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1 Introduction

The exploration of integrable structures in planar N = 4 supersymmetric Yang-Mills theory

has led to numerous results which go far beyond the usual restrictions of perturbative QFT

calculations [1]. With the help of integrability, the spectral problem has been reduced to a

strikingly simple set of Riemann-Hilbert type equations known as the Quantum Spectral

Curve (QSC) [2, 3]. They are expected to capture the exact spectrum of single trace
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operator scaling dimensions and string state energies in the dual AdS5 × S5 theory at any

value of the ’t Hooft coupling λ. As a compact set of equations for only a few functions, the

QSC is tremendously more efficient than the preceding infinite system of Thermodynamic

Bethe ansatz (TBA) or Y-system equations [4–8].

The efficiency of the Quantum Spectral Curve over any other approach has already

been demonstrated in a variety of settings. In [9, 10] it was used to reach up to 10 loops

in perturbation theory, while the all-loop near-BPS solution in [11] led to new strong

coupling predictions. At finite coupling it allows one to compute the spectrum numerically

with extremely high precision [12]. In addition, the QSC finally made it possible to deeply

probe the BFKL regime using integrability. The leading order BFKL predictions were

reproduced in [13] and very recently the novel NNLO term was computed in [14]. The

QSC has been formulated for the ABJM theory as well [15], leading to weak coupling

results [16] and to an exact computation [17] of the interpolating function which enters all

integrability-based predictions. Finally, originating in the universal QQ-relations, the QSC

is also expected to be helpful in application to 3-point functions, as it should provide the

exact wavefunctions in Sklyanin’s separated variables.

A natural goal is to extend the Quantum Spectral Curve to various integrable defor-

mations and boundary problems in N = 4 SYM, making possible an in-depth investigation

of their properties. The TBA equations/Y-systems for these examples [18–29]1 are quite

similar to those in the undeformed theory, suggesting that the QSC could also be adapted

with relatively small changes.

In this paper we focus on one of the most intriguing problems of this kind, namely the

boundary TBA for the generalized cusp anomalous dimension Γcusp. This much-studied

observable corresponds to the divergence associated with a pair of Wilson lines forming a

cusp of arbitrary angle φ,

〈W 〉 ∼
(

ΛIR
ΛUV

)Γcusp

, (1.1)

where ΛIR,UV are the infrared and ultraviolet cutoffs. The Wilson lines include an ad-

ditional coupling to the six scalars of N = 4 SYM, defined by two constant unit vectors

~n, ~nθ ∈ R6 corresponding to the two lines, with angle θ between these vectors (see figure 1).

We can write the cusped Wilson line explicitly as

W = P exp

0∫
−∞

dt
[
iA · ẋq + ~Φ · ~n |ẋq|

]
× P exp

∞∫
0

dt
[
iA · ẋq̄ + ~Φ · ~nθ |ẋq̄|

]
, (1.2)

where ~Φ is a vector made out of the six scalars Φi, and xq(t), xq̄(t) are straight lines which

form an angle φ at the cusp. The generalized cusp anomalous dimension can be equivalently

understood as the quark-antiquark potential on the three-sphere and is related to many

physical quantities, such as radiation power from a moving quark or IR divergences in

amplitudes. Recently it was also found to determine the energy levels of a supersymmetric

“hydrogen atom” made out of massive W-bosons in N = 4 SYM [32].

1See also [30, 31] for some results in other boundary setups.

– 2 –



J
H
E
P
0
4
(
2
0
1
6
)
1
3
4

Figure 1. The cusped Wilson line. A Wilson line with an angle φ at the cusp, with an extra

insertion of L scalar fields Z = Φ1 + iΦ2. The coupling of the scalar fields to the two lines is

determined by unit vectors ~n and ~nθ in the internal space, the angle between them is θ.

The key insight which allowed to derive exact equations for Γcusp from integrability

was to consider the same Wilson lines with L scalars Z = Φ1 + iΦ2 inserted at the cusp,2

WL = P exp

0∫
−∞

dt
(
iA · ẋq + ~Φ · ~n |ẋq|

)
× ZL × P exp

∞∫
0

dt
(
iA · ẋq̄ + ~Φ · ~nθ |ẋq̄|

)
. (1.3)

This leads to a boundary problem for Γcusp as the ground state energy in finite volume L

with extra reflection phase factors corresponding to the two Wilson lines. The outcome is

a set of TBA equations obtained in [33, 34] providing the value of Γcusp at any value of

the coupling λ for arbitrary φ, θ and any number of insertions L. The usual definition of

Γcusp corresponds to L = 0. One can also consider more general insertions instead of ZL

in (1.3), which are described as excited states in the TBA.

When φ = θ this observable is BPS, and one can study the near-BPS expansion in

(φ− θ) which can be written as

Γcusp =
cosφ− cos θ

sinφ
∆(1)(φ) +

(
cosφ− cos θ

sinφ

)2

∆(2)(φ) +O((φ− θ)3) . (1.4)

The leading coefficient in this series is known for L = 0 to all loops from localiza-

tion [35, 36]. For θ = 0 it was reproduced at any coupling in [37] by a direct analytic

solution of the TBA, which also gave a new prediction for the case with arbitrary L. This

analytic solution was extended to the case with arbitrary θ ∼ φ and any L in [38]. The

near-BPS results for L ≥ 1 organize in a curious matrix model type partition function

whose classical limit was investigated in [37, 39] giving the corresponding classical spectral

curve (see also [40–42]). In addition, the TBA was solved to two loops at weak coupling

for finite φ, θ [43], reproducing direct perturbative predictions which are also known at up

to four loops [44–47].

In this paper we adapt the Quantum Spectral Curve approach to study the generalized

cusp anomalous dimension at any values of the parameters. Instead of deriving the QSC

from the TBA, we make a proposal based on available data and consistency of the equations,

2The scalars inserted at the cusp should be orthogonal to the combinations ~n · ~Φ and ~nθ · ~Φ which couple

to the Wilson lines.
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and confirm it by several highly nontrivial tests. We find that all functional equations of

the QSC remain unchanged, but the asymptotics at large values of the spectral parameter,

as well as some of the analyticity properties, should be modified. In particular some

functions acquire exponential asymptotics ∼ e±φu, e±θu, as expected by analogy with spin

chain Q-functions in the presence of twisted boundary conditions. We also observed that

rather subtle cancelations take place resulting in complicated constraints on subleading

coefficients in the large u asymptotics of Q-functions. As an application we compute the

subleading term (of order (φ − θ)2) in the near-BPS expansion of Γcusp without scalar

insertions, at any coupling and for any φ. Our explicit result (3.79) fully agrees with

perturbative predictions.

Our paper is organized as follows. In section 2 we review the original Quantum Spectral

Curve and discuss in detail the modifications needed for our problem. We discuss the

vacuum state, i.e. with only Z fields inserted at the cusp, but keep L arbitrary. In section 3

we reconstruct the near-BPS solution at any θ and L, and then for L = 0 extend it

to the next order in the near-BPS expansion. In section 4 we describe a highly precise

numerical method for solving the QSC equations and demonstrate it on several examples.

Section 5 contains a discussion of the weak coupling solution at generic angles. We present

conclusions in section 6. Several appendices contain various technical details, and we also

attach to this paper several Mathematica notebooks.

2 The Quantum Spectral Curve

In this section we first briefly review the Pµ-subsystem of the original Quantum Spectral

Curve equations for the spectrum of local operators in N = 4 SYM (full details can

be found in [3]). Then we discuss how these equations should be modified to describe

the generalised cusp anomalous dimension. We will see that all functional equations and

analyticity conditions remain the same, and the only difference is in the asymptotics at

large values of the spectral parameter.

The QSC is a system of functional equations for the exact Q-functions of the theory,

which are analogs of the Baxter polynomials in spin chains. The analytic properties of these

functions play a key role in the construction. A particularly simple basis of Q-functions

is given by 4+4 functions Pa(u) and Pa(u) (a = 1, 2, 3, 4). Their very nice feature is that

they have only one branch cut in the complex plane of the spectral parameter u. This is

a ‘short’ cut connecting the branch points at u = ±2g where g =
√
λ

4π is related to the ’t

Hooft coupling λ. Knowing Pa(u) and Pa(u) one can reconstruct all other Q-functions,

which are analytic in the upper half-plane, but typically have infinitely many branch cuts

in the lower half-plane.

While Pa themselves have only one branch cut, by analytically continuing them

through the cut we get new functions denoted as P̃a, which now have infinitely many

cuts at u ∈ [−2g + in, 2g + in], n ∈ Z (see figure 2). Remarkably, one can get a closed

system of equations by introducing an antisymmetric matrix µab(u) with unit Pfaffian,

which relates P̃a to the original P-functions:

P̃a = µabP
b . (2.1)

– 4 –
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Figure 2. The branch cuts of Pa and µab. While Pa have only one cut, P̃a have infinitely many

cuts, shown by dashed lines.

The discontinuity of µab on the cut is again expressed in terms of Pa and µab,

µ̃ab − µab = PaP̃b − P̃aPb (2.2)

The functions µab(u) have infinitely many cuts, but are i-periodic if the cuts are chosen to

be ‘long’ (connecting the branch points through infinity). With short cuts we have instead

µ̃ab(u) = µab(u+ i). There are also similar equations for P-functions with upper indices,

P̃a = µabPb, µ̃ab − µab = P̃aPb −PaP̃b (2.3)

where µab is the inverse matrix, µabµbc = δac . Apart from the branch points, the P- and

µ-functions have no singularities in the complex plane. Finally, P’s have to satisfy

PaP
a = 0 . (2.4)

For left-right symmetric states (e.g. in the sl(2) sector) the P’s with lower and upper indices

are not independent:

Pa = χabPb (2.5)

where

χab =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 . (2.6)

The relations (2.1), (2.2), (2.3), (2.4) are known as the Pµ system. In the sl(2) sector

they can be derived from the TBA equations, and in general stand as a conjecture which

has been confirmed by numerous tests. It is important that the Pµ system is a closed set of

equations once it is supplemented by asymptotic constraints at u→∞ which in particular

allow to compute the conformal dimension. These constraints are discussed in detail in the

next section.
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2.1 Asymptotics in the original QSC for local operators

To ensure uniqueness of the solution one should supplement the functional equations de-

scribed above with asymptotic boundary conditions at u → ∞. The asymptotics encode

the Noether charges of the state, including the conformal dimension ∆ (in our problem the

analog of ∆ is Γcusp). Let us recall the derivation of the asymptotic constraints [3] in some

detail, as this step is a crucial point in adapting the QSC to the generalized cusp.

First, all Q-functions as well as µab have power-like behavior at infinity, and the powers

in the asymptotics of P-functions encode the SO(6) R-charges (or the angular momenta of

the string on the S5 part of the background)

Pa ∼ Aau−M̃a , Pa ∼ AauM̃a−1 (2.7)

with

M̃a =

{
J1 + J2 − J3 + 2

2
,
J1 − J2 + J3

2
,
−J1 + J2 + J3 + 2

2
,
−J1 − J2 − J3

2

}
. (2.8)

The charge J1 also defines the length L = J1 of the weak-coupling spin chain (at least for

most states).

To constrain the leading coefficients Aa, A
a it is very useful to consider another four

Q-functions, denoted as Qi, which are analogous to Pa but correspond to dynamics in

AdS5 instead of S5. Like Pa, these functions can be chosen to have only a single cut, but

then it has to be a long cut at u ∈ (−∞,−2g] ∪ [2g,+∞). The Qi can be reconstructed

from Pa,Pa as

Qi = −PaQa|i (2.9)

with the functions Qa|i obtained by solving the difference equation

Q+
a|i −Q

−
a|i = −PaP

bQ+
b|i (2.10)

where we introduced the notation

f± = f(u± i/2), f [a] = f(u+ ia/2) . (2.11)

This is a 4th order difference equation which mixes the Qa|i corresponding to different

values of a. The index i then labels the 4 solutions of this equation. Using (2.9) we can

also rewrite it as

Q+
a|i −Q

−
a|i = PaQi (2.12)

which is in fact one of the canonical QQ-relations. The matrix Qa|i should be normalized

such that it preserves the χab matrix from (2.6),

χQχQT = 1 (2.13)

and should have unit determinant [3],

det
1≤a,i≤4

Qa|i = 1 . (2.14)
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Similarly to (2.7), the powers in the asymptotics of Qi contain the SO(4, 2) charges

including the conformal dimension ∆:

Qi ∼ BiuM̂i−1, Qi ∼ Biu−M̂i (2.15)

where

M̂i =

{
∆− S1 − S2 + 2

2
,

∆ + S1 + S2

2
,
−∆− S1 + S2 + 2

2
,
−∆ + S1 − S2

2

}
. (2.16)

From consistency of the above equations we can extract the relation between ∆ and the

leading coefficients Aa, A
a in Pa,P

a appearing in (2.7). To do this we expand Qa|i, Pa etc

as (asymptotic) series at large u, e.g.

Qa|i = uNai
∞∑
n=0

Bai,n
un

. (2.17)

Then from (2.12) we find at leading order

Qa|j = −iAaBj
u−M̃a+M̂j

−M̃a + M̂j

(1 +O(1/u)) . (2.18)

Plugging this into (2.12) we see that the coefficients Bj cancel and we get

− 1 = i

4∑
a=1

AaA
a

M̃a − M̂j

, j = 1, 2, 3, 4 . (2.19)

These equations fix the values of Aa0Aa0 for a0 = 1, 2, 3, 4, leading to the important

relations

Aa0Aa0 = i

∏
j(M̃a0 − M̂j)∏

b 6=a0(M̃a0 − M̂b)
, a0 = 1, 2, 3, 4 . (2.20)

We see that while the SO(6) charges are encoded in powers of the asymptotics of

P’s, the leading coefficients Aa and Aa contain the remaining charges S1, S2,∆. Equa-

tions (2.7), (2.20) supplement the Pµ system relations (2.1)–(2.4) and fix the conformal

dimension ∆ as a function of λ and of the other charges.

Let us finally mention that one can close the equations at the level of Qi (together

with Qi which also have one long cut), introducing new functions ωij(u) which are analogs

of µab. The matrix ωij is antisymmetric and has unit Pfaffian, but while µab are periodic

with long cuts, ωij are periodic with short cuts instead. A related useful property is that

while µab has powerlike asymptotics at large real u, ωij tends to a constant matrix. The

equations relating ω’s with Q’s read

Q̃i = ωijQ
j , Q̃i = ωijQj , ω̃ij − ωij = QiQ̃j − Q̃iQj . (2.21)

where ωij is the inverse matrix to ωij . These are analogs of the Pµ system relations

we described above. When these equations are supplemented with constraints on the

– 7 –
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asymptotics of Q’s similar to (2.20), they form a closed system of equations alternative to

the Pµ-system.

One can also relate µ’s and ω’s with the help of Q-functions with four indices Qab|ij
defined as a determinant,

Qab|ij =

∣∣∣∣∣Qa|i Qa|jQb|i Qb|j

∣∣∣∣∣ . (2.22)

Then we have

µab =
1

2
Q−ab|ijω

ij . (2.23)

In the next section we will discuss how to change the large u asymptotics to describe

the generalized cusp.

2.2 Adapting the QSC for the cusp anomalous dimension

In this section we will discuss the modifications in the QSC which are needed to describe

the generalized quark-antiquark potential. Below we will only discuss the vacuum state,

i.e. the Wilson line with L scalar insertions at the cusp (the extension for more general

insertions should be straightforward).

The Quantum Spectral Curve equations of [2, 3] in N = 4 SYM can be deduced

from the TBA equations or the corresponding T- and Y-systems with special analyticity

assumptions. In our case the TBA equations for the generalised cusp are almost the same

as the original TBA system. The Y-system and T-system equations are exactly the same

as for the original problem. Thus it is natural to expect that the QSC equations should

also be the same to a large extent. In the TBA there are only two important differences:

the extra boundary dressing phase supplementing the BES phase, and the twists which

appear as chemical potentials and introduce the angles φ, θ into the problem.3 We do not

derive the QSC from the Thermodynamic Bethe ansatz, rather we will put forward and

motivate a proposal which is consistent with several highly nontrivial checks, leaving little

doubt as to its correctness.

First, we expect to have the same set of Q-functions and auxiliary functions such as

µab as in the original problem. All of them will satisfy the same functional relations, for

instance the Pµ-system equations (2.1)–(2.4) or the QQ relations are unchanged. However

some analyticity properties will change, as we will discuss below, and in particular the

P-functions acquire an extra cut going from u = 0 to infinity. In addition, the large u

asymptotics clearly need to be modified. Indeed, the twists in the boundary conditions

typically correspond to imposing exponential rather than powerlike asymptotics for the

Q-functions (see e.g. [3] and references therein). In our case the angle θ is naturally related

to the S5 part of the geometry, which qualitatively corresponds to the P-functions, so

roughly speaking we expect Pa ∼ e±θu at large u. Similarly, the angle φ is associated to

AdS5 leading to Qi ∼ e±φu. This argument is also supported by the expectation that P’s

and Q’s should be related in the classical limit to the quasimomenta for S5 and AdS5,

3There is also an extra symmetry requirement on the Y-functions of the TBA, namely they should be

invariant under the exchange of the two wings of the Y-system with a simultaneous reflection u→ −u, i.e.

Ya,s(u) = Ya,−s(−u), see [33, 34] for details.
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correspondingly. Similarly, we expect that L should enter the power in the asymptotics of

P’s, while the power in the asymptotics of Q’s should contain ∆.

In the original QSC proposal [3] some guidance to fix the powers in the asymp-

totics (2.7), (2.15) came from comparison with the Asymptotic Bethe ansatz (ABA) which

can be reproduced from the QSC, and also with the classical spectral curve. For our prob-

lem the ABA is also available [33, 34], and another piece of information is the all-loop

solution of the Pµ system to leading order in the near-BPS expansion, based on analytic

solutions of the TBA [2, 37, 38]. In particular these solutions suggest that the large u

asymptotics should contain half-integer powers coming from a
√
u prefactor which the P’s

contain. However it turns out that there is an important subtlety — in the near-BPS limit

the leading large u coefficient in P3,P4 vanishes, making it not straightforward to guess

the correct asymptotics even knowing the all-loop result.

The available data indicates that, first, the boundary dressing phase leads to exponen-

tial rather than powerlike asymptotics in µab. This was already observed in [2, 38]. More

precisely, we should have

ω12 ∼ const · e2π|u|, ω13 ∼ const, ω24 ∼ const, u→∞ (2.24)

while other components of ωij become zero at infinity. This translates via (2.23) into e±2πu

asymptotics in some components of the µab matrix.

It remains to fix the powers in the asymptotics of P’s and Q’s, and relate their large u

expansion coefficients to the charges of the state. To do this we demanded consistency of

the equations (2.9), (2.12) expanded at large u. This precisely follows the logic described

in the previous section. However, our case turned out to be much more tricky, in particular

since some of the twists are the same (e.g. two of the Pa functions scale with the same

exponent ∼ eθu) there are many subtle cancellations at the first several orders. It was also

convenient at intermediate steps to use (2.14) as well as the 4th order Baxter-type difference

equation on Qi with coefficients built from Pa,P
a — this equation follows from (2.9), (2.12)

(see [13] for details on its derivation). Finally, already the near-BPS solution suggests that

not all four Pa are independent, e.g. P1(u) is equal up to a constant to P2(−u).

As a result, we found the following large u asymptotics:

P1(u) = Cε1/2 u−1/2−L e+θuf(+u) , f(u) = 1 + a1/u+ a2/u
2 + a3/u

3 + . . . (2.25)

P2(u) = Cε1/2 u−1/2−L e−θuf(−u) ,

P3(u) =
1

C
ε3/2 u+3/2+L e+θug(+u) , g(u) = 1 + b1/u+ b2/u

2 + b3/u
3 + . . .

P4(u) = − 1

C
ε3/2 u+3/2+L e−θug(−u) .

Here L is the number of scalar insertions at the cusp, while the constant C is unfixed and

can be set to 1 by the rescaling symmetry as discussed below (2.31), (2.32). The coefficients

should satisfy

ε2 =
i(cos θ − cosφ)2

2(L+ 1) sin2 θ
, a1 − b1 = −(L+ 1)(2 cos θ cosφ+ cos 2θ − 3)

2 sin θ(cos θ − cosφ)
. (2.26)
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The relation which includes ∆ ≡ Γcusp is more involved and we give its full form in eq. (A.1),

appendix A. For L = 0 it reduces to

∆2 =
(cos θ − cosφ)3

sin θ sin2 φ

[
−a1a2 + a1b2 −

a1

sin2 θ
+ a2

1

(1− cos θ cosφ)

sin θ(cos θ − cosφ)
(2.27)

− a2 cot θ + a3 − b3
]
.

We see that in contrast to the undeformed case we need to expand P’s up to fourth order

at large u to extract the conformal dimension! With these asymptotic constraints the

Pµ-system becomes a closed a set of equations fixing the cusp anomalous dimension.

Notice that the asymptotics of Pa contains half-integer powers of u. This indicates

that Pa may not be as regular as in the case of local operators and could have extra cuts.

We require the regularity on the plane with only Zhukovsky cuts not for Pa (or Qi) but for

pa ≡ Pa/
√
u, qi ≡ Qi/

√
u . (2.28)

This is an important additional analyticity condition which is a part of our proposal.

Let us underline that the extra
√
u factor in (2.28) is not e.g. an artefact of the weak

coupling expansion. Its presence at finite coupling was already observed in [38] based on

the near-BPS all-loop solution of the TBA. It is further confirmed in the present paper

by numerical results at strong coupling and analytic solution at weak coupling (which are

described below).

Alternatively to the Pµ-system one can use the Qω system described in (2.21) which

is also a closed set of equations provided the proper constraints at large u are imposed. In

our case the leading asymptotics of Qi are

Q1 ∼ u1/2+∆euφ, Q2 ∼ u1/2+∆e−uφ, Q3 ∼ u1/2−∆euφ, Q4 ∼ u1/2−∆e−uφ . (2.29)

The coefficients in their large u expansion are constrained similarly to (2.25), (2.27), and in

particular one can extract from them the R-charge L. We give the corresponding relations

in appendix B.

Finally, like in the sl(2) sector of the original QSC we have

P1 = −P4 , P2 = +P3 , P3 = −P2 , P4 = +P1, µ14 = µ23 (2.30)

due to which PaPa = 0 is satisfied automatically.

It is useful to note that there is a rescaling symmetry under which

P1 → αP1, P2 → αP2, P3 → α−1P3, P4 → α−1P4, (2.31)

µ12 → α2µ12, µ34 → α−2µ34 (2.32)

while other µab are not changed (α is a constant). In particular with this rescaling one

can set to 1 the constant C appearing in (2.25). We also have the γ-symmetry transfor-

mation [3, 11] which reads

P3 → P3 + γP1, P4 → P4 − γP2, (2.33)

µ14 → µ14 − γµ12, µ34 → µ34 + 2γµ14 − γ2µ12 (2.34)
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with constant γ. With this transformation the coefficients in the asymptotics of P’s will

also change, e.g. for L = 0

b2 → b2 +
C2γ

ε
, b3 → b3 +

C2γ

ε
a1, . . . (2.35)

The formula (2.27) for ∆ is invariant under this transformation, as it should be.

As discussed above, from (2.25) we see that when φ → θ the leading coefficient in

P3,P4 is proportional to (φ − θ)3/2 and thus is not visible at the leading order in the

near-BPS expansion. The next coefficients b1, b2, . . . will scale as 1/(φ− θ) and thus all Pa

are of order
√
φ− θ, as expected from the solution found in [38]. We will reconstruct this

solution in the next section.

The asymptotics discussed in this section constitute our main result. They provide

the crucial boundary conditions, thus concluding the reduction of the infinite TBA system

of [33, 34] to the finite set of QSC equations.

In the next sections we will demonstrate the usage of the QSC in several cases. We

will compute at all loops the next-to-leading term in the near-BPS expansion, solve the

equations numerically and also construct the leading weak coupling solution. All these

calculations provide stringent tests of our proposal as well as giving new results.

3 Near-BPS solution

In this section we will describe the solution of the QSC in the near-BPS limit φ→ θ. We

will first recover the leading order solution at arbitrary θ found in [38], and then extend it

to the next order. This calculation is quite similar to the iterative solution of the QSC at

small spin studied in [11]. The main outcome is a prediction for the value of Γcusp at order

(φ− θ)2 to all loops.

3.1 Leading order

In the limit φ→ θ the generalized cusp anomalous dimension can be written as

∆ =
cosφ− cos θ

sinφ
∆(1)(φ) +

(
cosφ− cos θ

sinφ

)2

∆(2)(φ) +O((φ− θ)3) . (3.1)

The first coefficient, also known as the Bremsstrahlung function, was computed at any

coupling in [35, 36] and later reproduced from integrability in [37, 38] by a direct analytic

solution of the TBA in this limit. It reads

∆(1)(φ) =
2φg√
π2 − φ2

I2

(
4πg

√
1− φ2

π2

)
I1

(
4πg

√
1− φ2

π2

) . (3.2)

In [38] the leading near-BPS solution was obtained from the TBA and linked to the

Pµ-system. Let us rederive this solution using solely the information coming from our

asymptotics.
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The key simplification is that Pa, P̃a ∼
√
φ− θ are small. This can be seen from our

general asymptotics (2.25), (2.29), (B.1) where we have to send ε ∼ φ − θ → 0 meaning

that in the near-BPS limit we get

P1 ∼ u−1/2−Le+θu , P2 ∼ u−1/2−Le−θu , P3 ∼ u1/2+Le+θu , P4 ∼ u1/2+Le−θu , (3.3)

and

Q1 ∼ u−1/2−Le−θu , Q2 ∼ u−1/2−Le+θu , Q3 ∼ u1/2+Le−θu , Q4 ∼ u1/2+Le+θu , (3.4)

Notice that the leading coefficient in P3 and P4 tends to zero faster than the subleading

ones since a1 − b1 ∼ 1/ε, which modifies the expected behaviour at infinity in this limit

(and similarly for Q3,Q4). Thus we can write the expansion of P and µ as

Pa = P(0)
a + P(1)

a +O((φ− θ)5/2), µab = µ
(0)
ab + µ

(1)
ab +O((φ− θ)2) (3.5)

where the scaling is

P(0)
a ∼ (φ− θ)1/2, P(1)

a ∼ (φ− θ)3/2, µ
(0)
ab ∼ 1, µ

(1)
ab ∼ (φ− θ) . (3.6)

From (2.2) we see that at leading order the discontinuity of µab vanishes so µ
(0)
ab are

periodic entire functions. To fix them we should look in more detail at the functions

Qa|i and Qab|ij , using (2.23) and our prescription (2.24) which states in particular that

ω12 ∼ e2π|u|, u→∞. For φ ' θ the r.h.s. of (2.12) is small so Qa|i are periodic functions.

At the same time their large u asymptotics should be consistent with that of Qi and Pa

from (3.3), (3.4), meaning that Qa|i ' uNaieψaiu where ψai can be equal to ±2θ or to 0 in

our limit. From that we conlude that Qa|i must be constants. Moreover the relation (2.12),

Pa = −QiQ+
a|i , (3.7)

together with (3.3), (3.4) means that the only nonzero constants are

Qa|i =


0 K1 0 0

K2 0 0 0

0 0 0 K3

0 0 K4 0

 . (3.8)

In other words Pa and Qi are the same in this limit after a relabeling of their indices (up

to a constant factor). This is indeed an expected feature for a BPS configuration where

cancellation between S5 and AdS5 modes is taking place. Similarly, ωij and µab should

coincide after the same relabeling of indices.

Together with our requirement (2.24) this means that µ12 = B0 + B1e
2πu + B2e

−2πu,

µ13 and µ24 are constants, while other µab are zero. Note that since we should have a

u→ −u symmetry of the system, of course µ12 should be either even or odd which further

constrains these constants. More formally, from the asymptotics of the P’s in (2.25) we

see that these functions have the following symmetry under u→ −u:

Pa(u) = SabP
b(−u), (3.9)
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where the matrix S reads4

S =


0 i 0 0

i 0 0 0

0 0 0 −i
0 0 −i 0

 . (3.10)

Due to this we have from the first equation in (2.3) together with (2.5)

µ(−u) = −S−1µ(u)χSχ (3.11)

(notice also that S−1 = −S and χSχ = −S). Imposing now the symmetry (3.11) we get

µ12 = A sinh(2πu) and µ13 = −µ24. From Pf(µ) = 1 we also find that µ13 = ±1. However

with µ13 = −1 we found that the equations on the P’s (2.1) at leading order have no

solution consistent with the asymptotics (2.25). Thus in summary we get

µ
(0)
12 = A sinh(2πu), µ

(0)
13 = 1, µ

(0)
14 = 0, µ

(0)
24 = −1, µ

(0)
34 = 0 (3.12)

where A is a constant. This also implies that at leading order

ω12 = const · sinh(2πu) . (3.13)

Therefore the equations on the P’s (2.1) to leading order take the form

P̃
(0)
1 = A sinh(2πu)P

(0)
3 −P

(0)
2 (3.14)

P̃
(0)
2 = A sinh(2πu)P

(0)
4 −P

(0)
1

P̃
(0)
3 = P

(0)
4

P̃
(0)
4 = P

(0)
3 .

To solve them let us first introduce some notation. We have a very useful expansion

sinh(2πu)e+2gθ(x−1/x) =
∞∑

n=−∞
I+θ
n xn , (3.15)

where

Iθn =
1

2
In

(
4πg

√
1− θ2

π2

)[(√
π + θ

π − θ

)n
− (−1)n

(√
π − θ
π + θ

)n]
, (3.16)

with In being the modified Bessel function. By x(u) we denote the usual Zhukovsky variable

which resolves the cut [−2g, 2g],

x+
1

x
=
u

g
, |x| ≥ 1 . (3.17)

We also have

Iθ−n = I−θn = (−1)n+1Iθn (3.18)

4Here one should be careful due to the extra cut in Pa going to infinity, and we understand this equation

to hold for Re(u) > 0.
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and let us introduce

S+(x) ≡
∞∑
n=1

I+θ
n x−n , S−(x) ≡

∞∑
n=1

I−θn x−n . (3.19)

In this notation we have e.g.

S+ + S̃− = sinh(2πu)e−2gθ(x−1/x) (3.20)

(notice that applying the tilde amounts to flipping x→ 1/x). We see that S+ is the part of

the Laurent expansion of sinh(2πu)e−2gθ(x−1/x) containing negative powers of x. We can

alternatively write it as a contour integral

S+(x) =
1

2πi

∮
dy

x− y
sinh(2πg(y + 1/y))e−2gθ(y−1/y) (3.21)

where the contour goes counterclockwise around the unit circle.

Focussing on the case L = 0 we can now write the explicit solution of (3.14):5

P
(0)
1 = B

√
A
√
u e+gθ(x−1/x)

∞∑
n=1

I+θ
n x−n (3.22)

P
(0)
2 = B

√
A
√
u e−gθ(x−1/x)

∞∑
n=1

I−θn x−n (3.23)

P
(0)
3 =

B√
A

√
u e+gθ(x−1/x) (3.24)

P
(0)
4 =

B√
A

√
u e−gθ(x−1/x) (3.25)

where B ∼
√
φ− θ is a constant fixed from asymptotics (2.25) as

B =

√
−i(φ− θ)

gIθ1
. (3.26)

The constant A is arbitrary and is related to the constant C appearing in the asymp-

totics (2.25), so using the rescaling (2.31), (2.32) one can set either A or C to 1. One can

check that this solution is fully consistent with the asymptotics (2.25), noting that, as dis-

cussed above, in (2.25) the leading coefficient in P3,P4 vanishes and all bi ∼ 1/(φ−θ). This

solution also reproduces via (2.27) the known result for ∆ at the leading order in (φ− θ),

∆ = −2(φ− θ) φg√
π2 − φ2

I2

(
4πg

√
1− φ2

π2

)
I1

(
4πg

√
1− φ2

π2

) +O((φ− θ)2) . (3.27)

5This solution is slightly different from the one described in [38], as e.g. the relations (2.30) between Pa

and Pa that we use differ by a sign compared to those used in that paper. The solution given in [38] is of

course also valid, in the conventions used in that work.
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We also translated to our conventions the solution for any L constructed in [38] and we

present it in appendix C. Remarkably, the result for Γcusp extracted from this solution via

our asymptotic relations (2.25), (2.27) perfectly matches the known predictions from TBA

found in [38] (we have checked this explicitly for the first several values of L). This is

already a nontrivial check of the proposed large u asymptotics.

3.2 Next-to-leading order

Let us now discuss how to solve the Pµ system at the next order in (φ−θ). The calculation

is quite similar to the one done in [11] for the small spin expansion, so we will be brief in

some cases.

3.2.1 Constructing µ’s

We will first solve the equation for the correction to µ, which reads

µ
(1)
ab (u+ i)− µ(1)

ab (u) = P̃(0)
a P

(0)
b −P(0)

a P̃
(0)
b (3.28)

where P(0) are given by (3.22)–(3.25) (we understand µ as functions with short cuts). The

function we will actually need is not µ itself, but rather

µreg
ab ≡ µab +

1

2
∆µab (3.29)

where

∆µab = P̃aPb −PaP̃b (3.30)

is the discontinuity of µab on the cut on the real axis. Due to the relation PaPa = 0 one

can just as well use µreg instead of µ in the r.h.s. of the Pµ system equations (2.1). The key

point is that µreg does not have a cut on the real axis and is thus a much nicer function.

It should satisfy

(µreg) (u+ i/2)− (µreg) (u− i/2) =
1

2
[∆µ(u+ i/2) + ∆µ(u− i/2)] . (3.31)

Our goal is to solve this equation when the r.h.s. is composed from the leading order P’s

as in (3.28), in particular this means that ∆µ only has one cut at [−2g, 2g]. The formal

solution to this equation can then be written as an integral operator acting on ∆µ,

µreg = Γ ·∆µ =

∮ 2g

−2g

dv

4πi
Γ0(u− v)∆µ(v) (3.32)

where the contour goes clockwise around the cut [−2g, 2g] and the kernel is

Γ0(u) = ∂u log
Γ(iu+ 1)

Γ(−iu+ 1)
(3.33)

This expression would work well if ∆µ decayed powerlike at infinity. A novel feature

compared to [11] is that we also can have functions with exponential asymptotics e±2θu in
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the r.h.s. of (3.31). For them the solution is written in a similar way but with a θ-dependent

kernel. Namely, if ∆µ(u) = e±2θu(c/x+O(1/x2)) we have

µreg = Γ± ·∆µ =

∮ 2g

−2g

dv

4πi
Γ±θ(u− v)∆µ(v) (3.34)

with the kernels

Γ−θ(u) = e−2θu
[
−ie−2iθΦ(e−2iθ, 1, 1− iu)− ie+2iθΦ(e+2iθ, 1, 1 + iu)

]
(3.35)

Γ+θ(u) = e+2θu
[
−ie+2iθΦ(e+2iθ, 1, 1− iu)− ie−2iθΦ(e−2iθ, 1, 1 + iu)

]
. (3.36)

Here Φ is the Hurwitz-Lerch transcendent function.6 Equivalently,

Γ−θ(u) = e−2θu
∞∑
n=1

[
e−2inθ

u+ in
− e2inθ

u− in

]
, (3.37)

Γ+θ(u) = e2θu
∞∑
n=1

[
e2inθ

u+ in
− e−2inθ

u− in

]
. (3.38)

One final remark is that if we need to solve (3.31) where ∆µ is not decaying at infinity, we

subtract the non-decaying part of ∆µ and then solve the equation for that part separately.

For example, if ∆µ = x− 1/x we can write it as

∆µ =

(
x(u)− 1

x(u)
− u

g

)
+
u

g
. (3.39)

The part in brackets is decaying at infinity, and a particular solution of (3.31) for the

remaining part is found as

f(u+ i/2)− f(u− i/2) =
1

2

[
u+ i/2

g
+
u− i/2

g

]
⇒ f(u) = − i

2g
u2 . (3.40)

So for ∆µ = x− 1/x we would get

µreg = Γ ·
(
x(u)− 1

x(u)
− u

g

)
− i

2g
u2 . (3.41)

As a resut, we can compute in closed form the functions µreg at next-to-leading order

in (φ− θ). Let us denote as in (3.5)

µreg = µreg(0) + µreg(1) +O((φ− θ)2) (3.42)

with

µreg(0) ∼ O((φ− θ)0), µreg(1) ∼ O(φ− θ) . (3.43)

6In Wolfram Mathematica it is the function HurwitzLerchPhi.
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Then we find

µ
reg(1)
12 = B2A

[
sinh(2πu)Γ (uS+ − uS−)− Σ

(
uS2

+e
+2gθ(x−1/x)

)
+ Σ

(
uS2
−e
−2gθ(x−1/x)

)]
(3.44)

µ
reg(1)
13 = B2

[
− sinh(2πu)Σ

(
ue+2gθ(x−1/x)

)
+ Γ (uS− + uS+)− 2igIθ1u

]
(3.45)

µ
reg(1)
14 = B2

[
sinh(2πu)

iu2

2
+ Σ

(
uS+e

+2gθ(x−1/x)
)

+ Σ
(
uS−e

−2gθ(x−1/x)
)]

(3.46)

µ
reg(1)
24 = B2

[
− sinh(2πu)Σ

(
ue−2gθ(x−1/x)

)
+ Γ (uS− + uS+)− 2igIθ1u

]
(3.47)

µ
reg(1)
34 =

B2

A

[
Σ
(
ue+2gθ(x−1/x)

)
− Σ

(
ue−2gθ(x−1/x)

)]
(3.48)

where we use the notation Σ(h) to denote a particular solution f(u) of the equation

f(u+ i)− f(u) = h(u) . (3.49)

Explicitly, we have

Σ
(
ue−2gθ(x−1/x)

)
= Γ−

(
ue−2gθ(x−1/x)

)
(3.50)

+
1

4
ie−2θu

(
2 cot θ

(
4g2θ + u

)
+

1

sin2 θ

)
,

Σ
(
ue+2gθ(x−1/x)

)
= Γ+

(
ue+2gθ(x−1/x)

)
(3.51)

− 1

4
ie2θu

(
2 cot θ

(
u− 4g2θ

)
− 1

sin2 θ

)
Σ
(
uS+e

+2gθ(x−1/x)
)

= Γ+

(
uS+e

+2gθ(x−1/x)
)
− Iθ1

2
ig cot θe+2θu (3.52)

Σ
(
uS+e

−2gθ(x−1/x)
)

= Γ−

(
uS+e

−2gθ(x−1/x)
)

+
Iθ1
2
ig cot θe−2θu . (3.53)

It’s also important that with these corrections to µab the Pfaffian constraint is still

satisfied, i.e. reconstructing µab via µab = µ
(0)
ab + µreg

ab −
1
2∆µab we will get Pf(µ) = 1 to

order O(φ− θ).
Having a particular solution of the equation (3.31) for µreg, one could also add to it

zero modes, i.e. i-periodic entire functions. Due to (2.23) and our prescription ω12 ∼ e±2πu

they can be either constants or exponents e±2πu. In [11] the zero modes were important

to ensure correct asymptotics. Let us see however that in our case all zero modes can

be removed by symmetries to leave the unique solution given above. First, as the µ’s we

construct already satisfy the parity constraint (3.11), the zero modes µz.m.
ab need to satisfy

it independently. This immediately shows that the constant zero mode can only appear in

µ13, µ24 with µz.m.
13 = −µz.m.

24 = c13. Moreover, the exponents e±2πu can originate only from

ω12 and can come therefore either from the O(φ−θ) correction to ω12 or from the correction

to Qab|12. In the first case the correction to ω12 will multiply the leading order Qab|12 and

thus exponents will appear only in µ12. They are then restricted by (3.11) to appear only

in the combination proportional to sinh(2πu). In the second case the leading order ω12
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will multiply the correction to Qab|12 so again the exponents will appear as sinh(2πu). By

arguments similar to those leading to (3.8), we expect the constant part of Qa|i (in the

large u expansion) at order O(φ− θ) to be

Qconst
a|i =


0 K1 + (φ− θ)N1 0 (φ− θ)M1

K2 + (φ− θ)N2 0 (φ− θ)M2 0

0 (φ− θ)M3 0 K3 + (φ− θ)N3

(φ− θ)M4 0 K4 + (φ− θ)N4 0

 (3.54)

where for complete generality at order (φ − θ) we introduced constants in all compo-

nents of Qa|i for which the twists ±φ,±θ in the asymptotics cancel in the near-BPS limit.

From (3.54) we find that out of Qab|12 we will have a nonzero correction to the constant

part only for (a, b) = (1, 2), (1, 4), (2, 3). Thus a zero mode proportional to sinh(2πu)

could appear only in these components of µab. In summary, we find the following possible

zero modes:

µz.m.
12 = c1 sinh(2πu), µz.m.

13 = c2, µ
z.m.
14 = c3 sinh(2πu), µz.m.

24 = −c2, µ
z.m.
34 = 0 (3.55)

where ci are constants of order O(φ − θ). From the Pfaffian constraint we get c2 = 0.

Moreover as µ
(0)
12 ∝ sinh(2πu) the constant c1 can be set to zero by a rescaling transfor-

mation (2.32) with α = 1 + const · (φ − θ). Finally we can set c2 to zero by making a γ

transformation (2.34) with γ = const · (φ − θ) as then this zero mode will cancel against

the leading order part of µ12 (notice that µ34 will change under this γ transformation only

at order (φ− θ)2 which is irrelevant for us). Thus we find that the solution for µab at NLO

given above is completely general.

For µ12 one can make yet another test of our prescription (2.24), as its exponential

part is nonzero already at leading order in the near-BPS expansion. Let us use (2.23)

µab =
1

2
Q−ab|ijω

ij (3.56)

where as at large u Q12|12 ∼ u2∆ we can expand

Q−12|12ω
12 ∼ const · e2πu(1 + 2∆ log u+O((φ− θ)2) . (3.57)

This gives a prediction for the ratio of the coefficients of the log u term and the leading

term. In our results for µ12 the logarithmic part comes only from Γ ·(uS+−uS−) appearing

in (3.44), so the coefficient of log u is determined by the 1/u term in (uS+ − uS−) and is

straightforward to evaluate. We find

µ12 ∼
1

2
e2πuA

(
1 + 2γ log u+O((φ− θ)2)

)
+ . . . (3.58)

where the coefficient γ precisely matches the expression (3.27) for ∆ at leading order in

(φ− θ). Thus our result (3.58) agrees with the prediction (3.57).

In the next section we will use the correction to µab to construct Pa at the next-to-

leading order.
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3.2.2 Constructing P’s

Having found the correction to µab we can now proceed and compute the correction to Pa.

It is convenient to parameterize them as

P
(1)
1 = p+ (O1(u) + E1(u)) (3.59)

P
(1)
2 = p− (O1(u)− E1(u)) (3.60)

P
(1)
3 = p+ (E3(u) +O3(u)) (3.61)

P
(1)
4 = p− (E3(u)−O3(u)) (3.62)

where

p± =
√
u e±gθ(x−1/x) (3.63)

The functions E1, E3, O1, O3 then have powerlike rather than exponential asymptotics at

large u. From (2.25) we find that O1, O3 are odd, while E1, E3 are even and at large u

E1 ∼ 1/u2, O1 ∼ 1/u, E3 ∼ u0, O3 ∼ u . (3.64)

Plugging this parameterization into the Pµ system equations (2.1), we find the following

equations on these functions:

Õ1 +O1 =
1

2

[
A sinh(2πu)P

(1)
3 + δ1

p−
+
A sinh(2πu)P

(1)
4 + δ2

p+

]
(3.65)

Ẽ1 − E1 =
1

2

[
A sinh(2πu)P

(1)
3 + δ1

p−
− A sinh(2πu)P

(1)
4 + δ2

p+

]
(3.66)

Ẽ3 − E3 =
1

2

[
δ3

p−
+

δ4

p+

]
(3.67)

Õ3 +O3 =
1

2

[
δ3

p−
− δ4

p+

]
(3.68)

where we denoted

δa = µ
reg(1)
ab Pb(0) . (3.69)

Since we have computed µ
reg(1)
ab in the previous section, δa are some explicitly known

functions. As in [11] we can write a particular solution of these equations as some integral

operator acting on the r.h.s. First, the equation

f̃ + f = h , (3.70)

where necessarily h̃ = h, is solved by

f = H · h = −
∮

dv

4πi

√
u− 2g√
v − 2g

√
u+ 2g√
v + 2g

1

u− v
h(v) , (3.71)

where the integral is clockwise around the cut [−2g, 2g]. The solution found this way has

constant asymptotics at infinity. Similarly, for the equation

f̃ − f = h , (3.72)
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with h̃ = −h, a solution decaying at infinity can be written as

f = K · h =

∮
dv

4πi

1

u− v
h(v) . (3.73)

To the particular solutions (3.73), (3.71) we can also add zero modes, i.e. solutions of the

same equations with zero right-hand side. Then we get

O3 =
1

2
H ·

[
δ3

p−
− δ4

p+

]
+ C1(x− 1/x) , (3.74)

E3 =
1

2
K ·

[
δ3

p−
+

δ4

p+

]
+ C2 (3.75)

where the constants C1, C2 parameterize the most general zero modes that do not violate

the asymptotics (3.64). Now we can compute P
(1)
3 ,P

(1)
4 and then solve the equations on

E1, O1:

O1 =
1

2
K ·

[
A sinh(2πu)P

(1)
3 + δ1

p−
− A sinh(2πu)P

(1)
4 + δ2

p+

]
, (3.76)

E1 =
1

2
H ·

[
A sinh(2πu)P

(1)
3 + δ1

p−
+
A sinh(2πu)P

(1)
4 + δ2

p+

]
. (3.77)

Having found En and On, we obtain the P-functions from (3.59)–(3.62). Then we fix the

constants C1, C2 by imposing the asymptotic constraints (2.25), (2.26).

From the corrected P’s that we have now computed we can finally extract the correction

to the conformal dimension ∆ at all loops. We will present this result in the next section.

3.2.3 Final result

From the next-to-leading order solution of the Pµ system we constructed above, we obtain

a new prediction for the generalized cusp anomalous dimension at order (φ − θ)2. To

compare with the literature we found it convenient to bring our result to the form

∆ =
cosφ− cos θ

sinφ
∆(1)(φ) +

(
cosφ− cos θ

sinφ

)2

∆(2)(φ) +O((φ− θ)3) (3.78)

so that at each order we have a nontrivial function of φ. Our all-loop result reads

∆(2)(φ) = −1

2

∮
dux
2πi

∮
duy
2πi

uxuy [D+Γ+φ(ux − uy) +D0Γ0(ux − uy) +D−Γ−φ(ux − uy)]
(3.79)

where both integrals run clockwise around the cut [−2g, 2g] and

D+ =
iS+(y)e−2gφx+2gφ/x+2gφy−2gφ/y

g3Iφ1

×

(
−2S+(y)

gIφ1
− 2S+(x)e4gφx−4gφ/x

gIφ1
+

2y

y2 − 1
+

2x

x2 − 1
+

Iφ2 xS+(y)

(Iφ1 )2(x2 − 1)

)
,

D0 =
2iS+(y)

g3Iφ1

(
S+(x)

gIφ1
− Iφ2 S+(x)

(Iφ1 )2(x2 − 1)
− 2x2

(x+ 1/x)(x2 − 1)

)
, (3.80)

D− =
iIφ2

g3(Iφ1 )3

x(S+(x))2e2gφx−2gφ/x−2gφy+2gφ/y

(x2 − 1)
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We recall that S+ was defined in (3.19), while the kernels Γ entering (3.79) are given

in (3.33), (3.35), (3.36).

It is also interesting to consider a further limit when θ is set to zero and φ is small.

This corresponds to an expansion near the straight Wilson line. The first two terms in the

series (3.78) scale as

∆(1) ∼ 2gI2(4πg)

πI1(4πg)
φ+O(φ3), ∆(2) ∼ φ2f2(g) +O(φ4) (3.81)

where the function f2(g) is found by expanding our result (3.79) and is given explicitly

in appendix D. Expanding also the prefactors in (3.78) we can write ∆ as a series in

powers of φ2,

∆ = −φ2 gI2(4πg)

πI1(4πg)
+φ4

[
1

4
f2(g)+

2g2

π2
− 2g2I2(4πg)2

π2I1(4πg)2
− (24+π2)gI2(4πg)

12π3I1(4πg)

]
+O(φ6). (3.82)

Let us now discuss several checks of our main result (3.79) at weak coupling. It is

straightforward to expand it for g → 0 simply by expanding the integrand in (3.79) at

weak coupling and taking the residue at ux, uy = 0. Then we can make a test against

perturbative predictions known up to four loops. In general the structure at weak coupling

is expected to be

∆ =

∞∑
n=1

γn(θ, φ)g2n (3.83)

with

γn(θ, φ) =
n∑
k=1

(
cosφ− cos θ

sinφ

)k
γ(k)
n (φ) . (3.84)

Our all-loop result allows to compute all coeficients γ
(2)
n (φ) in this expansion. Notice that

at each loop order only a finite number of terms in the near-BPS expansion contribute, e.g.

the two-loop result is completely determined by the first two terms in (3.78). For arbitrary

φ and θ the anomalous dimension was computed directly up to two loops [44, 45] giving

γ
(1)
1 (φ) = 2φ, (3.85)

γ
(1)
2 (φ) =

4

3
φ(φ2 − π2), (3.86)

γ
(2)
2 (φ) = 2iφ

[
Li2(e2iφ)− Li2(e−2iφ)

]
− 2

[
Li3(e2iφ) + Li3(e−2iφ)

]
+ 4ζ(3) (3.87)

and in [43] this data was reproduced from the TBA. We found that the weak coupling

expansion of our result perfectly matches the prediction (3.87).

The cusp anomalous dimension was also computed to four loops in [46, 47], giving a

prediction for the coefficients γ
(2)
3 (φ), γ

(2)
4 (φ) which our result should reproduce. Indeed we

found a perfect match with the perturbative data. The predictions of [47] are written in

terms of harmonic polylogarithms, but match the expansion of our result7 which does not

7We checked this numerically for some particular values of φ.
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include more complicated functions than Lin. At three loops our result gives

γ
(2)
3 (φ) = 24

[
Li5(e−2iφ) + Li5(e2iφ)

]
− 18iφ

[
Li4(e2iφ)− Li4(e−2iφ)

]
(3.88)

− 4φ2
[
Li3(e−2iφ) + Li3(e2iφ)

]
+

4

3
i(π − φ)(φ+ π)φ

[
Li2(e2iφ)− Li2(e−2iφ)

]
+

8

3

(
φ2 − π2

)
φ2
[
log(1− e2iφ) + log(1− e−2iφ)

]
+ 8

(
ζ(3)φ2 − 6ζ(5)

)
while at four loops

γ
(2)
4 (φ) = −280

[
Li7(e2iφ) + Li7(e−2iφ)

]
+ 190iφ

[
Li6(e2iφ)− Li6(e2iφ)

]
(3.89)

+

(
44φ2 +

16π2

3

)[
Li5(e2iφ) + Li5(e−2iφ)

]
+

4

3
iφ
(
11φ2 − 17π2

) [
Li4(e2iφ)− Li4(e−2iφ)

]
+

8

9

(
18φ4 − 21π2φ2 + π4

) [
Li3(e2iφ) + Li3(e−2iφ)

]
− 4

9
i
(
15φ5 − 22π2φ3 + 7π4φ

) [
Li2(e2iφ)− Li2(e−2iφ)

]
+

40

9

(
φ3 − π2φ

)2 [
log(1− e2iφ) + log(1− e−2iφ)

]
+ 16ζ(3)φ4 − 8

3

(
4π2ζ(3) + 33ζ(5)

)
φ2 − 16

9

(
π4ζ(3) + 6π2ζ(5)− 315ζ(7)

)
In fact it is clear that at any loop order our result would generate Lin at most. The reason

is that when evaluating the integral (3.79) by residues the most complicated functions that

can appear are the Lin(e±2iφ) coming from expansion of the kernels (3.35), (3.36). As a

further example we computed the novel five- and six-loop coefficients, given in eq. (E.1)

(appendix E). We attach a Mathematica notebook which allows to reproduce these results

and also systematically expand our all-loop result at weak coupling.

Thus at weak coupling our result matches known predictions to four loops, which serves

as a deep test of the proposed Quantum Spectral Curve equations and of our near-BPS

calculation.

4 Numerical solution

The formulation of the problem in terms of the QSC allows for an efficient numerical

analysis of Γcusp at finite coupling. A highly precise and fast converging numerical method

for solving the original QSC for local operators was proposed in [12]. Here we will describe

how to modify it in the present case, and then demonstrate several applications. We will

focus on the case L = 0, but we expect the discussion in this section should be valid for

general L with minor changes.

4.1 The numerical algorithm

The first step is to parameterize the P-functions in terms of the Zhukovsky variable x(u).

The only difference with [12] is that these functions now have exponential asymptotics, but
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they still have only one cut. Due to this, after extracting their exponential and leading

powerlike asymptotics like in (2.25) they become power series in 1/x convergent everywhere

on the main sheet. Thus we can approximate the functions f(u) and g(u) appearing

in (2.25) as

f(u) = 1 +

M∑
n=1

c1,n

xn
, g(u) = 1 +

M∑
n=1

c2,n

xn
(4.1)

where M is some large cutoff.8 Then we build P’s from (2.25) (where we set the constant C

to 1) in terms of the coefficients c1,n, c2,n which are the main parameters in our algorithm.9

The next step is to close the equations which will give constraints fixing the values of

these coefficients. For that we construct the functions Qa|i defined by (2.10) in terms of

P-functions,

Q+
a|i −Q

−
a|i = −PaP

bQ+
b|i . (4.2)

As in [12] we first solve this equation analytically at large u, plugging the asymptotic

expansion truncated at some cutoff K,

Qa|i ' e(θa+φi)uuNab
K∑
n=1

Bai,n/u
n , (4.3)

into (4.2) and obtaining the coefficients Bai,n in terms of c1,n, c2,n (here θa = ±θ and

φi = ±φ). It is important here to account for several cancellations taking place due to the

asymptotics (2.25). As a result we get a good numerical approximation for Qa|i(u) when

u has sufficiently large imaginary part. Then we use the exact equation (4.2) to decrease

the imaginary part of u and eventually obtain the functions Qa|i in the vicinity of the real

axis, when u ∈ [−2g + i/2, 2g + i/2].

Now we can build the Q-functions on the cut [−2g, 2g] via (2.12),

Qi = −PaQ+
a|i , (4.4)

and since Q+
a|i do not have a cut on the real axis we also obtain Q̃i on the cut as

Q̃i = −P̃aQ+
a|i . (4.5)

The final step is to close the equations in terms of Qi, Q̃i and find the free coefficients

c1,n and c2,n. For that we use the very convenient trick proposed originally in [14]. Let us

discuss it in some detail as this is a crucial part of the calculation. We start by noticing

that Qi(u) and Qi(−u) should satisfy the same 4th order difference equation following

from (2.10), (2.12) with coefficients built from P-functions as the equation is symmetric

under u→ −u. As we discussed in section 2.2, eq. (2.28), it is simpler to work with

qi(u) = Qi(u)/
√
u . (4.6)

8In practice M ∼ 30 is enough to get at least 10 digits precision for 0 < g < 0.85.
9We also fix the γ-symmetry (2.33), (2.34) by fixing the coefficient b2 appearing in the asymptotics (2.25)

to be zero using (2.35).
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Then we have qi(u) = Ωj
i (u)qj(−u) where Ωj

i (u) are some i−periodic functions. As Qi

have a definite asymptotics with prescribed exponential part (2.29), all Ωj
i (u) become

constant at large u and furthermore only a few of them are nonzero at infinity, namely

Ω1
2, Ω2

1, Ω4
3, Ω3

4. We also know that q̃i(u) = ωij(u)χjkqk(u) where ωij are i-periodic.

Combining these relations we find

q̃m(u) = αim(u)qi(−u), m = 1, 2, 3, 4 (4.7)

where αim = ωmjχ
jkΩi

k are i-periodic (being built from periodic functions) and moreover

analytic since q̃i(u) and qi(−u) are analytic in the lower half-plane. In addition to this,

most of the functions αim are equal to zero, because according to our prescription (2.24)

from section 2.2 the only nonzero components of ωij at infinity are ω34 ∼ const · e2π|u|

and ω13, ω24 ∼ const. Using also that most components of Ωj
i are zero at large u we get

from (4.7) the following equations (it’s enough for us to consider only q1,q4)

q̃1(u) = s1q1(−u) (4.8)

q̃4(u) = (ae2πu + be−2πu + c)q1(−u) + s4q4(−u)

where s1, s4, a, b, c are constants, and moreover a and b are nonzero as Ω1
2 and the expo-

nential part of ω34 are nonzero at infinity. Applying tilde to the first equation we also get

q1(u) = s1q̃1(−u) = (s1)2q1(u) (4.9)

so (s1)2 = 1. Similarly from the second equation we find (s4)2 = 1 as well as

as1 + bs4 = 0 (4.10)

bs1 + as4 = 0

cs1 + cs4 = 0 .

This system has two solutions: either

s1 = s4, a = −b, c = 0 (4.11)

or

s1 = −s4, a = b, and c is arbitrary. (4.12)

By comparing to the leading near-BPS solution where ω12 ∝ sinh(2πu) (see eq. (3.13)), we

see that the first option is the correct one. It remains only to fix the sign of s1. For that let

us consider the explicit solution (3.22)–(3.25) for Pa in the near-BPS limit. We see that

for pa = Pa/
√
u we have

p̃3(u) = p3(−u) (4.13)

As in the near-BPS limit we expect to identify q1 and p3, comparing this relation with the

first equation in (4.8) we see that we should choose s1 = +1.

In summary, we get a remarkably simple set of equations:

q̃1(u) = q1(−u) (4.14)

q̃4(u) = A sinh(2πu)q1(−u) + q4(−u) (4.15)
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where A is a constant and we recall that in our notation qi(u) = Qi(u)/
√
u. These are

the key equations which are enough to close the system. Let us stress that they are exact

and are not restricted to large u or near-BPS limit. In particular, similarly to [14] these

equations should be useful for a systematic weak coupling solution. With this approach

we can completely avoid computing ωij as we are able to close the system using various Q-

functions only. Notice also that in [14] the resulting equations were similar but coefficients

in the r.h.s. were all constant, while here we also have sinh(2πu).

Now, finally, as we know Qi and Q̃i on the cut, we can evaluate both sides of (4.14),

(4.15) at sampling points uk on the cut, and minimize the difference between them. More

precisely, we can express the constant A from (4.15) as

A =
q̃4(u)− q4(−u)

q1(−u) sinh(2πu)
(4.16)

and we build a function which on the true solution of the QSC should be zero:10

F =
∑
k

|q̃1(uk)− q1(−uk)|2 + Var

[
q̃4(uk)− q4(−uk)

q1(−uk) sinh(2πuk)

]
(4.17)

where Var denotes the variance, i.e. measures the deviation of the function from a con-

stant.11 Thus we have reduced the problem to minimization of F which is a function of

our main parameters c1,n, c2,n. It’s easy to see that F can be written as the norm of a

2N -dimensional vector where N is the number of sampling points. Therefore to find its

minimum we can use the iterative Levenberg-Marquardt algorithm (an improved version

of Newton’s method) as in [12]. It converges rather fast and robustly, giving the values

of coefficients c1,n, c2,n. Now we can reconstruct the P’s and compute the anomalous

dimension from e.g. (2.27).

4.2 Results

Let us now present the numerical results we obtained. A Mathematica file with a part of

our numerical data is attached to this paper. First, we have evaluated Γcusp for a wide range

of the coupling from g = 0 up to g = 0.85 at fixed values of the angles φ = π/4, θ = 4π/10.

The results are given in table 1. A fit of our data at weak coupling gives

Γcusp

(
φ =

π

4
, θ =

4π

10
, g

)
(4.18)

' 0.8843331608401797458041129816 g2

− 4.7002219374112776568286369 g4 + 37.481607207831059124394 g6

− 321.37797809257617613 g8 + 2845.9019611906881 g10

− 25984.505154213 g12 +O(g14)

which agrees with the analytical perturbative result of [44–47] with 10−29g2 + 10−25g4 +

10−21g6 + 10−18g8 error. The terms g10 and g12 above also give a numerical prediction for

the five- and six-loop coefficients. One could try to get an analytic prediction for them by

10As in (4.17) we have sinh(2πuk) in denominator we should make sure the sampling points do not

include uk = 0. We choose N sampling points as uk = 2gzk where zk are zeros of the N -th Chebyshev

polynomial TN (z).
11Var [fk] =

∑
k |fk − f̂ |

2 where f̂ is the average of all elements fk.
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g Γcusp(g) g Γcusp(g) g Γcusp(g) g Γcusp(g)

0.0125 0.000138062 0.025 0.000550881 0.0375 0.0012344 0.05 0.00218203

0.0625 0.00338487 0.075 0.00483202 0.0875 0.00651094 0.1 0.00840784

0.1125 0.010508 0.125 0.0127963 0.1375 0.0152575 0.15 0.0178762

0.1625 0.0206379 0.175 0.0235283 0.1875 0.0265342 0.2 0.0296431

0.2125 0.0328434 0.225 0.0361248 0.2375 0.0394776 0.25 0.0428933

0.2625 0.0463641 0.275 0.0498834 0.2875 0.053445 0.3 0.0570437

0.3125 0.0606747 0.325 0.0643342 0.3375 0.0680183 0.35 0.0717242

0.3625 0.0754492 0.375 0.0791908 0.3875 0.0829471 0.4 0.0867164

0.4125 0.0904971 0.425 0.0942879 0.4375 0.0980876 0.45 0.101895

0.4625 0.10571 0.475 0.109532 0.4875 0.113359 0.5 0.117191

0.5125 0.121027 0.525 0.124868 0.5375 0.128713 0.55 0.132561

0.5625 0.136413 0.575 0.140267 0.5875 0.144124 0.6 0.147984

0.6125 0.151845 0.625 0.155709 0.6375 0.159575 0.65 0.163442

0.6625 0.167312 0.675 0.171182 0.6875 0.175054 0.7 0.178928

0.7125 0.182803 0.725 0.186679 0.7375 0.190556 0.75 0.194434

0.7625 0.198313 0.775 0.202193 0.7875 0.206074 0.8 0.209955

0.8125 0.213838 0.825 0.217721 0.8375 0.221605 0.85 0.22549

Table 1. Numerical data used for the plot in figure 3. We give the values of Γcusp at finite coupling

for φ = π/4, θ = 4π/10. Precision is decreased to fit the page. The full data set is available as

attachment to this paper.

fitting the numerical data as a combination of some basis harmonic polylogarithms. This

would require higher precision of course but should be possible to do (e.g. in [14] more than

60 digits of precision were reached).

At strong coupling only the leading classical result is known in explicit form at generic

angles. It can be extracted from [37, 45] which gives the ∼ g coefficient. For φ = π
4 and

θ = 4π
10 it gives Γclassical

cusp ' 0.3122881g. Fitting our data we get

Γcusp

(
φ =

π

4
, θ =

4π

10
, g

)
' 0.3122892 g − 0.0410591 +

0.00073853

g
+O

(
1

g2

)
(4.19)

which agrees nicely with the AdS/CFT prediction. Let us mention that at strong coupling

it requires some effort to get high precision since we need to keep many terms in the

expansion (4.1). It would be interesting to compare our result for the g0 term with the

1-loop prediction of [45] which is written in an implicit form. One should also be able to

derive the one-loop correction in a simpler and more general way by using the algebraic

curve as in [48]. On figure 3 one can see that our data clearly interpolates between gauge

and string theory results.

In addition, on figure 4 we show our numerical data for the generalized cusp anomalous

dimension at φ = π/4 for various values of θ and of the coupling. One can clearly see in

particular the straight lines corresponding to the BPS regime φ = θ when Γcusp is zero.

We covered the full range of θ from −π to π, and on the plot one can see that as expected

Γcusp is a smooth and 2π-periodic function of this angle, invariant under θ → −θ.
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Figure 3. Numerically evaluated cusp anomalous dimension Γcusp for φ = π/4, θ = 4π/10 in a

wide range of the coupling g. Solid line shows the 4-loop perturbation theory prediction of [44–47].

Dashed lines indicate the leading strong coupling prediction for the slope of the function at g →∞.

5 Weak coupling solution

In section 3 we constructed the solution of the QSC in the near-BPS limit φ − θ → 0. In

this section we will describe the solution for arbitrary angles, at leading order in g. We

will discuss the case L = 0.

At weak coupling the cuts degenerate into poles, but the singular part is typically

suppressed by the coupling so one could expect Pa to be regular at leading order. However

the asymptotics (2.25) mean that we have to allow a 1/
√
u singularity in P1,P2. This

leads to the ansatz

P1 = C1
eθu√
u
, P2 = C2

e−θu√
u
, (5.1)

P3 = eθu(C3u
3/2 + C4u

1/2), P4 = e−θu(C5u
3/2 + C6u

1/2) .

Then all the coefficients are completely fixed by asymptotics (up to a rescaling (2.31)),

giving

P1 =
√
ε
eθu√
u
, P2 =

√
ε
e−θu√
u
, (5.2)

P3 = ε3/2u3/2eθu(1 + b/u), P4 = −ε3/2u3/2e−θu(1− b/u)

where

b =
2 cos θ cosφ+ cos 2θ − 3

2 sin θ(cos θ − cosφ)
(5.3)

and ε is defined in (2.26).
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Figure 4. A 3d plot of Γcusp at fixed φ = π/4 in a range of values of the coupling g and the angle

θ, generated from ∼ 800 data points. We also added a semi-transparent purple plane located at

Γcusp = 0, and two red lines corresponding to the BPS configuration θ = ±φ for which Γcusp = 0

(i.e. θ = ±π/4 in our case).

Let us now discuss µab. At leading order in the weak coupling expansion we expect

that in the general expression

µab =
1

2
Q−ab|ijω

ij (5.4)

only ω12 will contribute, in analogy with the undeformed QSC [2, 3, 9] as this also what

happens in the asymptotic large L regime. Based on our large u prescription ω12 ∼ e2π|u|

and the near-BPS solution (3.12), it is natural to take

ω12 = const · sinh(2πu) . (5.5)

In fact, for computing higher orders in the weak coupling expansion it should be better to

completely avoid calculating ωij and apply instead the equations (4.14), (4.15) we used in

the numerics. For the functions Qab|12 we can make an ansatz as polynomials whose degree

is determined by the asymptotics of Qab|12, times e±2θu in accordance with asymptotics

again. Also, we expect that those of the functions Qab|12 which do not have exponential

asymptotics should be either even or odd. Thus we use the following ansatz:

{µ+
12, µ

+
13, µ

+
14, µ

+
24, µ

+
34} = sinh(2πu)

{
D1, e

2θu(D2 + uD3), D4u
2 +D5,

e−2θu(D6 + uD7), D8u
4 +D9u

2 +D10

}
. (5.6)
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To fix the constants Di appearing here we use the difference equation on µab following from

the Pµ-system equations (2.1), (2.2):

µ++
ab − µab = µacP

cPb − µbcPcPa (5.7)

where Pa are related to Pa by (2.30). This equation fixes all the constants except one, and

we get

{µ+
12, µ

+
13, µ

+
14, µ

+
24, µ

+
34} = R sinh(2πu)

{
−sin θ

ε
,
e2θu

2
(2u−cot θ),

sin θ

4

(
− 2

sin2 θ
+4u2+1

)
,

−1

2
e−2θu(cot θ + 2u),

1

16

(
4u2 + 1

)2
ε sin θ

}
. (5.8)

Going to higher orders in g (see below) we also found that the constant R and ω12 scale

as ∼ 1/g2.

The Q-functions can be found from the 4th order Baxter equation on Qi with coeffi-

cients built from Pa (see [13] for its derivation). They turn out to be written in terms of

generalized η-functions defined as

ηz1,...,zks1,...,sk
(u) ≡

∑
n1>n2>···>nk≥0

zn1
1 . . . znkk

(u+ in1)s1 . . . (u+ ink)sk
(5.9)

For the case when all twists zi are equal to 1 such functions already appeared in the

weak coupling calculations of [9, 49]. Importantly, all operations needed for the iterative

procedure of [14] (e.g. expressing the product as a linear combination or solving equations of

the kind f(u+i)−f(u) = ηz1,...,zks1,...,sk (u)) can be carried out for these functions as we describe in

appendix F. For future applications, we attach to this submission a Mathematica notebook

implementing some of these operations on the generalized η-functions.

In terms of η-functions we found the following four linearly independent solutions of

the fourth order Baxter equation:

Q1 =
√
ueuφ, (5.10)

Q2 =
√
ue−uφ,

Q3 =
euφ(sinφ+ iu(ηz1 − η1

1)(cos θ − cosφ))√
u(cosφ− cos θ)

,

Q4 =
e−uφ(− sinφ+ iu(ηz̄1 − η1

1)(cos θ − cosφ))√
u(cosφ− cos θ)

where z = e2iφ, z̄ = e−2iφ. The true Q-functions should be identified with appropriate

linear combinations of these four solutions.

To fix the anomalous dimension Γcusp one needs to go to higher orders in g. This can

be done using the iterative algorithm of [14] for which Pa and Qi we have found serve as

a starting point. Notice that the weak coupling algorithm of [9] is not directly applicable

in our situation, as all Pa are of the same order ∼ g0 and none of them are small at weak

coupling. In particular, none of the five independent equations among (5.7) decouple from
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the rest at leading order. However the universal iterative method of [14] works well, and we

used it to compute the P- and Q-functions at higher orders.12 In particular we reproduced

the one-loop prediction

Γcusp = 2g2 cosφ− cos θ

sinφ
φ+O(g4) (5.11)

directly at any φ and θ. The details of this calculation will be presented elsewhere. Using

this method it is certainly possible to also reach much higher loops.

6 Conclusions

In this paper we present the modifications needed in the Quantum Spectral Curve to

describe the generalized cusp anomalous dimension. We show that the main new ingredient

of the boundary TBA formulation — the boundary reflection phase [33, 34] — is mapped

to a simple modification of the ω12 asymptotics. In addition, the analytical properties of

the key functions Pa(u) and Qi(u) have to be modified, namely we require regularity in u

on the defining sheet (except for the branch cut) once these functions are divided by
√
u,

as described by eq. (2.28).

Our proposal is consistent with the known near-BPS solution, and we also computed

the subleading term in the near-BPS expansion at any coupling. The result matches

perfectly the known perturbative predictions, providing a deep test of the QSC for this

model. As supplementary material to this paper we added a Mathematica notebook with

the perturbative expansion of our all-loop result. We also attach a notebook which should

be useful for a perturbative solution of the QSC at generic angles, and a file with numerical

data at finite coupling having ∼ 20 digits precision.

Curiously, our modification of the asymptotics for the component ω12 of the periodic

anti-symmetric matrix ωij is very similar to that needed for the analytic continuation in

Lorentz spin for the twist-2 local operators where the ω13 asymptotics was relaxed to

be exponentially large [11–13]. It seems to be a common feature of non-local operators.

It would be interesting to classify all consistent asymptotics of this kind and find the

corresponding integrable observables.

Our results together with [59] elucidate the structure of the QSC for models with

twisted boundary conditions. Extension to the q-deformation seems also to be straightfor-

ward. Generalization of the QSC for other boundary problems such as [25] should help to

understand some of their still mysterious features.

The drastic simplification of the TBA we have achieved calls for a systematic explo-

ration of Γcusp in various regimes, with the hope of revealing new structures. One should

now be able to reach much higher loop orders in the perturbative expansion with arbitrary

φ, θ using the methods of [9, 10, 14], study analytically various special cases such as the

“ladders” limit [46, 60, 61], and try to extend the link to matrix models observed in [37–39].

It would be also interesting to explore the connection to the supersymmetric hydrogenlike

bound states of massive W-bosons in N = 4 SYM [32].

12To simplify intermediate expressions we used several Mathematica packages [50–58].
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While a numerical solution of the TBA is additionally complicated by the infinite sums

which diverge for real φ and θ [43], the simple high-precision numerical method of [12] for

the QSC is applicable almost directly. Computing Γcusp numerically in a wide range of the

coupling we found perfect interpolation between gauge theory and string theory predictions.

It is of course also interesting to develop a systematic analytical method for the strong

coupling expansion and extend the celebrated string theory predictions [45, 62].13
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A The anomalous dimension from asymptotics

Her we present the explicit expression we got for the conformal dimension ∆ in terms of

the coefficients ai, bi in the large u expansion of the P-functions (see eq. (2.25)), for any

L. It reads

∆2 = −a1

[
a2(cos θ − cosφ)3

(L+ 1) sin θ sin2 φ
− b2(cos θ − cosφ)3

(L+ 1) sin θ sin2 φ
+ F (θ, φ, L)

]
− a2

1(cos θ cosφ− 1)(cos θ − cosφ)2

sin2 θ sin2 φ
+
a3(cos θ − cosφ)3

(L+ 1) sin θ sin2 φ

− a2(cos θ − cosφ)2(−2 cos θ cosφ+ (L+ 1) cos 2θ − L+ 1)

2(L+ 1) sin2 θ sin2 φ
(A.1)

− b3(cos θ − cosφ)3

(L+ 1) sin θ sin2 φ
+
b2L(cos θ cosφ− 1)(cos θ − cosφ)2

(L+ 1) sin2 θ sin2 φ

+
(2L+ 1)L

24 sin2 θ sin2 φ

[
cos θ (cos 3φ− 10 cosφ) + cos 3θ cosφ+ 8

]
− L(1− L)

3

where

F (θ, φ, L) =
(cos θ − cosφ)

4 sin3 θ sin2 φ

[
−2(5L+ 4) cos θ cosφ+ (L+ 2) cos 2φ+ 7L+ 4

+ cos 2θ (2L cos θ cosφ+ L cos 2φ− L+ 2)

]
(A.2)

13Very recently, in [63] the QSC formulated in the present paper was applied to study the flat space

quark-anti-quark potential, in particular reproducing the strong coupling predictions numerically with high

accuracy, and deriving from the QSC the Schrodinger equation that resums ladder diagrams.
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B Asymptotics of Q-functions

Similarly to the asymptotics of Pa given in (2.25) in the main text, we found that the

asymptotics of Qi have the form (with C an arbitrary constant)

Q1(u) ' Cε′1/2 u1/2+∆ e+φuF (+u) , F (u) = 1 + c1/u+ c2/u
2 + c3/u

3 + . . . (B.1)

Q2(u) ' Cε′1/2 u1/2+∆ e−φuF (−u)

Q3(u) ' 1

C
ε′3/2 u1/2−∆ e+φuG(+u) , G(u) = 1 + d1/u+ d2/u

2 + d3/u
3 + . . .

Q4(u) ' − 1

C
ε′3/2 u1/2−∆ e−φuG(−u)

while Q’s with upper and lower indices are related as in (2.30),

Q1 = −Q4, Q2 = +Q3, Q3 = −Q2, Q4 = +Q1 (B.2)

The coefficients are constrained by

ε′2 = − i(cos θ − cosφ)2

2∆ sin2 φ
, c1 − d1 = −∆(2 cos θ cosφ+ cos 2φ− 3)

2 sinφ(cos θ − cosφ)
(B.3)

While ∆ enters the powers in the asymptotics of Qi, the remaining conserved charge L is

encoded in the large u expansion coefficients as

L(L+ 2) = c2

[
d1 csc2 θ cscφ(cosφ− cos θ)3

∆
(B.4)

+
(∆− 1) csc2 θ csc2 φ(cos θ cosφ− 1)(cosφ− cos θ)2

∆

]
+
c3 csc2 θ cscφ(cos θ − cosφ)3

∆
+
d3 csc2 θ cscφ(cosφ− cos θ)3

∆

+ d1

[
d2 csc2 θ cscφ(cos θ − cosφ)3

∆
+ F1(θ, φ,∆)

]
+
d2 csc2 θ csc2 φ(cosφ− cos θ)2

(
∆ sin2 φ+ cos θ cosφ− 1

)
∆

− d2
1 csc2 θ csc2 φ(cosφ− cos θ)2(cos θ cosφ− 1)

+
1

24

[
−(∆− 1)(2∆− 1)(cos θ − 2) cot2

(
θ

2

)
sec2

(
φ

2

)
−4(∆− 1)(2∆− 1) cot θ csc θ cosφ

+(∆− 1)(2∆− 1)(cos θ + 2) tan2

(
θ

2

)
csc2

(
φ

2

)
+ 8((∆− 3)∆− 1)

]
where we denote

csc θ ≡ 1/ sin θ, sec θ ≡ 1/ cos θ (B.5)

and

F1(θ, φ,∆) =
1

4
csc2 θ csc3 φ(cos θ − cosφ) [2 cos θ cosφ((∆− 1) cos 2φ− 5∆ + 1)

+ cos 2θ((∆− 1) cos 2φ+ ∆ + 1)− (∆− 3) cos 2φ+ 7∆− 3] (B.6)
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C The leading near-BPS solution at any L

Let us present explicitly the leading order near-BPS solution of the Pµ system at any L.

It was constructed in [38] and below we write it in our conventions. Most importantly,

imposing the asymptotics (2.25) and (2.26) we recovered from (2.27) the all-loop results

of [38] for the near-BPS cusp anomalous dimension at nonzero L, providing a stringent test

of the asymptotics we propose in this paper.14

The solution has the following form. First, the components of µab are

µ
(0)
12 = A sinh(2πu), µ

(0)
13 = (−1)L, µ

(0)
14 = 0, µ

(0)
24 = (−1)L+1, µ

(0)
34 = 0 (C.1)

Second, the P-functions read

P
(0)
1 = K

√
A
√
ueθu

F̃ (x)

xL+1
, (C.2)

P
(0)
2 = K

√
A
√
ue−θu

F̃ (−x)

xL+1
,

P
(0)
3 =

K√
A

√
uegθ(x−1/x)PL(x) ,

P
(0)
4 = (−1)L

K√
A

√
ue−gθ(x−1/x)PL(−x) .

Here A is a constant which can be set to 1 via a rescaling (2.31), (2.32) while the constant

K∼
√
θ−φ can be fixed from asymptotics (2.25), (2.26). The function F (x) is a power series

F (x) = 1 +

∞∑
n=1

fnx
n , (C.3)

which satisfies

e2gθxxL+1F (x) + (−1)Le−2gθ/xxL+1F̃ (−x) = sinh(2πu)e2gθ(x−1/x)PL(x) (C.4)

and is fixed as

F (x) = e−2gθxx−L−1
[
sinh(2πu)e2gθ(x−1/x)PL(x)

]
+

(C.5)

where [f ]+ denotes the part of the Laurent expansion of f(x) with positive powers of x.

Finally, the Laurent polynomial PL(x) reads

PL(x) =
1

detM2L

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ2−2L I
θ
1−2L

Iθ2 Iθ1 · · · Iθ3−2L I
θ
2−2L

...
...

. . .
...

...

Iθ2L Iθ2L−1 · · · Iθ1 Iθ0
x−L x1−L · · · xL−1 xL

∣∣∣∣∣∣∣∣∣∣∣∣
(C.6)

where

MN =


Iθ1 Iθ0 · · · Iθ2−N Iθ1−N
Iθ2 Iθ1 · · · Iθ3−N Iθ2−N
...

...
. . .

...
...

IθN IθN−1 · · · Iθ1 Iθ0
IθN+1 IθN · · · Iθ2 Iθ1

 . (C.7)

14We checked the matching explicitly for the first several L’s.
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Notice also that

PL(1/x) = PL(−x) (C.8)

From this solution using (2.27) we recover the result of [38] for the cusp anomalous

dimension,

Γcusp = L+
φ− θ

4
∂θ log

detM2L+1

detM2L−1
+O((φ− θ)2) . (C.9)

D The near-BPS result for small φ

Here we present our result for the cusp anomalous dimension in the near-BPS limit, further

expanded for φ→ 0. Let us remind that in our notation

∆ =
cosφ− cos θ

sinφ
∆(1)(φ) +

(
cosφ− cos θ

sinφ

)2

∆(2)(φ) +O((φ− θ)3) (D.1)

Carefully taking the φ→ 0 limit in our explicit result (3.79) we found

∆(2)(φ) = f2(g)φ2 +O(φ3) (D.2)

with

f2(g) = −4g2

π2

(
I2(4πg)

I1(4πg)

)2

− 1

2

∮
dux
2πi

∮
duy
2πi

1

4πi
Γ0(ux − uy)F (x, y) (D.3)

where the integrals go around the cut [−2g, 2g], the kernel Γ0 is defined in (3.33), and most

importantly

F (x, y) = −8i sinh (2πux)uxuyx
2S0(y)

I1(4gπ)2
(D.4)

+ S0(y)2

[
8ixyI2(4gπ)uxuy

gπ (x2 − 1) I1(4gπ)3
− 8ixyI2(4gπ)uxuy
gπ (y2 − 1) I1(4gπ)3

+
32ixyuxuy
I1(4gπ)2

]
+ sinh2 (2πuy)

[
4ixyI2(4gπ)uxuy

gπ (x2 − 1) I1(4gπ)3
+

16ixyuxuy
I1(4gπ)2

]
+ sinh (2πuy)

[
4ixuxuyy

2

(x2 − 1) I1(4gπ)
− 8ix sinh (2πux)uxuyy

I1(4gπ)2
− 8iuxuyS1(x)y

gI1(4gπ)2

− 16ixuxuy
(y2 − 1) I1(4gπ)

+

(
− 8ixyI2(4gπ)uxuy
gπ (x2 − 1) I1(4gπ)3

− 32ixyuxuy
I1(4gπ)2

)
S0(y)

]
+ S1(y)

[
8ixyuxuy

g (x2 − 1) I1(4gπ)
− 8ixyuxuy
g (y2 − 1) I1(4gπ)

]
+ S0(x)

[
S0(y)

(
16iuxuy
I1(4gπ)2

− 16iy2uxuy
I1(4gπ)2

)
− 4ixI2(4gπ)uxuyS1(y)

g2π (x2 − 1) I1(4gπ)3

]
+ S0(y)

[
8ixuxuyy

2

(x2 − 1) I1(4gπ)
+

8ixuxuy
I1(4gπ)

− 8ixuxuy
(x2 − 1) I1(4gπ)

+
32ixuxuy

(y2 − 1) I1(4gπ)

+S1(x)

(
− 4ixI2(4gπ)uxuy
g2π (x2 − 1) I1(4gπ)3

− 16ixuxuy
gI1(4gπ)2

)
+S1(y)

(
4ixI2(4gπ)uxuy

g2π (x2 − 1) I1(4gπ)3
+

16ixuxuy
gI1(4gπ)2

)]
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Here we used the notation

S0(x) =
∞∑
n=1

I2n+1(4πg)/x2n+1, S1(x) =
∞∑
n=1

2nI2n(4πg)

πx2n
(D.5)

E Weak coupling predictions at five and six loops

From our all-loop result (3.79) it is straightforward to obtain a prediction for a part of

the full anomalous dimension at five and six loops, namely for the coefficients γ
(2)
5 (φ) and

γ
(2)
6 (φ) in (3.84). We found them to be

γ
(2)
5 (φ) = 3360

[
Li9(e−2iφ) + Li9(e2iφ)

]
− 2156iφ

[
Li8(e2iφ)− Li8(e−2iφ)

]
(E.1)

− 8
(
62φ2 + 15π2

) [
Li7(e2iφ) + Li7(e−2iφ)

]
+

20

3
i
(
49π2φ− 29φ3

) [
Li6(e2iφ)− Li6(e−2iφ)

]
− 8

3

(
73φ4 − 87π2φ2 + 6π4

) [
Li5(e2iφ) + Li5(e−2iφ)

]
+

4

3
i
(
65φ5 − 94π2φ3 + 29π4φ

) [
Li4(e2iφ)− Li4(e−2iφ)

]
− 8

9
(π − φ)(φ+ π)

(
33φ4 − 31π2φ2 + 2π4

) [
Li3(e2iφ) + Li3(e−2iφ)

]
+

32

45
iφ
(
7π2 − 12φ2

) (
π2 − φ2

)2 [
Li2(e2iφ)− Li2(e−2iφ)

]
+

32

5
φ2
(
φ2 − π2

)3 [
log(1− e2iφ) + log(1− e−2iφ)

]
+

16

45

[
83ζ(3)φ6 − 15

(
8π2ζ(3) + 31ζ(5)

)
φ4+3

(
9π4ζ(3)+85π2ζ(5)+930ζ(7)

)
φ2

−18900ζ(9) + 675π2ζ(7) + 90π4ζ(5) + 10π6ζ(3)
]

and

γ
(2)
6 (φ) = −41580

[
Li11(e−2iφ) + Li11(e2iφ)

]
+ 25704iφ

[
Li10(e2iφ)− Li10(e−2iφ)

]
(E.2)

+ 168(35φ2 + 12π2)
[
Li9(e−2iφ) + Li9(e2iφ)

]
− 56

3
i(241π2φ− 137φ3)

[
Li8(e2iφ)− Li8(e−2iφ)

]
+

8

3

(
943φ4 − 1150π2φ2 + 91π4

) [
Li7(e−2iφ) + Li7(e2iφ)

]
− 4

9
i
(
2661φ5 − 3754π2φ3 + 1077π4φ

) [
Li6(e2iφ)− Li6(e−2iφ)

]
+

8

45

(
−2299φ6 + 3970π2φ4 − 1835π4φ2 + 148π6

) [
Li5(e−2iφ) + Li5(e2iφ)

]
− 16

45
i(π − φ)φ(φ+ π)

(
351φ4 − 449π2φ2 + 154π4

) [
Li4(e2iφ)− Li4(e−2iφ)

]
+

8

135

(
639φ4 − 618π2φ2 + 47π4

) (
π2 − φ2

)2 [
Li3(e−2iφ) + Li3(e2iφ)

]
+

64

135
iφ
(
22φ2 − 15π2

) (
π2 − φ2

)3 [
Li2(e2iφ)− Li2(e−2iφ)

]
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+
1168

135
φ2
(
π2 − φ2

)4 [
log(1− e2iφ) + log(1− e−2iφ)

]
+

752ζ(3)φ8

15
− 16

135

(
970π2ζ(3) + 2493ζ(5)

)
φ6

+
16

45

(
208π4ζ(3) + 1130π2ζ(5) + 5175ζ(7)

)
φ4

− 16

9

(
2π6ζ(3) + 27π4ζ(5) + 414π2ζ(7) + 6615ζ(9)

)
φ2

− 8

135

(
94π8ζ(3) + 888π6ζ(5) + 8190π4ζ(7) + 68040π2ζ(9)− 1403325ζ(11)

)
F Generalized η-functions

We found that the solution of the QSC for arbitrary angles at weak coupling involves the

following generalized η functions

ηz1,...,zks1,...,sk
(u) ≡

∑
n1>n2>···>nk≥0

zn1
1 . . . znkk

(u+ in1)s1 . . . (u+ ink)sk
(F.1)

which are a generalization of the multiple polylogarithms

Li(s1,...,sk)(z1, . . . , zk) =
∑

n1>n2>···>nk≥1

zn1
1 . . . znkk
ns11 . . . nskk

(F.2)

For the case when all twists zi are set to 1, the η-functions were encountered in the weak

coupling computations of [9, 49]. In our calculation of Γcusp we had to deal with the case

where twists are present. Below we summarize some useful relations analogous to those

found in [9, 49].

Let us denote a solution of the equation

f(u+ i)− f(u) = h(u) (F.3)

as

f = Σ(h) (F.4)

A useful property is

ηZ,zA,a = Zz(ηZ,zA,a)
[2] + Z

(ηZA)[2]

ua
(F.5)

where A is a set of indices Ai and Z in the superscript is a set of twists Zi, while z is a

single complex number. The prefactor Z in the r.h.s. denotes the product
∏
i Zi. Using

this relation we find

Σ

(
z−iu

(u+ in)s

)
= −z−iuηzs(u+ in) (F.6)

Σ

(
z−iuηZS (u+ in+ i)

(u+ in)s

)
= −z

−iu

Z
η
Z(z/Z)
Ss (u+ in), (F.7)

Σ
[
v−iuuaηZzAb (u+ in)

]
= Σ

[( v

zZ

)−iu
ua
]

(zZ)−iuηZzAb (u+ in) (F.8)

+ Σ

[
Σ

[( v

zZ

)−iu
ua
][2]

(zZ)−iuZ
ηZA(u+ in+ i)

(u+ in)b

]
In these expressions a, s = 1, 2, 3, . . . while n is arbitrary.
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Finally we have the ‘stuffle’ relations which express a product of two η functions as a

linear combination of some other η’s. They are obtained by splitting the region of summa-

tion in the product of η functions and are directly analogous to those for polylogarithms

or mutiple zeta values (see e.g. the pedagogical review [64] and references therein):

ηzs η
z′

s′ =
∑
s′′

η
z′′

s′′ (F.9)

where in case two of the s indices are combined in the r.h.s. the corresponding twists are

mutiplied, exactly as in the stuffle relations for polylogarithms. For example,

ηw2 η
z
3 = ηwz5 + ηw,z2,3 + ηz,w3,2 (F.10)

The operations described above are essential for the iterative procedure of [14] and should

allow to run it to very high orders in the weak coupling expansion with any φ, θ.
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[16] L. Anselmetti, D. Bombardelli, A. Cavaglià and R. Tateo, 12 loops and triple wrapping in

ABJM theory from integrability, JHEP 10 (2015) 117 [arXiv:1506.09089] [INSPIRE].

[17] N. Gromov and G. Sizov, Exact Slope and Interpolating Functions in N = 6 Supersymmetric

Chern-Simons Theory, Phys. Rev. Lett. 113 (2014) 121601 [arXiv:1403.1894] [INSPIRE].

[18] N. Gromov and F. Levkovich-Maslyuk, Y-system and β-deformed N = 4 super-Yang-Mills,

J. Phys. A 44 (2011) 015402 [arXiv:1006.5438] [INSPIRE].

[19] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, Twisting the Mirror TBA, JHEP 02

(2011) 025 [arXiv:1009.4118] [INSPIRE].

[20] M. de Leeuw and S.J. van Tongeren, The spectral problem for strings on twisted AdS5 × S5,

Nucl. Phys. B 860 (2012) 339 [arXiv:1201.1451] [INSPIRE].

[21] M. Kim, Spectral curve for γ-deformed AdS/CFT , Phys. Lett. B 735 (2014) 332

[arXiv:1401.4032] [INSPIRE].

[22] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The Quantum Deformed Mirror TBA I,

JHEP 10 (2012) 090 [arXiv:1208.3478] [INSPIRE].

[23] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The Quantum Deformed Mirror TBA II,

JHEP 02 (2013) 012 [arXiv:1210.8185] [INSPIRE].

[24] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The exact spectrum and mirror duality

of the (AdS5 × S5)η superstring, Theor. Math. Phys. 182 (2015) 23 [arXiv:1403.6104]

[INSPIRE].

[25] Z. Bajnok et al., The spectrum of tachyons in AdS/CFT, JHEP 03 (2014) 055

[arXiv:1312.3900] [INSPIRE].
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