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1 Introduction

The first direct searches for the lepton-flavor violating (LFV) Higgs decay h → τµ were

carried out by the CMS and ATLAS collaborations [1, 2] yielding the upper bounds:

BR(h→ τµ) <

{
1.51× 10−2 CMS,

1.85× 10−2 ATLAS,
(1.1)

and the ranges:

BR(h→ τµ) =

{
(8.4+3.9

−3.7)× 10−3 CMS,

(7.7± 6.2)× 10−3 ATLAS.
(1.2)

The h→ τµ decay has several aspects that are worth emphasizing:

• It violates the lepton-flavor symmetry U(1)µ×U(1)τ , which is an accidental symmetry

of the Standard Model (SM).

• It is a flavor changing neutral current (FCNC) process.

• It violates the prediction that the Yukawa matrix is proportional to the mass matrix,

Y E ∝ME , which applies at the tree level to all models of Natural Flavor Conservation

(NFC).
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Due to these three aspects, an observation of h→ τµ in present experiments will have far

reaching implications.

In this work we ask whether an h→ τµ decay rate close to the near future sensitivity

of the LHC experiments, BR(h→ τµ) = O(0.01), can be accounted for by the minimal su-

persymmetric standard model (MSSM). The branching ratio depends on the total width of

the Higgs, which is experimentally unknown and which, within the MSSM, depends on the

entire supersymmetric spectrum. To avoid the dependence on sectors unrelated to LFV and

on experimentally yet-unconstrained observables, we consider the ratio of branching ratios,

Rτµ/ττ ≡
BR(h→ τµ)

BR(h→ ττ)
, (1.3)

which is independent of the total width. In particular, Rτµ/ττ is insensitive to the spec-

trum of the colored particles. By combining h → ττ and h → τµ data we obtain the

experimentally allowed range for the ratio of branching ratios

0.07 (0.01) . Rτµ/ττ . 0.21 (0.31) at 68.3% (95%) C.L. (1.4)

For this bound we assumed a parabolic χ2, i.e. gaussian errors, and profiled over BR(h→
ττ) to obtain the C.L. interval on the ratio. We thus focus on whether the MSSM can

account for Rτµ/ττ & 0.1.

The LHC measurements of the h → τµ decay rate and their implications for new

physics have been discussed in the literature within various theoretical frameworks [3–24].

In particular, previous studies of h→ τµ within the supersymmetric framework have been

carried out in refs. [25–28]. In these studies the emphasis was on identifying the range of

BR(h→ τµ) that corresponds to generic points in the parameter space. Indeed, we confirm

that for generic supersymmetric parameters, BR(h → τµ) is several orders of magnitude

below the present experimental sensitivity, as found in these previous works. We, however,

are interested to learn whether, if BR(h → τµ) = O(0.01) is established at the LHC, the

MSSM will be not just disfavored but actually excluded. To answer this question, we allow

the parameters to be highly fine-tuned and far from generic.

The structure of this paper is as follows. In section 2 we present our theoretical

framework. In sections 3 and 4 we obtain the largest possible Rτµ/ττ that can arise from

LFV from the A-terms and the slepton masses-squared, respectively, taking into account

bounds from τ → µγ and h → γγ and from perturbativity. In section 5 we require,

in addition, that the electroweak symmetry breaking minimum is the global one and, in

particular, that there is no deeper minimum that is charge breaking. We conclude in

section 6. Supplementary material is delegated to the appendices.

2 The theoretical framework

We consider the minimal supersymmetric SM. We assume R-parity conservation (RPC),

but make no assumptions, such as universality or alignment, about the supersymmetric

mass spectrum and mixing pattern. Examining the MSSM in view of the three points

emphasized above, we make the following observations:
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• Lepton flavor is not an accidental symmetry of the MSSM.

• Within the MSSM, FCNCs are always loop mediated.

• The R-parity even scalar sector of the MSSM is a two Higgs doublet model (2HDM)

with NFC type-II.

We now elaborate on each of these three features of the MSSM.

The supersymmetric part of the MSSM Lagrangian is minimally flavor violating: the

only supersymmetric sources of flavor violation are the Yukawa matrices of the SM. There-

fore, this part of the Lagrangian has the same accidental U(1)e×U(1)µ×U(1)τ symmetry

as the SM. However, this is in general not the case for the soft supersymmetry breaking

terms. They have three sources of LFV:

LLFV
MSSM = −m̃2

Lij L̃
†
i L̃j − m̃2

Rij
˜̄E†i

˜̄Ej − (AEijhdL̃i
˜̄Ej + h.c.) . (2.1)

Here L̃i are the SU(2)-doublet sleptons, ˜̄Ei are the SU(2)-singlet charged sleptons, and hd is

the Y = −1/2 Higgs doublet; m̃2
L is the 3×3 mass-squared matrix for the doublet sleptons,

m̃2
R is the 3 × 3 mass-squared matrix for the singlet sleptons, and AE is the 3 × 3 matrix

of trilinear scalar couplings. Throughout this work we follow the conventions of ref. [29].

Since either h → τµ or h → τe, but not both, can be large [3], we decouple in what

follows the selectron, and consider only the 2× 2 µ− τ block of each of the three matrices.

In addition to LLFV
MSSM, the following superpotential terms, involving the Higgs (Hu, Hd)

and lepton (L, Ē) superfields, are relevant to our study:

WH,L,E = µHuHd + Y EHdLĒ . (2.2)

In the charged lepton mass basis, Y E = diag(ye, yµ, yτ ).

Two additional parameters that affect our results are the angles β and α. At the tree

level they are traditionally defined as tan β = vu/vd (where vu,d = 〈Hu,d〉), and α the

rotation angle from the (hd, hu) basis to the mass basis of the neutral CP-even Higgs mass

eigenstates (h,H). However, we consider loop corrections, where subtleties arise in the

definitions of these parameters. The definition that we use (and is particularly convenient

for our purposes) is given in eq. (B.1). In what follows, we use the notations tφ ≡ tanφ,

cφ ≡ cosφ, and sφ ≡ sinφ for the various angles that are relevant to our analysis.

Within the RPC MSSM, FCNC processes in general, and the h → τµ decay in par-

ticular, get no tree-level contributions. The leading one-loop diagrams that contribute to

this process are presented in figure 1. In these diagrams, ˜̀ stands for the charged sleptons,

ν̃ for the sneutrinos, B̃ for the bino and W̃ for the wino.

The diagrams of figure 1a are proportional to yτ × sin 2θ × α
4π , where θ is the smuon-

stau mixing angle. In addition, this contribution is proportional to a loop function that

depends on ratios of sparticle mass parameters and is, at most, of O(1). The electroweak

loop factor of α
4π suppresses the amplitude by three orders of magnitude with respect to

the tree level h → ττ decay. Thus, these diagrams cannot generate Rτµ/ττ & 0.1, and we

do not consider them any further.
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B̃/W̃

h̃

ℓ̃/ν̃h

τ̄

µ

(a)

ℓ̃

ℓ̃

B̃h

τ̄

µ

(b)

h

τ̄

µ

(c)

Figure 1. Diagrams contributing to the one-loop amplitude for h → τµ. ⊗ depicts the flavor

off-diagonal counterterm from the field renormalization δZτµ.

The diagrams of figure 1b involve a trilinear scalar coupling. We distinguish two cases:

1. The trilinear scalar coupling arises from the supersymmetric terms µY E . This case

has two important features. First, the source of LFV has to be either (m̃2
L)µτ or

(m̃2
R)µτ . Second, the relevant Higgs field is hu, while the tree level tau Yukawa cou-

pling involves hd. In the limit of light 2HDM and heavy supersymmetry, the leading

effect to h→ τµ arises from the misalignment between the vacuum expectation value

and the light mass eigenstate and is therefore proportional to cβ−α. Similarly to the

diagrams of figure 1a, this contribution to Rτµ/ττ is proportional to [sin 2θ α4π ]2. In

this case, however, the contribution is proportional to the ratio of the dimensionful

parameter µ and the bino or slepton mass. This factor can provide some enhancement.

2. The trilinear scalar coupling comes from the AE matrix. Now, the source of LFV can

be the trilinear coupling itself, namely AEµτ or AEτµ. Different from the previous case,

the relevant Higgs field is hd, the same as the one that has the diagonal tree-level cou-

pling yτ . This contribution is, in general, not proportional to yτ . Nevertheless, if the

mass scale of the sleptons and/or the bino is somewhat heavier than the electroweak

scale, mSUSY > v, this contribution is suppressed by v2/m2
SUSY. This decoupling

behavior is clear because in this case in the limit of heavy SUSY there is a single

Higgs doublet so h→ τµ is mediated by the dimension-six operator
λij

m2
SUSY

H3L̄iEj .

In the next two sections we present how to maximize h→ τµ in each of those cases, taking

into account relevant experimental bounds and perturbativity. The A-term case is analyzed

in section 3 and the slepton mass-squared case in section 4. The consequences of requiring

that the global minimum is not charge breaking are analyzed, for both cases, in section 5.

The diagram of figure 1c corresponds to the finite flavor off-diagonal counterterm

related to the field renormalization δZτµ. It ensures that lepton fields are canonically

normalized and it is essential to include it in order to have the correct decoupling behavior.

Its computation is outlined in appendix A.

Finally, for the calculation of the ratio Rτµ/ττ , we also need the tree-level contribution

|M(h→ ττ)|2 = 2m2
h

(
mτ

v

sα
cβ

)2

. (2.3)
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Figure 2. Contours of Rτµ/ττ in the M1−m̃3 for the case of LFV from the A-term Aµτ . The value

of the A-term is the maximal allowed by perturbativity and satisfies vacuum stability constraints;

the associated tuning is indicated on the right y-axis. The red region in dashed lines is excluded by

the bound on τ → µγ. Orange horizontal lines indicate the deviation of the partial h→ γγ width

with respect to the SM value.

Above we neglected terms that are suppressed by additional powers of external fermion

masses. Our choice for defining α and β at higher orders in perturbation theory, given in

appendix B, ensures that eq. (2.3) remains valid also at the loop level.

3 LFV from the AE terms

Consider the case that the m̃2
L and m̃2

R matrices are diagonal, and the only source of LFV

is the AE matrix. Both AEµτ and AEµτ contribute to the h → τµ decay. The analysis is

simplified if the τ̃ †Lτ̃R entry in the mass-squared matrix can be neglected. Then, the 4 × 4

mass-squared matrix decomposes into two 2 × 2 blocks. For concreteness, we analyze the

µ̃L− τ̃R block. The analysis of the τ̃L− µ̃R block is similar. The relevant part of the slepton

mass-squared matrix has the following form:

M̃2 =

(
m̃2
µL

vdAµτ√
2

vdAµτ√
2

m̃2
τR

)
(3.1)
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The mixing angle θ, which rotates from the interaction basis (µ̃L, τ̃R) to the mass basis

(˜̀
3, ˜̀

2), is given by

tan 2θ =

√
2vdAµτ

m̃2
τR
− m̃2

µL

. (3.2)

In the mass basis, the trilinear scalar couplings are given by

Lh ˜̀̀̃ =
Aµτsα√

2
h
[
s2θ

(
˜̀∗
2
˜̀
2 − ˜̀∗

3
˜̀
3

)
+ c2θ

(
˜̀∗
2
˜̀
3 + ˜̀∗

3
˜̀
2

)]
(3.3)

and the bino-lepton-slepton couplings by

LB̃ ˜̀̀ =
g′√
2
B̃
(
sθ ˜̀∗

2 + cθ ˜̀∗
3

)
µL − g′

√
2B̃
(
cθ ˜̀

2 − sθ ˜̀
3

)
τ̄R + h.c. (3.4)

To zeroth order in the expansion of external momenta over SUSY masses, we obtain

the following contributions to the decay amplitude of h→ τ+µ−:

figure 1c = −iαM1s2θsα
8πc2

W vcβ
(x2 − x3) I3(1, x2, x3) PR,

figure 1b = i
αAµτsα

8
√

2πc2
WM1

{
s2

2θ [I3(1, x2, x2) + I3(1, x3, x3)] + 2c2
2θI3(1, x2, x3)

}
PR,

(3.5)

with c2
W ≡ cos2 θW , PR = (1 + γ5)/2, xi ≡ m̃2

i /M
2
1 , and

I3(x, y, z) =
xy log(x/y) + yz log(y/z) + zx log(z/x)

(x− y)(y − z)(z − x)
. (3.6)

For brevity we suppressed in eq. (3.5) the spinors for the lepton fields. The amplitude for

h→ τ−µ+ is the same as the one in eq. (3.5) after exchanging PR with PL = (1− γ5)/2.

The sum of the two amplitudes then reads:

M(h→ τ+µ−) = i
αAµτsα

8
√

2πc2
WM1

{
s2

2θ [I3(1, x2, x2) + I3(1, x3, x3)] +

+ 2

[
c2

2θ − s2θ
M2

1 (x2 − x3)√
2vcβAµτ

]
I3(1, x2, x3)

}
PR. (3.7)

We see that in the limit of small mixing, s2θ � 1 (vcβAµτ � m̃2
2 − m̃2

3), we have

M(h→ τµ) = O(s2
2θ) = O(v2/m2

SUSY), as argued in the previous section. To estimate the

largest possible value of Rτµ/ττ , we take, however, the limit of maximal mixing, sin2 2θ = 1.

This limit is obtained by fine-tuning m̃2
µL

= m̃2
τR

and, consequently, m̃2
2−m̃2

3 =
√

2vcβAµτ .

In this case the sum of |M(h→ τ+µ−)|2 and |M(h→ τ−µ+)|2 reads

|M(h→ τµ)|2 = m2
h

α2s2
α

64π2c4
W

A2
µτ

M2
1

[I3(1, x2, x2) + I3(1, x3, x3)− 2I3(1, x2, x3)]2 . (3.8)

To check that our result has the correct decoupling behavior for mSUSY � v, we evaluate

the terms in parenthesis in the limit (m̃2
2 − m̃2

3)� (m̃2
2 + m̃2

3),M2
1 :

|M(h→ τµ)|2 = m2
h

α2s2
α

144π2c4
W

A2
µτ

M2
1

(
x2 − x3

x2 + x3

)4
(
1− 6x23 + 3x2

23 + 2x3
23 − 6x2

23 log x23

)2

(1− x23)8
,

(3.9)
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where x23 ≡ (m̃2
2 + m̃2

3)/(2M2
1 ). The amplitude indeed scales as (x2−x3)2

(x2+x3)2
∼ v2/m2

SUSY.

The amplitude grows as Aµτ . There is, however, a perturbativity bound on Aµτ :

∣∣∣∣
Aµτsα√

2

∣∣∣∣ . 4πm̃3 . (3.10)

The fine tuning in models with mh � Aµτ is of order [30]

∆ ' 1

16π2

A2
µτ

m2
h

. (3.11)

We denote the ratio Rτµ/ττ that corresponds to maximal mixing, s2
2θ = 1, and maximal

perturbative Aµτ = 4
√

2πm̃3/sα by Rmax
τµ/ττ :

Rmax
τµ/ττ =

{
α

2c2
W

v

mτ

cβ
sα

m̃3

M1
[I3(1, x2, x2) + I3(1, x3, x3)− 2I3(1, x2, x3)]

}2

. (3.12)

In figure 2 we show the value of Rmax
τµ/ττ in the m̃3 − M1 plane. Here, Aµτ =

4
√

2πm̃3/|sα|, m̃2
2 = m̃2

3 +
√

2vcβAµτ , and |sα/cβ | = 1. We emphasize that |sα/cβ | = 0.75

gives an O(1) enhancement but is forbidden by vacuum stability, which will be discussed

in more detail below. Also depicted in this plot is the region excluded by the upper bound

on τ → µγ (for details see appendix C) and contours of deviation of the h → γγ partial

width with respect to the SM one (see appendix D).

We conclude that, with Aµτ being the source of LFV, we have

Rτµ/ττ . 0.0015, (3.13)

below the near-future sensitivity of ATLAS and CMS. Even by including both Aµτ and

Aτµ at the same time, Rτµ/ττ . 0.002.

4 LFV from the m̃2
L terms

Consider the case that the sources of LFV are the matrices m̃2
L and m̃2

R. To obtain Rτµ/ττ
as large as O(0.1), there must be no additional suppression from the mixing angle or from

the loop function. At least one of m̃2
L and m̃2

R has to be anarchic in the µ−τ sector to have a

mixing angle of order one. While large µ̃− τ̃ mixing is a necessary condition, if it is large in

both m̃2
L and m̃2

R, the τ -lepton in figure 1b can be replaced with a muon, which implies that

BR(h → µµ) ∼ BR(h → τµ). Given our requirement that Rτµ/ττ & 0.1, and the experi-

mental upper bound on BR(h→ µµ) [31, 32], this case is disfavored. Thus, either m̃2
L or m̃2

R

has to be near-diagonal. For concreteness, we take m̃2
L to be anarchic and m̃2

R to be diago-

nal. Hence, we focus on the 3× 3 block of (µ̃L, τ̃L, τ̃R) in the slepton mass-squared matrix.

The relevant part of the slepton mass-squared matrix has the form:

M̃2 =




(m̃2
L)µµ (m̃2

L)µτ 0

(m̃2
L)∗µτ (m̃2

L)ττ −mτµtβ
0 −mτµtβ (m̃2

R)ττ


 ,

– 7 –
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where, for simplicity, we set AE = 0 and yµ = 0.

We denote by Ũ the mixing matrix that rotates from the interaction basis (µ̃L, τ̃L, τ̃R)

to the mass basis (˜̀
1, ˜̀

2, ˜̀
3). To maximize the rate of h → τµ, it is best if the dominant

contribution comes from the lightest slepton mass eigenstate, ˜̀
3. The mixing angles that

enter the amplitude are

Ũ∗3µLŨ3τR × 2Re(Ũ3τLŨ
∗
3τR

). (4.1)

We are interested in estimating the largest possible contribution to h→ τµ. Therefore, we

are interested in the values of Ũ3α that maximize eq. (4.1):

Ũ3α = (1/2, 1/2, 1/
√

2). (4.2)

The way to achieve eq. (4.2) is by two tunings of entries of M̃2. First, we set (m̃2
L)µµ =

(m̃2
L)ττ . Then, we extract the two eigenvalues of the m̃2

L matrix. We take the heavier eigen-

value (m̃2
L)+ to be very large, so that the corresponding mass eigenstate ˜̀

+ = 1√
2
(τ̃L + µ̃L)

decouples. We are left with an effective two-slepton framework, ˜̀− = 1√
2
(τ̃L− µ̃L) and τ̃R:

M̃2 =

(
(m̃2

L)− −mτµtβ/
√

2

−mτµtβ/
√

2 (m̃2
R)ττ

)
,

where (m̃2
L)− = (m̃2

L)ττ − (m̃2
L)µτ . The mixing angle θ, which rotates from the interaction

basis (˜̀−, τ̃R) to the mass basis (˜̀
3, ˜̀

2), is given by

tan 2θ =

√
2mτµtβ

(m̃2
L)− − (m̃2

R)ττ
. (4.3)

The trilinear scalar couplings in the mass basis are given by

Lh ˜̀̀̃ = −mτµcα√
2vcβ

h
[
s2θ

(
˜̀∗
2
˜̀
2 − ˜̀∗

3
˜̀
3

)
− c2θ

(
˜̀∗
2
˜̀
3 + ˜̀∗

3
˜̀
2

)]
, (4.4)

and the bino-lepton-slepton couplings are given by

LB̃ ˜̀̀ =
g′

2
B̃
(
cθ ˜̀∗

2 + sθ ˜̀∗
3

)
(τL − µL) +

√
2g′B̃

(
sθ ˜̀

2 − cθ ˜̀
3

)
τ̄R + h.c. (4.5)

Given this Lagrangian we can compute the h → τµ amplitude along lines similar to the

analysis of the LFV A-terms. There is the one-loop contribution (figure 1b) and field

renormalization contribution (figure 1c).

As a second step in obtaining optimal mixing, we tune (m̃2
L)− = (m̃2

R)ττ to generate

maximal ˜̀− − τ̃R mixing. This tunning fixes the mass difference of the two slepton mass

eigenstates to be m̃2
2 − m̃2

3 =
√

2mτµtβ . We obtain, for the specific mixing pattern of

eq. (4.2):

M(h→ τ+µ−) = −i αµmτ

16πc2
WM1v

{
cβ−α

[
I3(1, x2, x2) + I3(1, x3, x3) + 2t2βI3(1, x2, x3)

]

+ sβ−αtβ [I3(1, x2, x2) + I3(1, x3, x3)− 2I3(1, x2, x3)]}PR . (4.6)
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We wrote this expression in a way that transparently exposes the correct decoupling limit.

We remind the reader that both mτ/v and µ/M1 are finite in the decoupling limit. Then,

the first term scales like cβ−α and the second term scales like (m̃2
2−m̃2

3)2/(m̃2
2 +m̃2

3)2, both

of which are proportional to v2/m2
SUSY.

For the ratio of branching ratios, we find:

Rτµ/ττ =

(
αµ

16πc2
WM1

)2

2tβI3(1, x2, x3)− cβ−α + sβ−αtβ

sβ−α − cβ−αtβ
∑

i=2,3

I3(1, xi, xi)




2

. (4.7)

The ratio grows as (µ/M1)2. However, there is a perturbativity bound on µ:

mτµ(cβ−α + sβ−αtβ)√
2v

. 4πm̃3 . (4.8)

The fine tuning in models with mh � µ is of order [30]

∆ ' 2µ2

m2
h

. (4.9)

We denote the ratio Rτµ/ττ which corresponds to Ũ3α = (1/2, 1/2, 1/
√

2) and to µ at the

perturbative bound of eq. (4.8) by Rmax
τµ/ττ :

Rmax
τµ/ττ =

{
αv
√
x3

2
√

2mτ c2
W

[
2I3(1, x2, x3)

sβ−α + cβ−α/tβ
−
∑

i=2,3 I3(1, xi, xi)

sβ−α − cβ−αtβ

]}2

. (4.10)

The parameters cβ−α and tβ play a crucial role on the value of Rmax
τµ/ττ . The allowed

range in the cβ−α−tβ plane is shown in figure 6 of appendix B. The upper bound on Rmax
τµ/ττ

is different for the bulk region and the peninsula region. The peninsula region corresponds

to the parameter space in which the hV V and hγγ couplings are close to their SM values,

while the hττ coupling has the same absolute value but opposite sign.

It is interesting to note that, for M1, m̃3 � v, the sleptons are quasi-degenerate and

eq. (4.10) takes the form

Rmax
τµ/ττ =

{
αv√

2mτ c2
W

√
x3I3(1, x3, x3)

[
cβ−αtβ

sβ−α(sβ−α − cβ−αtβ)

]}2

. (4.11)

The maximum of the loop function is for m̃3/M1 ≈ 0.47 independently of their individual

values. The best fit point for the trigonometric factor depends on whether we are in the

bulk or in the peninsula regions.

In the right panels of figures 3 and 4 we show the value of Rmax
τµ/ττ in the m̃3 −M1

plane. Here, mτµ = 4
√

2πm̃3v/(cβ−α + sβ−αtβ), and m̃2
2 = m̃2

3 +
√

2mτµtβ . Also depicted

in these plots is the region excluded by the upper bound on τ → µγ (see appendix C) and

the deviation of the partial width of h→ γγ with respect to the SM (see appendix D).

Figure 3 corresponds to cβ−α and tβ in the bulk region. We conclude that, with (m̃2
L)µτ

being the source of LFV while also being in the bulk region

Rτµ/ττ . 0.035 for |cβ−αtβ | � 1, (4.12)
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Figure 3. Contours of Rτµ/ττ in the M1 − m̃3 for the case of LFV from the slepton mass-squared

term (m̃2
L)µτ . For cos(β − α) and tan β we take the values in the bulk region of figure 6 that

maximize Rτµ/ττ . In the left (right) panel the value of the µ is the maximal allowed by vacuum

stability (perturbativity); the associated tuning is indicated on the right y-axis. The red region in

dashed lines is excluded by the bound on τ → µγ. Orange horizontal lines indicate the deviation

of the partial h→ γγ width with respect to the SM value.

below the near-future sensitivity of ATLAS and CMS.

Figure 4 corresponds to cβ−α and tβ in the peninsula region. Here, much higher values

of Rτµ/ττ can be reached. In particular, the present upper bound on this ratio (eq. (1.4)),

Rτµ/ττ . 0.31 for cβ−αtβ ' 2, (4.13)

can be saturated.

5 Charge breaking minima

In previous sections we established that large trilinear scalar couplings enable, in principle,

enhancement of the MSSM contributions to h → τµ well above the estimate from naive

dimensional analysis. Such large trilinear couplings might lead, however, to charge breaking

minima that are lower than the electroweak symmetry breaking one. In this section we

obtain upper bounds on the trilinear couplings by requiring that the global minimum is

not charge breaking.

We are particularly concerned whether the corner of parameter space, in which the

MSSM saturates the upper bound (see eq. (4.13)) while being consistent with experimental

constraints and the perturbativity bound, does not lead to a global minimum that is charge

breaking. The relevant scalar fields are the Higgs and slepton fields. Similar bounds on µ

have been investigated in the past [33–37]. In our case, the dangerous directions in the field
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Figure 4. Contours of Rτµ/ττ in the M1 − m̃3 for the case of LFV from the slepton mass-squared

term (m̃2
L)µτ . For cos(β − α) and tan β we take the values in the peninsula region of figure 6 that

maximize Rτµ/ττ . In the left (right) panel the value of the µ is the maximal allowed by vacuum

stability (perturbativity); the associated tuning is indicated on the right y-axis. The red region in

dashed lines is excluded by the bound on τ → µγ. Orange horizontal lines indicate the deviation of

the partial h→ γγ width with respect to the SM value. The green dashed line indicates the direct

upper bound on Rτµ/ττ .

space are those where there is no dependence on the heavy slepton mass-squared eigenvalue

m̃2
L+

. Thus, we focus on the following direction:

〈H0
u〉 = 〈τ̃R〉 = 〈˜̀−〉 = f. (5.1)

In this direction, the soft breaking terms and F-terms are the following:

VF+soft = m̃2
L−〈˜̀∗−〉〈˜̀−〉+ m̃2

R〈τ̃∗R〉〈τ̃R〉+
1√
2
yτµ

(
〈Hu〉〈τ̃∗R〉〈˜̀−〉+ h.c.

)

+
1

2
y2
τ 〈τ̃∗R〉〈τ̃R〉〈˜̀∗−〉〈˜̀−〉, (5.2)

where we have used that, for tβ � 1 and cβ−α � 1, (M2
Hu

+ |µ|2) � Λ2
SUSY to neglect

the contribution from the 〈Hu〉2 term. Using our ansatz, m̃2
L−

= m̃2
R = 1

2(m̃2
2 + m̃2

3), and

adding the D-term, we obtain

V '
(
m̃2

2 + m̃2
3 +
√

2yτµf +
y2
τ + g2 + g′2

2
f2

)
f2. (5.3)

We require that the minimum at f = 0 should be deeper than minima with f 6= 0. This is

equivalent to requiring that the discriminant for the term in parenthesis is negative:

µ2 ≤ (m̃2
2 + m̃2

3)
y2
τ + g2 + g′2

y2
τ

. (5.4)
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Using the relation that follows from our ansatz, m̃2
2 = m̃2

3 +
√

2mτµtβ , we find, to leading

order in v/m̃3,

|µ| .
√

2

y2
τ

(y2
τ + g2 + g′2)m̃3 ∼ 2.5m̃3, (5.5)

where in the last equation we use yτ ∼ 0.5 (corresponding to tβ ∼ 50). For m̃3 as low as

0.5 TeV, the bound is relaxed to |µ| . 2.9m̃3. In any case, the bound from charge breaking

minimum is much stronger than the bound from perturbativity, eq. (4.8). In the left panels

of figures 3 and 4 we show the value of Rmax
τµ/ττ in the m̃3 −M1 plane. Here we use the

maximal value of µ allowed by the charged breaking constraint.

When we replace the perturbativity bound with the one from charge breaking minima,

we obtain, in the bulk region,

Rτµ/ττ . 10−4 for |cβ−αtβ | � 1, (5.6)

to be compared with eq. (4.12), and in the peninsula region,

Rτµ/ττ . 4× 10−3 for cβ−αtβ ' 2, (5.7)

to be compared with eq. (4.13).

The bound on |µ| becomes weaker if, instead of requiring the absence of charge breaking

minima, we would only require that the electroweak breaking minimum is metastable with

a lifetime that is longer than the age of the Universe. Following the analysis of ref. [34]

we find that the bound on |µ| is relaxed by at most a factor of two compared to the one

from eq. (5.5). (When µ saturates the perturbative bound of eq. (4.8) the lifetime of the

electroweak minimum is exponentially smaller than the age of the Universe.) Therefore,

our conclusions remain unchanged.

The case of the A-term is somewhat different. The analysis proceeds along similar

lines. One can avoid, however, the existence of deeper minima by taking the soft SUSY

breaking parameter MHd to be much larger than the A-term itself (which is equivalent to

the limit cβ−α → 0). In this case the final result changes only by a factor of 2.

We conclude that while the MSSM can enhance Rτµ/ττ by some three orders of mag-

nitude compared to the naive estimate of (α/4π)2, its maximal contribution is still about

two orders of magnitude below the near future experimental sensitivity. It is interesting to

note that an enhancement of the same order of magnitude can be achieved if all possible

MSSM contributions to the h → τµ decay interfere constructively, even if the trilinear

scalar couplings do not saturate their upper bounds. In either case, such an enhancement

arises only in non-generic regions of the parameter space.

6 Conclusions

The ATLAS and CMS experiments can discover the lepton-flavor violating Higgs decay

h → τµ if its rate is not much lower than the rate of the h → ττ decay. We examined

the question of whether the minimal supersymmetric Standard Model (MSSM) will be

unambiguously excluded in case such a discovery is made. The version of the MSSM that

we analyzed has the following features:
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• R-parity is conserved.

• Non-renormalizable terms are negligible.

• All couplings are perturbative. They need not obey, however, any other principle,

such as flavor universality.

• There is no charge breaking minimum that is deeper than the electroweak symmetry

breaking one.

Since in this framework the h→ τµ decay is suppressed by an electroweak loop, while the

h → ττ decay proceeds at tree level, in generic points of the MSSM parameter space the

LFV decay is suppressed to values orders of magnitude below the sensitivity of the LHC

experiments.

When we consider only the perturbativity bounds on trilinear scalar couplings, we

find very non-generic points in the MSSM parameter space that can compensate for the

electroweak loop suppression. Specifically, if BR(h→ τµ)/BR(h→ ττ) is discovered with

a value close to the present experimental bound, the MSSM with perturbative couplings

can account for it under the following, highly non-generic, conditions: (i) The µ-term is

close to its perturbative bound; (ii) There is order one lepton-flavor violation (in the τ −µ
sector) in one of the slepton mass-squared matrices, and very small lepton-flavor violation

in the other; (iii) The bino and the sleptons have masses at the TeV scale or higher,

and the higgsinos are an order of magnitude heavier; (iv) The two lightest sleptons are

quasi-degenerate; (v) The second Higgs doublet is lighter than the sleptons and bino.

The MSSM at this corner of parameter space has, however, a charge breaking minimum

that is lower than the electroweak symmetry breaking minimum. Avoiding such a minimum

(or even just requiring that the lifetime of the electroweak minimum is longer than the age

of the Universe) is incompatible with the condition (i). Thus, the µ-parameter has to be

smaller than the perturbative bound by about an order of magnitude, suppressing the ratio

Rτµ/ττ ≡ BR(h→ τµ)/BR(h→ ττ) by at least two orders of magnitude compared to the

present experimental sensitivity.

We conclude that if ATLAS and CMS establish that Rτµ/ττ & 10−2, the R-parity

conserving MSSM will be excluded.

Note added. While this work was in writing, ref. [38] appeared which also examines the

possibility of a large rate for h→ τµ within the MSSM. As far as a comparison is possible,

we agree with their results. In particular, the importance of the constraints from τ → µγ

is emphasized. However, ref. [38] calculates BR(h→ τµ) and not the ratio Rτµ/ττ . Thus,

the entire MSSM spectrum and mixing needs to be specified, which dictates the Higgs total

width as well as the spectrum and couplings of the H0, A0 and H± scalar particles. With

their specific choice, much smaller rates for h→ τµ are obtained. In the present work, on

the other hand, we are mainly interested in the possibility to unambiguously exclude the

MSSM. We thus allow for the possibility that the squark sector strongly affects the total

width and the Higgs potential, so that generic constraints related to these aspects cannot

be applied.
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µ τ

Figure 5. Counterterm and one-loop contribution to the flavor off-diagonal µ → τ two-point

function.
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A Field renormalization

To compute the transition amplitudes of physical particles, like the h → τµ transition

presented in sections 3 and 4, it is convenient to work with a Lagrangian in which all

external fields have canonically normalized kinetic terms. Since at the loop level this, a

priori, does not hold, it is a convenient and standard procedure to include finite parts in

all the field renormalization constants of external particles to enforce proper kinetic terms

also at the loop-level. This makes it manifest that the species of an on-shell particle cannot

change in the vacuum and is the way field renormalization constants are implemented in

the on-shell scheme.

Below we outline the procedure in the example of the h→ τµ decay. In terms of Dirac

fields, the relevant Lagrangian terms read:

Lττ = τ̄0i��Dτ0 −
(
m0
τ +

m0
τ

v0

sinα0

cosβ0
h0

)
(τ̄0
Lτ

0
R + τ̄0

Rτ
0
L), (A.1)

where the superscript “0” indicates bare fields and parameters. In a chiral field theory like

the MSSM the fields of different chirality are renormalized individually. The lepton fields

are renormalized via the field renormalization constants

`0Ai = (ZAij )
1/2`Aj ≡

(
δij +

1

2
δZAij +O(higher orders)

)
`Aj with A = L,R . (A.2)

Since we are only interested in tree-level counterterms mediating LFV transitions, the only

relevant renormalization constants at one-loop are the above off-diagonal field renormaliza-

tions. By inserting the expansion in eq. (A.2) into eq. (A.1), we obtain the counterterms

involving both τ and µ fields. We are interested in the off-diagonal terms, which are, in

the limit of a massless muon,

Lµτ =
1

2
(δZLτµ + δZL∗µτ )τ̄Li��DµL +

1

2
(δZRτµ + δZR∗µτ )τ̄Ri��DµR
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Figure 6. Allowed region in the cos(β − α)− tanβ plane.

−
(
mτ +

mτ

v

sinα

cosβ
h

)
1

2
δZRτµτ̄LµR −

(
mτ +

mτ

v

sinα

cosβ
h

)
1

2
δZLτµτ̄RµL + h.c. . (A.3)

We see that the h − τ − µ vertex is renormalised by the same two constants, δZLτµ and

δZRτµ as the “mass” vertex. The requirement that the off-diagonal two-point vanishes at all

orders in perturbation theory fixes the two relevant constants, i.e. the sum of the diagrams

in figure 5 should vanish. In our case it is sufficient to include only the part of the two-point

function proportional to mτ because the expansion in external momenta over SUSY masses

is a good approximation:

0
!

=M(µ→ τ) ⊃ −imτ

2

(
δZRτµPR + δZLτµPL

)

+ i
∑

i=2,3

∫
ddq

(2π)d
(gτ,iL PR + gτ,iR PL)( 6 q +M1)(gµ,iL PL + gµ,iR PR)

(q2 −M2
1 )(q2 − m̃2

i )
, (A.4)

where gα,iL,R denote the couplings between `α− ˜̀
i−B̃. In the case of our effective two-slepton

framework, we find:

δZRτµ = 0,

δZLτµ = − e2s2θ

16π2c2
W

m̃2
2 − m̃2

3

mτM1
I3(1, x2, x3) ×

{
1 (from AE)
1√
2

(from µY E)

(A.5)

where xi = m̃2
i /M

2
1 .

B Constraints in the cos(β − α)− tanβ plane

The couplings of the light Higgs h to V V, γγ, ττ and τµ depend on tan β and cos(β − α).

We use the experimental constraints on the h→ V V, γγ and ττ modes to find the allowed
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region in the cos(β − α) − tanβ plane. We do not use the data on h → bb̄, as we do

not commit to a specific squark sector. We use the same set of data and procedure as

employed in ref. [39]. To do so, we fix tan β and cos(β − α) to all orders in perturbation

theory through:

ghV V /g
SM
hV V ≡ sin(β − α),

ghττ/g
SM
hττ ≡ sin(β − α)− cos(β − α) tanβ.

(B.1)

Note that this definition of tan β differs at the loop level from the standard definition of

vu/vd. With this definition, our results should reproduce, to a good approximation, the

allowed region for 2HDM Type II obtained in ref. [39], and indeed they do.

The allowed region in the cos(β − α) − tanβ is presented in figure 6. We refer to

the central allowed region, which includes the point (0, 1) as “the bulk region”. We call

the branch in the upper right corner “the peninsula region”, a term used in ref. [39]. It

corresponds to sin(β − α) not far from 1, and cos(β − α) tanβ not far from 2. In this way,

the hV V and hγγ couplings are close to their SM values, while the hττ coupling has the

same absolute value but opposite sign.

C τ → µγ

To obtain the rate for τ → µγ, we integrate out all the heavy degrees of freedom, and

match to the effective Lagrangian

Leff = −e
2
CγµLσ

µντRFµν + h.c. . (C.1)

The Wilson coefficient Cγ gives the rate:

BR(τ → µγ)

BR(τ → µνν̄)
=

48π3α

G2
Fm

2
τ

|Cγ |2. (C.2)

The relevant experimental results are [40, 41]

BR(τ → µγ) < 4.5× 10−8 at 90% C.L.,

BR(τ → µνν̄) = (17.41± 0.04)× 10−2.
(C.3)

With this experimental input the bound on the Wilson coefficient reads:

|Cγ | < 3.1× 10−9 GeV−1. (C.4)

In the cases of interest to us, we have an effective two-slepton framework, with the

mass eigenstates (˜̀
2, ˜̀

3). We denote the mixing matrix for bino-slepton-lepton couplings

by Ũ . We obtain:

Cγ = − α

8πc2
WM1

∑

i=2,3

ŨiµLŨ
∗
iτR

1− x2
i + 2xi log xi

(1− xi)3
, (C.5)
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where xi ≡ m̃2
i /M

2
1 . Then, the upper bound on |Cγ | (C.4) translates into

130 TeV

M1

∣∣∣∣∣∣
∑

i=2,3

ŨiµLŨ
∗
iτR

1− x2
i + 2xi log xi

(1− xi)3

∣∣∣∣∣∣
< 1. (C.6)

For the case of LFV from the A-terms discussed in section 3, we have Ũ2µLŨ
∗
2τR

=

−Ũ3µLŨ
∗
3τR

= 1/2. For the case of LFV from the m̃2
L-terms discussed in section 4, we have

Ũ2µLŨ
∗
2τR

= −Ũ3µLŨ
∗
3τR

= 1/(2
√

2). Thus the contribution to |Cγ |2 is smaller by a factor

of 1/2 in the latter case, compared to the former, and the lower bounds on the spartner

masses from τ → µγ are correspondingly weaker. In either case, taking into account that

the large slepton mixing entails quasi-degeneracy between the two sleptons, we expect the

lower bound on the bino and/or slepton masses to be of order 10 TeV. The numerical

impact is shown in the relevant sections.

D h→ γγ

Within the MSSM, the h→ γγ decay rate is given by

Γ(h→ γγ) =
G2
Fα

2m3
h

128
√

2π3

∣∣∣∣∣∣
∑

f

cfA1/2(τf ) + cwA1(τW ) +A˜̀

∣∣∣∣∣∣

2

, (D.1)

where τf,W ≡ m2
h/4m

2
f,W ,

A1/2(τ) = 2[τ + (τ − 1)f(τ)]/τ2,

A1(τ) = −[2τ2 + 3τ + 3(2τ − 1)f(τ)]/τ2,
(D.2)

and

f(τ) =





arcsin2√τ τ ≤ 1,

−1
4

[
log 1+

√
1−τ−1

1−
√

1−τ−1
− iπ

]2
τ > 1.

(D.3)

The first term in eq. (D.1) comes from the SM fermion loops and the second from the

W -boson loop, but with the MSSM couplings:

ct =
4

3
(sβ−α + cβ−α/tβ),

cb =
1

3
(sβ−α − cβ−αtβ),

cτ = sβ−α − cβ−αtβ ,
cw = sβ−α.

(D.4)

The third term comes from the slepton loop and, for m̃2,3 � v, is given by

A˜̀ =
1

6
√

2

(
1

m̃2
2

− 1

m̃3
3

)
×
{

−sαvAµτ (from AE),

(cβ−α + sβ−αtβ)mτµ (from µY E).
(D.5)

– 17 –



J
H
E
P
0
4
(
2
0
1
6
)
1
6
2

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] CMS collaboration, Search for lepton-flavour-violating decays of the Higgs boson, Phys. Lett.

B 749 (2015) 337 [arXiv:1502.07400] [INSPIRE].

[2] ATLAS collaboration, Search for lepton-flavour-violating H → µτ decays of the Higgs boson

with the ATLAS detector, JHEP 11 (2015) 211 [arXiv:1508.03372] [INSPIRE].

[3] G. Blankenburg, J. Ellis and G. Isidori, Flavour-changing decays of a 125 GeV Higgs-like

particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].

[4] R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, JHEP 03 (2013) 026

[arXiv:1209.1397] [INSPIRE].

[5] A. Dery, A. Efrati, Y. Hochberg and Y. Nir, What if BR(h→ µµ)/BR(h→ ττ) does not

equal m2
µ/m

2
τ?, JHEP 05 (2013) 039 [arXiv:1302.3229] [INSPIRE].

[6] A. Dery, A. Efrati, Y. Nir, Y. Soreq and V. Susič, Model building for flavor changing Higgs
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