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an identity involving the half-soft function which had been used in the soft theorem for
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We use the CHY formulation to prove the first identity, and transform the second one into
a convenient form for future discussion.

KEYWORDS: Scattering Amplitudes, Gauge Symmetry

ARX1v EPRINT: 1604.00650

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP®. doi:10.1007/JHEP04(2016)173


mailto:raojunjie@zju.edu.cn
mailto:b.feng@cms.zju.edu.cn
http://arxiv.org/abs/1604.00650
http://dx.doi.org/10.1007/JHEP04(2016)173

Contents

1 Introduction 1
2 Two identities of the half-soft function 3
2.1 A simpler byproduct identity 4
2.2 Proof of the first identity 6
3 Two identities of the KLT momentum kernel 9
3.1 Proof of the first identity 10
3.2 Discussion of the second identity 12

1 Introduction

Scattering amplitudes often have an universal soft behavior when the momentum of one
external leg tends to zero. This soft limit can be traced back to the works [1-6]. Recently, a
new soft theorem for tree level gravity amplitudes was studied in [7]. By using the on-shell
recursion relation [8, 9] and imposing the holomorphic soft limit, Cachazo and Strominger
have proved that
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here for M, and M, _1, the unmentioned external kinematic data are un-deformed and
we prefer to suppress them for conciseness. Taylor expansion in € exhibits three singular
terms in orders e 3, ¢72 and £~ !, while higher order terms in € will be mixed with the less
interesting O(e”) parts.

A similar relation for tree level Yang-Mills amplitudes using the on-shell recursion

relation, proved by Casali [10], takes the form
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where two singular terms in orders e =2 and e~! appear after Taylor expansion. The mixing

between higher order terms from the deformed A,_; and O(e?) parts also persists to this
case.

Based on this new discovery, many related studies have been done. In [23-36], the
soft theorem has been generalized to arbitrary dimensions and other theories or categories:



string theory, ABJM theory, theories with fermions or massive particles, and form factors.
In [37-51, 53-58], the theorem has been understood from various perspectives, especially
those of symmetries and invariance. In [11, 28, 59-63|, its generalization to loop level
has been discussed. In [64-71], the relevant double (or multiple) soft theorem has also
been discussed.

Among these studies, we have met two sets of identities which have not been proved
so far. We will present the proof in this note.

One identity of the first set was mentioned in [11], which explored loop correction to
the soft theorem. It involves the so-called half-soft function h (first defined in [12] and
reinterpreted in [13]), which appears naturally for all-plus one-loop gravity amplitude. Its
general proof was not given in [11], but explicit checks up to 12 points had been done. The
identity reads

> (n)? > h(b,n, M)h(b,n, N)(BIKy|n)(n| Kn|b]* =0, (1.3)
b#n, M,N

where M, N are two nonempty partition sets of the (n — 2) particles other than b and n,
and Kj; and Ky are the corresponding total momenta. During the proof, we had also
discovered another simpler identity, which can serve as its logical preliminary. It reads
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where the v matrix is related to h, and other symbols above will be explained shortly.

The second set of identities was conjectured in [14], which is a consequence of consis-
tency conditions between the soft theorems for gravity and gauge amplitudes, under the
well-known KLT relation [15]. It involves the KLT momentum kernel [12, 16-18], and the
transformation matrices (D and C' below) between BCJ basis of gauge amplitudes [19].
These two identities are
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where Sa¢|B]p,_, is the KLT momentum kernel of pivot pn—1, and Jy = J, 45 is the
anti-holomorphic angular momentum operator. We will use the CHY formulation [20-22]
to prove the first identity and discuss the second one.

This note is organized as follows. In section 2, we prove identity (1.3) of the half-soft
function, and also the byproduct identity (1.4). In section 3, we prove identity (1.5) of the
KLT momentum kernel by using the CHY formulation, while we transform identity (1.6)
into a convenient form for possible future attempts and end with some discussion.



2 Two identities of the half-soft function

In this section we will prove (1.3) and (1.4), first let’s set up a bit convenient facilitation.
For reader’s reference, we write (1.3) again below

> (on)* Y " h(b,n, M)h(b,n, N)(b|EKpr|n)(n| Kn|b]* = 0, (2.1)
b#n M,N

where M, N are two non-overlapping nonempty sets satisfying M UN = {1,...,n—1}\b,
and momentum conservation enforces kp + k,, + Ky + Ky = 0. The half-soft function h
above is defined as [13]

h(b,n,N) =
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where || denotes the determinant of matrix ¥ after deleting its r-th row and r-th column,

|, (2.2)

and ||¥|| indicates this quantity is independent of the choice r € N. If there is only one
row and one column, the determinant is 1 after deletion. The matrix ¥ is defined as
7] N
Wij(b,n) = —%W (in)(jb)(jn) for i # j, Vi = Z Wij, (2.3)
J#i
where b and n serve as auxiliary spinors. The sum of each row is zero, so ¥ is degenerate.
Observe that the summand in (1.3) has even power of Kj; and Ky, by momentum con-
servation this sum is symmetric between M and N, then we can replace Kj; by —Kn and
rewrite (1.3) as

> (o) > " h(b,n, N)h(b,n, M)(b|N|n](n|N|b]* = 0, (24)
b#n N
for brevity N stands for K in spinorial products (and later N also represents the number
of elements in the set N, depending on the context).
To simplify the proof, we define the matrix ¢ as

. N
1. . . .
i bo) = = 5 0) () for i = 3 (25)
/ i
where the common factor (ib)(in) of the i-th row in ¥ has been stripped off. One can
easily verify that

;| |\I/H — 1 WN‘%
17" (ib)2(in)? [T (i) (in) (xb)(zn)’

(2

h(b,n,N) = (2.6)

where N has been added to 1 to label the corresponding set, note that [y |%/(zb)(xn) is
independent of the choice x € N. Then we have
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where Hz#n<zn> is a common factor independent of b so it can be dropped, hence (2.4)
becomes
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2.1 A simpler byproduct identity

In the proof of (2.8), we happened to discover (1.4). For reader’s reference, it is given below
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where N, M are two non-overlapping nonempty sets satisfying N UM = {2,...,n — 1},
and the auxiliary spinors are 1 and n. Also note that w € NUM, x € N, y € M and it is
free to switch the choices w, z,y within each set. Since this is mandatory for (2.8) to hold,
we will prove it first as the tricks used here are analogous to those for (2.8).

Now we will adopt the BCFW deformation and reduce it into an identity of the same
form, but with one particle removed, in other words, we will perform an inductive proof.
Before induction, the identity is confirmed analytically at lower points for n = 4,5,6. For
later convenience, we multiply it by a non-zero factor, yields

1 [ ]WNUM\UJ WN\J; |¢M’Z B
TTiz1.0 (1) ((1 ) (w1 (wn +Z UNRI N e ><y1><yn>) =0,  (2.10)

which is of course equivalent to (1.4). But now there are two advantages: the large z
behavior of its l.h.s. is improved, and it has the desired simple pole for residue evaluation,
as we will soon see.

For generic n, consider BCFW deformation (1|n] and a particular pole (21). Note that
particles 1 and n are special while the rest (n — 2) ones are symmetric, so it is sufficient to
consider the residue of (21) only, as all (i1)’s with i € {2,...,n — 1} behave similarly. At
(21) = 0, we have
(1n)

1) =11) = In) 75 = |2>qu>’ 7] = [n] +[1]

(12)
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and

D]+ 22 = 2B, 3 =2+ [1@;’;7 (2.12)

by which we mean to combine the momenta of particle 1 and 2 into that of particle 2, or
more physically, particles 1 and 2 merge into particle 2. Including the deformed particle 7,
the set {1,2,...,n} now shrinks into {2,...,7} while momentum conservation still holds,
as what induction requires.

To locate pole (21) in (2.10), we immediately find one in the overall factor. Naively,
there might be another one under |¢x|% if we take = 2, for example. However, the
expansion of [¢y|% in terms of (21) will cancel this pole. In other words, |¢¥n|Z/(z1)({xn)
is a polynomial of (21) (one may also choose x # 2 to invalidate this pole), that’s why the
overall factor is mandatory.



The next step is to analyze the large z behavior of the L.h.s. in (2.10) before evaluating
its residues at finite locations. To clarify the analysis, we further separate the second term
in the parenthesis, and from now on we redefine N, M to exclude particle 2 from them
while N/, M’ denote the original sets. Depending on whether N’ or M’ contains particle
2, the set {2,...,n — 1} has three types of splitting: {{2} U N, M}, {N,{2} U M} and
{{2}, NUM}, where NUM ={3,...,n — 1}. So the second term becomes
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Also, the first term in (2.10) can be written as
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Since the three ¢’s in (2.14) and the first and second terms of (2.13) contain particle 2,
we can choose to delete its corresponding row and column. Large z power counting shows
that all four terms in (2.13) and (2.14) behave as N +M~1 = 2n=4 under (1|n], but the
overall factor in the front of (2.10) behaves as z~("~2), which renders the entire expression

as 272, so there is no boundary contribution. Therefore, via contour integration, the Lh.s.

(2.14)

of (2.10) (denoted I below) can be expressed as

?{ dz[(z):jl{ dzI(z)...y{ %I(z), (2.15)
2=0 # (21)=0 < (n=1,1)=0 #

if the residue at <2i> = 0 vanishes, by the symmetry among particles {2,...,n — 1} the
entire un-deformed expression must also vanish. Note the contribution from the overall
factor in (2.10) is universal, so it can be dropped. At <2i> = 0, after some algebra, the
residue evaluation gives

[Ny ]3 (1n) VN |7
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recall that (21) above is not a pole, while the real pole comes from the overall factor. Here

N—-1
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1) is replaced by |2) up to a factor, after recalling (2.11). By expanding the determinant
to the first order of (21), then using the independence of choice z to switch the deleted row
and column for each term, we can collect a factor (—(n|N|2]) as above. The similar (and
simpler) story happens for

[V ly An)\M 72 Jeuly
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Plugging them back, up to a factor ((1n)/(2n))V*™=2 the sum of (2.13) and (2.14) be-
comes
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By momentum conservation, up to a factor [12], it can be simplified into
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after assuming the identity of (n — 1) particles holds. This finishes the inductive proof

of (1.4).
2.2 Proof of the first identity

Now we move to prove (2.8) by applying the similar pack of tricks: to consider deformation
(1|n] acting on its Lh.s., and the pole (21). First, we separate the expression into three
parts corresponding to b=1,b=2and b= 3,...,n — 1, namely

(bn)? NPT (04 [y
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Similarly, we now redefine N and M to exclude particles 2 and 1, with respect to I; and Is.
For Iy, the set {2,...,n — 1} has three types of splitting: {{2} UN, M}, {N,{2} UM} and
{{2}, NUM}, where NUM ={3,...,n—1}. For I, we have {{1}UN, M}, {N,{1}UM}
and {{1}, NUM}. For Iy 2, there are four types: {{1,2} U Ny, My}, {Np, {1,2} UM},
{{1} U Np, {2} @) Mb} and {{2} U Ny, {1} U Mb}, where N, U M, = {3, ce,n — 1} \ b, but
the last two will not contribute to the residue of (21) and hence the corresponding terms

=L+ I+ L2 (2.20)

are neglected, which will be explained shortly.
According to the splittings above, we can write
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For Iy+12, one can verify that, only terms for which 1 and 2 are in the same splitting set,
have pole (21) and hence contribute to the residue, which explains why we only need the
first two terms. Moreover, N; in {{1,2}U Ny, M} can be empty (similarly for M;). While
for I;, N in {{2} U N, M} cannot be empty, otherwise such a splitting belongs to type
{{2}, N UM} (similarly for I5).

After the separation, we now analyze the large z behavior. Under (1|n], large z power
counting shows that I; ~ 272, I ~ z~! and Tyt120 ~ 271 so there is no boundary
contribution. Then we can repeat the contour integration (2.15). Again, thanks to the
symmetry among particles {2,...,n—1}, it is sufficient to consider the residue of (21) only.

Recalling (2.16) and (2.17), at (21) = 0 the residue evaluation gives
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Similarly for I,
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Combining I; and I, we find
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after using the following identity
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= —[12)(2n)*(n| N |2]> — [12]*(1n)*(2n)* (n| N |2].

(2.28)
Now note the second and third terms in (2.27) can be regrouped as
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where again we have used the independence of choice x to switch the deleted row and

column. Now
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Summing (2.30) and (2.32), we get
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which returns to the form of (2.8) for the set {2,...,7}! It vanishes after assuming the

identity of (n — 1) particles (without particle 1) holds. Similar to N’, M’, here Ny, M;
denote the sets including 2 but not b. This finishes the inductive proof of (1.3).

3 Two identities of the KLT momentum kernel

In this section we will prove (1.5) and (1.6) as conjectured in [14]. To understand these
relations, we must first define the transformation matrices D and C' between BCJ basis of
gauge amplitudes via

Ap(t,oq,m—1,n) = Z Ap(t' g, —1,n)Dt ,ap,n — 1,nlt,a,n — 1,n],  (3.1)
at/65n73
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Bt/esn73

where oy and Sy denote the permutations of (n — 3) particles other than ', (n — 1) and
n. In a tensorial sense, D and C are the transformation matrices with respect to the
summation of all (n — 3)! permutations, which is defined as the inner product. For reader’s
reference, we write (1.5) and (1.6) again below

Z D[t7 g, T — 17n|t,7at/7n_ 1’n]s[at/|/8t’]17n—l
Qo wgt/ €Sn—3

: C[tlan - 176t’7n‘t7 n— 17/815777'] = S[atlﬁt]pnfp (33)
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t'=1 atlvﬁtles’nfii
: Jt’ (C[t/7n_ 1aﬁt’7n|t7n_ 17575’”]) = O? (34)

where S[a|B]p,_, is the KLT momentum kernel of pivot pn—1, and Jy = J, 45 is the
anti-holomorphic angular momentum operator. Here we follow the convention of S in [16—
18], namely

k k
S[Oél, C) ak|617 ce. 75k]pn—1 = H <5ai,n1 + Z 9(0&1, Clj)Sai’aj) ) (35)

i=1 j=i+1



where s;; is each Mandelstam variable, and (o, ;) is zero when the pair (o, ;) has the
same ordering at both sets {aq,...,ar} and {f1,..., Bk}, and unity otherwise.

For the first identity, its physical interpretation is straightforward: if we regard the
KLT momentum kernel S as the metric, it is simply the tensorial transformation rule for
metric. In fact, such a tensorial formulation had been established in [20, 22] (known as the
KLT orthogonality or the CHY formulation) and we will use it to formally prove the first
identity shortly. The second identity is however more intricate, as it roughly represents
angular momentum conservation in an entangled way. The CHY formulation can help
transform it into a relation that may reveal very nontrivial properties of scattering process,
while to prove it directly is yet beyond our understanding.

3.1 Proof of the first identity

Before the proof, we must first rewrite gauge amplitudes in the CHY formulation [22] which
is based on the scattering equations [21]. It tells that

(n—3)!
1 X )
_ — S 1 () _ / (4)
An(t,ap,m—1,n) = 2 det’({))(o(i))z (t,ap,n —1,n) Pt ('), (3.6)
(n—3)! 1
Ap(t,n—1 = —»0¢,n-1 Pf' 0 (o 3.7
( ;1 ,Bt,n) - det’(@)(a(l)) ( y T ,Bt,n) (U )7 ( )

=1

where o) denotes the i-th solution to the scattering equations

Z Sab _ (3.8)

g
ba ab

with o4, = 04 — 03, and there are (n — 3)! solutions in total. The definitions of det’(®)
and Pf’'¥, namely the reduced determinant of Jacobian ® and the reduced Pffafian of
antisymmetric matrix ¥, can be found in [22]. The object mainly concerns us is

20(a) = o 5 5 (3.9)
a(1),a(2) *  Ya(n—1),a(n) Ca(n),a(1)
On the other hand, the KLT relation gives
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T @0

where the second line results from the CHY formulation. There is a subtle issue of the
sign above, due to the different conventions M,, = —MS"Y and S[ay|B:] = SHY[Bi|af].
Plugging (3.6) and (3.7) into this relation, yields

Y. =0 ann—1,m)S[adlBilp, 29 (8,0 — 1, B,n) = det(@)(0)dy;,  (3.11)
atyﬁtesnf?)

~10 -



or more compactly,

GiaSlew|Be) (Hig,)" = Iin_syix(n_3)» (3.12)

which is the KLT orthogonality, if we define matrices

() -1 (7 -1
Gia, = (t’ ot 1 ',n)’ B = (t,n ,B,%,n)' (3.13)
det’ (@) (o) det'(®)(09))
From this matrix relation we immediately get
B —1
Slaul) = (Giar) ™ ((Hi)") - (3.14)
Back to (3.6) and (3.7), if we further define the row vector
! (@)
. Ezgggﬁfgﬂiﬁzgglf,, (3.15)
det/(®)(c®)
then
At ap,n —1,n) = 0;Gia,, An(t,n—1,8;,n) = O;Hys,. (3.16)

Plugging them back into (3.1) and (3.2), and assuming their independence of basis O,
we get
Gia, = Gmt,D[t',at/,n —1,n|t,a,n — 1,n],
T
Hig, = Hig, (Clt,n — 1,8, nlt',n—1,58y,n])", (3.17)

or equivalently,

! Giays (3.18)

T

D[t ap,n—1,n|t,as,n —1,n] = (Giat,)
C[t7n - 175757 n|t/a n— 17 ﬁt’vn] = (Hzﬂt)T ((Hiﬂt/)_l)

Finally we plug them back into the L.h.s. of (1.5) and interchange ¢t and t', together
with (3.14) we get

Z D[t,a,n — 1, n|t', ap,n — 1,n]Slay|Bylp, . Clt',n — 1, By, nlt,n — 1, B;,n]

at/,ﬁt/ESnfg

= (Giay)~ ! mt/ Jat/ ( ]ﬁt/ )_ Hkﬁt/) ((Hkﬁt)_l)T

Gi
lOét -1 ( ’Lﬁt ) [at|ﬁt]pn 19
(3.19)
which is exactly the r.h.s. of (1.5), hence the proof is finished.
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3.2 Discussion of the second identity

Now we move to prove (1.6). Equipped with the matrices defined in the previous subsection,
the Lh.s. of (1.6) can be simplified as

n—2

> (Giad) ™ Giay (Giay) ™ (Hys,)")

t'=1

Y [(Hkﬁt,)T ((Hkﬁt)fl)T}

= Tf (Gio) ™! <(Hi6t/)T>_1 i [(Hjﬁt/)T ((Hjﬁt)_l)T]
=1

n—

=Y (Gia)™ [((Hwt/)T>1 (Hjg, )" - T ((Hjg) ™)'

t'=1
(1)) et (3507
n—2

= Z (Giat)il |:<]t’ ((Hiﬁt)_l)T ’ (Hjﬁt)T+ ((Hiﬁt’)T>

t'=1

g th(Hjﬂt/)T] (Hjs)™",

(3.20)
assuming the two matrices in the front and end of the last line are non-degenerate, we
should prove

2. [Jt' ((Hip)™) " - (Hyp)" + ((Hwt,)T) - Jt’(HjBt/)T} = 0. (3.21)

For the first term above, the summation over ¢’ is trivial since the matrix product involves
t only, so it is in fact

(Z Jt’) ((Hig)™)" - (Hjp)" =0, (3.22)

t'=1

due to angular momentum conservation, as the absence of J,_1 and J, does not matter
since \,,—1 and A, have been solved by momentum conservation (see [14] for more details).
Therefore we are left with

> ((Hiﬁt)T) - I(Hjg) " =0, (3.23)

where the dummy variable ¢’ has been replaced by t. We can continue to transform it
into a convenient form for further attempts to prove, by isolating its real matrix content.
Let’s define

g, = E(j)(ta n—1,05,n), Wij = —————=—10yj, (3.24)
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then it is clear that H;g, = W;;X;5,. While W;; is a trivial diagonal matrix, ¥;5, encodes
the real matrix content. Now we can write the Lh.s. of (3.23) as

-1

> w! <(Ezﬂt)T) i ((Z58,)TW)
n—2
L (A R TE RS S
n—2
- ((Ezﬂt)Tyl J(Zje) W (Z Jt) o
t=1

- ((Zzﬂt)T>_l ' Jt(zjﬁt)T’

(3.25)

where in the third line, the second term vanishes again due to angular momentum conser-
vation. Finally, we are left with

n—2 1

> ((Eiﬁt)T> (st =0, (3.26)

t=1
which can no longer be further simplified.
To get some sense of this very nontrivial identity, it is helpful to see the first nontrivial
case n = 4, which corresponds to the first nonempty (5;. Recall that

20 (a) = (3.27)

(2) (2) 1) ’
Ta(1),0(2) " * Taln—1),a(n) % aln),a1)

we have
—1 —

(2@(1,3,2,4)) Jix0)(1,3,2,4) + (z<i>(2,3, 1,4)> 1220(2,3,1,4)

i 1 1
Ug?’)“é?)"ééf"fﬂ)‘h( D00 (a>> +"§3)"§1)U§4)"§:2)J2< 5.0 ())
013039 024 041 023 031 (714042

2 ? 1
oeitolietin+a (ot o) <o
013 932 024 941 (3.28)

which trivially holds by the antisymmetry of o,,! But as n increases, even for n = 5
this identity will be much more entangled and simple antisymmetry is insufficient for its
proof. The potential toolkit for this purpose includes: (1) relations of spinor derivatives
on scattering equations; (2) KK and BCJ relations of X;3,; (3) induction, which may
involve contour integration. We will come back to this point in the future after better
understanding the scattering equations and their solutions.

A last comment is that in (1.6), the anti-holomorphic angular momentum opera-
tor Jt/,aﬁ' should be generalized to Jy ,, in arbitrary dimensions. Since in 4-dimension
Juw ~ €apd ap T € aBJaﬁv and the soft theorem must hold for both holomorphic and anti-
holomorphic soft limits, it is more natural to use J,, as all other quantities are already
defined for arbitrary dimensions.
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