed in the main text.

The ranks Nn ≥ · · · ≥ N1 are the numbers of D2 branes between consecutive

NS5/NS5’ branes. When these are parallel (both NS5 or both NS5’), the corresponding

U(Nj) group has an adjoint chiral multiplet (ηj = +1), otherwise not (ηj = −1). Equiva-

lently, the j-th brane is an NS5 if ǫj =
∏n

i=j ηi is 1 and otherwise it is an NS5’. The Toda

CFT data appears by turning on FI parameters, as this separates the NS5/NS5’ branes

along the D4 brane direction. Then Kj = (Nj − Nj−1) D2 branes stretch between the

original NS5 brane and the j-th NS5/NS5’ brane, corresponding to the Kj-th symmetric

(or antisymmetric if ǫj = −1) degenerate operator.

We will see in section 3.3 that permuting the (ǫj ,Kj) or equivalently the

NS5/NS5’ branes is a (Seiberg-like) duality of the surface operator.

Figure 2. A 4d/2d quiver, its corresponding brane diagram, and Toda CFT correlator.

2.4 Quivers and multiple Toda degenerates

We have focused so far on surface operators described by U(N) gauge theories, which have

a single FI parameter. Those correspond to Toda CFT four-point functions, which involve

a single anharmonic ratio x. Here, we equate the partition function of surface operators

described by certain U(N1)×· · ·×U(Nn) quiver gauge theories and (n+3)-point functions

with n symmetric or antisymmetric degenerate operators. In detail,30

Z
∏

j U(Nj),Wη

S2⊂S4
b

(
m, z, z̄

)
= Aa(x)a(x̄)

〈
V̂α∞(∞)V̂m̂(1)

n∏

j=1

V̂−bΩ(Kj ,ǫj)(xj , x̄j)V̂α0(0)

〉
.

(2.114)

The matching gives a detailed description of the moduli space parametrized by the zj . We

describe notations below, then consider several limits to fix all parameters of the matching

in section 2.4.1. Fine-tuning FI parameters such that degenerate punctures collide on

the Toda CFT side, we deduce in section 2.4.2 the microscopic description of the surface

operator which corresponds to arbitrary degenerate punctures in the Toda CFT. Brane

diagrams (see figure 2) clarify some aspects of the correspondence.

30Following the arguments below (2.10), the factor Aa(x)a(x̄) can be absorbed into the partition function.

To compare gauge theory and Toda CFT results it is best to keep the factor explicitly.
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The surface operator depends on a choice of n signs ηj = ±1 and integer parameters

Nn ≥ · · · ≥ N1 ≥ 0. It also depends on n FI and theta parameters combined as

zj = e−2πξj+iϑj and ẑj = (−1)Nj−1+Nj+1zj (2.115)

for 1 ≤ j ≤ n, where N0 = 0, Nn+1 = Nf , and the sign is chosen for later convenience. The

operator is defined by the N = (2, 2) quiver

Nn · · · N1

Nf

Nf

(2.116)

which describes a U(N1)×· · ·×U(Nn) vector multiplet coupled to various chiral multiplets.

First, Nf fundamentals qt and Nf antifundamentals q̃t of U(Nn). Next, for each 1 ≤

j ≤ n − 1, one pair of bifundamentals of U(Nj) × U(Nj+1): φj(j+1) in the representation

Nj ⊗N j+1 and φ(j+1)j in the representation N j ⊗Nj+1. Finally, for each 1 ≤ j ≤ n, one

adjoint Xj . The (complexified) twisted masses mt, m̃t, mj(j+1), m(j+1)j and mjj of these

fields are constrained by a superpotential coupling Wη.

The superpotential has the following terms,





Tr
(
X2

j

)
for 1 ≤ j ≤ n if ηj = −1 ,

Tr
(
φj(j+1)φ(j+1)jφj(j−1)φ(j−1)j

)
for 1 < j < n if ηj = −1 ,

Tr
(
Xjφj(j+1)φ(j+1)j

)
for 1 ≤ j < n if ηj = 1 ,

Tr
(
Xjφj(j−1)φ(j−1)j

)
for 1 < j ≤ n if ηj = 1 .

(2.117)

In other words the adjoint multiplets of nodes with ηj = 1 have a cubic coupling to

neighboring bifundamental multiplets, while nodes with ηj = −1 entail a quartic coupling

of neighboring bifundamental multiplets. The Tr(X2
j ) term for ηj = −1 gives a mass to

the adjoint multiplet Xj , hence the theory (2.116) is equivalent in the low-energy to the

analogous theory (1.8) from the introduction, which omits these Xj . Here, we include

adjoint multiplets for all nodes to simplify signs in the definition (2.115) of ẑj . Indeed,

integrating out Xj when ηj = −1 shifts the corresponding theta angle zj → (−1)Nj−1zj ,

hence in order to keep ẑj fixed one should complicate the definition (2.115) of ẑj by including

the sign (−1)Nj−1.

The superpotential Wη must have R-charge 2 (twisted mass i) to be supersymmetric.

This fixes twisted masses of bifundamental and adjoint multiplets in terms of the signs η

and a single continuous parameter,31 which will match with b2 in the Toda CFT. To ease

the comparison with the Toda CFT correlator, we define signs ǫj =
∏n

i=j ηi for 1 ≤ j ≤ n+1

31The full flavour symmetry of the two dimensional theory is S[U(Nf ) × U(Nf )] × U(1), where the first

factor acts on fundamental and antifundamental chiral multiplets. Under the U(1) factor, the adjoint chiral

multiplet Xj has charge ǫj + ǫj+1 and the bifundamental multiplets φ(j−1)j and φj(j−1) have charge −ǫj ,

where ǫj =
∏n

i=j ηi.
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and find

imjj =





−1− b2 if ǫj+1 = ǫj = −1 ,

−1/2 if ǫj+1 6= ǫj ,

b2 if ǫj+1 = ǫj = +1 ,

im(j−1)j + imj(j−1) =

{
b2 if ǫj = −1 ,

−1− b2 if ǫj = +1 .

(2.118)

Equivalently, Wη could be defined as containing all gauge invariant combinations of the

fields which have total R-charge 2 (twisted mass i), given the mass assignment (2.118).

As always, the twisted masses and R-charges of fundamental and antifundamental chiral

multiplets are unconstrained.

On the other hand, the Toda CFT (n+3)-point function involves two generic and one

semi-degenerate vertex operators V̂α∞(∞), V̂m̂(1), and V̂α0(0) with momenta

α0 = Q−
1

b

Nf∑

s=1

imshs , m̂ = (κ +Nnb)h1 ,

α∞ = Q−
1

b

Nf∑

s=1

im̃shs , κ =
1

b

Nf∑

s=1

(1 + ims + im̃s) ,

(2.119)

which coincide with those of earlier sections. It also involves n fully degenerate vertex

operators V̂−bΩ(Kj ,ǫj)(xj , x̄j) at

xj =
n∏

i=j

ẑi for 1 ≤ j ≤ n . (2.120)

Each degenerate operator is labeled by the highest weight Ω(K,+1) = Kh1 of a symmetric

representation or Ω(K,−1) = ωK of an antisymmetric representation of ANf−1, depending

on the signs ǫj =
∏n

i=j ηi and the integers

K1 = N1 , and Kj = Nj −Nj−1 for 1 < j ≤ n . (2.121)

Finally, the factors A and a are

A = bNnNf (1+b2)−N2
nb

2−2Nnbκ
∏

j|ǫj=+1

∏

1≤ν≤Kj

γ(−νb2) , (2.122)

a(x)a(x̄) =
n∏

j=1

|xj |
2βj

n∏

j=1

|1− xj |
2γj

n∏

i<j

|xj − xi|
2γij , (2.123)

with the exponents

βj = ∆
(
−bΩ(Kj , ǫj)

)
−

Kj

Nf

Nf∑

t=1

imt +
Kj(Nf −Kj)

2Nf
b2 −Nj−1imj(j−1) −Kj

n∑

i=j+1

im(i−1)i ,

(2.124)

γj = (−1− b2)Kj + b(κ +Nnb)Kj/Nf , (2.125)

γij =

{
b2Ki − b2KiKj/Nf if ǫj = −1 ,

(−1− b2)Ki − b2KiKj/Nf if ǫj = +1 ,
(2.126)
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for 1 ≤ i < j ≤ n. When n = 1, the matching (2.114) reproduces the known cases of

SQCD (η1 = −1) and SQCD with an adjoint (η1 = 1). Also, for n > 1 setting N1 = 0

reduces the matching to the case n → n− 1.

As a preliminary check of the equality (2.114), we can recognize a few symmetries.

Permuting the flavours of fundamental quarks qt, hence their twisted masses mt, does

not alter the partition function. This is translated on the Toda CFT side into a Weyl

transformation of the momentum α0, which permutes the 〈α0−Q, ht〉. Similarly, permuting

the m̃t amounts to a Weyl transformation of α∞. Next, performing charge conjugation on

all gauge group factors maps ẑj → ẑ−1
j , mt ↔ m̃t, and mj(j+1) ↔ m(j+1)j : this corresponds

on the Toda CFT side to the conformal map x → x−1, which swaps α0 ↔ α∞ and maps

xj → x−1
j . The transformation of a(x)a(x̄) compensates exactly the conformal factor

|xj |
−4∆(−bΩ(Kj ,ǫj)) for each j. Finally, shifting the twisted masses of bifundamentals while

keeping the sums mj(j+1) +m(j+1)j constant amounts to a constant gauge transformation,

whose sole effect on the partition function is in overall powers of |xj |
2: on the Toda CFT

side of (2.114), only the exponents βj change.

2.4.1 Matching parameters for quivers

We first expand the partition function and the correlator in the s-channel, that is, the

region where 0 < |x1| < · · · < |xn| < 1 or equivalently where all FI parameters are

positive: |ẑj | < 1. We map vacua of the gauge theory to choices of internal momenta in the

correlator. The classical and one-loop contributions match as expected with the exponents

and three-point functions, while the vortex partition functions give predictions for Toda

CFT conformal blocks (see appendix A.5). This check fixes {Kj , ǫj}, the momentum α0,

the overall constant factor A and the exponents βj +
∑

i<j γij . The momentum α∞ is

fixed by the symmetry under charge conjugation discussed earlier. Then, we justify the

relation between the gauge theory data {ηj , ẑj} and the Toda CFT data {ǫj , xj} by counting

distinct exponents in the limit where two neighboring punctures collide. Comparing the

exponents only fixes the momentum m̂ and the exponents γn and γ(j−1)j . The remaining

exponents γj and γij are fixed thanks to Seiberg dualities which translates in this setting

to permutations of the n punctures (see section 3.3).

It is easiest to find Higgs branch vacua of the gauge theory by solving the D-term

and F-term equations, assuming as before that fundamental chiral multiplets have generic

twisted masses ms. The derivation goes as follows. Diagonalize all σj . Introduce iσn+1 =

diag(−im1, . . . ,−imNf
), Nn+1 = Nf , and N0 = 0 to simplify the discussion. Integrate out

all Xj which have twisted mass mjj = i/2, that is, ηj = −1. The D-term equations (for

|ẑj | < 1) impose that the images of Xj , φj(j+1) and φj(j−1) span C
Nj , hence all eigenvalues

of σj are constrained to be equal to another eigenvalue of σj or of σj±1, minus a twisted

mass. All eigenvalues of iσj thus take the form iσj,a = −ims−
∑n

i=j+1 im(i−1)i+µ(1+b2)−

νb2 where µ, ν ∈ Z≥0. Using the F-term constraint, one can then bound the multiplicity of

such an eigenvalue by the multiplicity of the eigenvalue iσj,a− imjk of iσk, for k ∈ {j, j±1}

(only k ∈ {j ± 1} if Xj was integrated out). Since each eigenvalue −ims of iσn+1 has

multiplicity 1, we deduce by induction on n + 1 − j, µ, and ν that all eigenvalues have

multiplicity 1. The statement is in fact stronger: for any eigenvalue iσj,a of iσj , and for
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k ∈ {j, j ± 1} (or only k ∈ {j ± 1}), iσj,a − imjk is an eigenvalue of iσk, and the relevant

component of φjk is non-zero. Solving the F-term constraints is then a combinatorical

problem whose details depend on the superpotential Wη.

At the end of the day, one finds that vacua obey

iσj = diag

(
−ims −

n∑

i=j+1

(
im(i−1)i

)
− νb2

∣∣∣∣ 0 ≤ ν < nj
s, 1 ≤ s ≤ Nf

)
(2.127)

for 1 ≤ j ≤ n, where nj
s ≥ 0 are integers such that

∑Nf

s=1 n
j
s = Nj and

{
nj−1
s ≤ nj

s ≤ nj−1
s + 1 if ǫj = −1 ,

nj−1
s ≤ nj

s if ǫj = +1 ,
(2.128)

where n0
s = 0. These conditions are equivalent to requiring that for each 1 ≤ j ≤ n the

difference h[nj ] − h[nj−1] =
∑Nf

s=1(n
j
s − nj−1

s )hs is a weight of the symmetric or antisym-

metric representation R(Ω(Kj , ǫj)) of rank Kj = Nj −Nj−1. The S2 partition function is

then a sum

ZS2 =
∑

{nj
s}

ZclZ1lZvZv̄ (2.129)

over choices of {nj
s} consistent with the constraints above. Terms of this sum are in a

natural bijection with terms of the s-channel decomposition of the Toda CFT correlator

in (2.114): the internal momenta are α0 − bh[nj ] for 1 ≤ j ≤ n. Thus, counting terms fixes

the degenerate momenta −bΩ(Kj , ǫj) in terms of the Nj and ηj .

Since the Higgs branch and Coulomb branch representations of S2 partition functions

coincide, ZclZ1l is the residue at the pole (2.127) of the Coulomb branch integrand, and

ZvZv̄ is the additional contribution from poles for which iσ±
j is (2.127) plus integers. We

find in particular that the classical contribution reproduces the powers of xj expected from

the Toda CFT up to shifts by βj +
∑j−1

i=1 γij ,

Zcl =
n∏

j=1

|zj |
2Tr iσj =

n∏

j=1

|zj |
2
[
−

∑Nf
s=1(n

j
sims)−Nj

∑n
i=j+1(im(i−1)i)−

∑Nf
s=1

∑n
j
s−1

ν=0 νb2
]

=
n∏

j=1

|xj |
2
[
βj+

∑j−1
i=1 (γij)+∆(α0−bh

[nj ]
)−∆(α0−bh

[nj−1]
)−∆(−bΩ(Kj ,ǫj))

]
,

(2.130)

provided that α0 is as given in (2.119), and βj +
∑j−1

i=1 γij as in (2.124) and (2.126). By

symmetry, α∞ is as given in (2.119). Similarly, a tedious calculation shows that for each

term the one-loop determinant Z1l matches with the product of Toda CFT three-point

functions, up to precisely the constant A given in (2.122).

Next, let us probe the collision of two neighboring punctures, starting again from the s-

channel 0 < |x1| < · · · < |xn| < 1. The Coulomb branch representation of the S2 partition

function of interest has the form

Z
∏

j U(Nj),Wη

S2 =

n∏

j=1

[
1

Nj !

∑

Bj∈Z
Nj

∫
dNjσj
(2π)Nj

]
n∏

j=1

[
z
Tr iσ+

j

j z̄
Tr iσ−

j

j

]
Z1l,v.m.Z1l,c.m. (2.131)
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where iσ±
j = iσj ± Bj/2, Z1l,v.m. is the one-loop determinant of vector multiplets (a Van-

dermonde factor and a sign), and Z1l,c.m. is the one-loop determinant of chiral multiplets

(a product of Gamma functions). Collecting all factors which depend on σ±
k for a given

k < n yields the integral

Zk =
∑

Bk∈Z
Nk

∫
dNkσk

Nk!(2π)Nk

[
(−1)Nk−1zk

]Tr iσ+
k
[
(−1)Nk−1z̄k

]Tr iσ−
k

Nk∏

i<j

∏

±

(
σ±
ki − σ±

kj

)

·

Nk∏

i=1

[
Nk∏

j=1

Γ(−imkk − iσ+
ki + iσ+

kj)

Γ(1 + imkk + iσ−
ki − iσ−

kj)

·
∏

l∈{k±1}
1≤j≤Nl

[
Γ(−imkl + iσ+

lj − iσ+
ki)

Γ(1 + imkl − iσ−
lj + iσ−

ki)

Γ(−imlk − iσ+
lj + iσ+

ki)

Γ(1 + imlk + iσ−
lj − iσ−

ki)

]]

(2.132)

which resembles the S2 partition function of SQCDA with Nk colors and Nk−1 + Nk+1

flavours, with twisted masses mkl − σlj and mlk + σlj . The shifts of σlj by ±Blj/2 cannot

be incorporated in such twisted masses, as the ratios of Gamma functions involve both

σ+
lj and σ−

lj .

However, we can still apply the same techniques as in section 2.3, and close the iσk
integration contours towards ±∞ depending on whether |zk| ≶ 1. The sum over poles

factorizes as in the case of SQCDA, and the resulting vortex and antivortex partition

functions are those of SQCDA with twisted masses mkl − σ+
lj and mlk + σ+

lj for vortices,

and mkl−σ−
lj and mlk+σ−

lj for antivortices. As we saw in section 2.3, those vortex partition

functions have branch points when ẑk = (−1)Nk−1+Nk+1zk is 1 or ∞. We now prove that the

powers of 1− ẑk which appear in an expansion of Zv near ẑk = 1 coincide with the powers

of xk+1 − xk obtained in the fusion of the punctures at xk and xk+1. This implies that

xk = xk+1ẑk, as announced, and fixes γk(k+1). To proceed further, we need to distinguish

the cases ηk = ±1.

If ηk = −1, then imkk = −1/2, and the adjoint chiral multiplet one-loop determinant

is simply a sign. Thus, the vortex partition functions are those of SQCD. From (2.69), the

exponents of 1− ẑk which occur in an expansion near 1 are 0 and

Nk−1(1 + imk(k−1) + im(k−1)k) +Nk+1(1 + imk(k+1) + im(k+1)k)−Nk

=

{
−Kk(1 + b2)−Kk+1b

2 if ǫk = −ǫk+1 = −1 ,

Kkb
2 +Kk+1(1 + b2) if ǫk = −ǫk+1 = +1 .

(2.133)

The analogous limit in the Toda CFT correlator is xk → xk+1. The channel where the

punctures at xk and xk+1 are fused allows two internal momenta. Indeed, ǫk = −ǫk+1,

hence one of the punctures is labeled by a symmetric representation and the other one by

an antisymmetric representation. The fusion of two such representations is the direct sum

of two irreducible representations:

R(Kh1)⊗R(ωL) = R(Kh1 + ωL)⊕R((K − 1)h1 + ωL+1) (2.134)
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assuming K,L ≥ 1. The corresponding exponents of xk+1 − xk are

∆(−Kbh1 − bωL)−∆(−Kbh1)−∆(−bωL) = −Kb2 +
KL

Nf
b2 , (2.135)

∆(−(K − 1)bh1 − bωL+1)−∆(−Kbh1)−∆(−bωL) = L(1 + b2) +
KL

Nf
b2 , (2.136)

and match with the gauge theory exponents up to precisely γk(k+1) given in (2.126). Indeed,

if ǫk = −ǫk+1 = −1, then K and L above are Kk+1 and Kk, the first Toda CFT exponent

corresponds to the gauge theory exponent (2.133), and the second to 0. If ǫk = −ǫk+1 = 1,

then K = Kk and L = Kk+1, the first Toda CFT exponent corresponds to 0 and the second

to (2.133).

If instead ηk = +1, then the adjoint chiral multiplet remains, and the vortex partition

functions involve more powers of 1− ẑk, given in (2.100). Namely,

(
1− ẑk

)−ν+νNk−1(1+imk(k−1)+im(k−1)k)+νNk+1(1+imk(k+1)+im(k+1)k)+ν[2Nk−ν−1]imkk

=
(
1− ẑk

)−ν(1+imkk)+ν[Kk−Kk+1−ν]imkk

(2.137)

for 0 ≤ ν ≤ Nk. The remaining σj integrals (j 6= k) do not affect these exponents. From

the derivation of (2.100), we know that the contribution for a given ν comes from the

region where ν components σk,a of σk are large. The corresponding Gamma functions in

the Coulomb branch integral are expanded as powers of iσ±
k,a. Afterwards, one can close

contours of all σj for j < k as we have done to find the s-channel expansion. The Gamma

functions which were expanded in powers of iσ±
k,a do not contribute poles, hence the sum

over poles is non-empty only ifNk−ν ≥ Nk−1 ≥ · · · ≥ N1. As a result, ν ≤ Nk−Nk−1 = Kk.

Changing variables to µ = Kk − ν, we deduce

Z = |1− ẑk|
2[−Kk(1+imkk)]

Kk∑

µ=0

|1− ẑk|
2[µ(1+imkk)−(Kk−µ)(Kk+1−µ)imkk]

(
series

)
(2.138)

where (series) denote series in non-negative integer powers of 1 − ẑk and 1− ẑk. In sec-

tion 3.3, we relate the S2 partition function of the quiver gauge theory we are studying

to another such partition function, with in particular Kk ↔ Kk+1. This restricts the sum

over µ to 0 ≤ µ ≤ min(Kk,Kk+1). On the Toda CFT side, the limit is xk → xk+1, and we

are interested in the fusion of two degenerate punctures, labeled by two symmetric or two

antisymmetric representations since ǫk = ǫk+1. Given that

R(ωK)⊗R(ωL) =

min(K,L)⊕

µ=0

R
(
ωK+L−µ + ωµ

)
,

R(Kh1)⊗R(Lh1) =

min(K,L)⊕

µ=0

R
(
(K + L− µ)h1 + µh2

)
,

(2.139)
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the Toda CFT exponents of xk+1 − xk are

∆
(
−bωK+L−µ − bωµ

)
−∆(−bωK)−∆(−bωL)

=
KL

Nf
b2 − µb2 + (K − µ)(L− µ)(b2 + 1) if ǫk = ǫk+1 = −1 ,

(2.140)

∆
(
−(K + L− µ)bh1 − µbh2

)
−∆(−Kbh1)−∆(−Lbh1)

=
KL

Nf
b2 + µ(b2 + 1)− (K − µ)(L− µ)b2 if ǫk = ǫk+1 = +1 ,

(2.141)

where K and L are Kk and Kk+1. Again, the Toda CFT exponents match with the gauge

theory exponents up to precisely γk(k+1) given in (2.126).

Note that matching the number of distinct powers of 1− ẑk in gauge theory with the

number of internal momenta in the fusion of punctures at xk−1 and xk is enough to fix

the relation between the signs {ηj} and {ǫj}. When the adjoint Xj can be integrated out

(ηj = −1), the gauge theory involves two exponents only, and correspondingly the two

neighboring punctures are labeled by different types of representations (one is symmetric

and the other antisymmetric), whose fusion has two terms. When the adjoint Xj remains

(ηj = +1), the gauge theory involves many exponents, and the two punctures have the

same type, hence a fusion with many terms.

The situation is very similar in the limit xn = ẑn → 1. The gauge theory involves

two exponents if ηn = −1, and Nn −Nn−1 if ηn = +1. On the Toda CFT side, the fusion

of the semidegenerate momentum m̂ with the degenerate −bΩ(Kn, ǫn) gives two momenta

if ǫn = −1, and Kn if ǫn = +1. Hence ǫn = ηn and Kn = Nn − Nn−1. Calculating the

exponents and comparing them fixes m̂ to (2.119) and γn to (2.125).

All other exponents γij and γj are fixed thanks to the identification of permutations

of degenerate punctures with gauge theory dualities found in section 3.3.1.

2.4.2 Arbitrary Toda degenerates

We now consider the matching (2.114) in the case where Kj+1 ≥ Kj for 1 ≤ j ≤ n − 1,

and ǫj = −1 for all 1 ≤ j ≤ n, that is, ηn = −1 and ηj = +1 for all 1 ≤ j ≤ n − 1. In

the course of fixing parameters for the matching, we have found that the expansion near

xk = xk+1 involves the min(Kk,Kk+1) = Kk powers (2.138) of xk+1 − xk = xk+1(1 − ẑk),

for 1 ≤ k ≤ n − 1. Given our assumptions, these exponents all have a non-negative real

part (the vortex partition functions contribute integer exponents ν ≥ 0):

Re
(
(Kk − µ)b2 + (Kk − µ)(Kk+1 − µ)(1 + b2) + ν

)
≥ 0 . (2.142)

The real part vanishes if and only if µ = Kk and ν = 0. As ẑk → 1, only the term with

µ = Kk and ν = 0 remains. On the Toda CFT side, this limit selects the fusion

R(ωKk+1
)⊗R(ωKk

) −→ R(ωKk+1
+ ωKk

) . (2.143)

We can carry this process further and take the fusion of arbitrarily many antisymmetric

degenerate operators. For definiteness, let us send xk → xn for k going from n− 1 to 1, in
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this order. At a given step xk → xn, the Littlewood-Richardson rule gives

R(Ω)⊗R(ωKk
) =

⊕′

h∈R(ωKk
)

R
(
Ω+ h

)
(2.144)

with a sum running over weights h of R(ωKk
) such that Ω + h is a dominant weight. In

our setting, Ω = ωKn + · · ·+ ωKk+1
. The power of xn − xk for a weight h is

∆(−bΩ− bh)−∆(−bΩ)−∆(−bωKk
)+

n∑

l=k+1

γkl = b〈Q,ωKk
−h〉+ b2〈Ω, ωKk

−h〉 , (2.145)

which has a positive real part unless h = ωKk
, in which case it vanishes. Thus, setting

xk = xn selects precisely the fusion of −bΩ and −bωKk
into −bΩ− bωKk

.

Any dominant weight Ω is a sum of fundamental weights, hence the four-point function

of two generic and one semi-degenerate vertex operators with an arbitrary degenerate

vertex operator V̂−bΩ is equal to the partition function of an S2 surface operator built from

a certain quiver on S4
b , with some fine-tuned FI parameters and theta angles. Namely,

decomposing Ω = ωKn + · · ·+ ωK1 with Kn ≥ · · · ≥ K1, we find

Z
∏

k U(Nk),Wη

S2⊂S4
b

(
m, z, z̄

)
= Aa(x)a(x̄)

〈
V̂α∞(∞)V̂m̂(1)V̂−bΩ(x, x̄)V̂α0(0)

〉
, (2.146)

where32 Nk =
∑k

j=1Kj for 1 ≤ k ≤ n,

ηn = −1 and ẑn = x ,

ηk = +1 and ẑk = 1 for 1 ≤ k ≤ n− 1 ,
(2.147)

and the momenta α0, α∞, and m̂ are given by (2.119). The factor

a(x)a(x̄) = |x|2β |1− x|2γ (2.148)

differs from (2.123) and has the exponents

β = 〈Q,−bΩ〉 −
Nn

Nf

Nf∑

t=1

imt −
n−1∑

j=1

Njb
2 , (2.149)

γ = −b2
Nn(Nf −Nn)

Nf
+

Nn

Nf

∑

t

(imt + im̃t) . (2.150)

Finally, the overall constant A is identical to the constant in (2.114), given by (2.122),

because the three-point functions Ĉ
−b(Ω+ωK)
−bωK ,−bΩ are in fact all equal to 1. Incidentally, in the

case Ω = Nh1, the factor Aa(x)a(x̄) coincides with the factor we found in the matching

between the same Toda CFT correlator and the SQCDA surface operator. Thus, SQCDA

and the U(N)× · · · ×U(1) theory which appears in this matching have equal S2 partition

functions. The relation between these theories may run deeper.

32As explained below (2.10), the factor Aa(x)a(x̄) can be absorbed into the partition function.
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Since the partition function in (2.146) is known explicitly, the matching gives an explicit

expression for the Toda CFT four-point function of two full, one simple, and a degenerate

operator V̂−bΩ. The Higgs branch expansion of Z provides conformal blocks as explicit

series. From the Coulomb branch representation of Z for m̂ = 0 one can extract integral

expressions for the three-point function of a degenerate operator V̂−bΩ with generic vertex

operators. These expressions typically involve fewer integrals than expressions obtained

form the Coulomb gas formalism, but we have not investigated this direction further.

More generally, any Toda CFT (p+ 3)-point function with two generic and one semi-

degenerate operators at 0, ∞ and 1, and p arbitrary degenerate operators V̂−bΩl
(xl, x̄l)

is equal to the partition function of a surface operator describing a certain quiver gauge

theory. This matching directly derives from the matching (2.114), with only antisymmetric

degenerate operators, and taking all but p of the ẑ equal to 1. Concretely, we express each

highest weight as

Ωl =

cl∑

j=1

ωKl,j
, (2.151)

where cl is the number of columns in the Young diagram of Ωl and Kl,cl ≥ · · · ≥ Kl,2 ≥

Kl,1 ≥ 0 are the number of boxes in each column. We then define an order on the pairs{
(l, j)

∣∣ 1 ≤ l ≤ p, 1 ≤ j ≤ cl
}
by (k, i) ≤ (l, j) if k < l or if k = l and i ≤ j. The gauge

group is then
p∏

l=1

cl∏

j=1

U(Nl,j) where Nl,j =
∑

(k,i)≤(l,j)

Kk,i . (2.152)

The matter content of the theory consists as usual of pairs of bifundamental chiral multi-

plets between neighboring nodes, namely (k, i) ↔ (k, i+ 1) and (k, ck) ↔ (k + 1, 1), of an

adjoint chiral multiplet for every node except U(Np,cp), and of Nf fundamental and Nf an-

tifundamental chiral multiplets for this last node U(Np,cp). Complexified FI parameters

associated to each node U(Nl,j) are given by

ẑl,j =

{
1 if 1 ≤ j < cl ,

xl/xl+1 if j = cl ,
(2.153)

where xp+1 = 1. Detailed factors can be read from the matching (2.114) using this gauge

theory data.

All in all, we have identified the N = (2, 2) surface operator corresponding to the inser-

tion of an arbitrary set of degenerate vertex operators in a Toda CFT three-point function.

It would be interesting to calculate the expectation values of such surface operators in an

interacting four dimensional theory of class S.

3 Gauge theory dualities as Toda symmetries

In this section, we probe low-energy dualities between two dimensional N = (2, 2) gauge

theories through the correspondence of surface operators with Toda CFT degenerate op-

erators. In section 3.1, we show that some pairs of N = (2, 2) SQCD theories have equal
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partition functions on S2, as predicted by the Seiberg duality. The equality is realized as

the symmetry of Toda CFT correlators under conjugation of momenta. In section 3.2, we

consider N = (2, 2) SQCDA theories with superpotentials. We focus first on a general-

ization of N = (2, 2)∗ SQCD, and find the analogue of Seiberg duality for such theories,

which amounts to crossing symmetry of a Toda CFT correlator. We then obtain the

Kutasov-Schwimmer duality between N = (2, 2) SQCDA theories with a W = TrX l+1

superpotential as conjugation of momenta. In section 3.3 finally, we describe the groupoid

of Seiberg dualities for some quiver gauge theories: some dualities correspond to permu-

tations of degenerate punctures on the Toda CFT side, and in one case to momentum

conjugation.

We check all dualities by proving that the S2 partition functions of dual theories are

equal up to simple ambiguous factors: besides the Toda CFT approach, we provide direct

proofs in appendix B. In all cases, the factors can be absorbed in either one of the dual par-

tition functions through the ambiguities described below (2.10), namely a renormalization

scheme ambiguity, a global gauge transformation, and a flavour FI parameter.

3.1 Seiberg duality as momentum conjugation

Seiberg duality relates theories with different gauge groups but the same flavour symmetry.

In our two dimensional N = (2, 2) context, it is expected that U(N) SQCD with Nf fun-

damental and Ñf ≤ Nf antifundamental chiral multiplets is dual to U(Nf −N) SQCD with

the same number of chiral multiplets and Nf Ñf additional free mesons, for an appropri-

ate choice of twisted masses. In the case Ñf ≤ Nf − 2, the series giving vortex partition

functions were proven term by term to be equal in [17], and the relation for S2 partition

functions was deduced. For Ñf = Nf − 1 or Ñf = Nf , vortex partition functions differ by a

non-trivial factor, found numerically in [55, appendix F]. Our direct proof in appendix B.1

(similar to that of [48] found independently) is technical and by itself provides no insight

on the factor. In contrast, the factor appears naturally in the proof we give here via the

Toda CFT.

We denote by ms and m̃s the twisted masses (with R-charges) in the electric theory,

and by mD
s and m̃D

s those in the dual magnetic theory. We shall prove that

Z
U(N),Nf ,Ñf

S2 (z, z̄,m, m̃) = a(z, z̄)

Nf∏

s=1

Ñf∏

t=1

[
γ(−ims − im̃t)

]
Z

U(ND),Nf ,Ñf

S2 (zD, z̄D,mD, m̃D)

(3.1)

where z and zD are renormalized values at the scale ℓ of the sphere, and dual parameters

are ND = Nf − N , zD = (−1)Ñf z, z̄D = (−1)Ñf z̄, mD
s = i

2 − ms, and m̃D
s = i

2 − m̃s.

The factor

a(z, z̄) =





|z|2δ0 if Ñf ≤ Nf − 2 ,

|z|2δ0e(−1)
Nf+N−1

(z−z̄) if Ñf = Nf − 1 ,

|z|2δ0
∣∣1− (−1)Nf+N−1z

∣∣2δ1 if Ñf = Nf

(3.2)
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is given in terms of the exponents

δ0 = γ0 − γD0 = −
Nf −N

2
−

Nf∑

s=1

ims , (3.3)

δ1 = γ1 − γD1 = Nf −N +

Nf∑

s=1

(ims + im̃s) , (3.4)

which we will obtain from the exponents γi in the matching (2.51), and their duals γDi . The

factor a(z, z̄) could be absorbed into Z in three parts as discussed below (2.10). First, a

renormalization scheme ambiguity absorbs any factor independent of twisted masses. Next,

a global gauge transformation shifts the partition function by any power of |z|2. A last

factor (present only for Ñf = Nf ) can be absorbed by turning on an FI parameter for the

U(1) flavour group under which fundamental and antifundamental chiral multiplets have

the same charge.

The product of gamma functions in (3.1) is the (one-loop determinant) contribution

from Nf Ñf free mesons with twisted masses ms+m̃t = i−mD
s −m̃D

t . These twisted masses

are equal to those of the mesons q̃tqs, where qs and q̃t are fundamental and antifunda-

mental quarks of the electric theory. In the magnetic theory, the twisted masses derive

from the superpotential coupling W = q̃DMqD, which has total R-charge 2, hence total

(complexified) twisted mass m̃D
t + (i−mD

s − m̃D
t ) +mD

s = i.

Applied twice, the duality (3.1) yields the original theory, since parameters are mapped

back to those of the electric theory. An immediate consistency check is thus

γ(−ims − im̃t)γ(−imD
s − im̃D

t ) =
Γ(−ims − im̃t)

Γ(1 + ims + im̃t)

Γ(1 + ims + im̃t)

Γ(−ims − im̃t)
= 1 (3.5)

and that the a(z, z̄) factors cancel thanks to

δD0 = −
Nf −ND

2
−

Nf∑

s=1

imD
s = −

N

2
+

Nf∑

s=1

ims +
Nf

2
= −δ0 , (3.6)

δD1 = Nf −ND +

Nf∑

s=1

(imD
s + im̃D

s ) = N −

Nf∑

s=1

(ims + im̃s)−Nf = −δ1 , (3.7)

and, for Ñf = Nf−1, (−1)Nf+ND−1(zD− z̄D) = −(−1)Nf+N−1(z− z̄). A second consistency

check, in the case Ñf = Nf , is the symmetry under charge conjugation z ↔ 1/z, z̄ ↔ 1/z̄,

and ims ↔ im̃s. We find that δ1 is left unchanged, and that δ0 is mapped to −δ0 − δ1,

consistent with a(1/z, 1/z̄) = |z|−2δ0−2δ1 |1− (−1)Nf+N−1z|2δ1 .

3.1.1 Momentum conjugation for Ñf = Nf

To derive the Seiberg duality relation (3.1) for Ñf = Nf , we rely on the matching (2.51)

relating the S2 partition function of U(N) SQCD to a Toda CFT four-point function:

Z
U(N),Ñf=Nf

S2⊂S4
b

(m, m̃, z, z̄) = A|x|2γ0 |1− x|2γ1
〈
V̂α∞(∞)V̂m̂(1)V̂−bωN

(x, x̄)V̂α0(0)
〉
. (3.8)
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The four-point function features two generic operators V̂α, one semi-degenerate operator

V̂m̂, and the degenerate operator V̂−bωN
inserted at x = (−1)Nf+N−1z and labeled by

the highest weight ωN of the N -th antisymmetric representation of ANf−1. The relation

between gauge theory twisted masses m and m̃, and Toda CFT momenta α0, α∞, and m̂

is given in section 2.2.

Toda CFT correlators are invariant under changing all momenta to their conjugate,

that is, applying the C-linear transformation hs → hCs = −hNf+1−s which maps weights of

a representation of ANf−1 to weights of the conjugate representation. This transformation

maps the degenerate momentum −bωN to33

(−bωN )C = −
N∑

s=1

bhCs =

Nf∑

s=Nf−N+1

bhs = −

Nf−N∑

s=1

bhs = −bωNf−N , (3.9)

which is precisely the degenerate momentum appearing in the description of the Seiberg

dual SQCD theory. The semi-degenerate momentum m̂ = (κ + Nb)h1 becomes m̂C =

−(κ +Nb)hNf
, which is not along h1. However, the Weyl reflection defined by the cyclic

permutation of J1, Nf K maps m̂C to

[
Nf

(
b+

1

b

)
− κ −Nb

]
h1 = (κD +NDb)h1 = m̂D , (3.10)

where κ
D = Nf/b−κ. Indeed, 〈m̂C −Q, hs〉 = 〈m̂D −Q, hs+1〉 for all 1 ≤ s ≤ Nf − 1, and

〈m̂C − Q, hNf
〉 = 〈m̂D − Q, h1〉. Finally, the generic momenta α0 and α∞ remain generic

after conjugation, and we have

〈αC −Q, hp〉 = 〈α−QC , hCp 〉 = −〈α−Q, hNf+1−p〉 , (3.11)

where we used that 〈α1, α2〉 = 〈αC
1 , α

C
2 〉 and that Q = QC . A Weyl reflection then permutes

〈α−Q, hNf+1−p〉 → 〈α−Q, hp〉, hence conjugation followed by this reflection simply changes

α → 2Q− α.

We thus find that conjugation of all momenta (with subsequent Weyl reflections) relates

two correlators which correspond to SQCD with U(N) and U(Nf − N) gauge groups.

Converting the relation between momenta to gauge theory variables, we find mD
s = i

2 −ms

and m̃D
s = i

2 − m̃s, as we claimed below (3.1).34

In our normalization, both generic and non-degenerate operators are Weyl reflection

invariant, without reflection amplitudes. The two Toda CFT correlators are thus equal,

and we divide the factor relating the S2 partition functions and Toda CFT correlator for

one theory by the factor for the other theory to find (for Ñf = Nf )

Z
U(N)
S2 (z, z̄,m, m̃) =

Z free,D
S4
b

A |x|2γ0 |1− x|2γ1

Z free
S4
b
AD |x|2γ

D
0 |1− x|2γ

D
1

Z
U(ND)
S2 (zD, z̄D,mD, m̃D) . (3.12)

33The third step uses that the weights hs of the fundamental representation of ANf−1 sum to zero.
34A global U(1) gauge transformation is identical to the flavour symmetry which shifts ims and −im̃s by

the same amount. This has no physical effect: the Toda correlator is invariant, and the partition function is

multiplied by a power of |z|2. Dual twisted masses are only defined up to such a shift, which also alters δ0.
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We recognize the factor a(z, z̄) = |z|2γ0−2γD
0 |1− (−1)Nf+N−1z|2γ1−2γD

1 announced in (3.2).

The ratio A/AD simplifies:

A

AD
=

bNNf (1+b2)−N2b2−2N
∑Nf

s=1(1+ims+im̃s)

bN
DNf (1+b2)−(ND)2b2−2ND

∑Nf
s=1(1+imD

s +im̃D
s )

= b−Nf
∑Nf

s=1(1+2ims+2im̃s) . (3.13)

The hypermultiplets masses (2.17) involved in the S4
b partition functions (2.4) associated

to the electric and magnetic theories are

mst = i
1− b2

2b
−

1

b
(ms + m̃t) , (3.14)

mD
st = i

1− b2

2b
−

1

b
(i−ms − m̃t) = −ib−mst , (3.15)

thus the constant factor is

Z free,D
S4
b

A

Z free
S4
b
AD

=
A

AD

∏

s,t

Υ( b2 + 1
2b − imst)

Υ( b2 + 1
2b − imD

st)
=

A

AD

∏

s,t

Υ( b2 + 1
2b + imst)

Υ( b2 + 1
2b + imst − b)

(3.16)

= b−Nf
∑Nf

s=1(1+2ims+2im̃s)
∏

s,t

[
bb

2−2bimstγ

(
1− b2

2
+ bimst

)]

=
∏

s,t

γ(−ims − im̃t) . (3.17)

The one-loop determinants of free mesons appear here thanks to the shift by b in imD
st =

b− imst, which relies on the shift between mst and
−1
b (ms + m̃t) in (2.17). We obtain this

constant factor more directly for any Ñf ≤ Nf in the next section.

3.1.2 Decoupling multiplets towards Ñf < Nf

We could find analogous Seiberg duality relations for Ñf < Nf via the matching of sec-

tion 2.2.3 with Toda irregular punctures, but those cases are also easily accessed by taking

some twisted masses of antifundamental multiplets to be very large in the Ñf = Nf dual-

ity. The reverse process, which decreases Nf > Ñf by giving some fundamental multiplets

large twisted masses, is more difficult, and must be significantly altered to reach the case

Nf = Ñf in appendix B.1.

Our starting point to prove (3.1) is the Higgs branch decomposition of the S2 partition

function of interest [17, 18]:

ZU(N),Nf ,Ñf =

Nf∑

p1<···<pN

(zz̄)−
∑N

j=1 impj Z
Nf ,Ñf

1l,{p} f
(s),Nf ,Ñf

{p}

(
(−1)Nf+N−1z

)
f
(s),Nf ,Ñf

{p}

(
(−1)Ñf+N−1z̄

)
,

Z
Nf ,Ñf

1l,{p} =
N∏

j=1

∏Nf

s 6∈{p} γ(−ims + impj )

∏Ñf

s=1 γ(1 + im̃s + impj )
, f

(s),Nf ,Ñf

{p} (x) =
∞∑

k=0

xk

k!
f
(s),Nf ,Ñf

{p},k , (3.18)

f
(s),Nf ,Ñf

{p},k = k!
∑

k1+···+kN=k

N∏

j=1

[ ∏Ñf

s=1(−im̃s − impj )kj

kj !
∏N

i 6=j(impi − impj − ki)kj
∏Nf

s 6∈{p}(1 + ims − impj )kj

]
,
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which generalizes (2.58) to Ñf < Nf . The series f
(s),Nf ,Ñf

{p} (x) converge on the unit disc if

Ñf = Nf , and on the whole complex plane if Ñf < Nf . We shall equate the term of (3.18)

labeled by {p} ⊆ J1, Nf K with the term labeled by the complement {p}∁ for the dual theory.

The powers of |z|2 match:

−
N∑

j=1

impj = −

Nf∑

s=1

ims +
∑

s∈{p}∁

ims = −

Nf∑

s=1

ims −
Nf −N

2
−

∑

s∈{p}∁

imD
s = δ0 −

∑

s∈{p}∁

imD
s .

(3.19)

The constant is fixed as the ratio of one-loop determinants Z1l

Z
Nf ,Ñf

1l,{p}

Z
Nf ,Ñf ,D

1l,{p}∁

=

Ñf∏

s=1

∏
t∈{p}∁ γ(1 + im̃D

s + imD
t )∏

t∈{p} γ(1 + im̃s + imt)
=

Ñf∏

s=1

Nf∏

t=1

γ(−im̃s − imt) , (3.20)

which is independent of {p}. There remains to match vortex partition functions:

f
(s),Nf ,Ñf

{p} (x) = a(x)f
(s),Nf ,Ñf ,D

{p}∁
(xD) , (3.21)

where

a(x) =





(1− x)δ1 if Ñf = Nf ,

ex if Ñf = Nf − 1 ,

1 if Ñf ≤ Nf − 2 ,

(3.22)

and xD = (−1)Nf+ND−1zD = (−1)Ñf+N−1z = (−1)Nf−Ñfx. From the case Ñf = Nf studied

in the previous section, we now derive the relations for Ñf < Nf by taking a limit where

Nf − Ñf antifundamental chiral multiplets are given large twisted masses. We give a proof

independent of the Toda CFT matching in appendix B.1.

Let us expand f
(s),Nf ,Ñf

{p},k , for some Ñf ≤ Nf , in the limit m̃
Ñf

= Λ → +∞. This relies

on the asymptotic behavior (ρ+ a)k ∼ ρk of Pochhammer symbols when |ρ| → ∞:

f
(s),Nf ,Ñf

{p},k ∼ (−iΛ)kf
(s),Nf ,Ñf−1

{p},k . (3.23)

Summing over k ≥ 0,

f
(s),Nf ,Ñf

{p}

(
x

−iΛ

)
→ f

(s),Nf ,Ñf−1

{p} (x) , (3.24)

as Λ → ∞, and for a fixed x. We then apply this limit to (3.21) for Ñf = Nf after changing

x → x/(−iΛ). Since δ1 ∼ iΛ, we get a(Ñf = Nf , ix/Λ) = eδ1 ln(1−ix/Λ) ∼ ex, which is the

exponential factor for Ñf = Nf − 1. In the limit where further twisted masses become

very large while keeping the appropriate combination −iΛx fixed, the exponential factor

becomes ex/(−iΛ) → 1, yielding a(x) = 1 for Ñf ≤ Nf − 2. The relative sign between x

and xD is due to the sign difference im̃D ∼ −im̃ for each of the Nf − Ñf antifundamental

multiplets which we decouple.

This concludes the proof of the Seiberg duality relation (3.1) for all Ñf ≤ Nf as limits

of the case Ñf = Nf , itself derived from the correspondence with the Toda CFT.
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3.2 SQCDA dualities: crossing symmetry and conjugation

In this section, we find two new Seiberg-like dualities between pairs of N = (2, 2) theo-

ries with adjoint matter and a superpotential. The first is realized in the Toda CFT as

crossing symmetry, and contains as a special case a duality between N = (2, 2)∗ theories,

proposed in [59] for particular twisted masses, and recently in [48]. The second is realized

as conjugation symmetry, and is a direct two dimensional analogue of the four dimensional

Kutasov-Schwimmer duality [52, 53]. We test both dualities by comparing S2 partition

functions using the matching with Toda CFT correlators. We also provide direct proofs

that the S2 partition functions of dual theories are equal, without relying on the Toda CFT.

Namely, classical and one-loop contributions are compared in the main text, and vortex

partition functions in appendix B.2. It would be interesting to work out the mapping of

chiral rings of dual theories.

Each duality relates theories with U(N) and U(ND) vector multiplets coupled to one

adjoint, Nf fundamental, and Ñf antifundamental chiral multiplets. We assume by sym-

metry that Ñf ≤ Nf . As for the Seiberg duality, the magnetic theory includes additional

free matter. In the electric theory, chiral multiplets are denoted by X, qt, and q̃t, and

their (complexified) twisted masses by mX , mt, and m̃t respectively. The FI parameters

and theta angles (renormalized, at the scale ℓ of the sphere) are combined as usual into a

complex parameter z. We use the notations XD, qDt , q̃Dt , mD
X , mD

t , m̃
D
t , and zD for the

magnetic theory.

Recall that when Ñf = Nf we have the matching

Z
U(N) SQCDA

S2⊂S4
b

(m, m̃,mX , z, z̄) = A|y|2γ0 |1− y|2γ1
〈
V̂α∞(∞)V̂m̂(1)V̂−Nbh1(y, ȳ)V̂α0(0)

〉

(3.25)

for y = (−1)Nf z, b2 = imX , with other parameters given below (2.88). The four-point

function can exhibit two types of symmetries. If the semi-degenerate momentum m̂ =

(κ+Nb)h1 is in fact degenerate (m̂ = −NDbh1), then crossing symmetry exchanges the two

degenerate operators via N ↔ ND and y → y−1. This yields the duality in section 3.2.1.

On the other hand, it turns out that for fined-tuned values imX = b2 = −1
l+1 the degenerate

operator V̂−Nbh1 is conjugate to another degenerate operator, V̂−NDbh1
. This leads to the

Kutasov-Schwimmer duality in section 3.2.2, which we then extend to Ñf < Nf as we did

for the Seiberg duality.

3.2.1 (2, 2)∗-like duality as a braiding move

Let us describe the first duality more precisely. With notations as above, the electric and

magnetic theories are N = (2, 2) SQCDA theories with N and ND colors and the same

matter content and superpotential

W =

Nf∑

t=1

q̃tX
ltqt hence 1 + imt + im̃t + ltimX = 0 , (3.26)

where lt ≥ 0 are integers, and Ñf = Nf . We will find that ND = L−N with L =
∑Nf

t=1 lt,

twisted masses are the same in the two theories, zD = z−1, and z̄D = z̄−1.
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In particular, when all lt = 1 the theories are N = (2, 2)∗ SQCD with gauge groups

U(N) and U(Nf −N), and the duality is an N = (2, 2)∗ analogue of the N = (2, 2) Seiberg

duality found earlier. In the special case mX = i/2, the two dualities agree after charge

conjugation, which exchanges mD
s ↔ m̃D

s and maps zD → (zD)−1. The agreement is

expected since the superpotential term W = TrX2 is then supersymmetric and X can be

integrated out, shifting the theta angle by (N − 1)π in the process: this leads to a sign

difference in the maps z → zD of the two dualities.

We test the duality by proving that S2 partition functions match:

Z
U(N)
S2 (z, z̄) = |z|2δ0

∣∣1− (−1)Nf z
∣∣2δ1ZU(ND)

S2 (zD, z̄D) for W =

Nf∑

t=1

q̃tX
ltqt (3.27)

with dual parameters given above, and the exponents

δ0 = −(L−N)(1 + imX)−

Nf∑

t=1

lt−1∑

ν=0

(imt + νimX) , (3.28)

δ1 = (L− 2N)(1 + imX) . (3.29)

As discussed below (3.2) for the Seiberg duality, the powers of |z|2 and |1− (−1)Nf z|2 can

be absorbed as ambiguities of the S2 partition function.35 The same consistency checks as

for the Seiberg duality apply. Repeating the duality yields the original parameters, and the

factors cancel thanks to δD0 = δ0 + δ1 and δD1 = −δ1. The relation is also invariant under

charge conjugation, which exchanges twisted masses of fundamental and antifundamental

chiral multiplets, since δ1 is unchanged and δ0 → −δ0−δ1. We first derive dual parameters

from the matching of SQCDA partition functions to Toda CFT correlators. For complete-

ness, we then prove the relation by comparing classical, one-loop and vortex contributions

of the two theories.

Recall the matching (2.88) between the partition function of a sphere surface opera-

tor describing U(N) SQCDA and a Toda CFT correlator with the symmetric degenerate

operator V̂−Nbh1 , a semi-degenerate operator V̂m̂, and two generic operators. We find in

section 2.3.3 that the superpotential W =
∑

t q̃tX
ltqt constrains twisted masses in such a

way that m̂ = −(L −N)bh1 = −NDbh1. The S2 partition function of the electric theory

we are studying is thus

Z
U(N)
S2 (z, z̄) = Ã|y|2γ0 |1− y|2γ1

〈
V̂α∞(∞)V̂−NDbh1

(1)V̂−Nbh1(y, ȳ)V̂α0(0)
〉

(3.30)

where y = (−1)Nf z, b2 = imX , momenta and exponents are given below (2.88), and we

have absorbed in Ã the contributions from the S4
b hypermultiplets and from the differing

normalization of semidegenerate and degenerate operators. The Toda CFT correlator is

invariant under N → ND, y → yD = y−1, and the conformal map (∞, 1, y−1, 0) →

35For N = (2, 2)∗ theories, the power of 1 − (−1)Nf z relating dual vortex partition functions was found

numerically by Honda and Okuda [55].
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(∞, y, 1, 0). This implies that

Z
U(N)
S2 (z, z̄) =

Ã|y|2γ0 |1− y|2γ1

ÃD|yD|2γ
D
0 |1− yD|2γ

D
1

|y|∆(α∞)−∆(−NDbh1)−∆(−Nbh1)−∆(α0)Z
U(ND)
S2 (zD, z̄D) .

(3.31)

We deduce the exponents (3.28) and (3.29) by computing δ1 = γ1 − γD1 and

δ0 = γ0 +∆(α∞)−∆(−NDbh1)−∆(−Nbh1)−∆(α0) + γD0 + γD1 . (3.32)

We also obtain zD = (−1)Nf yD = (−1)Nf y−1 = z−1 and ND = L−N as announced.

There remains to fix the overall constant factor, since Ã/ÃD is difficult to evaluate

(Ã and ÃD are singular for our choice of twisted masses). This is done by comparing the

s-channel decomposition (as z → 0) of the electric theory with the u-channel decomposition

(as zD → ∞) of the magnetic theory. Recall from section 2.3.3 that the s-channel Higgs

branch vacua of the electric theory are labeled by ordered partitions
∑Nf

t=1 nt = N with

0 ≤ nt ≤ lt. The classical and one-loop contributions (2.96) are

Z
(s)
cl,{nt}

(z, z̄) = (zz̄)
∑Nf

s=1

∑ns−1
µ=0 (−ims−µimX) , (3.33)

Z
(s)
1l,{nt}

=

Nf∏

s=1

ns−1∏

µ=0

Nf∏

t=1

γ(ims − imt + (µ− nt)imX)

γ(ims − imt + (µ− lt)imX)
. (3.34)

Similarly, u-channel Higgs branch vacua of the magnetic theory are labeled by partitions∑Nf

t=1 n
D
t = ND with 0 ≤ nD

t ≤ lt, and are in a natural bijection with those of the electric

theory through nD
t = lt − nt. The classical contributions match up to |z|2δ0 :

Nf∑

s=1

ns−1∑

µ=0

(−ims − µimX) = δ0 −

Nf∑

s=1

ls−ns−1∑

µ=0

(im̃s + µimX) . (3.35)

The one-loop contributions are equal, with no relative constant factor, since

Z
(s)
1l,{nt}

=

Nf∏

s=1

ns−1∏

µ=0

Nf∏

t=1

lt−nt−1∏

ν=0

γ(1 + ims + im̃t + (µ+ ν + 1)imX)

γ(1 + ims + im̃t + (µ+ ν)imX)
(3.36)

is invariant under m ↔ m̃ and n → l − n. We prove in appendix B.2 that the vortex

partition functions match up to (1− y)δ1 . This establishes the duality relation (3.27).

From the duality we can extract information about powers of |1 − y|2 which appear

in the expansion of Z near y = 1. In the electric theory, the powers are given by (2.100),

valid for all SQCDA theories: replacing k by N − k there,

Z
U(N)
S2 (z, z̄) = |1− y|−2N(1+imX)

N∑

k=0

[
|1− y|2[k(1+imX)−(N−k)(ND−k)imX ](series)

]
(3.37)

for some series in non-negative powers of (1− y) and (1− ȳ). The magnetic theory has a

similar expansion with N ↔ ND. Since the two must match, we deduce that the expan-

sion (3.37) holds, with a sum restricted to 0 ≤ k ≤ min(N,ND). This list of exponents

is useful to identify the correct relation between quiver gauge theories and correlators in

section 2.4.
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3.2.2 Kutasov-Schwimmer duality as momentum conjugation

The Kutasov-Schwimmer duality [52, 53], initially proposed between four dimensional theo-

ries, is similar to the Seiberg duality, with an additional adjoint matter multiplet X subject

to the superpotential coupling W = TrX l+1. Through the matching found in section 2.3.3,

the duality is realized as conjugation of momenta in the Toda CFT when Ñf = Nf . The-

ories with Ñf < Nf are obtained by decoupling chiral multiplets. For l = 1, integrating

out X reproduces the Seiberg duality between SQCD theories.

The electric and magnetic theories are N = (2, 2) SQCDA theories with gauge groups

U(N) and U(ND) and the superpotential coupling

W = TrX l+1 hence imD
X = imX =

−1

l + 1
(3.38)

for some integer l ≥ 1. As we will see, zD = (−1)Nf−Ñf z, z̄D = (−1)Nf−Ñf z̄ (in terms of

renormalized parameters at the scale ℓ of the sphere), ND = lNf − N , mD
t = mX − mt,

m̃D
t = mX −m̃t, m

D
X = mX , and the magnetic theory also features lNf Ñf free mesons MD

jst

with twisted masses mD
jst = ms + m̃t + jmX for 0 ≤ j < l, 1 ≤ s ≤ Nf , 1 ≤ t ≤ Ñf . We

assume that l ≤ N ≤ lNf − l.

We test the duality by comparing S2 partition functions. Namely, we prove that

Z
U(N),Nf ,Ñf

S2 (m; z, z̄) = a(z, z̄)
∏

j,s,t

γ
(
−imD

jst

)
Z

U(ND),Nf ,Ñf

S2 (mD; zD, z̄D) (3.39)

with dual parameters given above. The constant factor in (3.39) is the one-loop determinant

of free mesons MD
jst whose twisted masses mD

jst = ms + m̃t + jmX are fixed by the full

superpotential coupling

W = Tr
[
(XD)l+1

]
+

Nf∑

s=1

Ñf∑

t=1

l−1∑

j=0

MD
jst

[
q̃Dt (XD)l−1−jqDs

]
. (3.40)

Relative coefficients are unimportant, as the superpotential only affects the S2 partition

function by fixing complexified twisted masses. The electric theory features mesons q̃tX
jqs

which have the same twisted masses ms + m̃t + jmX . The factor a(z, z̄) is

a(z, z̄) =





|z|2δ0 if Ñf ≤ Nf − 2 ,

|z|2δ0el(−1)
Nf (z−z̄) if Ñf = Nf − 1 ,

|z|2δ0
∣∣1− (−1)Nf z

∣∣2δ1 if Ñf = Nf ,

(3.41)

δ0 = −
lNf

2
+

lN

l + 1
− l

Nf∑

s=1

ims , δ1 = lNf −
2lN

l + 1
+ l

Nf∑

s=1

(ims + im̃s) . (3.42)

As discussed below (3.2) for the Seiberg duality, this factor can be absorbed as an ambiguity

of the S2 partition function.

The same consistency checks as for the Seiberg duality apply. Repeating the duality

yields the original parameters, and the factors a(z, z̄) and products of gamma functions

cancel. Charge conjugation leaves the relation invariant in the case Ñf = Nf .
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Let us first derive (3.39) for Ñf = Nf from Toda CFT conjugation. Recall (2.111),

which expresses the partition functions of interest as b2 → −1
l+1 limits of Toda CFT

four-point functions. The relevant correlator is 〈V̂α∞(∞)V̂m̂(1)V̂−bωN,l
(x, x̄)V̂α0(0)〉. Here,

ωN,l = lωk + (N − lk)hk+1 with k defined by kl ≤ N < (k + 1)l, and its conjugate weight

is ωC
N,l = ωND,l with ND = lNf −N . As for the Seiberg duality, we follow the conjugation

of m̂ = (κ +Nb)h1 by a Weyl reflection to get a momentum along h1,

m̂D = (κD +NDb)h1 =

[
Nf

(
b+

1

b

)
− κ −Nb

]
h1 . (3.43)

Thus, κD = 1
bNf

(
1 − (l − 1)b2

)
− κ, which is 2

bNf (1 + b2) − κ when b2 = −1
l+1 . Finally,

the generic momenta α0 and α∞ are mapped as α → 2Q−α under a conjugation followed

by the maximal Weyl reflection. Translating to gauge theory parameters thanks to the

dictionary (2.89) yields the values of ND, mD
X , mD

s , and m̃D
s claimed earlier. The position

y = (−1)Nf z of the degenerate operator is not affected by conjugation, hence yD = y and

zD = z. The factor a(z, z̄) given in (3.41) is the ratio of factors |y|2γ0 |1 − y|2γ1 for the

electric and magnetic theories.

Since the constant factor A which appears in the matching (2.111) is not known, we

cannot deduce the presence of free mesons in the magnetic theory through conjugation of

momenta. Instead, we use the Higgs branch decomposition (2.95), which expresses both

partition functions as sums over choices of 0 ≤ ns ≤ l with n1 + · · · + nNf
= N . The

classical contribution for the term labeled by {ns} in the electric theory is |z|2δ0 times the

classical contribution for the term labeled by {nD
s = l − ns} in the magnetic theory. We

then compare the one-loop determinants (2.96) for those vacua,

Z1l,{n}

ZD
1l,{l−n}

=

Nf∏

s=1

Nf∏

t=1

[
ns−1∏

µ=0

γ(−imt + ims +
nt−µ
l+1 )

γ(1 + im̃t + ims −
µ

l+1)

l−ns−1∏

µ=0

γ(1 + im̃D
t + imD

s − µ
l+1)

γ(−imD
t + imD

s +
nD
t −µ
l+1 )

]

=

Nf∏

s=1

Nf∏

t=1

l−1∏

j=0

γ

(
−im̃t − ims +

j

l + 1

)
, (3.44)

and find the one-loop determinants of mesons with twisted masses mD
jst as announced.

Finally, we prove in appendix B.2 that vortex partition functions of dual theories are equal

up to the factor (1− y)δ1 , hence establishing the relation (3.39) for Ñf = Nf .

For completeness, we compare exponents which appear when expanding the S2 parti-

tion functions of the dual theories near y = 1. Those exponents are given by (2.100): for a

general N = (2, 2) SQCDA theory with N colors there are N + 1 exponents labeled by an

integer 0 ≤ k ≤ N . The set of exponents thus does not match for the U(N) and U(ND)

theories we consider here. In fact, it turns out that only the subset labeled by 0 ≤ k ≤ l

matches (assuming that l ≤ N ≤ lNf − l): the coefficients of all other exponents must thus

vanish when imX = −1
l+1 .

We now take the limit im̃t = iΛ → ±i∞ for Nf − Ñf antifundamental flavours Ñf <

t ≤ Nf . The multiplets q̃t decouple, the FI parameter is renormalized, and we will be left

with the Kutasov-Schwimmer duality (3.39) for Ñf < Nf .
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The twisted mass Λ appears in the Coulomb branch expansion (2.93) through the

one-loop determinant of antifundamental chiral multiplets: for fixed σ and B

N∏

j=1

Nf∏

t=Ñf+1

Γ(−im̃t + iσj +
Bj

2 )

Γ(1 + im̃t − iσj +
Bj

2 )
∼

[
γ(−iΛ)N (−iΛ)Tr(iσ+

B
2
)(iΛ)Tr(iσ−

B
2
)

]Nf−Ñf

. (3.45)

The powers of ±iΛ combine with the classical contribution z
Tr(iσ+B/2)
bare z̄

Tr(iσ−B/2)
bare , and we

get the integrand of the Coulomb branch representation for the theory with Ñf < Nf and

z = zren = (−iΛ)Nf−Ñf zbare. A careful treatment shows that the limit Λ → ±∞ and the

integration commute, because the contribution for large values of σ and B falls off fast

enough at infinity. As mentioned for a similar limit of the SQCD theory in section 2.2.3,

it is easier to work out this convergence issue in the Higgs branch decomposition where

terms decrease exponentially in the vorticity k. Either way yields

Z
Nf ,Nf

S2

(
z

(−iΛ)Nf−Ñf

,
z̄

(iΛ)Nf−Ñf

, {ms}, {m̃s,Λ}

)

∼ γ(−iΛ)N(Nf−Ñf )Z
Nf ,Ñf

S2

(
{ms}, {m̃s}, z, z̄

)
.

(3.46)

Given the form of (3.46), the next step is to consider the duality (3.39) with the

replacement Ñf → Nf , z → z/(−iΛ)Nf−Ñf and z̄ → z̄/(iΛ)Nf−Ñf , in the limit where

Λ → ±∞. The factor a(z, z̄) = |z|2δ0 |1− (−1)Nf z|2δ1 with δ1 ∼ iΛl becomes

aNf ,Nf

(
z

(−iΛ)Nf−Ñf

,
z̄

(iΛ)Nf−Ñf

)
∼ Λ−2(Nf−Ñf )δ0a

Nf ,Ñf
(z, z̄)

∼

{
Λ−2(Nf−Ñf )δ0 |z|2δ0 if Ñf ≤ Nf − 2 ,

Λ−2(Nf−Ñf )δ0 |z|2δ0el(−1)
Nf (z−z̄) if Ñf = Nf − 1 .

(3.47)

The gamma functions in (3.39) become those for Ñf < Nf , multiplied by

Nf∏

s=1

l−1∏

j=0

Nf∏

t=Ñf+1

γ

(
−iΛ− ims +

j

l + 1

)
∼

Nf∏

s=1

l−1∏

j=0

[
γ(−iΛ)Λ2(−ims+

j
l+1

)
]Nf−Ñf

∼
[
γ(−iΛ)lNfΛ2(δ0+ND l

l+1
)
]Nf−Ñf

∼
[
Λ2δ0γ(−iΛ)Nγ(−iΛD)−ND

]Nf−Ñf

,

(3.48)

where we used γ(ix+a) ∼ γ(ix)|x|2a as x → ±∞, and Λ
2l
l+1 γ

(
−iΛ

)
∼ γ

(
−iΛD

)−1
. Combin-

ing (3.47) and (3.48) with the power of γ(−iΛ) from (3.46) and the power of γ(−iΛD) for

the dual theory establishes the Kutasov-Schwimmer duality relation (3.39) for all Ñf ≤ Nf .

3.3 Dualities for quivers

We revisit here the N = (2, 2) quivers of section 2.4 and express some Seiberg and N =

(2, 2)∗ dualities as permutations of Toda CFT punctures in section 3.3.1. This lets us
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construct in section 3.3.2 the full set of theories obtained through Seiberg and N = (2, 2)∗

dualities. For a particular choice of matter content, a certain combination of dualities is

realized as conjugation of momenta in the Toda CFT.

The gauge theories depend on ranks Nj ≥ 0, signs ηj , and complexified FI parameters

(ẑj , ẑj) for 1 ≤ j ≤ n, as well as twisted masses. They are described by the quiver

Nn · · · N1

Nf

Nf

. (3.49)

The theories consist of a U(N1)×· · ·×U(Nn) vector multiplet coupled to chiral multiplets

which transform in the following representations: Nf fundamentals and Nf antifundamen-

tals of U(Nn), two bifundamentals of U(Nj)×U(Nj−1) for each 2 ≤ j ≤ n, and one adjoint

of U(Nj) for each 1 ≤ j ≤ n. Let ǫj =
∏n

i=j ηi. The twisted masses mt, m̃t, mj(j−1),

m(j−1)j , and mjj of those chiral multiplets obey (2.118), that is,

imj(j−1) + im(j−1)j = −1− 2qj and imjj = qj + qj+1 , (3.50)

where qj = b2/2 if ǫj = 1 and qj = −(1 + b2)/2 otherwise for some parameter b2. The

twisted masses are such that a given superpotential Wη has R-charge 2 (twisted mass i).

Whenever ηj = −1, the superpotential term Tr(X2
j ) lets us integrate out Xj .

We gave evidence in section 2.4 that the partition function on S4
b of the S2 surface

operator obtained by coupling such a theory to free hypermultiplets is equal to a Toda

CFT (n + 3)-point function, namely the correlator of two generic, one semi-degenerate,

and n degenerate vertex operators. The momenta of the first three operators encode the

twisted massesmt and m̃t. The degenerate operators are inserted at positions xj =
∏n

i=j ẑi,

and have momenta −bΩj = −bΩ(Kj , ǫj), where Kj = Nj − Nj−1, ǫj =
∏n

i=j ηi, and

Ω(K,+1) = Kh1 and Ω(K,−1) = ωK .

Crossing symmetry of the Toda CFT correlator states that the labeling of degenerate

operators by integers 1 ≤ j ≤ n is irrelevant. Therefore, the n! gauge theories which cor-

respond to each labeling of the degenerate punctures should all have identical S2 partition

functions, up to simple factors. It turns out that each transposition k ↔ k+ 1 (for k < n)

corresponds to a duality acting on the node U(Nk) of the quiver gauge theory: Seiberg

duality (see section 3.1) if ηk = −1, or the N = (2, 2)∗ duality (see section 3.2.1) if ηk = +1.

In section 3.3.1 we work out details and make sure that transpositions correctly reproduce

the mapping of parameters for such dualities. As a result, the groupoid generated by

Seiberg and N = (2, 2)∗ dualities acting on nodes with k < n is realized as permutations

of punctures in the Toda CFT.

In section 3.3.2, we extend the groupoid by including the action of Seiberg duality on

the node U(Nn) when it is applicable (ηn = −1): the N = (2, 2)∗ duality never applies,

since the Nf fundamental and antifundamental chiral multiplets are not constrained by a

superpotential. The result of acting with Seiberg duality on U(Nn) is not a quiver of the

same type, hence is not given a Toda CFT interpretation in our work. However, for a

specific choice of matter content which corresponds to the case where all degenerate vertex
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operators are labeled by antisymmetric representations of ANf−1, applying Seiberg duality

in turn to all the nodes yields a quiver of the original form. This combination of dualities

corresponds to conjugating Toda CFT momenta.

All our results extend to theories with any number Ñf ≤ Nf of antifundamental chiral

multiplets following the discussion for Seiberg duality of SQCD in section 3.1.2. We focus

on Ñf = Nf because the matching between partition functions and Toda CFT correlators

was only derived in this case in section 2.4: for Ñf < Nf , the correlator contains an irregular

puncture as described for SQCD in section 2.2.3.

3.3.1 Seiberg dualities from braiding moves

We now prove that the action of Seiberg duality or the N = (2, 2)∗ duality (depending

on ηk) on the node U(Nk) translates to the transposition (xk, ǫk,Kk) ↔ (xk+1, ǫk+1,Kk+1)

of two degenerate punctures, for 1 ≤ k ≤ n− 1. Specifically, we show that the S2 partition

functions of the theories described by the Toda CFT data before and after the transposition

are equal. Most gauge theory parameters describing the electric and magnetic theories

are the same, with the following changes: ηDk±1 = ηk±1ηk, ND
k = Nk+1 + Nk−1 − Nk,

ẑDk±1 = ẑk±1ẑk and ẑDk = ẑ−1
k .

The multiplets which interact with the U(Nk) vector multiplet of the electric theory

are those of N = (2, 2) SQCDA with Nk colors and Nk−1+Nk+1 flavours. If ηk = −1, then

imkk = −1/2 and Wη contains the term Tr(X2
k) which lets us integrate out the adjoint

chiral multiplet Xk, leaving N = (2, 2) SQCD. If instead ηk = +1, then imkk + imk(k±1) +

im(k±1)k = −1 and Wη contains the terms Tr(φ(k±1)kXkφk(k±1)): this is N = (2, 2)∗ SQCD.

In both settings, the theory admits a dual description with Nk+1 +Nk−1 −Nk colors, and

some mesons if ηk = −1 (see sections 3.1 and 3.2.1). As we will now see, parameters map

precisely as expected from the Toda CFT.

In the Coulomb branch representation of the S2 partition function of the electric theory,

we collect all factors which depend on the scalar σk of the U(Nk) vector multiplet. This

yields an integral Zk (2.132) very similar to the partition function of N = (2, 2) SQCDA

with Nk colors and Nk−1 +Nk+1 flavours. The usual contour techniques apply and yield a

factorized expression for Zk in the region |ẑk| < 1, namely

Zk =
∑

Higgs vacuum v±

ẑTr iv
+

k
¯̂zTr iv

−

k Z1l,{v±}

(
{mkl − σ±

lj}, {mlk + σ±
lj}

)

· Zv,v+
(
{mkl − σ+

lj}, {mlk + σ+
lj}; ẑk

)

· Zv̄,v−
(
{mkl − σ−

lj}, {mlk + σ−
lj};

¯̂zk
)
.

(3.51)

As discussed above, the superpotential Wη reduces SQCDA to N = (2, 2) SQCD or N =

(2, 2)∗ SQCD depending on ηk. In both cases, Higgs branch vacua are labeled by sets of

Nk “flavours” among

Lk =
{
(l, j)

∣∣ l = k ± 1, 1 ≤ j ≤ Nl

}
, (3.52)

and the eigenvalues of v± for a given Nk-element subset E ⊂ Lk are

v±(l,j) = −mkl + σ±
lj for (l, j) ∈ E . (3.53)
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The vortex partition functions in (3.51) are those of the relevant N = (2, 2) SQCD or N =

(2, 2)∗ SQCD theory withNk+1+Nk−1 fundamental multiplets of twisted masses {mkl−σ+
lj}

and the same number of antifundamental multiplets of twisted masses {mlk + σ+
lj}, in the

Higgs branch vacuum v+. The antivortex partition functions are obtained by replacing σ+
lj

by σ−
lj and v+ by v−. The one-loop determinant for the vacuum labeled by E ⊂ Lk is

Z1l,E =
∏

(l,j)∈E

∏

(l′,j′)∈Lk

[
Γ(−imkl′ − δl′j′∈E imkk + imkl + iσ+

l′j′ − iσ+
lj )

Γ(1 + imkl′ + δl′j′∈E imkk − imkl − iσ−
l′j′ + iσ−

lj )

·
Γ(−iml′k − imkl − iσ+

l′j′ + iσ+
lj )

Γ(1 + iml′k + imkl + iσ−
l′j′ − iσ−

lj )

]
.

(3.54)

We now need to distinguish ηk = ±1 because explicit expressions differ. We will bring the

results together at the end of this section.

Focus first on the case ηk = +1. Since 1 + imkk + imk(k±1) + im(k±1)k = 0, the factors

with (l, j) ∈ E and (l′, j′) ∈ E in (3.54) cancel. The remaining factors are invariant

under the exchanges E → E∁ and mkl − σ±
lj ↔ mlk + σ±

lj . As a result, the one-loop

determinant for the s-channel vacuum E of the U(Nk) theory is equal to the one-loop

determinant for the u-channel vacuum E∁ of a theory with identical twisted masses but

ND
k = #E∁ = Nk−1+Nk+1−Nk colors. As discussed in section 3.2.1 and shown directly in

appendix B.2, the vortex partition functions of the U(Nk) theory in the s-channel vacuum E

and of the U(ND
k ) theory in the u-channel vacuum E∁ are equal up to a factor (B.57)

Z
U(Nk)
v,E (ẑk) = (1− ẑk)

−δ1Z
U(ND

k )

v,E∁

(
(ẑDk )−1

)
(3.55)

with δ1 = (Nk − ND
k )(1 + imkk), provided ẑDk = ẑ−1

k as expected from the Toda CFT

symmetry. Finally, the classical contribution transforms as follows:

∏

(l,j)∈E

ẑ
−imkl+iσ+

lj

k = ẑ
−δ0+Tr iσ+

k−1+Tr iσ+
k+1

k

∏

(l,j)∈E∁

(ẑDk )imlk+iσ+
lj (3.56)

with δ0 = Nk−1imk(k−1) +Nk+1imk(k+1) + (1 + imkk)N
D
k . All in all,

Z
U(Nk)
k (zk, z̄k) = |ẑk|

−2δ0 |1− ẑk|
−2δ1 ẑ

Tr iσ+
k−1+Tr iσ+

k+1

k
¯̂z
Tr iσ−

k−1+Tr iσ−
k+1

k Z
U(ND

k )

k (zDk , z̄Dk ) .

(3.57)

In the full S2 partition function of the quiver theory, the powers of ẑk and ¯̂zk combine with

the classical contribution for the gauge group factors U(Nk±1) and yield

|ẑk|
−2δ0 |1− ẑk|

−2δ1
∏

l=k±1

(ẑlẑk)
Tr iσ+

l
(
ẑlẑk

)Tr iσ−
l . (3.58)

Therefore, the S2 partition functions of the U(N1)× · · · ×U(Nn) theory and of the theory

with ND
k = Nk−1 +Nk+1 −Nk, ẑ

D
k = ẑ−1

k , and ẑDk±1 = ẑk±1ẑk are equal up to |ẑk|
−2δ0 |1−

ẑk|
−2δ1 . On the Toda CFT side, this factor is due to differences in powers of |xk|

2, |xk+1|
2

and |xk+1−xk|
2 which appear in the correspondences for the electric and magnetic theories.
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In gauge theory, the factor can be absorbed into the partition function: since δ1 only

depends on b, the Nj , and the matter content, |1 − ẑk|
−2δ1 is a renormalization scheme

ambiguity, while |ẑk|
−2δ0 can be absorbed by a global U(1) ⊂ U(Nk) gauge transformation.

Such ambiguities are described below (2.10).

The case ηk = −1 follows the same ideas, but is more intricate. The Higgs branch

decomposition (3.54) involves vortex partition functions of N = (2, 2) SQCD. As for the

previous case, those are equal up to a power of (1− ẑk) to vortex partition functions of a

dual theory with ND
k colors and twisted masses mD = i/2−m. Explicitly,

Zv,E

(
{mkl − σ+

lj}, {mlk + σ+
lj}; ẑk

)

= (1− ẑk)
−Nk−2qkNk−1−2qk+1Nk+1Zv,E∁

(
{i/2−mkl + σ+

lj}, {i/2−mlk − σ+
lj}; ẑk

)
.

(3.59)

The signs with which σ+
lj appears in the right-hand side are inconvenient, as it implies

that chiral multiplets which transform under the fundamental representation of U(ND
k )

also transform in the fundamental representation of U(ND
l ), and not the antifundamental

representation. This is fixed by conjugating all U(ND
k ) charges: ẑk → ẑ−1

k and the vortex

partition function becomes a u-channel (|ẑ−1
k | → ∞) vortex partition function of SQCD

with ND
k colors, Nk−1 + Nk+1 flavours, and ẑDk = ẑ−1

k . Once this is understood, the

classical contributions (of the electric s-channel vacuum labeled by E and the magnetic

u-channel vacuum labeled by E∁) are equal up to powers of |ẑk|
2, provided ẑDk = ẑ−1

k

and ẑDk±1 = ẑk±1ẑk. This is precisely the map described by the exchange of Toda CFT

punctures.

The one-loop determinants, on the other hand, transform non-trivially. This is ex-

pected from the study of Seiberg duality for N = (2, 2) SQCD: the magnetic theory in-

cludes mesons whose one-loop determinants appear in the S2 partition function. There,

the mesons are realized as Mts = q̃tqs in terms of the electric quarks and antiquarks qs
and q̃t, and couple to the magnetic multiplets through a superpotential term q̃Dt Mtsq

D
s .

In our current setting, the mesons are the four combinations Mll′ = φlkφkl′ in the electric

theory, and couple to the magnetic multiplets through the superpotential Tr(Mll′φ
D
l′kφ

D
kl).

The mesons M(k±1)(k±1) transform in the adjoint representations of U(Nk±1), and the

mesons M(k±1)(k∓1) in bifundamental representations of U(Nk+1) × U(Nk−1). Since the

(electric) superpotential features the term Tr(M(k−1)(k+1)M(k+1)(k−1)) for ηk = −1, these

two mesons can be integrated out, leaving the term Tr(φD
(k−1)kφ

D
k(k+1)φ

D
(k+1)kφ

D
k(k−1)) in the

superpotential of the magnetic theory. This term is expected from ηDk = −1.

Next, for each of l = k ± 1 there are two cases. If ηk±1 = +1 then the superpotential

term Tr(Xk±1M(k±1)(k±1)) lets us integrate out both Xk±1 and the meson M(k±1)(k±1),

leaving the magnetic superpotential Tr(φ(k±1)(k±2)φ(k±2)(k±1)φ
D
(k±1)kφ

D
k(k±1)). This is ex-

pected from ηDk±1 = −1 (multiplets φll′ with l, l′ 6= k are not affected by the duality). If

instead ηk±1 = −1, then we integrate out Xk±1, and note the presence of magnetic super-

potential terms Tr(φ(k±1)(k±2)φ(k±2)(k±1)M(k±1)(k±1)) and Tr(M(k±1)(k±1)φ
D
(k±1)kφ

D
k(k±1)).

Those are expected from ηDk±1 = +1. In both cases, the change in matter content between

the electric and magnetic theories and the mapping of twisted masses are encoded in the

map ηDk±1 = ηk±1ηk implied by the exchange ǫk−1 ↔ ǫk.
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Combining the classical, one-loop, and vortex contributions yields the equality of

S2 partition functions up to powers of |ẑk|
2 and |1−ẑk|

2 when ηk = −1. As for ηk = +1, the

powers of |1− ẑk|
2 and |ẑk|

2 are an ambiguity of the S2 partition function. This concludes

the proof (for arbitrary η) that applying Seiberg duality or the N = (2, 2)∗ duality to the

gauge group factor U(Nk) with 1 ≤ k < n corresponds to transposing the punctures k

and k + 1 in the Toda CFT correlator. Therefore, permutations of Toda CFT degenerate

punctures encapsulate the mapping of parameters for arbitrary combinations of dualities

which act on the nodes with 1 ≤ k < n.

3.3.2 Seiberg dualities from momentum conjugation

We now find all theories obtained through dualities acting on any node, including U(Nn).

For simplicity, we first consider the theory with ηn = −1 and ηk = +1 for k < n,

which corresponds to a Toda CFT correlator where all degenerate punctures are labeled by

antisymmetric representations of ANf−1 (all ǫk = −1). Since ηn = −1, the superpotential

includes a term TrX2
n which lets us integrate out the adjoint chiral multipletXn. Therefore,

the chiral multiplets which couple to the U(Nn) vector multiplet are those of N = (2, 2)

SQCD with Nn colors and Nf + Nn−1 flavours. Applying Seiberg duality and charge

conjugation to the node U(Nn) yields a similar quiver gauge theory with Nn replaced by

ND
n = Nf + Nn−1 − Nn. Recall that the Seiberg dual of a theory includes additional

multiplets with charges identical to mesons of the original theory. Here, these are N2
f free

chiral multiplets, and Nf fundamental, Nf antifundamental, and one adjoint of U(Nn−1).

The magnetic theory thus has two adjoints of U(Nn−1). Given the cubic superpotential

which links the bifundamentals of U(Nn) × U(Nn−1) and the adjoint of U(Nn−1) in the

electric theory, the two adjoints of U(Nn−1) couple through a quadratic superpotential term

and can thus be integrated out. Therefore, the two dual theories are given by the quivers

Nn Nn−1 ··· N1

Nf

Nf

 ND
n Nn−1 Nn−2 ··· N1

Nf

Nf

(3.60)

where the superpotential is the sum of all gauge (and flavour) invariant cubic combinations

of bifundamental and adjoint chiral multiplets. The complexified FI parameters of the

magnetic theory are ẑDn = ẑ−1
n , ẑDn−1 = ẑnẑn−1, and ẑDk = ẑk for k ≤ n− 2.

The absence of adjoint chiral multiplet of U(Nn−1) in the second theory lets us apply

Seiberg duality (and charge conjugation) to this node of the second quiver. Once more, the

resulting quiver contains additional matter, including an adjoint of U(Nn−2) which cancels

the already present adjoint because of a quadratic superpotential. The procedure can thus

be continued by acting on successive nodes from U(Nn) to U(N1). The resulting quivers

are given in figure 3.

We note in particular that the last quiver, obtained after applying Seiberg duality

to all the nodes, has the same form as the original quiver: only one gauge group factor

features fundamental and antifundamental chiral multiplets. This quiver gauge theory, or
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The quiver with ηn = −1 and ηk = +1 for k < n corresponds to a Toda CFT correlator

with only antisymmetric degenerate operators. Acting with Seiberg dualities successively

on all nodes from U(Nn) to U(N1) yields a quiver of the same form, which corresponds to

the Toda CFT correlator with all momenta conjugated. The original quiver, the quiver

after acting on the k-th node, and the final quiver are drawn here without free mesons

transforming in the bifundamental representation of the flavour group S[U(Nf )×U(Nf )]

to avoid clutter. After acting on the k-th node, the complexified FI parameters are

given by (ẑn−1, . . . , ẑk, (ẑnẑn−1 · · · ẑk)
−1, (ẑn · · · ẑk−1), ẑk−2, . . . , ẑ1) in this order. Dual

ranks are ND
j = (n+ 1− j)Nf +Nj−1 −Nn.

Nn Nn−1 ··· N1

Nf

Nf

ND
n ··· ND

2 ND
1

Nf

Nf

ND
k

ND
k+1···ND

n Nk−1 Nk−2 ··· N1

Nf

Nf

 
 

Figure 3. Sequence of Seiberg dualities on the quiver with all ǫk = −1.

rather the N = (2, 2) surface operator it defines in any class S theory, has a Toda CFT

interpretation as the insertion of some degenerate vertex operators. Given the matter

content of the gauge theory, all n degenerate vertex operators are labeled by antisymmetric

representations of ANf−1. The ranks of these representations are obtained from the number

of colors in the dual theory:

KD
j = ND

j −ND
j+1 = Nf − (Nj −Nj−1) = Nf −Kj (3.61)

for 1 ≤ j ≤ n, where ND
n+1 = N0 = 0. The positions of punctures are obtained from the

FI parameters:

xDj =

j∏

i=1

ẑDi =

[
n∏

i=j

ẑi

]−1

= x−1
j . (3.62)

Both of these maps are reproduced by conjugating all Toda CFT momenta and applying

the conformal transformation x → x−1 to the correlator. This conformal transformation

could be avoided by applying charge conjugation to all nodes of the quiver, mapping all

complexified FI parameters to their inverse in the process.

All in all, Toda CFT conjugation translates to a combination of Seiberg dualities and

charge conjugations. Here, the precise choice of matter content of the gauge theory is es-

sential. On the gauge theory side, it ensures the absence of adjoint chiral multiplet at each

step hence allows Seiberg duality to be applied. On the Toda CFT side, the conjugate

of a symmetric representation is neither symmetric nor antisymmetric, thus momentum

conjugation only yields symmetric or antisymmetric representations if the original repre-

sentations were all antisymmetric. It should be noted that this choice of signs is identical to

that made in section 2.4.2 to fuse degenerate punctures into a degenerate puncture labeled
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by an arbitrary representation, hence conjugating this representation corresponds to a set

of Seiberg dualities on the gauge theory quiver.

We now go back to a quiver given by arbitrary signs ηk, and determine all dual descrip-

tions obtained through Seiberg and N = (2, 2)∗ dualities. Inspired by the quivers which

appeared when all ǫk = −1, we consider the more general class of quivers

NL
1 · · · NL

nL NR
nR · · · NR

1

Nf

Nf

. (3.63)

The multiplets described by this quiver are subject to a superpotential which depends on

some signs ηLk for 1 ≤ k ≤ nL and ηRk for 1 ≤ k ≤ nR. Namely, the superpotential is a sum

of WηL defined as in (2.117) for fields charged under the U(NL
k ), WηR for fields charged

under the U(NR
k ), and two cubic terms coupling each bifundamental of U(NL

nL)×U(NR
nR)

to multiplets charged under the flavour groups. For nL = 0 or nR = 0 we retrieve the

quivers studied throughout this paper. Whenever ηLk = −1, the superpotential contains a

quadratic term Tr
(
(XL

k )
2
)
which lets us integrate out the adjoint chiral multiplet XL

k of

U(NL
k ), and similarly ηRk = −1 lets us integrate out XR

k .

Even though we have not given a Toda CFT interpretation for this class of quivers,

we find analogues of the Toda CFT parameters (xk, ǫk,Kk) which are simply transposed

under dualities. Let xL
nL+1

= xR
nR+1

= ǫL
nL+1

= ǫR
nR+1

= 1 and

xLj =

nL∏

i=j

ẑLi , ǫLj =

nL∏

i=j

ηLi , KL
j = NL

j −NL
j−1 for 1 ≤ j ≤ nL , (3.64)

xRj =

nR∏

i=j

ẑRi , ǫRj =

nR∏

i=j

ηRi , KR
j = NR

j −NR
j−1 for 1 ≤ j ≤ nR , (3.65)

where NL
0 = NR

0 = 0.

Acting with Seiberg or the N = (2, 2)∗ duality (depending on ηLk ) on a node U(NL
k )

with k < nL exchanges (xLk , ǫ
L
k ,K

L
k ) ↔ (xLk+1, ǫ

L
k+1,K

L
k+1). This is proven through the

same calculations as for the case nR = 0 treated in section 3.3.1. Similarly, acting with a

duality on U(NR
k ) with k < nR exchanges (xRk , ǫ

R
k ,K

R
k ) ↔ (xRk+1, ǫ

R
k+1,K

R
k+1).

Let us now understand how dualities act on U(NR
nR). If ǫR

nR = ηR
nR = +1, the fields

which couple to the gauge group factor U(NR
nR) are those of N = (2, 2) SQCDA, no

simplification occurs, and neither Seiberg nor the N = (2, 2)∗ duality applies. However,

if ǫR
nR = ηR

nR = −1, we can integrate out the adjoint chiral multiplet to obtain SQCD

with NR
nR colors and Nf +NL

nL +NR
nR−1

flavours, and Seiberg duality yields a theory with

(NR
nR)

D = Nf +NL
nL +NR

nR−1
−NR

nR colors. The magnetic theory has the same form (3.63)

as the electric theory, but it features fundamental and antifundamental chiral multiplets of

U
(
(NR

nR)
D
)
and U(NR

nR−1
) rather than U(NL

nL) and U(NR
nR): in other words, nL → nL+1

and nR → nR− 1. Due to the additional mesons after Seiberg duality, both ηL
nL and ηR

nR−1
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change signs, thus toggling between the presence or absence of an adjoint chiral multiplet.

From our previous work on the action of Seiberg duality on quivers, we also know that FI

parameters map as ẑL
nL → ẑL

nL ẑ
R
nR , ẑ

R
nR → (ẑR

nR)
−1 and ẑR

nR−1
→ ẑR

nR−1
ẑR
nR . Translating to

the parameters (x, ǫ,K), we find that the set

{(
(xLj )

−1, ǫLj , Nf −KL
j

) ∣∣ 1 ≤ j ≤ nL
}
∪
{
(xRj , ǫ

R
j ,K

R
j )

∣∣ 1 ≤ j ≤ nR
}

(3.66)

is unchanged: the triplet (xR
nR , ǫ

R
nR ,K

R
nR) is simply moved from the second part of the set

(on the right of flavour nodes) to the first part (on the left). By symmetry, the discussion

applies to the node U(NL
nL): if ηL

nL = +1 there is no duality, while if ηL
nL = −1 Seiberg

duality moves
(
(xL

nL)
−1, ǫL

nL , Nf −KL
nL

)
from the left part to the right part of (3.66).

All in all, Seiberg and N = (2, 2)∗ dualities acting on any of the nodes of (3.63)

correspond to transpositions of
(
(xL1 )

−1, ǫL1 , Nf − KL
1

)
, . . . ,

(
(xL

nL)
−1, ǫL

nL , Nf − KL
nL

)
, ⋄,

(xR
nR , ǫ

R
nR ,K

R
nR), . . . , (x

R
1 , ǫ

R
1 ,K

R
1 ). The position of ⋄ indicates the position of the flavour

nodes in the quiver. Only triplets (x, ǫ,K) with ǫ = −1 can be exchanged with ⋄. Therefore,

combinations of dualities correspond to all permutations which leave triplets with ǫLj = +1

to the left of ⋄ and those with ǫRj = +1 to the right of ⋄. Denoting by nL
+ and nR

+ the

number of such triplets, and by n− the total number of triplets with ǫ = −1, we conclude

that the number of dual descriptions of the theory (3.63) is

n−∑

k=0

(
n−

k

)
(nL

+ + k)!(nR
+ + n− − k)! =

nL
+!n

R
+!(n

L
+ + nR

+ + n− + 1)!

(nL
+ + nR

+ + 1)!
. (3.67)

As a last comment, we propose that the partition function of the S2 surface operator

defined by coupling (3.63) to N2
f free hypermultiplets on S4

b should be equal to

Z
(3.63)

S2⊂S4
b
=

〈
V̂α∞(∞)V̂m̂(1)V̂α0(0)

nL∏

j=1

V̂−bΩ(KL
j ,ǫLj )

C

(
(xLj )

−1
) nR∏

j=1

V̂−bΩ(KR
j ,ǫRj )(x

R
j )

〉
(3.68)

up to factors that can be absorbed in Z. Here, Ω(K,+1) = Kh1 is the highest weight of a

symmetric representation while Ω(K,−1) = ωK is the highest weight of an antisymmetric

representation. The proposal is consistent with the action of dualities as permutations

of (x, ǫ,K) triplets described above: in particular, an antisymmetric representation with

highest weight ωK can be seen either as part of the left product (ωK = Ω(Nf −K,−1)C)

or as part of the right product (ωK = Ω(K,−1)), and this choice reproduces the Seiberg

duality map. On the contrary, the conjugate of a symmetric representation is neither

symmetric nor antisymmetric, so punctures with ǫ = +1 belong to a given product and

cannot be moved to the other one. We have not explored this proposal further, as fusions

of antisymmetric representations are enough to obtain arbitrary representations.
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A Toda CFT

This appendix is devoted to the ANf−1 Toda CFT, a generalization of the Liouville CFT

(Nf = 2), and can be read independently. It is split into five topics: we review notations

and basic properties (appendix A.1), match products of three-point functions with gauge

theory one-loop determinants (appendix A.2), derive new braiding matrices useful in the

main text (appendix A.3), list known fusion rules and find new ones (appendix A.4),

deduce new conformal blocks from the correspondence (appendix A.5) and finally define

some irregular punctures (appendix A.6).

A.1 Basic properties

We describe here some properties of the ANf−1 Toda CFT, omitting some details which

can be found in [58]. We introduce the normalizations (A.7) and (A.8) of vertex operators,

which simplify three-point functions hence simplify constant factors in the main text.

Microscopically, the theory describes a scalar field ϕ in the Cartan subalgebra of ANf−1,

minimally coupled to the metric, with an exponential potential term. It depends on a

coupling constant b, and a cosmological constant µ. We will use the combination

µ̂ =
[
πµγ(b2)b2−2b2

]1/b
(A.1)

where γ(x) = Γ(x)/Γ(1−x), because the theory is (non-manifestly) invariant under (b, µ̂) →

(1/b, µ̂). Besides its local symmetry algebra WNf
(a higher-spin extension of the Virasoro

algebra W2), the theory also possesses a discrete symmetry ϕ → ϕC , defined as the C-linear

map such that

hCs = −hNf+1−s (A.2)

for all 1 ≤ s ≤ Nf , where hs are the weights of the fundamental representation of ANf−1.

These weights form an overcomplete basis (h1 + · · · + hNf
= 0) of linear forms over the

Cartan subalgebra of ANf−1. In principle, one should distinguish the space of linear forms

from the Cartan subalgebra, but the (bilinear) Killing form 〈 , 〉 defined by

〈hs, ht〉 = δst −
1

Nf
(A.3)

identifies the two spaces. Note that the Killing form is invariant under conjugation, and

that (ϕC)C = ϕ. Conjugation maps the highest weight of a representation to the highest

weight of the conjugate representation, hence its name.

Vertex operators Vα = e〈α,ϕ〉, labeled by their momentum α in the Cartan subalgebra,

are primary operators for the WNf
symmetry algebra. The symmetry ϕ → ϕC maps Vα =

e〈α,ϕ〉 to e〈α,ϕ
C〉 = e〈α

C ,ϕ〉 = VαC , and since simple roots are permuted under conjugation,

correlators of vertex operators are invariant under conjugating all momenta αi → αC
i .
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Each vertex operator Vα is additionally invariant up to a constant factor (reflection

amplitude) under the Weyl group of ANf−1, which acts by permuting the Nf components

〈α−Q, hs〉. Here, Q = (b+ 1
b )ρ is a multiple of the sum

ρ =
1

2

∑

e>0

e =
1

2

Nf∑

s<t

(hs − ht) =
∑

s

Nf + 1− 2s

2
hs (A.4)

of all positive roots e = hs − ht, 1 ≤ s < t ≤ Nf , of ANf−1. The invariance of Vα is

confirmed by noting that its dimension

∆(α) =
1

2
〈α, 2Q− α〉 , (A.5)

and quantum numbers associated to higher spin generators of WNf
, are invariant under

Weyl reflections. The normalization (A.7) later on absorbs reflection amplitudes.

When decomposing n-point functions into products of three-point functions and con-

formal blocks, we must take into account two-point functions as well. Non-zero two-point

functions are 〈VαV2Q−α〉 and Weyl reflections thereof. As a result, the momenta which

appear in two neighboring three-point functions of the decomposition are related by the

map α → 2Q− α. For the Liouville CFT (Nf = 2), those momenta are Weyl reflections of

each other, hence the distinction is irrelevant. For the general ANf−1 Toda CFT, one must

include an orientation when labeling conformal blocks by the various internal momenta,

and reversing the orientation amounts to changing α → 2Q−α. External momenta can also

be given an orientation (which must then be retained for correlators as well as conformal

blocks), where an “incoming” momentum α denotes the presence of the vertex operator Vα,

and an “outgoing” momentum α denotes V2Q−α. This incoming/outgoing distinction also

affects the relation between fusion rules and non-zero three-point functions.

Generically, vertex operators generate irreducible representations of WNf
. Semi-

degenerate vertex operators are defined by the presence of null-vectors among their

WNf
descendants. In this paper, all semi-degenerate vertex operators take the form Vκh1

(and V−λhNf
). The conjugate momentum (κh1)

C = −κhNf
is in fact mapped by the Weyl

reflection defined by the permutation (1 2 · · ·Nf ) to the original form

κ
Dh1 =

[
Nf

(
b+

1

b

)
− κ

]
h1 , (A.6)

since 〈κhC1 − Q, hNf
〉 = 〈κDh1 − Q, h1〉, and 〈κhC1 − Q, hs−1〉 = 〈κDh1 − Q, hs〉 for all

2 ≤ s ≤ Nf . Thus, V
κhC

1
and VκDh1

are equal up to a reflection amplitude, absorbed

by the normalization (A.8). This equality is crucial to obtain dualities in section 3.1 and

section 3.2.2 as conjugation of momenta.

Fully degenerate momenta α = −bω − 1
bω

′ are labeled by pairs (ω, ω′) of highest

weights of ANf−1 representations. We only consider in this work degenerate momenta of

the form α = −bω, and mapping b → 1
b would probe degenerate momenta α = −1

bω, but

the mixed case with non-zero ω and ω′ is hard to access. We denote the representation

of ANf−1 with highest weight ω by R(ω). In particular, the fundamental representation
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R(h1) has weights hs for 1 ≤ s ≤ Nf , and highest weight h1. The N -th antisymmetric

power of R(h1) is R(ωN ), where ωN =
∑N

j=1 hj ; it has weights h{p} =
∑N

j=1 hpj for

1 ≤ p1 < · · · < pN ≤ Nf . The N -th symmetric power R(Nh1) has weights
∑N

j=1 hpj for

1 ≤ p1 ≤ · · · ≤ pN ≤ Nf , or equivalently h[n] =
∑Nf

s=1 nshs for (non-negative) integers

n1+ · · ·+nNf
= N . We also consider quasi-rectangular Young diagrams: for 0 ≤ j < l and

0 ≤ k < Nf , the highest weight ωkl+j,l = lωk+ jhk+1 corresponds to a Young diagram with

kl+ j boxes, organized as k rows of l boxes, followed by a j-box row. This reproduces the

antisymmetric case ωN,1 = ωN for l = 1, and the symmetric case ωN,l = Nh1 for l ≥ N .

In view of the matching of parameters with gauge theory, we write generic momenta

as α = Q − ia. The dimension is ∆(Q − ia) = 1
2〈Q,Q〉 − 1

2〈ia, ia〉. Weyl reflections act

by permuting the 〈a, hs〉. In terms of the Upsilon function (A.9) below, we introduce the

normalization

V̂Q−ia =
µ̂−〈ia,ρ〉

∏Nf

s<tΥ(〈ia, hs − ht〉)
VQ−ia , (A.7)

where the product ranges over positive roots e = hs − ht. The normalization factor is

invariant under conjugation, hence does not spoil this symmetry of Toda CFT correlators

involving generic operators V̂α. The three-point function 〈V̂αV̂α′ V̂κh1〉 given in (A.13) is

invariant under Weyl reflections permuting the 〈a, hs〉, hence the normalized operator V̂α is

Weyl invariant. To further simplify three-point functions, we also provide a normalization

for semi-degenerate operators and fully degenerate operators,

V̂κh1 =
µ̂〈κh1,ρ〉

(
Υ(b)

)Nf−1
Υ(κ)

Vκh1 , V̂−bω =
[
µ̂b2(b+

1
b
)
]〈−bω,ρ〉

V−bω . (A.8)

The normalizations of generic and semi-degenerate operators are invariant under b → 1
b .

The Upsilon function appearing above depends implicitly on the coupling constant b

(it is invariant under b → 1
b ), and for generic real b it is a holomorphic function, uniquely

determined by its normalization Υ
(
1
2(b+

1
b )
)
= 1 and by shift relations

Υ(x+ b) = γ(bx)b1−2bxΥ(x) , Υ(x+ 1/b) = γ(x/b)b2x/b−1Υ(x) . (A.9)

Also, Υ(b+ 1
b −x) = Υ(x) and the function has zeros at −mb−n1

b and (m+1)b+(n+1)1b
for integers m,n ≥ 0, and no poles. As x → ±i∞, one has

Υ(x+ a)

Υ(x)
∼

(
−x2

e2

)ax

|x|a(a−b−1/b) ∼
(
γ(bx)b1−2bx

)a/b
|x|a(a−b) , (A.10)

Nf∏

s=1

Υ(x+ 〈α, hs〉)

Υ(x)
∼ |x|〈α,α〉 , (A.11)

for any a and any momentum α. The gamma function γ(x) = Γ(x)/Γ(1 − x) obeys

by construction γ(1 − x) = 1/γ(x) and also appears in one-loop determinants of chiral

multiplets. Vortex partition functions involve Pochhammer symbols

(x)k =
Γ(x+ k)

Γ(x)
= (−1)k

Γ(1− x)

Γ(1− x− k)
=

(−1)k

(1− x)−k
. (A.12)

This equality is shown using the Euler identity Γ(x)Γ(1− x) = π/ sinπx.
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A.2 Three-point functions

We check in this appendix that the one-loop determinants which appear in Higgs branch

expansions of S2 partition functions, considered in the main text, are equal to products of

three-point functions which appear in s- and u-channel decompositions of the corresponding

Toda CFT correlators. This relies on the three-point functions provided by [58], equations

(1.39), (1.51), and (1.56), which we first translate to our normalization.

The three-point function of two generic operators V̂Q−ia1 and V̂Q−ia2 and of a semi-

degenerate operator V̂κh1 is expressed as the normalizations (A.7) and (A.8) multiplied by

equation (1.39) of [58] with all momenta conjugated:

Ĉ(Q− ia1, Q− ia2,κh1) =
µ̂−〈ia1+ia2−κh1,ρ〉C(Q− iaC1 , Q− iaC2 ,κh

C
1 )(

Υ(b)
)Nf−1

Υ(κ)
∏Nf

s<tΥ(〈ia1, hs − ht〉)Υ(〈ia2, hs − ht〉)

=
1

∏Nf

s,t=1Υ
(

κ

Nf
+ 〈ia1, hs〉+ 〈ia2, ht〉

) .

(A.13)

The three-point function is invariant under Weyl transformations of each V̂Q−iai , which

permute the 〈iai, hs〉, hence the normalized V̂Q−ia are Weyl invariant, as claimed earlier.

The three-point function is also invariant under conjugation of all momenta, followed by

the Weyl transformation (A.6) which maps (κh1)
C → κ

Dh1 = (Nf (b+1/b)−κ)h1: indeed,

〈iai, hs〉 → −〈iai, hs〉 and κ/Nf → (b+1/b)−κ/Nf under this transformation, and we know

that Υ(b+ 1/b− x) = Υ(x).

Besides this three-point function, we also need some three-point functions involving a

degenerate operator V̂−bω. The OPE of this operator with a generic V̂Q−ia is

V̂−bωV̂Q−ia =
∑

h∈R(ω)

ĈQ−ia−bh
−bω,Q−ia

[
V̂Q−ia−bh

]
, (A.14)

where the sum runs over weights of R(ω) and the brackets denote the contribution from

WNf
descendants (see appendix A.4 for a description of which momenta can appear in

various OPE). The structure constants ĈQ−ia−bh
−bω,Q−ia are equal to their analogues given in [58]

for usual vertex operators, multiplied by the normalization factors of V̂−bω and V̂Q−ia, and

divided by the normalization of V̂Q−ia−bh, namely

ĈQ−ia−bh
−bω,Q−ia = µ̂〈bh−bω,ρ〉b2〈−bω,Q〉

Nf∏

s<t

[
Υ(〈ia+ bh, hs − ht〉)

Υ(〈ia, hs − ht〉)

]
CQ−ia−bh
−bω,Q−ia . (A.15)

The structure constants are also closely related to three-point functions:

ĈQ−ia−bh
−bω,Q−ia =

Nf∏

s 6=t

[
Υ(〈ia+ bh, hs − ht〉)

]
Ĉ(−bω,Q− ia,Q+ ia+ bh) . (A.16)

The change Q − ia − bh → Q + ia + bh and the Upsilon functions both come from the

non-zero two-point functions 〈V̂α(z, z̄)V̂2Q−α(0)〉 = |z|−4∆(α) / ∏Nf

s 6=tΥ(〈Q− α, hs − ht〉).
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Equation (1.51) of [58] covers the case of a degenerate field V̂−bωN
labeled by the

antisymmetric representation R(ωN ), whose weights h = hp1 + · · · + hpN are labeled by

N -element subsets of {1, . . . , Nf} without repetition. With our normalization (A.15), all

Upsilon functions cancel through the shift relation (A.9), and leave only gamma functions:

ĈQ−ia−bh
−bωN ,Q−ia = b−Nf 〈2ia+bh,bh〉

Nf∏

s 6∈{p}

∏

t∈{p}

γ(b〈ia, ht − hs〉) . (A.17)

When matching with the S2 partition function of SQCDA, we need three-point functions in-

volving V̂−Nbh1 . Weights of the N -th symmetric representation R(Nh1) are h =
∑Nf

s=1 nshs
for a choice of Nf integers ns ≥ 0 with n1 + · · ·+ nNf

= N . The three-point function can

be derived from (A.13) by setting κ = −Nb, taking into account the normalization, and

extracting the residue at ia1 = ia and ia2 = −ia− bh. This yields

ĈQ−ia−bh
−Nbh1,Q−ia =

b−Nf 〈2ia+bh,bh〉

∏N
ν=1 γ(−νb2)

Nf∏

s,t=1

nt−1∏

ν=0

γ(b〈ia, ht − hs〉+ (ν − ns)b
2) . (A.18)

Taking N = 1 in either (A.17) or (A.18) yields the (same) expression for the case of a

fundamental degenerate field,

Ĉ
Q−ia−bhp

−bh1,Q−ia = b−Nf 〈2ia+bhp,bhp〉

Nf∏

s 6=p

γ(b〈ia, hp − hs〉) . (A.19)

For theories with a superpotential, we also use some three-point functions with a degenerate

V̂−be0 labeled by the highest weight e0 = h1 − hNf
of the adjoint representation. Because

the weight 0 has multiplicity in this representation, Ĉα
−b(h1−hNf

),α is not a ratio of Gamma

functions. We will focus on other weights h = hi − hj , which have no multiplicity. From

equation (1.56) of [58],

ĈQ−ia−bh
−be0,Q−ia = b−Nf 〈2ia+bh,bh〉 γ(b〈ia, hi − hj〉+ b2)

γ(b〈ia, hi − hj〉)

Nf∏

s 6=i

γ(b〈ia, hi − hs〉)

Nf∏

s 6=j

γ(b〈ia, hs − hj〉) .

(A.20)

We are now ready to consider the products of three-point functions appearing in s-

and u-channel decompositions of Toda CFT correlators of interest. Our first computation

concerns the s-channel decomposition (2.44) of a four-point function with the degenerate

insertion V̂−bh1 , which corresponds to the S2 partition function of SQED, multiplied by the

contribution Z free
S4
b

= Ĉ(α∞, α0,κh1) of free hypermultiplets. We set α∞ = Q − ia∞ and

α0 = Q− ia0, and evaluate:

Ĉ
α0−bhp

−bh1,α0
Ĉ(α∞, α0 − bhp, (κ + b)h1)

/
Ĉ(α∞, α0,κh1) (A.21)

= Ĉ
α0−bhp

−bh1,α0

Nf∏

s,t=1

[ Υ
(

κ

Nf
+ 〈ia0, hs〉+ 〈ia∞, ht〉

)

Υ
(

κ

Nf
+ 〈ia0, hs〉+ 〈ia∞, ht〉+ bδps

)
]

= b2bκ−Nf (1+b2)+b2

︸ ︷︷ ︸
A−1

∏Nf

s 6=p γ(b〈ia0, hp − hs〉)
∏Nf

t=1 γ(
bκ
Nf

+ b〈ia0, hp〉+ b〈ia∞, ht〉)
.
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The numerator gamma function is γ(imp−ims) in terms of gauge theory twisted masses, and

the denominator is γ(1+imp+im̃t). We thus recognize the one-loop determinant appearing

in the s-channel decomposition (2.32) of Z, divided by the constant A given in (2.23). Since

A is invariant under the exchange of α0 and α∞, which amounts to exchanging the s- and

u-channels, the matching of three-point functions and one-loop contributions also occurs

in the u-channel.

Next is the case of SQCD. The corresponding Toda four-point function involves the

degenerate insertion V̂−bωN
, the semi-degenerate V̂(κ+Nb)h1

, and two generic momenta α0 =

Q− ia0 and α∞ = Q− ia∞. We factor out the S4
b contribution Ĉ(α∞, α0,κh1). For a given

weight h = hp1 + · · ·+ hpN of R(ωN ), we find

Ĉα0−bh
−bωN ,α0

Ĉ(α∞, α0 − bh, (κ +Nb)h1)
/
Ĉ(α∞, α0,κh1) (A.22)

= Ĉα0−bh
−bωN ,α0

Nf∏

s,t=1

[ Υ
(

κ

Nf
+ 〈ia0, ht〉+ 〈ia∞, hs〉

)

Υ
(

κ

Nf
+ 〈ia0, ht〉+ 〈ia∞, hs〉+ bδt∈{p}

)
]

= b2Nbκ−NNf (1+b2)+N2b2

︸ ︷︷ ︸
A−1

∏

t∈{p}

[ ∏Nf

s 6∈{p} γ(−b〈ia0, hs − ht〉)
∏Nf

s=1 γ(
bκ
Nf

+ b〈ia0, ht〉+ b〈ia∞, hs〉)

]
.

Again, we recognize the ratio of γ(−ims+ imt) and γ(1+ im̃s+ imt) as being the one-loop

determinants (2.58) of SQCD. This fixes the constant A to be (2.55) in the matching with

SQCD. Since A is invariant under the exchange of α0 and α∞, the u-channel three-point

functions and one-loop determinant match up to the same constant.

Our last four-point function corresponds to the S2 partition function of SQCDA, and

involves the degenerate field V̂−Nbh1 . With notations as above, and for h =
∑

s nshs,

we compute

Ĉα0−bh
−Nbh1,α0

Ĉ(α∞, α0 − bh, (κ +Nb)h1)
/
Ĉ(α∞, α0,κh1) (A.23)

=
b2Nbκ−NNf (1+b2)+N2b2

∏N
ν=1 γ(−νb2)︸ ︷︷ ︸

A−1

Nf∏

s,t=1

nt−1∏

ν=0

[
γ(b〈ia0, ht − hs〉+ (ν − ns)b

2)

γ( bκNf
+ b〈ia0, ht〉+ b〈ia∞, hs〉+ νb2)

]
.

In terms of gauge theory variables, the numerator gamma functions have arguments imt +

νb2 − ims − nsb
2, while the denominator have arguments 1 + im̃s + imt + νb2, hence we

obtain the one-loop determinant (2.96), divided by the constant A given in (2.92). Once

more, A is invariant under α0 ↔ α∞, hence u-channel three-point functions and one-loop

determinants match.

Perhaps interestingly, the power of b appearing in A can be recast as

bNNf (1+b2)−N2b2−2Nbκ = b−κ[Nf(b+ 1
b )−κ]

/
b−(κ+Nb)[Nf(b+ 1

b )−κ−Nb] . (A.24)

We do not absorb these powers of b into the normalization of V̂κh1 and V̂(κ+Nb)h1
, because

they would spoil the b → 1
b symmetry which (A.8) enjoys. Note that these powers are

invariant under conjugation, which maps κ → Nf

(
b+ 1

b

)
− κ and κ +Nb similarly.
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A.3 Braiding matrices

In this appendix, we compute the braiding matrix of the antisymmetric degenerate opera-

tor V−bωN
around the semi-degenerate operator Vκh1 , as well as its gauge theory analogue,

and check that they are equal.

A.3.1 Gauge theory transfer matrices

Let us start on the gauge theory side: namely, we find the matrix relating Higgs branch

decompositions near z = 0 and near z = ∞ of the partition function (2.58) of SQCD.

First, focus on the case of SQED (N = 1), which uses the same techniques as ap-

pendix B of [27]. Recall the Higgs branch decomposition (2.32) near 0,

Z =

Nf∑

p=1

{
(xx̄)−imp

∏Nf

s 6=p γ(−ims + imp)
∏Nf

s=1 γ(1 + im̃s + imp)
f (s)
p (m, m̃, x)f (s)

p (m, m̃, x̄)

}
, (A.25)

where the series (2.33) defining f
(s)
p (x) converges for |x| < 1. Similarly, the Higgs branch

decomposition near ∞ involves series which converge for |x| > 1. We wish to relate the two

sets of holomorphic factors, or rather, their analytic continuation to a common domain.

This is done through the integral representation (2.38) also given in (A.26) below, which

converges away from the positive real axis. For |x| ≶ 1 we close the contour integral

towards κ → ±∞, enclosing either the poles at κ + imp ∈ Z≥0 or the Nf families of poles

at κ − im̃s ∈ Z≤0 labeled by a flavour s. The first choice yields a single s-channel factor,

while the second yields a sum of Nf u-channel factors:

(−x)−impf (s)
p (x)

cont
=

Nf∏

s=1

[
Γ(1+ims−imp)

Γ(−im̃s − imp)

] ∫ i∞

−i∞

dκ

2πi

∏Nf

s=1 Γ(−im̃s+κ)
∏Nf

s 6=p Γ(1+ims+κ)
Γ(−κ−imp)(−x)κ

cont
=

Nf∑

s=1

B0
ps(−x)im̃sf (u)

s (x) =

Nf∑

s=1

DpB̌
0
psD̃s(−x)im̃sf (u)

s (x) . (A.26)

The transfer matrix B0
ps is the product of simpler matrices D, B̌0 and D̃ given in (A.28).

It is also convenient to work with the s-channel factors x−impf
(s)
p (x), analytically continued

with branch cuts on (−∞, 0]∪ [1,+∞), and the u-channel factors xim̃sf
(u)
s (x), with branch

cuts along (−∞, 0]∪ [0, 1], rather than with the factors appearing in (A.26), which all have

branch cuts along [0, 1] ∪ [1,+∞). Using (−x)λ = e−iπǫλxλ for ǫ = sign(Imx), we obtain

x−impf (s)
p (x)

cont
=

Nf∑

s=1

Bǫ
psx

im̃sf (u)
s (x) =

Nf∑

s=1

DpB̌
ǫ
psD̃sx

im̃sf (u)
s (x) , (A.27)

which only differs from (A.26) by a phase in B̌ǫ:

B̌ǫ
ps =

πeπǫ(mp+m̃s)

sinπ(−im̃s − imp)
,

Dp =

Nf∏

t=1

Γ(1 + imt − imp)

Γ(−im̃t − imp)
,

D̃s =

∏Nf

t 6=s Γ(−im̃t + im̃s)
∏Nf

t=1 Γ(1 + imt + im̃s)
.

(A.28)
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Through the matching of parameters (2.20), the matrix DB̌ǫD̃ reproduces the appropriate

braiding matrix (B.11) of [27]. This is expected since conformal blocks and vortex partition

functions are already known explicitly to match.

The monodromy matrix around 1 is a product M1 = B+(B−)−1 of braiding matrices.

Since all B̌+
ps − B̌−

ps = 2πi, the matrix M1 − id = D(B̌+ − B̌−)D̃(B−)−1 has rank 1. Thus,

M1 has the eigenvalue 1 with multiplicity Nf − 1. This was used below (2.42).

Next, recall that the partition function of SQCD can be expressed as (2.57) in terms

of derivatives of a product of SQED partition functions. This also holds for s-channel (and

u-channel) holomorphic factors (2.59), and we can analytically continue each SQED factor

using (A.27):

x−
∑N

j=1 impj f
(s)
{p}(x) =

[
∏

i<j

xi∂xi − xj∂xj

−impi + impj

N∏

j=1

[
x
−impj

j f (s)
pj (xj)

]]

xj=x

(A.29)

cont
=

[
∏

i<j

xi∂xi − xj∂xj

−impi + impj

N∏

j=1

Nf∑

sj=1

[
Dpj B̌

ǫ
pjsjD̃sj x

im̃sj

j f (u)
sj (xj)

]]

xj=x

(A.30)

=
∑

s1 6=···6=sN

[
N∏

j=1

[
Dpj B̌

ǫ
pjsj D̃sj

]∏

i<j

[
im̃si − im̃sj

−impi + impj

]
x
∑N

j=1 im̃sj f
(u)
{s}(x)

]
(A.31)

=
∑

1≤s1<···<sN≤Nf

Bǫ
{p}{s}x

∑N
j=1 im̃sj f

(u)
{s}(x) , (A.32)

where Bǫ
{p}{s} = D{p}B̌

ǫ
{p}{s}D̃{s} in terms of matrices given below, and another form

of Bǫ
{p}{s} is in (A.37). To get (A.31), we note that if si = sj for some i 6= j, the differential

operators xi∂xi and xj∂xj act identically on the product of SQED factors (once xi and xj
are set to x), hence the term does not contribute. After restricting ourselves to terms with

all si distinct, we can safely extract the product of im̃si − im̃sj to convert SQED u-channel

factors to the SQCD one. The last step sums over permutations of the si, to collect terms

with the same factor, labeled by the set {s}. The various ingredients are two diagonal

matrices,

D{p} =

∏N
j=1Dpj∏

i<j(−impi + impj )
, D̃{s} =

∏

i<j

(im̃si − im̃sj )
N∏

j=1

D̃sj , (A.33)

and the N -th wedge power B̌ǫ
{p}{s} of the SQED matrix B̌ǫ

ps:

B̌ǫ
{p}{s} =

∑

σ∈SN

(−1)σ
N∏

j=1

B̌ǫ
pjsσ(j)

=
∑

σ∈SN

(−1)σ
N∏

j=1

πe
πǫ(mpj+m̃sσ(j)

)

sinπ(−im̃sσ(j)
− impj )

(A.34)

=

∫
dκ1
2i

· · ·
dκN
2i

∏
i<j sinπ(κi − κj) sinπ(im̃si − im̃sj )∏N

i,j=1 sinπ(κj + im̃si)

N∏

j=1

πeπǫ(mpj+m̃sj )

sinπ(κj − impj )
(A.35)

=
πNeπǫ

∑N
j=1(mpj+m̃sj )

∏
i<j sinπ(im̃si − im̃sj )

∏
i<j sinπ(impi − impj )∏

i,j sinπ(−im̃si − impj )
. (A.36)
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The dκj contours in (A.35) are each a pair of vertical lines 1
2 − i∞ → 1

2 + i∞ and i∞ →

−i∞, surrounding poles at κj = −im̃sσ(j)
. Convergence is guaranteed since the integrand

decreases exponentially as Imκ → ±∞ (for −1 ≤ ǫ ≤ 1). If two σ(j) are equal, the

numerator sines lead to a vanishing residue. Otherwise, the first fraction completely cancels

and we retrieve (A.34). Next, we note that the integrand has period 1, hence the contour

can be replaced by −1
2 − i∞ → −1

2 + i∞ and i∞ → −i∞, which surrounds poles at

κj = impj , with a factor of (−1)N to account for the orientation of the contour. This yields

the last expression.

All in all, the matrix relating s-channel and u-channel factors in (A.32) is

Bǫ
{p}{s} =

∏

p∈{p}

eπǫmp
∏Nf

t 6∈{p} Γ(1 + imt − imp)
∏Nf

u 6∈{s} Γ(−imp − im̃u)

∏

s∈{s}

eπǫm̃s
∏Nf

u 6∈{s} Γ(im̃s − im̃u)
∏Nf

t 6∈{p} Γ(1 + imt + im̃s)
. (A.37)

A.3.2 Toda CFT braiding matrices

So far in this appendix, we have manipulated gauge theory factors only. For the gauge

theory/Toda CFT correspondence to hold, those should be equal to conformal blocks mul-

tiplied by the factor zγ0(1−z)γ1 appearing in (2.51). We will show that the braiding matrix

relating s-channel and u-channel conformal blocks is Bǫ
PS = eiπǫγ1Bǫ

PS , where we denote

P = {p} and S = {s}. This implies in particular that all monodromy matrices on the

gauge theory side and the Toda CFT side match, thus establishes the correspondence for

SQCD, up to a factor fixed in appendix A.2.

The braiding matrix Bǫ
PS is defined by

F
(s)
α0−bhP

[
m̂ −bωN

α∞ α0

]
(x) =

∑

S⊆J1,Nf K
#S=N

Bǫ
PS

[
m̂ −bωN

α∞ α0

]
F

(u)
α∞−bhS

[
m̂ −bωN

α∞ α0

]
(x) (A.38)

where m̂ = (κ +Nb)h1, and we will often decompose α0 = Q− ia0, α∞ = Q− ia∞. Using

the dictionary γ1 = N
Nf

(bκ +Nb)−N(1 + b2), a0 = 1
b

∑Nf

t=1mtht, a∞ = 1
b

∑Nf

t=1 m̃tht, and

κ = 1
b

∑Nf

t=1(1 +mt + m̃t) of (2.52), we wish to prove that

Bǫ
PS

[
(κ +Nb)h1 −bωN

Q− ia∞ Q− ia0

]
= eiπǫγ1Bǫ

PS

= e
−iπǫ

N(Nf−N)

Nf
b2 ∏

p∈P

eπǫb〈a0,hp〉
∏Nf

t 6∈P Γ(1 + b〈ia0, ht − hp〉)
∏Nf

u 6∈S Γ(1− bκ
Nf

− b〈ia0, hp〉 − b〈ia∞, hu〉)

·
∏

s∈S

eπǫb〈a∞,hs〉
∏Nf

u 6∈S Γ(b〈ia∞, hs − hu〉)
∏Nf

t 6∈P Γ( bκNf
+ b〈ia0, ht〉+ b〈ia∞, hs〉)

.

(A.39)

We proceed by induction on N . For N = 1, the Toda CFT braiding matrix is

known, as mentioned below (A.28), and matches with the gauge theory transfer matrix,

thus (A.39) holds. From here on, we assume (A.39) for a given N . In particular, the

s-channel conformal blocks are given by the gauge theory holomorphic factors (A.76) for
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that value of N , because conformal blocks are uniquely determined by their monodromy

exponents at {0, 1,∞} and the braiding matrix around 1.

We first deduce the fusion of V−bh1 and V−bωN
into V−bωN+1

,

F
(t)
−bωN+1

[
−bh1 −bωN

2Q− α0 + bhP α0

]
=

∑

p∈P

Fp,P [α0]F
(s)
α0−bhP\{p}

[
−bh1 −bωN

2Q− α0 + bhP α0

]
,

(A.40)

which must have the monodromy e2πi[∆(−bωN )+∆(−bh1)−∆(−bωN+1)] = e−2πi[N(b2+1)+b2N/Nf ]

around x = 1. We shall prove that the fusion coefficients

Fp,P [α0] =
Γ
(
(N + 1)(1 + b2)

)

Γ(1 + b2)

∏

t∈P\{p}

[
Γ(b〈Q− α0, ht − hp〉)

Γ(1 + b2 + b〈Q− α0, ht − hp〉)

]
(A.41)

give this monodromy, and are normalized so that the dominant power of 1 − x has a

coefficient 1.

Braid V−bωN
and V−bh1 in the right-hand side of (A.40) using (A.39) with P → P \{p},

κ → −(N + 1)b, ia∞ → −ia0 − bhP and S → P \ {s} for some s ∈ P (hP − hS must be a

weight of the fundamental representation, because of V−bh1):

∑

p∈P

Fp,P [α0]B
ǫ
P\{p},P\{s}

[
−bh1 −bωN

2Q− α0 + bhP α0

]

= e
−iπǫ N

Nf
b2 ∑

p∈P

eπǫb〈a0,hs−hp〉

∏
t∈P\{s} sinπ(1 + b2 + b〈ia0, ht − hp〉)∏

t∈P\{p} sinπ(b〈ia0, ht − hp〉)

·
Γ
(
(N + 1)(1 + b2)

)

Γ(1 + b2)

∏

t∈P\{s}

[
Γ(b〈ia0, hs − ht〉)

Γ(1 + b2 + b〈ia0, hs − ht〉)

]

(A.42)

= e
−iπǫ

[
N
Nf

b2+N(1+b2)
]
Fs,P [2Q− α0 + bhP ] . (A.43)

We have used

∑

p∈P

eπǫb〈a0,hs−hp〉

∏
t∈P\{s} sinπ(1 + b2 + b〈ia0, ht − hp〉)∏

t∈P\{p} sinπ(b〈ia0, ht − hp〉)

=

∫
dκ

2i

eπǫ(b〈a0,hs〉−iκ)
∏

t∈P\{s} sinπ(1 + b2 + imt + κ)
∏

t∈P sinπ(imt + κ)
= e−iπǫN(1+b2) ,

(A.44)

where the contour surrounds the rectangle Reκ ∈ [0, 1], Imκ ∈ (−∞,∞). Summing over

poles yields the sum over p ∈ P in the first line. The integrals over the lines 1 − i∞ →

1 + i∞ and i∞ → −i∞ cancel because the integrand is 1-periodic, and the integrals over

1 + i∞ → i∞ and −i∞ → 1− i∞ yield 0 and e−iπǫN(1+b2) in some order.

In (A.43), we have only done one braiding move, not a full monodromy (two braiding

moves). However, the combination of u-channel conformal blocks is identical to (A.40) after

changing ia0 → ia∞ = −ia0 − bhP , thus, by symmetry, braiding once more to reach the

s-channel yields the same phase factor. Therefore, (A.40) has the announced monodromy

around x = 1.

– 79 –



J
H
E
P
0
4
(
2
0
1
6
)
1
8
3

There remains to fix the normalization. We evaluate at x = 1 the explicit expres-

sion (A.76) of s-channel conformal blocks which appear in (A.40), after removing a power

of (1− x),

[
(1− x)

−N(b2+1)− N
Nf

b2

F
(s)
α0−bhP\{p}

[
−bh1 −bωN

2Q− α0 + bhP α0

]
(x)

]

x=1

=
∑

k : P→Z≥0

kp=0

(−1)
∑

s∈P ks
∏

s,t∈P

(1 + b2 + b〈ia0, ht − hs〉)ks
(b〈ia0, ht − hs〉 − kt + δtp)ks

.

(A.45)

This only depends on the 〈ia0, ht〉 with t ∈ P , and does not depend on Nf . We can thus take

Nf = N +1, in which case −bωN = bhNf
and the fusion is a special case of equation (B.14)

of [27], where the normalization is known to be (A.41).

We are now ready to find the braiding matrix of V−bωN+1
with Vm̂ (where m̂ = (κ +

(N +1)b)h1). This braiding, followed by writing V−bωN+1
as the fusion of V−bh1 and V−bωN

,

is equivalent to performing the fusion step first, then braiding each of V−bh1 and V−bωN

in turn around the semi-degenerate operator. The equivalence is encoded as a pentagon

identity: for any (N + 1)-element sets of flavours P and S, and for s ∈ S,

Bǫ
PS

[
m̂ −bωN+1

α∞ α0

]
Fs,S [2Q− α∞]

=
∑

p∈P

Fp,P [α0]B
ǫ
ps

[
m̂ −bh1
α∞ α0 − bhP\{p}

]
Bǫ

P\{p},S\{s}

[
m̂ −bωN

α∞ − bhs α0

]
.

(A.46)

As a consistency check, we compute a slightly more general right-hand side, with S \ {s}

replaced by any N -element subset S′ of J1, Nf K. This altered right-hand side must vanish

whenever s ∈ S′. After extracting factors independent of p in (A.48) below, we will obtain

a sum over p of products of sines, which is a sum of residues:

∑

p∈P

∏
u∈S′

1
π sinπ( bκNf

+ b〈ia0, hp〉+ b〈ia∞, hu〉+ b2δus)

1
π sinπ( bκNf

+ b2 + b〈ia0, hp〉+ b〈ia∞, hs〉)
∏

t∈P\{p}
1
π sinπ(b〈ia0, ht − hp〉)

= −
∑

p∈P

res
κ=imp

∏
u∈S′

1
π sinπ(1 + b2δus + κ+ im̃u)

1
π sinπ(1 + b2 + κ+ im̃s)

∏
t∈P

1
π sinπ(imt − κ)

=

∏
u∈S′

1
π sinπ(b2δus + im̃u − b2 − im̃s)∏

t∈P
1
π sinπ(imt + im̃s + 1 + b2)

.

(A.47)

This sum of residues is equal to the residue at κ = −1− b2 − im̃s written in the last line,

because the function of κ is 1-periodic and vanishes at κ → ±i∞, hence the integral over

the boundary of [0, 1]× (−∞,∞) vanishes. As expected, the result is 0 when s ∈ S′ (take

u = s). It is otherwise a product of sines, and we get in that case the last equality below
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(denoting S = S′ ∪ {s}):

∑

p∈P

Fp,P [α0]B
ǫ
ps

[
m̂ −bh1
α∞ α0 − bhP\{p}

]
Bǫ

P\{p},S′

[
m̂ −bωN

α∞ − bhs α0

]

=
e
−iπǫ

(N+1)(Nf−N−1)

Nf
b2−iπǫδs∈S′b2+πǫb〈a0,hP 〉+πǫb〈a∞,hs+hS′ 〉∏Nf

u 6=s Γ(b〈ia∞, hs − hu〉)
∏Nf

t=1 Γ(
bκ
Nf

+ b2δt∈P + b〈ia0, ht〉+ b〈ia∞, hs〉)

·
∏

t∈P

∏Nf

v 6∈P Γ(1 + b〈ia0, hv − ht〉)
∏Nf

w 6∈S′ Γ(1−
bκ
Nf

− b〈ia0, ht〉 − b〈ia∞, hw〉 − b2δsw)

·
Γ
(
(N + 1)(1 + b2)

)

Γ(1 + b2)

∏

u∈S′

∏Nf

w 6∈S′ Γ(b〈ia∞, hu − hw〉+ b2δsu − b2δsw)
∏Nf

v 6∈P Γ( bκNf
+ b〈ia0, hv〉+ b〈ia∞, hu〉+ b2δus)

·
∑

p∈P

∏
u∈S′

1
π sinπ( bκNf

+ b〈ia0, hp〉+ b〈ia∞, hu〉+ b2δus)

1
π sinπ( bκNf

+ b2 + b〈ia0, hp〉+ b〈ia∞, hs〉)
∏

t∈P\{p}
1
π sinπ(b〈ia0, ht − hp〉)

(A.48)

s 6∈S′

= e
−iπǫ

(N+1)(Nf−N−1)

Nf
b2 ∏

t∈P

eπǫb〈a0,ht〉
∏Nf

v 6∈P Γ(1 + b〈ia0, hv − ht〉)
∏Nf

w 6∈S Γ(1− bκ
Nf

− b〈ia0, ht〉 − b〈ia∞, hw〉)

·
∏

u∈S

eπǫb〈a∞,hu〉
∏Nf

w 6∈S Γ(b〈ia∞, hu − hw〉)
∏Nf

v 6∈P Γ( bκNf
+ b〈ia0, hv〉+ b〈ia∞, hu〉)

·
Γ
(
(N + 1)(1 + b2)

)

Γ(1 + b2)

∏

u∈S\{s}

Γ(b〈ia∞, hs − hu〉)

Γ(1 + b2 + b〈ia∞, hs − hu〉)
.

(A.49)

We recognize in the last line the fusion coefficient Fs,S [2Q − α∞]. What remains is the

braiding matrix of V−bωN+1
with Vm̂, which we check to be (A.38) with N → N + 1.

This concludes the induction, and the proof of the relation between conformal blocks and

vortex partition functions for SQCD. Together with the equality (A.22) of constant factors,

checked in appendix A.2, this establishes the relation (2.51) between the partition function

of an SQCD surface operator and the appropriate correlator in the Toda CFT.

A.4 Fusion rules

We provide here the fusion rules between various pairs of vertex operators, in particular the

fusion (A.61) of two semi-degenerate operators, and the fusion (A.73) of a semi-degenerate

operator with a fully-degenerate operator labeled by an arbitrary representation of ANf−1.

We propose that operators resulting from the latter fusion appear with multiplicity (A.74)

in the fusion of two generic operators.

Null vectors among WNf
descendants of a fully degenerate vertex operator V−bω−ω′/b

constrain its three-point function with arbitrary vertex operators Vα and Vβ . Namely, the

three point function vanishes unless α + β = 2Q + bh + h′/b for some weights h of R(ω)
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and h′ of R(ω′). This results in the fusion rule

Vα × V−bω−ω′/b =
∑

h∈R(ω)

∑

h′∈R(ω′)

Vα−bh−h′/b , (A.50)

with outgoing momenta α−bh−h′/b = 2Q−β: the degenerate operator shifts the incoming

momentum by −bh−h′/b. Each operator Vα−bh−h′/b appears in (A.50) with a multiplicity

equal to the product of the multiplicity of h in R(ω) and that of h′ in R(ω′). Henceforth,

we take ω′ = 0, thus h′ = 0.

Later in this appendix, we find that the fusion (A.73) of a semi-degenerate operator

Vκh1 with V−bω only allows some of the shifts −bh of (A.50). Let us first describe the case

ω = h1 based on [27, appendix B]: the fusion of −κhNf
and −bh1 yields the momenta

−(κ + b)hNf
and −κhNf

− bh1. After the Weyl rotation (1 2 · · ·Nf ), we get

Vκh1 × V−bh1 = Vκh1−bh1 + Vκh1−bh2 . (A.51)

The s-channel expansion of 〈Vα∞(∞)Vκh1(1)V−bh1(x, x̄)Vα0(0)〉 involves Nf products of

holomorphic and antiholomorphic conformal blocks. The t-channel expansion only fea-

tures two momenta (A.51), and takes the form

|1− z|2[∆(κh1−bh1)−∆(κh1)−∆(−bh1)](· · ·) + |1− z|2[∆(κh1−bh2)−∆(κh1)−∆(−bh1)](· · ·) (A.52)

where (· · ·) are series in powers of (1 − z) and (1 − z̄). The first series factorizes as

the product of a holomorphic and an anti-holomorphic conformal blocks, multiplied by

Cκh1−bh1
−bh1,κh1

C(α0, α∞, (κ − b)h1). The second does not, but can be written non-canonically

as a sum of Nf − 1 products of the same form. This multiplicity implies that the fusion

Vα0 and Vα∞ includes Nf − 1 copies of the representations of the WNf
algebra generated

by Vκh1−bh2 , while it only includes one copy of the representation generated by any semi-

degenerate operator Vκh1 . We generalize the statement to all momenta of the form κh1−bω

in (A.74).

A.4.1 Fusion of two semi-degenerate operators

To reach more complicated degenerate operators, we first find which momenta result from

the fusion of two semi-degenerate momenta −κhNf
and λh1. In principle, one could write

null vectors descending from V−κhNf
and Vλh1 for a given Nf and, through those, constrain

the momenta which arise in the OPE. Such constraints are polynomial in the momenta,

and any constraint shown for generic (b,κ, λ) must hold for all (b,κ, λ) by continuity: in

other words, fusion rules for more specific momenta can only become more restrictive. We

are thus free to assume that (b,κ, λ) is generic.

Since null vectors are very difficult to write down for general Nf , we use a different

route: the braiding matrix relating the s-channel (x → 0) and u-channel (x → ∞) conformal

blocks of 〈Vλh1(∞)V−κhNf
(1)V−bh1(x, x̄)Vα0(0)〉 should only lead to u-channel conformal

blocks with internal momenta λh1 − bh1 and λh1 − bh2, and all other components must

vanish. Specifically, we take α2 = 2Q−λh1, m̂ = −κhNf
, µ = −bh1 and α1 = 2Q−α+ bhl
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in equation (B.12) of [27]:

F
(s)
2Q−α

[
−κhNf

−bh1
λh1 2Q− α+ bhl

]
(x) =

Nf∑

k=1

eiπǫ(φkl−bκ/Nf )
∏

j 6=l

Γ(1 + b2 + b〈α−Q, hj − hl〉)

Γ(1 + b2 − φkj)

·
∏

j 6=k

Γ(b〈λh1 −Q, hj − hk〉)

Γ(φjl)
F

(u)
λh1−bhk

[
−κhNf

−bh1
λh1 2Q− α+ bhl

]
(x)

(A.53)

where

φst = b〈−κhNf
, h1〉+ b〈λh1 −Q, hs〉 − b〈α−Q, ht〉 . (A.54)

The coefficient must vanish for all k 6∈ {1, 2} and all l, hence one of the denominator

Gamma functions must have a non-positive integer argument:

∀k ∈ J3, Nf K ∀l ∈ J1, Nf K − φjl ∈ Z≥0 or φkj − 1− b2 = φ(k−1)j ∈ Z≥0 . (A.55)

If for each 1 ≤ s ≤ Nf one had φpss = ns for some integers 1 ≤ ps ≤ Nf and ns, then

summing over s would yield

0 =

Nf∑

s=1

b〈α−Q, hs〉 =

Nf∑

s=1

(
bκ

Nf
+ b〈λh1 −Q, hps〉 − ns

)
= bκ + k1bλ+ k2b

2 + k3 (A.56)

for some integers ki: this cannot happen for generic (b,κ, λ). Thus there exists 1 ≤ u ≤ Nf

such that none of the φpu are integers. The condition (A.55) for l = u then implies that

for each 3 ≤ k ≤ Nf , φ(k−1)tk ∈ Z≥0 for some 1 ≤ tk ≤ Nf . No two tk can be equal,

because φ(k−1)t − φ(l−1)t = (k − l)(b2 + 1) is non-integer for k 6= l. We can thus permute

the components of α−Q through a Weyl transformation so that tk = k − 1:

b〈α−Q, hk−1〉 = b〈−κhNf
, h1〉+ b〈λh1 −Q, hk−1〉 − nk (A.57)

for all 3 ≤ k ≤ Nf , where nk ≥ 0 are some integers. We deduce that

α = (λ+ ν)h1 − (κ + ν)hNf
+

1

b

Nf∑

k=3

nk(h1 − hk−1) . (A.58)

The same considerations applied to the braiding of −1
bh1 and −κhNf

yield the constraint

above with 1
b replaced by b. We can thus restrict to momenta (A.58) which also have, up

to a Weyl transformation, the b → 1
b form. All in all, the fusion of two semi-degenerate

operators can only allow a one-parameter set of momenta, and some isolated momenta

V−κhNf
× Vλh1 =

∫
dν V(λ+ν)h1−(κ+ν)hNf

+
∑

n∈Z

∑

n′∈Z

Nf∑

k=1

V(λ−κ)h1+(n/b)(h1−hk)+[n′b−(Nf−k)/b](h1−hNf
) .

(A.59)

In the case Nf = 3, we wrote down explicitly null vectors descending from V−κhNf
and Vλh1

(higher WNf
algebras are intractable), and found that the isolated momenta are in fact not
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allowed. We propose that this holds for general Nf . After performing some Weyl reflections

of momenta on the left and right-hand side and redefining ν, we deduce the fusion rules

V−κhNf
× Vλh1 =

∫
dν V−κhNf

+λh1+ν(h1−hNf
) (A.60)

Vκh1 × Vλh1 =

∫
dν Vκh1+λh1+ν(h1−h2) (A.61)

V−κhNf
× V−λhNf

=

∫
dν V−κhNf

−λhNf
+ν(hNf−1−hNf

) . (A.62)

For completeness, we find the corresponding structure constant as the main residue

of C(α1, α2,κh1) at α1 = λh1 and α2 = 2Q − (κ + λ + ν)h1 + νh2, after removing our

normalization from (A.13), and recognize a Liouville CFT three-point function:

C
(κ+λ+ν)h1−νh2

κh1,λh1
=

µ̂νΥ(b)Nf−1Υ(κ)Υ(λ)Υ(κ + λ+ 2ν − b− 1/b)

Υ(−ν)Υ(κ + ν)Υ(λ+ ν)Υ(κ + λ+ ν − b− 1/b)

= Υ(b)Nf−2CLiouville

(
κ

2
,
λ

2
, b+

1

b
−

κ + λ

2
− ν

)
.

(A.63)

The equality is true by construction for Nf = 2, as a Liouville momentum of κ/2 corre-

sponds in the Toda CFT language to a momentum of (κ/2)(h1−h2) = κh1. More generally,

the equality may hint to a deeper relation between Toda CFTs for different values of Nf .

A.4.2 Fusion of semi-degenerate and degenerate operators

We are now ready to tackle the fusion of other degenerate vertex operators V−bω with

semi-degenerate operators Vκh1 .

For ω = Nh1 the fusion is a special case of (A.61) with λ = −Nb, hence only allows the

momenta (κ −Nb)h1 + ν(h1 − h2). Given the fusion rule (A.50) of a degenerate operator,

(N − ν/b)h1 + (ν/b)h2 must be a weight of R(Nh1) hence ν = nb with 0 ≤ n ≤ N , and

Vκh1 × V−Nbh1 =
N∑

n=0

V(κ−(N−n)b)h1−nbh2
(A.64)

with no multiplicity since the weight (N − n)h1 + nh2 of R(Nh1) has no multiplicity.

Through the Weyl rotation (Nf · · · 2 1), an equivalent statement is that the fusion of −κhNf

and −Nbh1 yields the momenta −nbh1 − (κ + (N − n)b)hNf
.

The correlator 〈Vα∞(∞)V(κ′+lb)h1
(1)V−lbh1(x, x̄)Vα0(0)〉 has dim

(
R(lh1)

)
s-channel

conformal blocks, and must have the same number of t-channel conformal blocks. The

fusion (A.64) allows the t-channel internal momenta κ
′h1+nb(h1−h2) for 0 ≤ n ≤ l, with

no multiplicity, hence any multiplicity is due to the fusion of Vα0 and Vα∞ . The number

of t-channel conformal blocks is thus

l∑

n=0

Nκ′h1+nb(h1−h2)
α0, α∞

= dimR(lh1) =

(
Nf + l − 1

l

)
(A.65)
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where Vβ appears Nβ
α0,α∞ times in the fusion of Vα0 and Vα∞ . Solving, we find

Nκ′h1+nb(h1−h2)
α0, α∞

= dimR
(
nh1

)
− dimR

(
(n− 1)h1

)

=

(
Nf + n− 1

n

)
−

(
Nf + n− 2

n− 1

)
=

(
Nf + n− 2

n

)
.

(A.66)

None of these multiplicities vanish, so all N+1 momenta of (A.64) do appear in the fusion.

Restricting the fusion rule (A.64) to κh1 = −Kbh1 with K ≥ N , we retrieve the

decomposition into irreducible representations of the tensor product of two symmetric

representations, given by the Littlewood-Richardson rule:

R(Kh1)⊗R(Nh1) =
N⊕

n=0

R
(
(K +N − n)h1 + nh2

)
. (A.67)

One could go in the other direction: the decomposition (A.67) for K ≥ N implies that

the fusion of V−Kbh1 with V−Nbh1 yields the momenta −(K +N − n)bh1 − nbh2. This set

of N + 1 momenta only involves −Kbh1 as an overall constant part, hence the natural

generalization from V−Kbh1 to Vκh1 is (A.64). We will apply a similar reasoning36 to guess

the fusion of other degenerate operators with a semi-degenerate operator.

The tensor product of an antisymmetric and a symmetric representations of ANf−1 is

the sum of two irreducible representations,

R(Kh1)⊗R(ωN ) = R(Kh1 + ωN )⊕R
(
(K − 1)h1 + ωN+1

)
. (A.68)

This naturally generalizes to the fusion rule

Vκh1 × V−bωN
= Vκh1−bωN

+ Vκh1−b(ωN+1−h1) . (A.69)

For completeness, a Weyl reflection yields the fusion of −κhNf
and −bωN , which features

the momenta −(κ + b)hNf
− bωN−1 and −κhNf

− bωN .

We show in section 2.2, together with appendices A.3 and A.2 which do not depend on

this fusion rule, that the Toda CFT correlator of two generic operators with Vκh1 and V−bωN

is equal to the partition function of a surface operator. At the end of section 2.2.1 we expand

the partition function in a limit which corresponds to the fusion of Vκh1 and V−bωN
. The

exponents found there prove the fusion rule (A.69). Once more, the number of t-channel

and s-channel conformal blocks must be equal:

Nκh1−bωN
α0, α∞

+N
(κ+b)h1−bωN+1
α0, α∞ =

(
Nf

N

)
. (A.70)

We deduce for each n ≥ 0 that for all κ,

Nκh1−bωn+1
α0, α∞

=

(
Nf − 1

n

)
. (A.71)

36In principle, one could go further, and guess the fusion rule (A.61) for two semi-degenerate operators

by replacing −Nbh1 → λh1 and allowing shifts by continuous multiples of h2 − h1. It could be interesting

to obtain a continuous analogue of the Littlewood-Richardson rule along those lines.
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This is consistent with multiplicities of the two powers of |1 − x|2 found at the end of

section 2.2.1, and matches with (A.66) for n = 1 and n = 0.

Consider now an arbitrary highest weight ω =
∑Nf−1

j=1 njωj of ANf−1. For each j from

Nf − 1 to 1, its Young diagram has nj columns with j boxes. Through the Littlewood-

Richardson rule, we find a decomposition valid for K ≥
∑Nf−1

j=1 nj ,

R(Kh1)⊗R(ω) =

nNf−1⊕

kNf−1=0

· · ·
n1⊕

k1=0

R

(
Kh1 + ω +

Nf−1∑

j=1

[
kj(hj+1 − h1)

])
(A.72)

into
∏Nf−1

j=1 (nj + 1) irreducible representations. We thus propose the fusion rule

Vκh1 × V
−b

∑Nf−1

j=1 njωj

=

n1∑

k1=0

· · ·

nNf−1∑

kNf−1=0

V
κh1−b

∑Nf−1

j=1 [njωj+kj(hj+1−h1)]
. (A.73)

As a natural generalization of (A.66) and (A.71), we propose that vertex operators with a

momentum κh1 − b
∑Nf−1

j=1 ljωj appear with multiplicity

N
κh1−b

∑Nf−1

j=1 ljωj

α0, α∞ = dimRANf−2

(Nf−1∑

j=1

ljωj−1

)
, (A.74)

where the j = 1 term can be absorbed in a shift of κ, and the right-hand side is the

dimension of the representation of ANf−2 whose Young diagram is obtained from that of

R
(∑Nf−1

j=1 ljωj

)
by removing the first row: h1 → 0 and hi → hi−1. Besides reproducing

the correct multiplicities for the symmetric and antisymmetric case, the proposal (A.74)

correctly leads to equally many s-channel and t-channel conformal blocks in the four-point

function 〈Vα∞(∞)Vκh1(1)V−bω(x, x̄)Vα0(0)〉 since

dimR

(Nf−1∑

j=1

njωj

)
=

n1∑

k1=0

· · ·

nNf−1∑

kNf−1=0

dimRANf−2

(Nf−1∑

j=1

[
njωj−1 + kjhj

])
. (A.75)

The equality holds because the representations on the right-hand side are the decomposition

of R(ω) into irreducible representations of the subalgebra ANf−2 of ANf−1.

A.5 Conformal blocks

In this section we give explicit expressions of conformal blocks which are labeled by two

generic momenta α∞ = Q − ia∞ and α0 = Q − ia0 at ∞ and 0, one semi-degenerate

momentum m̂ = λh1 at 1, and some degenerate momenta −bΩj inserted at the positions

(xj , x̄j) for 1 ≤ j ≤ n. The expressions are direct translations of the gauge theory vortex

partition functions through the correspondence described in the main text. We only con-

sider conformal blocks in the s-channel (the region 1 > |xn| > · · · > |x1| > 0), which are

series in powers of xn, xn−1/xn, . . . , x1/x2.
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First comes the case of a single degenerate momentum −bωN labeled by the N -th

antisymmetric representation of ANf−1. The four-point conformal blocks are equal, up to

powers of x and 1− x, to the vortex partition functions (2.60) of SQCD,

F
(s)
Q−ia0−bh{p}

[
λh1 −bωN

Q− ia∞ Q− ia0

]
(x)

= x−b〈ia0,h{p}〉+
N(Nf−N)

2
(b2+1)(1− x)N(b2+1−bλ/Nf )

∑

k1,...,kN≥0

x
∑N

j=1 kj

∏N
j=1 kj !

∏N
j=1

∏Nf

s=1(1− b(λ−Nb)/Nf − b〈ia0, hpj 〉 − b〈ia∞, hs〉)kj
∏N

i 6=j(b〈ia0, hpi − hpj 〉 − ki)kj
∏N

j=1

∏Nf

s 6∈{p}(1 + b〈ia0, hs − hpj 〉)kj
.

(A.76)

The internal momentum Q − ia0 − bh{p} is labeled by a weight h{p} = hp1 + · · · + hpN
of R(ωN ), where 1 ≤ p1 < · · · < pN ≤ Nf . While the expression (A.76) is established

since we provide a proof of the correspondence in this case, the conformal blocks below are

not. However, they are supported by the evidence we gave for the correspondence in the

main text.

Next, s-channel conformal blocks with the degenerate momentum −Nbh1 have an

internal momentum Q−ia0−bh labeled by a weight h of the N -th symmetric representation

R(Nh1) of ANf−1. We let h = h[n] =
∑Nf

s=1 nshs for
∑Nf

s=1 ns = N , and I = {(s, µ) | 1 ≤

s ≤ Nf , 0 ≤ µ ≤ ns}. Conformal blocks are vortex partition functions (2.97) up to factors

x−γ0(1− x)−γ1 from the correspondence (2.88):

F
(s)
Q−ia0−bh[n]

[
λh1 −Nbh1

Q− ia∞ Q− ia0

]
(x)

= x∆(Q−ia0−bh[n])−∆(Q−ia0)−∆(−Nbh1)(1− x)∆(λh1−Nbh2)−∆(λh1)−∆(−Nbh1)

∑

k:I→Z≥0

∏

(s,µ)∈I

[
xksµ

Nf∏

t=1

(1− b(λ−Nb)/Nf − b〈ia0, hs〉 − b〈ia∞, ht〉 − µb2)ksµ
(1 + b〈ia0, ht − hs〉+ (nt − µ)b2)ksµ

·

∏Nf

t=1(1 + b〈ia0, ht − hs〉+ (nt − µ)b2 + ksµ − kt(nt−1))kt(nt−1)∏
(t,ν)∈I(1 + b〈ia0, ht − hs〉+ (ν − µ)b2 + ksµ − ktν)ktν−kt(ν−1)

]
.

(A.77)

We now come to the case of (n + 3)-point conformal blocks with two generic, one

semi-degenerate, and n degenerate momenta −bΩj = −bΩ(Kj , ǫj), where Ω(K,−1) = ωK

and Ω(K,+1) = Kh1. In the s-channel 1 > |xn| > . . . > |x1|, the internal momentum

running between the punctures at xj and xj+1 (here xn+1 = 1) has the form α0 − bh[nj ] =

α0− b
∑Nf

t=1 n
j
tht, for some integers nj

t ≥ 0. These integers must be such that h[nj ]−h[nj−1]

is a weight of R(Ωj) for each 1 ≤ j ≤ n (here n0
t = 0). Explicitly,

∑Nf

t=1(n
j
t − nj−1

t ) = Kj ,

and nj
t − nj−1

t is in Z≥0 if ǫj = +1 and in {0, 1} if ǫj = −1.

In section 2.4 we find a quiver gauge theory whose vacua are labeled by the same data,

and perform various checks that its partition function is equal to the Toda correlator we are

now considering. Up to simple factors, the conformal blocks are thus equal to the vortex

partition functions, themselves a sum of residues in the Coulomb branch representation of
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the partition function. Let us introduce the sets Ij =
{
(s, µ)

∣∣ 0 ≤ ν < nj
s, 1 ≤ s ≤ Nf

}

(I0 is empty), the notation ias,µ = 〈ia0, hs〉 + µb, and the parameters qn+1 = b2/2 and

qj = ǫj(b
2/2 + 1/4)− 1/4. We find

F (s)



α∞ α0α0 − bh[n1]α0 − bh[nn]

−bΩ1−bΩ2

· · ·
−bΩnλh1


(x)

=

n∏

j=1

[
x
∆(α0−bh

[nj ]
)−∆(α0−bh

[nj−1]
)−∆(−bΩj)

j [1− xj ]
(1+b2− bλ

Nf
)Kj

] n∏

i<j

[
1−

xi
xj

](1+2qj+b2
Kj
Nf

)Ki

·
∑

{kj,s,µ≥0}

{
n∏

j=1

∏

(s,µ)∈Ij

[ [
xj
xj+1

]kj,s,µ ∏

(t,ν)∈Ij

(1 + bias,µ − biat,ν)kj,t,ν−kj,s,µ

(1 + qj + qj+1 + bias,µ − biat,ν)kj,t,ν−kj,s,µ

·
∏

(t,ν)∈Ij−1

(1 + 2qj + bias,µ − biat,ν)kj−1,t,ν−kj,s,µ

(1 + bias,µ − biat,ν)kj−1,t,ν−kj,s,µ

]

·

Nf∏

s=1

∏

(t,ν)∈In

(
1− b(λ− b

∑n
j=1Kj)/Nf − b〈ia∞, hs〉 − biat,ν

)
kn,t,ν

(1 + b〈ia0, hs〉 − biat,ν)kn,t,ν

}
.

(A.78)

As discussed in the main text, when all ǫj = −1, placing all degenerate punctures

at the same position xj = x yields the conformal block for one particular fusion of the

degenerate momenta, which turns out to be

− bΩ = −b
n∑

j=1

Ωj = −b
n∑

j=1

ωKj . (A.79)

This provides an explicit expression for the four-point conformal block of two generic and

one semi-degenerate momentum, and one degenerate momentum labeled by an arbitrary

representation of ANf−1. Fusing degenerate punctures in several sets gives conformal blocks

with several arbitrary degenerate momenta −bΩ, but these quickly become unwieldy.

A.6 Irregular punctures

We study irregular punctures obtained as collision limits of vertex operators in the Toda

CFT. Such collisions were studied for Virasoro primaries in [51], and extended to other

algebras in [60, 61]. We give evidence that the limit

Vc0;c1,c̄1;··· ;cK ,c̄K (w, w̄) = lim
(wI ,w̄I)→(w,w̄)

∏

I<J

|wJ − wI |
2〈αJ ,αI〉

K∏

I=0

VαI (wI , w̄I) (A.80)

exists, provided that the momenta αI of vertex operators, and their position (wJ , w̄J), vary

in such a way that

Cj =
K∑

I=0

(wI − w)jαI → cj C̄j =
K∑

I=0

(w̄I − w̄)jαI → c̄j (A.81)
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for all j ≥ 0. Not every choice of cj and c̄j can appear (for a given rank K). Firstly, c̄0 = c0.

Secondly, c̄j = cj = 0 for all j > K. Indeed, any Cj with j > K is a linear combination

Cj =
∑K

k=0 Pj,k({wI−w})Ck whose coefficients Pj,k are homogeneous polynomial of degree

j − k ≥ 1 in the variables wI − w, and such polynomials vanish as wI → w. The limits of

Cj and C̄j are thus described by the 2K + 1 momenta (c0; c1, c̄1; · · · ; cK , c̄K), as indicated

by the notation in (A.80).

There is (at least) one other condition on the cj and c̄j : for each 0 ≤ m ≤ K the

vectors {cn, c̄n | m ≤ n ≤ K} must span a space of dimension at most K − m + 1, for

instance cK and c̄K must be collinear. This third restriction relies on

n∑

j=0

(
Cj

∑

S∈J0,n−1K
#S=n−j

∏

I∈S

(w − wI)

)
=

K∑

J=n

n−1∏

I=0

(wJ − wI)
nαJ , (A.82)

whose left-hand side goes to cn in our limit, and on its analogue for c̄n. Since rank is lower

semicontinuous, the rank of the space spanned by {cn, c̄n | m ≤ n ≤ K} is at most that of

the space spanned by (A.82) and by their antiholomorphic counterparts (for m ≤ n ≤ K).

This second space lies within the span of {αJ | m ≤ J ≤ K}, which has rank at most

K −m+ 1.

A.6.1 OPE with the stress-energy tensor

Our first piece of evidence is to write the OPE of the stress-energy tensor with

V{αI}

(
{wI , w̄I}

)
=

∏

I<J

|wJ − wI |
2〈αJ ,αI〉

K∏

I=0

VαI (wI , w̄I) (A.83)

in the limit which defines Vc0;··· ;cK ,c̄K . The operators VαI are primary, hence

T (z)V{αI}

(
{wI , w̄I}

)

∼
∏

I<J

|wJ − wI |
2〈αJ ,αI〉

K∑

I=0

(
∆(αI)

(z − wI)2
+

1

z − wI
∂wI

) K∏

I=0

VαI (wI , w̄I) (A.84)

=
K∑

I=0

(
∆(αI)

(z − wI)2
+

1

z − wI

(
∂wI +

∑

J 6=I

〈αI , αJ〉

wJ − wI

))
V{αI}

(
{wI , w̄I}

)
(A.85)

=

(
〈Q, ∂z∂zϕsing〉 −

1

2
〈∂zϕsing, ∂zϕsing〉+

K∑

I=0

∂wI

z − wI

)
V{αI}

(
{wI , w̄I}

)
(A.86)

where in the last line we use ∆(αI) = 〈Q,αI〉 −
1
2〈αI , αI〉 to express all but the ∂wI piece

in terms of

∂zϕsing =
K∑

I=0

−αI

z − wI
=

∑

n≥0

−
∑K

I=0(wI − w)nαI

(z − w)n+1
=

∑

n≥0

−Cn

(z − w)n+1
→

K∑

n=0

−cn
(z − w)n+1

.

(A.87)
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In the domain where all |wI − w| < |z − w|, we can expand the derivative term as

K∑

I=0

(z − wI)
−1∂wI =

∑

n≥−1

(z − w)−n−2
K∑

I=0

(wI − w)n+1∂wI . (A.88)

The term with n = −1 is
∑K

I=0 ∂wI , which translates all vertex operators, hence its limit

is ∂w. The other terms do not have such a simple geometrical interpretation. Instead, let

us write their action on Cm for 0 ≤ m ≤ K:

K∑

I=0

(wI − w)n+1∂wICm =
K∑

I=0

(wI − w)n+1∂wI

K∑

J=0

(wJ − w)mαJ (A.89)

=
K∑

I=0

m(wI − w)n+mαI = mCn+m . (A.90)

The limit of
∑K

I=0(wI − w)n+1∂wI must thus be a differential operator which maps cm →

mcn+m for all 0 ≤ m ≤ K−n and cm → 0 for K−n < m ≤ K. This is naturally realized by

K∑

I=0

(wI − w)n+1∂wI →
K−n∑

j=1

j〈cn+j , ∂cj 〉 . (A.91)

All in all, the OPE of T (z) with V = Vc0;··· ;cK ,c̄K (w, w̄) is

T (z)V ∼

(〈
Q, ∂z

K∑

n=0

−cn
(z − w)n+1

〉
−

1

2

〈
K∑

j=0

−cj
(z − w)j+1

,

K∑

l=0

−cl
(z − w)l+1

〉

+
∂w

z − w
+

∑

n≥0

1

(z − w)n+2

K−n∑

j=1

j〈cn+j , ∂cj 〉

)
V (A.92)

=

(
1

z − w
∂w +

2K∑

n=0

(n+ 1)〈Q, cn〉 −
1
2

∑n
j=0〈cj , cn−j〉+

∑K−n
j=1 j〈cn+j , ∂cj 〉

(z − w)n+2

)
V

(A.93)

where we recall that cn = 0 for n > K. The presence of singularities up to (z − w)−2K−2

in this OPE implies that the Virasoro generators Ln act non-trivially on the state |c〉 =

Vc0;··· ;cK ,c̄K (0)|0〉 for n ≤ 2K. More precisely,

Ln|c〉 =

(
(n+ 1)〈Q, cn〉 −

1

2

n∑

j=0

〈cj , cn−j〉+
K−n∑

j=1

j〈cn+j , ∂cj 〉

)
|c〉 (A.94)

for 0 ≤ n ≤ 2K, while L−1 translates w, and Ln|c〉 = 0 for n > 2K. This is the natural

generalization of equation (2.7) of [51].

In the rank 1 case (cn = 0 for n > 1), we can exponentiate explicitly the action of the

Virasoro generators Ln to find how large conformal transformations act. From above, we
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know that Ln|c〉 = 0 for n > 2, that L−1 acts like ∂w, and that

L2|c〉 = −
1

2
〈c1, c1〉|c〉 , (A.95)

L1|c〉 = 〈2Q− c0, c1〉|c〉 , (A.96)

L0|c〉 =
(
∆(c0) + 〈c1, ∂c1〉

)
|c〉 , (A.97)

where as usual ∆(c0) = 〈Q, c0〉 − 〈c0, c0〉/2. Omitting the parameters z̄, w̄ and c̄n which

play no role for holomorphic transformations, we claim that

Vc0,c1(z) =
(
∂zw

)∆(c0) exp

(
〈2Q− c0, c1〉

2

∂2
zw

∂zw
−

〈c1, c1〉

12

[
∂3
zw

∂zw
−
3

2

(∂2
zw)

2

(∂zw)2

])
Vc0,(∂zw)c1(w)

(A.98)

under a conformal map z → w(z). Indeed, this transformation is transitive and has the

correct infinitesimal behavior: for ∂zw = 1 + ǫ,

Vc0,c1(z) =

(
1 + ǫ

(
∆(c0) + 〈c1, ∂c1〉

)
+

〈2Q− c0, c1〉

2
∂zǫ−

〈c1, c1〉

12
∂2
z ǫ+O(ǫ2)

)
Vc0,c1(w) .

(A.99)

A.6.2 Free field realization

Our derivation of (A.93) only relies on the OPE of T (z) with vertex operators Vα. This

OPE has a free field realization as the OPE of T free
Q = 〈Q, ∂∂ϕ〉 − 1

2 :〈∂ϕ, ∂ϕ〉: with V free
α =

:e〈α,ϕ〉:. We rederive (A.93) more directly by first building the collision limit Vfree of vertex

operators V free
α , then computing its OPE with T free

Q . We then go further and consider the

OPE of higher spin currents of the WNf
algebra with V

free.

First, :e〈α,ϕ(z,z̄)〉::e〈β,ϕ(w,w̄)〉: = |z − w|−2〈α,β〉:e〈α,ϕ(z,z̄)〉+〈β,ϕ(w,w̄)〉: implies by induction

∏

I<J

|wI − wJ |
2〈αI ,αJ 〉

K∏

I=0

:e〈αI ,ϕ(wI ,w̄I)〉: = :e
∑K

I=0〈αI ,ϕ(wI ,w̄I)〉: . (A.100)

Expanding ϕ(wI , w̄I) = ϕ(w, w̄)+
∑

n≥1
1
n!

(
(wI−w)n∂nϕ(w)+(w̄I−w̄)n∂̄nϕ(w̄)

)
thanks to

∂∂̄ϕ = 0 and using the limit
∑K

I=0(wI −w)n〈αI , ∂
nϕ〉 → 〈cn, ∂

nϕ〉 and its antiholomorphic

counterpart yields the free field collision limit

V
free
c0;··· ;cK ,c̄K

(w, w̄) = : exp

(
〈c0, ϕ(w, w̄)〉+

K∑

n=1

1

n!

(
〈cn, ∂

nϕ(w)〉+ 〈c̄n, ∂̄
nϕ(w̄)〉

))
: .

(A.101)

The stress-energy tensor T free
Q (z) and higher spin currents are polynomials in ∂ϕ(z)

and its derivatives. We thus evaluate

∂ϕ(z)Vfree
c0;···(w, w̄) = :

(
∂ϕ(z) +

∑

n≥0

cn
n!

∂n
w

−1

z − w

)
V
free
c0;···(w, w̄): (A.102)

= :

(∑

n≥1

(z − w)n−1n∂cn −
∑

n≥0

cn
(z − w)n+1

)
V
free
c0;···(w, w̄): (A.103)
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where the first equality relies on ∂ϕ(z)ϕ(w, w̄) = −1/(z−w), and the second on the Taylor

expansion of ∂ϕ(z) and on ∂nϕVfree
c0;··· = n!∂cnV

free
c0;···. The OPE of Vfree

c0;···(w, w̄) with any

polynomial in derivatives of ∂ϕ(z) is thus obtained by replacing all

∂l+1
z ϕ(z) → ∂l

z

(
∑

n≥1

(z − w)n−1n∂cn −
∑

n≥0

cn
(z − w)n+1

)
= −∂l

z

∑

n∈Z

θncn + θ−nn∂c−n

(z − w)n+1

(A.104)

where θn = 1 if n ≥ 0 and 0 if n < 0, then dropping terms that are regular as z → w.

In particular,

T free
Q (z)Vfree =

(
〈Q, ∂∂ϕ(z)〉 −

1

2
:〈∂ϕ(z), ∂ϕ(z)〉:

)
V
free
c0;··· ;cK ,c̄K

(w, w̄) (A.105)

∼

(〈
Q,

∑

n≥0

(n+ 1)cn
(z − w)n+2

〉
−

1

2

〈
∑

i≥0

ci
(z − w)i+1

,
∑

j≥0

cj
(z − w)j+1

〉

+

〈
∑

i≥0

ci
(z − w)i+1

,
∑

j≥1

(z − w)j−1j∂cj

〉)
V
free (A.106)

=

(
2K∑

n=0

(n+ 1)〈Q, cn〉 −
1
2

∑n
i=0〈ci, cn−i〉

(z − w)n+2
+

K−1∑

n=−1

∑K−n
j=1 〈cj+n, j∂cj 〉

(z − w)n+2

)
V
free .

(A.107)

Upper bounds could be omitted since cm = 0 for m ≥ K. Note the presence of ∂cK+1 in the

last term for n = −1 and j = K+1. This derivative is inconvenient as it involves irregular

punctures with a rank higher than V
free. It turns out that the terms with n = −1 combine

nicely into

K+1∑

j=1

〈cj−1, ∂
jϕ(w)〉

(j − 1)!
V
free
c0;··· ;cK ,c̄K

(w, w̄) = ∂wV
free
c0;··· ;cK ,c̄K

(w, w̄) . (A.108)

As expected, the free field OPE reproduces the OPE (A.93).

We are ready to consider higher spin currents. A basis of those currents is obtained

via the Miura transform

1∏

s=Nf

(
q∂z + 〈hs, ∂zϕ(z)〉

)
=

Nf∑

p=0

W p(z)
(
q∂z

)Nf−p
(A.109)

where q = b + 1
b . In particular, W 0(z) = 1, W 1(z) = 0, and W 2(z) = T free

Q (z). The

prescription (A.104) then yields the OPE of W p(z) with the irregular V
free
c0;···(w, w̄), but

expressions quickly become very unwieldy. However, we can get valuable information by

applying the prescription (A.104) directly to the Miura transform (A.109):

Nf∑

p=0

W p(z)Vfree
c0;···(w, w̄)

(
q∂z

)Nf−p
=

1∏

s=Nf

(
q∂z +

∑

n∈Z

〈
hs,−θncn − θ−nn∂c−n

〉

(z − w)n+1

)
V
free
c0;···(w, w̄)

(A.110)
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where ∂cj only acts on V
free and not on intervening cj , and where θn = 1 if n ≥ 0 and

0 otherwise. The sums over n actually truncate to n ≤ K for rank K punctures, thus only

a finite number of negative powers of (z − w) appear in the OPE.

Let us find out the most singular terms of the OPE of a given W p(z) with V
free

as z → w. Thanks to the mode expansion W p(z) =
∑

n∈ZW
p
n(w)(z − w)−n−p, the

(z − w)−n−p term in the OPE encodes the action of W p
n on the rank K puncture

|c〉 = V
free
c0;··· ;cK ,c̄K

(w, w̄)|0〉. Terms where 0 ≤ m < p of the q∂z act on some 〈hs, . . .〉

are at most of order O
(
(z − w)−(K+1)(p−m)−m

)
. Those involving ∂cj derivatives are of

order O
(
(z − w)−(K+1)(p−m−1)−m

)
or more regular. Thus, W p

n |c〉 = 0 for n > pK,

W p
n |c〉 = (−1)p

∑

1≤s1<···<sp≤Nf

[
∑

k1+···+kp=pK−n

p∏

i=1

〈hsi , cK−ki〉

+ δn,(p−1)K(K + 1)q

p∑

j=1

(
(j − 1)

p∏

i 6=j

〈hsi , cK〉

)]
|c〉

(A.111)

for (p− 1)K ≤ n ≤ pK, and lower components of W p(z) act with ∂cj derivatives. This is

consistent with the action (A.94) of the Virasoro algebra for p = 2.

For n < (p − 1)K, the action of W p
n on |c〉 involves derivatives ∂cj for each 1 ≤ j ≤

(p − 1)K − n. In particular, if n < (p − 2)K, derivatives with j > K appear: the set

of rank K irregular punctures is not stable under those components W p
n . One exception

is that L−1 = W 2
−1 involves derivatives up to ∂cK+1 but turns out to be identical to an

infinitesimal translation. The set of all (finite, integer) rank irregular punctures is stable

under all W p
n .

Before closing this appendix, we go back to the Toda CFT and compute various two-

point functions of vertex operators with rank K = 1 irregular punctures as a test that the

collision limit is finite.

A.6.3 Two-point functions

Irregular punctures only arise in section 2.2.3 as the collision of a semi-degenerate and a

generic vertex operators. We compute here the two-point function of the resulting rank 1

puncture with any generic vertex operator (A.116) in a useful normalization (A.113).

The collision limits of interest are a special case of the general collision limit (A.80)

which defines rank K irregular punctures. Using notations close to the main text,

Vc0;−(x/b)h1,(x̄/b)h1
(0) = lim

Λ→∞

[∣∣∣x
Λ

∣∣∣
2〈κh1,c0−κh1〉

Vκh1

(
x

−iΛ
,
x̄

iΛ

)
Vc0−κh1(0)

]

κ=iΛ/b+O(1)

(A.112)

where Λ ∈ R is the gauge theory cutoff scale, c0, b, x and x̄ are various physical param-

eters, and only the leading behavior of κ in Λ affects the limit. We also introduce the
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normalization

V̂c0;−(x/b)h1,(x̄/b)h1
(0) =

µ̂〈c0−Q,ρ〉
Vc0;−(x/b)h1,(x̄/b)h1

(0)

Υ(b)Nf−1
∏

2≤s<t≤Nf
Υ(〈Q− c0, hs − ht〉)

(A.113)

= lim
Λ→∞

[
Υ
(
κ + 〈Q− c0, h1〉

)Nf

|Λ/b|2∆(c0)−〈Q,Q〉

∣∣∣ x
Λ

∣∣∣
2〈κh1,c0−κh1〉

V̂κh1

(
x

−iΛ
,
x̄

iΛ

)
V̂c0−κh1(0)

]

κ=iΛ/b+O(1)

where the second line is obtained by combining the factors (A.7) and (A.8) which re-

late V̂ and V with those relating V̂ and V. The only non-trivial step is that the

asymptotics (A.11) of the Upsilon function simplify
∏Nf

t=1Υ(κ + 〈Q − c0, h1 − ht〉) to

Υ(κ + 〈Q− c0, h1〉)
Nf |Λ/b|〈Q,Q〉−2∆(c0).

Let us compute the two-point function of the irregular puncture (A.113) with a generic

vertex operator V̂α0 . Throughout the calculation, κ = iΛ/b + O(1). Scale covariance and

the explicit form (A.13) of the three-point function give

Υ
(
κ + 〈Q− c0, h1〉

)Nf

|Λ/b|2∆(c0)−〈Q,Q〉

∣∣∣x
Λ

∣∣∣
2〈κh1,c0−κh1〉

〈
V̂α0(∞)V̂κh1

(
x

−iΛ
,
x̄

iΛ

)
V̂c0−κh1(0)

〉

=
|x/Λ|2〈κh1,c0−κh1〉−2∆(κh1)−2∆(c0−κh1)+2∆(α0)Υ(κ + 〈Q− c0, h1〉)

Nf

|Λ/b|2∆(c0)−〈Q,Q〉∏Nf

s,t=1Υ
(

κ

Nf
+ 〈Q− c0 + κh1, hs〉+ 〈Q− α0, ht〉

) (A.114)

∼
|x/Λ|2∆(α0)−2∆(c0)|Λ/b|2∆(α0)−〈Q,Q〉

|Λ/b|2∆(c0)−〈Q,Q〉∏Nf

s=2

∏Nf

t=1Υ
(
〈Q− c0, hs〉+ 〈Q− α0, ht〉

) . (A.115)

All powers of Λ cancel, and we deduce that

〈
V̂α0(∞)V̂c0;−(x/b)h1,(x̄/b)h1

(0)
〉
=

|x/b|2∆(α0)−2∆(c0)

∏Nf

s=2

∏Nf

t=1Υ
(
〈Q− c0, hs〉+ 〈Q− α0, ht〉

) . (A.116)

Note that the dependence on |x/b| is as expected from the transformation (A.98) of rank 1

irregular punctures under a scaling. Both the OPE with WNf
currents, and the two-point

function we have just computed, are finite, and independent of details such as the precise

value of κ in the limit (A.113). This gives credence to our claim that collision limits

Vc0;··· ;cK ,c̄K are finite and only depend on the cj and c̄j .

A similar calculation (not used in the main text) is the two-point function of a rank 1

irregular puncture (with c1 and c̄1 collinear) and a semidegenerate operator:

〈
V̂κh1(x, x̄)Vc0;c1,c̄1(y, ȳ)

〉
=

exp
( 〈c0−2Q,c1〉

y−x + 〈c0−2Q,c̄1〉
ȳ−x̄

)

|x− y|4∆(κh1)µ̂〈c0−2Q,ρ〉
∏Nf

s=1Υ
(

κ

Nf
+ 〈2Q− c0, hs〉

)

·
∏

s<t

(
−〈c1, hs − ht〉〈c̄1, hs − ht〉

)(κ/Nf−〈c0−2Q,ht〉)(b+1/b−κ/Nf+〈c0−2Q,hs〉) .

(A.117)

It is instructive to note how this expression is consistent with transformation proper-

ties (A.98) of rank 1 irregular punctures. Under a special conformal transformation

z → w(z) which keeps x and y invariant, c1 is scaled by ∂zw at y. Since at the fixed point y

one has ∂zw−1
y−x = ∂2

zw
2∂zw

, the exponential in (A.117) is shifted by 1
2〈2Q− c0, c1〉∂2

zw/∂zw, as

required by (A.98).
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B Vortex partition function dualities

We prove here that the vortex partition functions of some dual theories are equal up

to simple factors. The equalities are most easily seen through the matching with Toda

CFT correlators, as done in the main text. However, the matching is not proven in all

cases, so we proceed to establish the equalities directly using integral representations of

the vortex partition functions. We cover the case of Seiberg duality for N = (2, 2) SQCD

in appendix B.1. We then add adjoint matter and a superpotential in appendix B.2: this

includes as special cases the Seiberg duality for N = (2, 2)∗ SQCD, and the Kutasov-

Schwimmer duality. The two appendices use similar ideas but are independent.

B.1 SQCD vortex partition functions

We focus first on the S2 partition function of an N = (2, 2) theory of a U(N) vector mul-

tiplet coupled to Nf fundamental and Ñf antifundamental chiral multiplets. Its expression

can be decomposed as (2.58) into vortex partition functions [17, 18]. By symmetry we can

assume that Ñf < Nf , or that Ñf = Nf and |z| < 1. The relevant vortex partition functions

are then labeled by N -element subsets of J1, Nf K and take the form

Zv,{p}(m, m̃, x) =
∞∑

k=0

xkZk,{p}(m, m̃) , (B.1)

where x = (−1)Nf+N−1z and the k-vortex partition function is

Zk,{p}(m, m̃) =
∑

k1+···+kN=k

N∏

j=1

[
1

kj !

∏Ñf

s=1(−im̃s − impj )kj∏N
i 6=j(impi − impj − ki)kj

∏Nf

s 6∈{p}(1 + ims − impj )kj

]
.

(B.2)

We prove that the vortex partition function is invariant under the Seiberg duality map

ND = Nf − N , {p}D → {p}∁ (the set complement), mD
s = i

2 − ms, m̃D
s = i

2 − m̃s,

zD = (−1)Ñf z, up to a simple overall factor. This is based on the proof [17] that for

Ñf ≤ Nf − 2 the k-vortex partition function is invariant. Since Zk,{p} depends analytically

on the ms and m̃s, we only need to prove the equality when R-charges Re(−2ims) and

Re(−2im̃s) are between 0 and 1; the same is then true of the R-charges in the dual theory.

Consider a closed contour C+
k which lies in the half-plane Re(ϕ) > −1

2 and surrounds

with a positive orientation all points −ims + ν and 1
2 + ims + ν for 1 ≤ s ≤ Nf and integer

0 ≤ ν < κ. This set of points, which all have positive real part, is invariant under the

duality map −imD
s = 1

2 +ims. The contour C
−
k = −1

2 −C+
k lies in the half-plane Re(ϕ) < 0

and surrounds with a positive orientation all points −1 − ims − ν and −1
2 + ims − ν for

1 ≤ s ≤ Nf and integer 0 ≤ ν < κ. Define the contour integrals

I±k,{p}(m, m̃) =
1

k!

∫

(C±
k )k

dkϕ

(2πi)k

k∏

κ 6=λ

ϕκ − ϕλ

ϕκ − ϕλ − 1

k∏

κ=1

∏Ñf

s=1(ϕκ − im̃s)∏Nf

s=1(ϕκ + ims + δs 6∈{p})
. (B.3)

As we will see shortly, I± are essentially k-vortex partition functions of Seiberg dual theo-

ries (B.7). Given our choice of contours, the change of variables ϕ → ϕD = −1
2 − ϕ maps
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C±
k → C∓

k , and we find

I±
k,{p}∁

(mD, m̃D) = (−1)(1+Ñf+Nf )kI∓k,{p}(m, m̃) , (B.4)

where the sign comes from dϕD = − dϕ, ϕD− im̃D = −(ϕ− im̃), and ϕD+imD
s + δs∈{p} =

−(ϕ+ ims + δs 6∈{p}).

Poles of the integrand for which all Re(ϕκ) > −1
2 are labeled by choices of N integers

ks ≥ 0 with
∑

s∈{p} ks = k, such that the ϕκ are given in some order by

{ϕκ} =
{
−ims + ν

∣∣ s ∈ {p}, 0 ≤ ν < ks
}
, (B.5)

hence (C+
k )k surrounds precisely those poles. Similarly, poles with Re(ϕκ) < 0 are

{ϕκ} =
{
−1− ims − ν

∣∣ s 6∈ {p}, 0 ≤ ν < ks
}
, (B.6)

labeled by Nf−N integers ks ≥ 0 for s 6∈ {p}, summing to k, and (C−
k )k surrounds precisely

those poles. For a given choice of k1 + · · · + kN = k, the residue at each of the k! points

{ϕκ} = {−impj + ν | 1 ≤ j ≤ N, 0 ≤ ν < kj} reproduces the corresponding term in the

k-vortex partition function (the factor 1/k! cancels the choice of ordering of ϕκ), hence the

k-vortex partition functions are

Zk,{p}(m, m̃) = I+k,{p}(m, m̃)

Zk,{p}∁(m
D, m̃D) = (−1)(1+Ñf+Nf )kI−k,{p}(m, m̃) ,

(B.7)

where the dual relation derives from (B.4) or from summing residues at poles surrounded

by (C−
k )k.

B.1.1 SQCD with Ñf < Nf

As long as Ñf ≤ Nf − 2, the integrand in (B.3) is regular at infinity, hence we can choose

C+ along −1
4 + iR, from i∞ to −i∞: then C− = −1

2 − C+ has the opposite orientation,

and I−k,{p}(m, m̃) = (−1)kI+k,{p}(m, m̃). Therefore

Zk,{p}∁(m
D, m̃D) = (−1)(Ñf+Nf )kZk,{p}(m, m̃) , (B.8)

hence vortex partition functions are equal:

Zv,{p}∁(m
D, m̃D, xD) = Zv,{p}(m, m̃, x) , (B.9)

where xD = (−1)Nf+Ñfx hence zD = (−1)Ñf z. This result strongly relies on our ability to

reverse contours, that is, on the absence of poles at infinity for Ñf ≤ Nf−2. For Ñf = Nf−1

or Ñf = Nf , we must take into account the contribution from infinity.

Consider first the case Ñf = Nf − 1. We shift the pole at infinity to a finite position

through the regulating factor iM/(ϕκ + iM). This is equivalent to adding a fundamental

chiral multiplet with twisted mass M in the strip 0 < Re(−2iM) < 1. In the limit
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|M | → ∞, the contours (C±
k )k only surround poles of the original integral, which are

independent of M , and the regulator does not affect residues. Therefore,

I±k,{p}(m, m̃) = lim
|M |→∞

1

k!

∫

(C±
k )k

dkϕ

(2πi)k

{
k∏

κ 6=λ

ϕκ − ϕλ

ϕκ − ϕλ − 1

·
k∏

κ=1

[ ∏Nf−1
s=1 (ϕκ − im̃s)∏Nf

s=1(ϕκ + ims + δs 6∈{p})

iM

ϕκ + iM

]}
.

(B.10)

Poles of the integrand above with all Re(ϕκ) < 0 are identical to those of the non-regulated

integral, hence integrating along the contour −1
4 + iR yields I−k,{p}(m, m̃) by closing the

contour towards −∞. Closing the contour instead towards +∞ surrounds poles at

{ϕκ} =
{
−ims + ν

∣∣ s ∈ {p}, 0 ≤ ν < ks
}
∪
{
−iM + ν

∣∣ 0 ≤ ν < l
}
, (B.11)

for each choice of non-negative integers ks for s ∈ {p}, and l, such that l +
∑

s∈{p} ks = k.

The residue at such a point is (factors of iM cancel out)

(−1)l

l!
res

{ϕκ|1≤κ≤k−l}

[
k−l∏

κ 6=λ

ϕκ − ϕλ

ϕκ − ϕλ − 1

k−l∏

κ=1

∏Nf−1
s=1 (ϕκ − im̃s)∏Nf

s=1(ϕκ + ims + δs 6∈{p})

]
, (B.12)

where the residue is precisely one of the contributions to I+k−l,{p}(m, m̃). The contributions

for a fixed l combine into the full (k − l)-vortex partition function. All in all, using (B.7)

I−k,{p}(m, m̃) = Zk,{p}∁(m
D, m̃D) and I+k,{p} = Zk,{p} when Ñf = Nf − 1,

Zk,{p}∁(m
D, m̃D) = (−1)k

k∑

l=0

(−1)l

l!
Zk−l,{p}(m, m̃) , (B.13)

Z{p}∁(m
D, m̃D, xD) = e−xZ{p}(m, m̃, x) . (B.14)

Alternatively, the factor ex can be obtained from the case Nf = Ñf + 2 (where there

is no factor) by decoupling one of the fundamental chiral multiplets through the limit

|mNf
| → ∞. For an arbitrary Nf > Ñf ,

Z
Nf ,Ñf

k,{p} ∼





(imNf
)−k

k∑

l=0

(−1)l
(
k

l

)
(−imNf

)l(Ñf+2−Nf )Z
Nf−1,Ñf

k−l,{p} if Nf ∈ {p},

(imNf
)−kZ

Nf−1,Ñf

k,{p} if Nf 6∈ {p}.

(B.15)

If Nf ≥ Ñf + 3, terms other than l = 0 in the sum are of a lower order, thus

Z
Nf ,Ñf

k,{p} ∼ (imNf
)−kZ

Nf−1,Ñf

k,{p} , consistent with the equality (B.8) of Seiberg-dual vortex

partition functions in those cases. If Nf = Ñf + 2, we find

Z
Ñf+2,Ñf

{p} (imNf
x) ∼ e

−xδNf∈{p}Z
Ñf+1,Ñf

{p} (x) . (B.16)
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Exactly one of two Seiberg-dual vortex partition functions exhibits this exponential factor,

and with opposite signs since imD
Nf

∼ −imNf
. Starting from the Seiberg duality rela-

tion (B.9) for Nf ≥ Ñf +2, we thus obtain the exponential factor in (B.14) for Nf = Ñf +1.

Unfortunately, the same technique fails to reach the case Nf = Ñf , because terms be-

yond (B.15) contribute to the limit |mNf
| → ∞ (with x/mNf

kept constant). We avoid

this issue in the contour integral approach by introducing different parameters for each

occurrence of mNf
, as we now see.

B.1.2 SQCD with Ñf = Nf

When Ñf = Nf , we regulate using
∏k

κ=1

[
−(iMκ)

2
/ (

ϕ2
κ − (iMκ)

2
)]

with Mκ real for

simplicity. This factor is similar to the contribution from two fundamental chiral multiplets

with opposite twisted masses, but importantly we let the parameter Mκ depend on κ. In

fact, we will consider the limit where masses have different scales, 1 ≪ |M1| ≪ · · · ≪ |Mk|,

as this simplifies the expansion of residues. For large enough |Mκ|, the additional poles lie

outside the contours (C±
k )k, and the regulating factor tends to 1 when evaluated on the

contour (or at poles it encloses), thus

I±k,{p}(m, m̃) = lim
|Mκ|→∞

1

k!

∫

(C±
k )k

dkϕ

(2πi)k

{
k∏

κ=1

[
−(iMκ)

2

ϕ2
κ − (iMκ)2

]

·
k∏

κ 6=λ

[
ϕκ − ϕλ

ϕκ − ϕλ − 1

] k∏

κ=1

Nf∏

s=1

[
ϕκ − im̃s

ϕκ + ims + δs 6∈{p}

]}
.

(B.17)

Poles of the integrand above with all Re(ϕκ) ≤ −1
4 are identical to those of the non-

regulated integral, hence integrating along the contour −1
4 + iR yields Z−

k,{p}(m, m̃) by

closing the contour towards −∞.

Closing the contour instead towards +∞ surrounds numerous poles:

{ϕκ} =
{
−ims + µ

∣∣ s ∈ {p}, 0 ≤ µ < ks
}
∪
{
ǫκiMκ + ν

∣∣ κ ∈ K, 0 ≤ ν < lκ
}
, (B.18)

where K is the set of 1 ≤ κ ≤ k such that ϕκ = ǫκiMκ for some sign ǫκ = ±1, and where

the integers ks ≥ 0 for s ∈ {p} and lκ > 0 for κ ∈ K sum to k. To specify a pole completely,

one needs to know {K, ǫκ, lκ, ks}, but also which component of ϕ is equal to each −ims+µ

and each ǫκiMκ + ν. This is encoded in maps σ and τ such that

ϕσ(s,µ) = −ims + µ and ϕτ(κ,ν) = ǫκiMκ + ν . (B.19)

Note that τ(κ, ν) = κ if and only if ν = 0.

We expand the residue at the pole defined by {K, ǫκ, lκ, ks, σ, τ} in the limit 1 ≪
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|M1| ≪ · · · ≪ |Mk|:

1

k!

∏

κ∈K

[
−ǫκiMκ

2

lκ−1∏

ν=1

[
−(iMτ(κ,ν))

2

(ǫκiMκ + ν)2 − (iMτ(κ,ν))2

]] ∏

s∈{p}

ks−1∏

µ=0

[
1 +O

(
1

M2
σ(s,µ)

)]

·
∏

κ∈K

[
1−

lκΣ

ǫκiMκ
+O

(
1

M2
κ

)] ∏

κ∈K

[
1 +O

(
1

M2
κ

)] ∏

κ∈K

[
1

lκ

]

· res
ϕσ(s,µ)=−ims+µ

{
∏

κ 6=λ∈{σ(s,µ)}

[
ϕκ − ϕλ

ϕκ − ϕλ − 1

] ∏

κ∈{σ(s,µ)}

Nf∏

t=1

[
ϕκ − im̃t

ϕκ + imt + δt 6∈{p}

]}
.

(B.20)

The first line consists of all factors coming from the regulator; the next factor comes from

(ϕτ(... ) − im̃s)/(ϕτ(... ) + ims + δs 6∈{p}) and involves

Σ =

Nf∑

s=1

(im̃s + ims + δs 6∈{p}) ; (B.21)

the following two factors come from the ratio (ϕ−ϕ)/(ϕ−ϕ− 1) where either one or both

components of ϕ take the form ϕτ(κ,µ); the last line consists of all finite factors, independent

of the Mκ, which organize themselves into a residue along the components ϕσ(s,µ). A useful

simplification is

−(iMτ(κ,ν))
2

(ǫκiMκ + ν)2 − (iMτ(κ,ν))2
∼

{
−M2

τ(κ,ν)M
−2
κ if τ(κ, ν) < κ ,

1 if τ(κ, ν) > κ .
(B.22)

On its own, the residue (B.20) grows like
∏

κ(−ǫκiMκ), but we will see that the sum

over all possible choices of the signs ǫκ (keeping {K, lκ, ks, σ, τ} fixed) has a finite limit.

More precisely, starting from λ = k, and all the way down to λ = 1, we sum over ǫλ = ±1 (if

λ ∈ K) and take the limit |Mλ| → ∞. At each step there are three cases. If λ = σ(s, µ), the

twisted mass appears only in a factor 1+O(1/M2
λ), which thus drops out. If λ = τ(κ, ν) > κ,

then the factor (B.22) containing Mλ drops out. The case λ = τ(κ, ν) < κ does not appear,

as we see shortly. Finally, if λ ∈ K, several factors contain Mλ:

−ǫλiMλ

2

∏

1≤ν<lλ
τ(λ,ν)<λ

[
−(iMτ(λ,ν))

2

(ǫλiMλ + ν)2 − (iMτ(λ,ν))2

][
1−

lλΣ

ǫλiMλ
+O

(
1

M2
λ

)][
1 +O

(
1

M2
λ

)]
.

(B.23)

This expression vanishes in the limit |Mλ| → ∞ if any τ(λ, ν) < λ, thus only poles for

which all τ(λ, ν) ≥ λ contribute in the limit we consider. Otherwise, the expression above

is 1
2

(
−ǫλiMλ+ lλΣ+O(1/Mλ)

)
, whose sum over ǫλ = ±1 is the finite result lλΣ. All in all,

the sum over all choices of signs ǫ of the residue at the pole defined by {K, ǫκ, lκ, ks, σ, τ}

has a finite limit

1

k!
Σ#K res

ϕσ(s,µ)=−ims+µ

{
∏

κ 6=λ∈{σ(s,µ)}

[
ϕκ − ϕλ

ϕκ − ϕλ − 1

] ∏

κ∈{σ(s,µ)}

Nf∏

t=1

[
ϕκ − im̃t

ϕκ + imt + δt 6∈{p}

]}
,

(B.24)

which turns out to only depends on the number #K of elements in K and on the ks.
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We must now sum this expression over all choices of sets K, of integers lκ > 0 and ks ≥

0, and of indices σ(s, µ) and τ(κ, ν) > κ. The choice of {K, lκ, ks, σ, τ} can be split

into a choice of {K, lκ, τ} followed by a choice of integers ks ≥ 0 summing to k − l,

where l =
∑

κ∈K lκ, and finally a choice of σ labeling the complement of T = {τ(·, ·)}

by pairs (s, µ). This last choice does not affect the residue, hence contributes a factor

of (k − l)!. The sum over {ks} (summing to k − l) of the residue in (B.24) yields the

(k − l)-vortex partition function. Thus,

Z−
k,{p}(m, m̃) = (−1)k

∞∑

l=0

[
(k − l)!

k!

∑

T |#T=l

∑

K⊆T

∑

{lκ≥1}

∑

τ

[
Σ#K

]
Z+
k−l,{p}(m, m̃)

]
. (B.25)

The number of choices of {K, lκ, τ} with a given #K only depends on the size l = #T ,

thus the choice of T contributes a factor k!/[l!(k − l)!]. At this point, we could conclude

by noting that we expressed Z−
k,{p}(m, m̃) in terms of the Z+

k−l,{p}(m, m̃) with coefficients

depending only on l and the combination Σ of twisted masses, and neither on Nf nor on N .

The coefficients can thus be obtained through the special case Ñf = Nf = 1, N = 0, for

which computations are elementary, leading to a Seiberg duality relation valid for arbitrary

Ñf = Nf and N .

For completeness, we go through the combinatorical exercise. Since only l = #T affects

the counting, we can fix T = J1, lK to simplify the discussion. Define the map υ : T → T

such that for each κ ∈ K, υ(κ) = κ and υ(τ(κ, ν)) = max{τ(κ, µ) | 0 ≤ µ < ν, τ(κ, µ) <

τ(κ, ν)} for ν > 0. The data of K ⊆ T = J1, lK and υ : T → T with υ(κ) = κ for κ ∈ K and

υ(λ) < λ for λ ∈ T \K is in fact equivalent to that of {K, lκ, τ}. There are
∏

λ∈T\K(λ− 1)

maps υ, hence

Z−
k,{p}(m, m̃) = (−1)k

∞∑

l=0

{
1

l!

(
∑

K⊆J1,lK

Σ#K
∏

λ∈J1,lK\K

(λ− 1)

)
Z+
k−l,{p}(m, m̃)

}

= (−1)k
∞∑

l=0

(Σ)l
l!

Z+
k−l,{p}(m, m̃) ,

(B.26)

where (Σ)l = Σ · · · (Σ+ l−1) is the Pochhammer symbol. From this, we can finally deduce

the Seiberg duality relation

Z{p}∁(m
D, m̃D, xD) = (1− x)−ΣZ{p}(m, m̃, x) , (B.27)

with xD = x hence zD = (−1)Ñf z, and where we recall Σ =
∑Nf

s=1(im̃s + ims) + Nf − N .

This relation precisely matches that obtained in the main text as Toda conjugation, in

particular the exponent (3.4).

B.2 SQCDA vortex partition functions

We now adapt the proof to N = (2, 2) SQCDA theories with a superpotential. The field

content consists of a vector multiplet coupled to one adjoint chiral multiplet X, Nf fun-

damental chiral multiplets qs, and Nf antifundamental chiral multiplets q̃s. As in sec-
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tion 2.3.3 we consider two cases: the superpotential W =
∑Nf

t=1 q̃tX
ltqt and the superpo-

tential W = TrX l+1 for integers lt, l ≥ 0. Both choices exhibit common features, with lt
replaced by l for the second superpotential.

In sections 3.2.1 and 3.2.2, we find that pairs of such theories with gauge groups U(N)

and U(ND) are dual, using symmetries of Toda CFT correlators. Parameters are mapped

as follows: mD
X = mX , ND = L−N with L =

∑Nf

t=1 lt, and

mD
t = mt , m̃D

t = mD
t , zD = z−1 for W =

Nf∑

t=1

q̃tX
ltqt (B.28)

mD
t = mX −mt , m̃D

t = mX − m̃t , zD = z for W = TrX l+1 . (B.29)

Higgs branch vacua of the U(N) theory are labeled by integers 0 ≤ nt ≤ lt with sum N .

Those are in a natural bijection nD
t = lt − nt to integers 0 ≤ nD

t ≤ lt with sum L − N ,

which label Higgs branch vacua of the dual theory. We compare classical and one-loop

contributions in sections 3.2.1 and 3.2.2. We now prove the relations (B.57) and (B.58)

between the vortex partition functions of the U(N) theory in the vacuum {nt} and of the

U(L−N) theory in the vacuum {lt − nt}. As in the main text, y = (−1)Nf z.

B.2.1 Preliminary result for Nf = 1

Later on, we prove that dual vortex partition functions are equal up to some factor which

only depends on very little data. To fix this factor, we will use the simple case of Nf = 1

SQCDA with 1 + im1 + im̃1 +N imX = 0, which we consider now. Its unique vacuum has

n1 = N , and we prove that Zv,{N}(y) = (1 − y)−N(1+imX). By analyticity, it is enough to

show this when Re(im̃1) < 0 < Re(−im1) < Re(−imX).

The vortex partition function, given by the series (2.97), has a Mellin-Barnes integral

representation

Zv,{N}(y) =
∑

{kµ≥0}

y
∑

kµ

N−1∏

µ,ν=0

((ν − µ− 1)imX − kν)kµ
((ν − µ)imX − kν)kµ

(B.30)

= (−y)N im1+
1
2
(N−1)N imX

N∏

µ=1

sinπ(−µimX)

π
(B.31)

·
1

N !

∫

RN

dNσ

(2π)N
(−y)Tr iσ

N∏

j=1

[
Γ(−im1 − iσj)Γ(−im̃1 + iσj)

]∏N
i,j=1 Γ(iσi − iσj − imX)
∏N

i 6=j Γ(iσi − iσj)

which analytically continues Zv,{N}(y) from the unit disc to y 6∈ R≥0. Closing contours

towards i∞ yields a similar relation for |y| > 1, with m1 ↔ m̃1 and y → y−1. Hence, the

analytic continuations obey

Zv,{N}(y) = (−y)−N(1+imX)Zv,{N}(y
−1) . (B.32)

The function (1− y)N(1+imX)Zv,{N}(y) is thus analytic on the Riemann sphere away from

y = 1. Furthermore, we can bound it by a power of |1− y| in two pairs of angular sectors

centered at y = 1, whose union is a neighborhood of y = 1.
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The first angular sector is defined by |1 − y| < M(1 − |y|) for some M > 0 and

is contained in the open unit disc. The coefficients in the series (B.30) grow at most

polynomially in the exponent
∑

µ kµ of y, and the number of terms contributing for a

given power of y also grows polynomially. Hence,

|Zv,{N}(y)| ≤
∑

k≥0

C1(k + 1)C2 |y|
k = C2!C1(1− |y|)−1−C2 (B.33)

for some C1, C2 > 0 which do not depend on y. Thus |1 − y|1+C2Zv,{N}(y) is bounded in

each sector |1− y| < M(1− |y|). By the symmetry y → y−1, the function is also bounded

in a similar sector |y − 1| < M(|y| − 1). We have thus probed the function away from the

unit circle.

The next pair of sectors is probed using the Mellin-Barnes representation (B.31), which

converges away from the real axis. Set y = reǫiθ with 1
2 < r < 2 (to avoid {0,∞}), ǫ = ±1,

and 0 < θ < π (that is, y 6∈ R). Then

|(−y)iσj | = eǫ(π−θ)σj ≤ e(π−θ)|σ| . (B.34)

For some large enough C1, C2 > 0 which depend on the twisted masses, we have
∣∣∣∣
Γ(−im1 − iσj)

Γ(1 + im̃1 − iσj)

∣∣∣∣ < C1

(
|σ|+ 1

)N Re(imX)
,

∣∣∣∣
Γ(iσi − iσj − imX)

Γ(iσi − iσj)

∣∣∣∣ < C2

(
|σ|+ 1

)Re(−imX)

(B.35)

for all σ, where |σ| =
(∑N

i=1|σi|
2)1/2 is larger than all |σj | and all |σi−σj |. The inequalities

rely on the asymptotics Γ(a + iυ)/Γ(b + iυ) ∼ (iυ)a−b as υ → ±∞, and the continuity of

both ratios of Gamma functions. Since 0 < Im(m̃1) < 1, we also have

|Γ(1 + im̃1 − iσj)Γ(−im̃1 + iσj)| ≤
2πe−π|σj−Re(m̃1)|

|sin(π Im(m̃1))|
< C3e

−π|σ| (B.36)

for some m̃1-dependent C3 > 0. Combining the bounds into (B.31) yields

|Zv,{N}(y)| ≤ C4

∫

RN

dNσ e−Nθ|σ|
(
|σ|+ 1

)N Re(imX)
(B.37)

for some C4 > 0. Switching to polar coordinates, letting τ = θ(|σ| + 1), and bounding

(τ − θ)N−1 < τN−1 leads to

|θN(1+imX)Zv,{N}(y)| ≤ C5

∫ ∞

θ
dτ e−NττN Re(imX)+N−1 ≤ C6 (B.38)

for some C5, C6 > 0. In any angular sector centered at y = 1 and away from the real

axis, |1− y| is bounded by some multiple of θ = arg(y), hence (1− y)N(1+imX)Zv,{N}(y) is

bounded both above and below the real axis.

We have bounded the function (1 − y)N(1+imX)Zv,{N}(y) by a power of |1 − y| in a

neighborhood of y = 1. Since the function is analytic away from 1, it takes the form

P (y)/(1− y)n, where P (y) is a polynomial of degree at most n ≥ 0. In the second pair of

sectors, we found that the function is bounded as y → 1, thus n = 0 and the function is

the constant (1− y)N(1+imX)Zv,{N}(y) = Zv,{N}(0) = 1.
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B.2.2 Proof for SQCDA

Let us move on to the proof per se. We start with the vortex partition function (2.97) of

the U(N) SQCDA theory in a given Higgs branch vacuum {ns}. The terms of this series

in y = (−1)Nf z are labeled by integer vorticities ksµ ≥ 0 for 1 ≤ s ≤ Nf and 0 ≤ µ < ns:

Zv,{ns}(y) =
∑

k≥0

ykZv,{ns},k =
∑

k≥0

yk
∑

∑
ksµ=k

V
{ksµ}
{ns}

. (B.39)

The contribution V
{ksµ}
{ns}

for a given choice of vorticities is a ratio of Pochhammer symbols,

which we massage using the identity (1− x− k)k−j = (−1)k−j(x)k/(x)j into

V
{ksµ}
{ns}

=
∏

(s,µ)∈I

[Nf∏

t=1

(−im̃t − imsµ)ksµ
(1 + imt + ntimX − imsµ)ksµ

∏

(t,ν)∈I

(imtν − imsµ − imX − ktν)ksµ
(imtν − imsµ − ktν)ksµ

]
.

(B.40)

Here, ms, m̃s, and mX are complexified twisted masses of the chiral multiplets, we denote

msµ = ms + µmX , the products range over I = {(s, µ) | 1 ≤ s ≤ Nf , 0 ≤ µ < ns}, and we

have swapped (s, µ) ↔ (t, ν) compared to (2.97). Using that

∏

(s,µ)∈I

∏

(t,ν)∈I

(imtν − imsµ −A− ktν)ksµ
(imtν − imsµ −A)ksµ

=
∏

(s,µ)∈I
0≤i<ksµ

∏

(t,ν)∈I
0≤j<ktν

imtν − j − imsµ + i−A− 1

imtν − j − imsµ + i−A

(B.41)

for a generic A ∈ C, we can express V
{ksµ}
{ns}

in terms of the combinations −imsµ + i for

(s, µ) ∈ I and 0 ≤ i < ksµ. We find that (−1)kV
{ksµ}
{ns}

is the residue at {ϕκ} = {−imsµ+ i |

0 ≤ i < ksµ} of the integrand in (B.42) below, after |Mκ| → ∞.

The discussion above leads us to the contour integral (I0 = 1 is an empty product)

Ik = lim
|M1|→∞

· · · lim
|Mk|→∞

1

k!

k∏

κ=1

[∫ i∞

−i∞

dϕκ

2πi

]{
k∏

κ=1

−(iMκ)
2

(ϕκ −
1
2)

2 − (iMκ)2

k∏

κ 6=λ

ϕκ − ϕλ

ϕκ − ϕλ − 1

·
k∏

κ,λ=1

ϕκ − ϕλ − 1− imX

ϕκ − ϕλ − imX

k∏

κ=1

Nf∏

s=1

[
ϕκ − im̃s

ϕκ + 1 + ims + nsimX

ϕκ + ims − imX

ϕκ + ims + (ns − 1)imX

]}

(B.42)

whose residues include all contributions to the k-vortex partition function Zv,{ns},k. As in

the SQCD case, we move the pole at infinity to a finite value through a regulating factor,

which depends on large real parameters with 1 ≪ |M1| ≪ · · · ≪ |Mk|. The small shift

by 1
2 moves poles away from the imaginary axis. We assume that the complex parameters

ms and mX are in the ranges

0 < Re(imX) < 1 , (ns − 1)Re(imX) < Re(−ims) < nsRe(imX) . (B.43)

This constraint is eventually lifted since the relation we will deduce between vortex partition

functions is analytic in ms and mX .
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Close the contours of (B.42) towards +∞ first. Because of the factors 1/(ϕκ−ϕλ− 1)

and 1/(ϕκ − ϕλ − imX), the surrounded poles are such that the ϕλ are organized into

groups of components with related values:

{ϕλ | λ ∈ T} =
∐

κ∈K

{
1
2 + ǫκiMκ + νimX + j

∣∣ 0 ≤ ν < n̂κ, 0 ≤ j < k̂κν
}
, (B.44)

{ϕλ | λ ∈ S} =
∐

1≤s≤Nf

{
−ims + (1− ns + µ)imX + i

∣∣ 0 ≤ µ < n′
s, 0 ≤ i < k′sµ

}
(B.45)

where K is the set of indices for which ϕκ = 1
2 + ǫκiMκ, and J1, kK = S ⊔ T . Note that all

n′
s ≤ ns, otherwise the numerator factor

∏
λ(ϕλ + ims − imX) would vanish. Introducing

if necessary k′sn′
s
= · · · = k′s(ns−1) = 0, we set n′

s = ns, then define ksµ = k′s(ns−1−µ).

The pole is uniquely determined by the partition J1, kK = S ⊔ T , the set K ⊆ T , the

signs ǫκ = ±1, the non-negative integers ns (fixed when defining Ik), ksµ, n̂κ, and k̂κν , and

the maps σ and τ defined by

ϕσ(s,µ,i) = −ims − µimX + i and ϕτ(κ,ν,j) =
1

2
+ ǫκiMκ + νimX + j (B.46)

for 1 ≤ s ≤ Nf , 0 ≤ µ < ns, 0 ≤ i < ksµ, and for κ ∈ K, 0 ≤ µ < n̂κ, 0 ≤ j < k̂κµ. This

data is constrained: σ is a bijection from {(s, µ, i) | 0 ≤ i < ksµ} to S, hence
∑

ksµ = #S,

and τ is a bijection from {(κ, ν, j) | 0 ≤ j < k̂κν} to T , hence
∑

k̂κν = #T . Also,

τ(κ, 0, 0) = κ for all κ ∈ K.

Let t = #T . It is convenient to parametrize poles in terms of the data t, T ,

(K, n̂κ, k̂κν , τ), (ksµ, σ), and ǫκ. When summing residues of Ik at such poles, we will

first sum over choices of signs ǫκ and take the limits |Mκ| → ∞. The result is indepen-

dent of σ, which thus contributes only a combinatorical factor. Then follows a sum over

choices of ksµ, whose only constraint is
∑

ksµ = k − t. Since the residue of Ik involves the

vortex contribution V
{ksµ}
{ns}

, the sum over ksµ yields the (k − t)-vortex partition function.

Summing over the remaining data, we find that Ik is a linear combination of (k− t)-vortex

partition functions for 0 ≤ t ≤ k, whose coefficients only depend on t, imX , and a single

combination Σ of the twisted masses. This allows us to fix the coefficients by considering

a simple case.

Let us proceed. The residue at (B.46) of (B.42) has the following asymptotics:

k∏

κ=1

[
1 +O

(
1

M2
κ

)] k∏

κ<λ

[
1 +O

(
M2

κ

M2
λ

)] ∏

τ(κ,µ,j)<κ

[
O

(M2
τ(κ,µ,j)

M2
κ

)]

·
(−1)k

k!

∏

κ∈K

f{n̂κ},{k̂κν}
(imX)

∏

κ∈K

[
−ǫκiMκ

2
+

Σ

2

n̂κ−1∑

ν=0

k̂κν +O

(
1

Mκ

)]
V

{ksµ}
{ns}

(B.47)

where f is a rational function of imX with integer coefficients, and

Σ = 2N imX +

Nf∑

s=1

(1 + ims + im̃s) . (B.48)
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We expect the divergent piece −ǫκiMκ/2 of the residue to cancel when summing over

signs ǫκ. Let us take limits |Mλ| → ∞ from λ = k down to λ = 1 carefully. At each step

there are two cases. If λ ∈ K, then the limit vanishes whenever any τ(λ, µ, j) < λ. Hence,

only poles with all τ(λ, µ, j) ≥ λ contribute and we can focus on those. The Mλ-dependent

terms are then of the form −ǫλiMλ/2 plus a finite part. Summing over ǫλ = ±1 only leaves

the finite part. On the other hand, if λ 6∈ K, then taking the limit |Mλ| → ∞ is trivial as

Mλ only appears in factors [1+O(1/M2
λ)] and [1+O(M2

κ/M
2
λ)] for κ < λ (importantly, we

have already taken the limits |Mκ| → ∞ for all κ > λ).

All in all, we are left with a non-divergent expression for I:

Ik =
1

k!

∑

t

∑

T

∑

K,{n̂κ},{k̂κν},τ

∑

{ksµ},σ

Σ#K
∏

κ∈K

[
f{n̂κ},{k̂κν}

(imX)

n̂κ−1∑

ν=0

k̂κν

]
V

{ksµ}
{ns}

. (B.49)

The summand is independent of σ, and there are (k − t)! maps σ. Summing V
{ksµ}
{ns}

over

ksµ with
∑

ksµ = k− t yields Zv,{ns},k−t. The sum over K, n̂κ, k̂κν , τ does not depend on

the precise set T , but only on t = #T . The choice of T thus simply contributes a factor

k!/[t!(k − t)!], which cancels the overall 1/k!, and (k − t)! coming from the choice of σ.

For a fixed j = #K, the remaining sums yield a rational function of imX which can only

depend on the two integers 0 ≤ j ≤ t ≤ k:

Ik =
k∑

t=0

t∑

j=0

ftj(imX)ΣjZv,{ns},k−t . (B.50)

Since the ftj do not depend on k, summing over k yields

∑

k≥0

ykIk =
∑

t≥0

t∑

j=0

[
ytftj(imX)Σj

]
Zv,{ns}(y) = f

(
imX ,Σ; y

)
Zv,{ns}(y) . (B.51)

In appendix B.2.1, we consider the case Nf = 1, n1 = N , 1 + im1 + im̃1 +N imX = 0,

for which Σ = N imX , and find that

Zv,{N}

(
1+ im1 + im̃1 +N imX = 0; y

)
= (1− y)−N(imX+1) = (1− y)−[1+1/(imX )]Σ . (B.52)

On the other hand, since the factors ϕκ − im̃1 and ϕκ +1+ im1 + n1imX in (B.42) cancel,

the integrand of Ik has no pole with Re(ϕκ) < 0, thus Ik = δk0. As a result,

f
(
imX ,Σ; y

)
= (1− y)[1+1/(imX )]Σ (B.53)

for all Σ = N imX . This fixes each polynomial
∑t

j=0 ftj(imX)Σj at an infinite set of values,

hence determines f completely.

At last, we are ready to wrap up, by showing that Ik is the k-vortex partition function

of the dual theory. Close contours of (B.42) towards −∞. The surrounded poles are labeled

by non-negative integers n′
t ≥ 0 and k′tν ≥ 0 for 1 ≤ t ≤ Nf and 0 ≤ ν < n′

t:

{ϕκ} =
{
−1− imt − ntimX − νimX − j

∣∣ 0 ≤ ν < n′
t, 0 ≤ j < k′tν

}
. (B.54)
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For the choice of superpotential W =
∑Nf

t=1 q̃tX
ltqt, the constraint 1+imt+im̃t+ltimX = 0

implies that the numerator factor
∏

κ(ϕκ − im̃t) vanishes unless all k
′
tν = 0 for ν ≥ lt − nt.

For the choice of superpotential W = TrX l+1, the constraint 1 + (l + 1)imX = 0 implies

that
∏

κ(ϕκ + imt − imX) vanishes unless all k′tν = 0 for ν ≥ l − nt. We can thus take

n′
t = lt − nt in both cases, and let ktν = k′t(lt−nt−1−ν) so that

{ϕκ} =
{
−1− imt − (lt − 1− ν)imX − j

∣∣ 0 ≤ ν < lt − nt, 0 ≤ j < ktν
}
. (B.55)

Summing over residues yields, after some massaging,

Ik =
∑

{ktν≥0|0≤ν<lt−nt}

∏

(s,µ)

[
∏

(t,ν)

(ims − imt + (ls − lt + ν − µ− 1)imX − ktν)ksµ
(ims − imt + (ls − lt + ν − µ)imX − ktν)ksµ

·

Nf∏

t=1

[
(1 + im̃t + ims + (ls − 1− µ)imX)ksµ
(ims − imt + (ls − lt − 1− µ)imX)ksµ

(ims − imt + (ls − µ)imX + 1)ksµ
(ims − imt + (ls − nt − µ)imX + 1)ksµ

]]
.

(B.56)

For W =
∑Nf

t=1 q̃tX
ltqt, the summand takes the general form (B.40) of V

{k}
{lt−nt}

, with

mt ↔ m̃t since 1 + im̃t + ims + (ls − 1− µ)imX = ims − imt + (ls − lt − 1− µ)imX . Thus,

Ik is the k-vortex partition function of the SQCDA theory with Nf flavour, L−N colors,

the superpotential W =
∑

t q̃tX
ltqt, interchanged twisted masses mt ↔ m̃t compared to

the U(N) theory, and the same value of y. Charge conjugation maps twisted masses back

to those of the U(N) theory, and maps y → yD = y−1 hence zD = z−1. Summing ykIk
then yields the u-channel vortex partition function of the U(L−N) theory (that is, a series

in powers of (yD)−1). We finally combine the relation (B.51) and the explicit factor (B.53)

with Σ = (2N − L)imX to get

Z
U(L−N)
v,{ls−ns}

(
(yD)−1

)
= (1− y)(2N−L)(1+imX)Z

U(N)
v,{ns}

(y) for W =

Nf∑

t=1

q̃tX
ltqt . (B.57)

For W = TrX l+1, we have ims−imt+(ls−lt−1−µ)imX = ims−imt+(ls−µ)imX+1,

and again the summand takes the form of V
{k}
{lt−nt}

, with ims → imD
s = imX − ims and

im̃t → im̃D
t = imX−im̃t. Combining the relation (B.51) and the explicit factor (B.53) with

Σ = 2N imX +
∑Nf

t=1(1 + imt + im̃t) and 1 + 1/(imX) = −l yields the Kutasov-Schwimmer

duality relation

Z
U(lNf−N)

v,{l−ns}

(
mD

t , m̃
D
t ; y

D
)
= (1− y)−δ1Z

U(N)
v,{ns}

(
mt, m̃t; y

)
for W = TrX l+1 (B.58)

with δ1 = − 2l
l+1N + l

∑Nf

t=1(1 + imt + im̃t), as obtained in (3.42) through the relation

with conjugation of momenta in the Toda CFT. Since yD = y, we get zD = z. In

section 3.2.2, we extend the Kutasov-Schwimmer duality to theories with a different number

of fundamental and antifundamental chiral multiplets.
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