
J
H
E
P
0
4
(
2
0
1
6
)
1
3
0

Published for SISSA by Springer

Received: January 29, 2016

Accepted: April 9, 2016

Published: April 20, 2016

Evanescent ergosurfaces and ambipolar hyperkähler

metrics

Benjamin E. Niehoff and Harvey S. Reall

DAMTP, Centre for Mathematical Sciences, University of Cambridge,

Wilberforce Road, Cambridge CB3 0WA, U.K.

E-mail: B.E.Niehoff@damtp.cam.ac.uk, H.S.Reall@damtp.cam.ac.uk

Abstract: A supersymmetric solution of 5d supergravity may admit an ‘evanescent er-

gosurface’: a timelike hypersurface such that the canonical Killing vector field is timelike

everywhere except on this hypersurface. The hyperkähler ‘base space’ of such a solution

is ‘ambipolar’, changing signature from (+ + ++) to (− − −−) across a hypersurface.

In this paper, we determine how the hyperkähler structure must degenerate at the hyper-

surface in order for the 5d solution to remain smooth. This leads us to a definition of an

ambipolar hyperkähler manifold which generalizes the recently-defined notion of a ‘folded’

hyperkähler manifold. We prove that such manifolds can be constructed from ‘initial’ data

prescribed on the hypersurface. We present an ‘initial value’ construction of supersymmet-

ric solutions of 5d supergravity, in which such solutions are determined by data prescribed

on a timelike hypersurface, both for the generic case and for the case of an evanescent

ergosurface.

Keywords: Black Holes in String Theory, Classical Theories of Gravity, Differential and

Algebraic Geometry

ArXiv ePrint: 1601.01898

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP04(2016)130

mailto:B.E.Niehoff@damtp.cam.ac.uk
mailto:H.S.Reall@damtp.cam.ac.uk
http://arxiv.org/abs/1601.01898
http://dx.doi.org/10.1007/JHEP04(2016)130


J
H
E
P
0
4
(
2
0
1
6
)
1
3
0

Contents

1 Introduction 1

2 Folded hyperkähler metrics 3

2.1 Example and definition 3

2.2 Construction of folded hyperkähler manifolds 4

3 ‘Ambipolar’ hyperkähler metrics 6

3.1 Motivation and definition 6

3.2 Construction of ambipolar hyperkähler manifolds 7

4 Evanescent ergosurfaces in 5d supergravity 11

4.1 Supersymmetric configurations of 5d minimal supergravity 11

4.2 Evanescent ergosurfaces 13

4.2.1 Smoothness of the 5d metric 14

4.2.2 Smoothness of the Maxwell 2-form F 17

4.2.3 Comparison with section 3.2 18

4.2.4 Sufficient conditions for smoothness 19

5 Initial value construction of supersymmetric solutions 20

5.1 Introduction 20

5.2 Initial data on a regular hypersurface 21

5.3 Ambipolar base space 23

5.3.1 The G+ equation 23

5.3.2 The f equation 25

5.3.3 The ω equation 26

5.3.4 Summary 28

6 Conclusions / discussion 28

A The AJS formalism for hyperkähler metrics 30

B Behavior of f near S 31

1 Introduction

There has been recent interest in the mathematical literature in ‘folded’ hyperkähler mani-

folds [1, 2]. These are 4d manifolds which are hyperkähler away from some ‘fold’ hypersur-

face S on which the hyperkähler structure degenerates in a prescribed way and the metric is

singular. The ‘folding’ action is implemented by an involution symmetry, which is a discrete
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isometry that exchanges one side of the fold surface with the other. One curious feature

of folded hyperkähler manifolds is that the metric signature on one side of the ‘fold’ is the

usual Euclidean (++++), while on the other side becomes anti-Euclidean (−−−−).

This sort of feature has been a recurring theme in the physics literature in the context

of the ‘fuzzball’ or ‘microstate geometries’ program and 5-dimensional supergravity under

the guise of ‘ambipolar hyperkähler manifolds’ [3–9]. The working notion of an ambipolar

hyperkähler manifold has been “any manifold with hyperkähler structure whose metric

is allowed to flip signature from (++++) to (−−−−) across some singular surface”,

although a precise definition has thus far been lacking. However, it has been observed that

one can construct 5-dimensional supersymmetric solutions on an ambipolar hyperkähler

base space, where the critical surface S is in fact not singular from the 5d standpoint,

i.e., the 5d metric is everywhere smooth with Lorentzian (−++++) signature. This is

possible because in the 5d metric, the 4d base metric is multiplied by a conformal factor

which precisely cancels both the singular behavior and the change of sign.

This signature-flipping is actually quite important to the fuzzball program for the

following reason. Supersymmetric solutions of 5d supergravity are constructed from a

hyperkähler ‘base space’ [10]. Hyperkähler manifolds enjoy a uniqueness theorem: the

only complete hyperkähler manifold asymptotic to R
4 is R

4. A microstate geometry is a

supergravity solution (in 5 or more dimensions) that has no horizons and no singularities,

but which has asymptotic charges like a black hole, sourced by fluxes and non-trivial

homology cycles [6, 7]. In order to have any such structure, one requires more flexibility in

the base space metric than being merely R
4. Thus asymptotically flat microstate geometries

are required to be built on something more general than a complete hyperkähler manifold.

A further 5-dimensional phenomenon associated with ambipolar base spaces is the

notion of an evanescent ergosurface [7], which occurs at the critical surface S. An ordinary

ergosurface is a timelike surface which is the boundary of an ergoregion: in an ergoregion,

an asymptotically-timelike Killing vector becomes spacelike; thus the ergosurface is the

transition surface on which that Killing vector is null. Supersymmetric solutions of 5d

supergravity always admit a non-spacelike Killing vector field, and hence such solutions

do not admit ergoregions. An evanescent ergosurface, then, is an ergosurface without

a corresponding ergoregion: a timelike surface such that the canonical Killing vector is

timelike everywhere except on this surface, where it is null.1

The conditions under which a signature-flip of the base space is allowed have been stud-

ied only in special cases2 [6–8, 13], and have not been spelled out in general. In this paper,

we seek to remedy this situation. We will give a precise definition of an ‘ambipolar hy-

perkähler manifold’ which generalizes the folded hyperkähler manifolds of [1, 2] to the case

of critical surfaces without an involution symmetry. We present a method for construct-

ing such manifolds. This is based on work of Ashtekar, Jacobson and Smolin (AJS) [14],

which provides an ‘inital value’ construction of hyperkähker manifolds from ‘initial data’

1It is also possible for the canonical Killing vector field to be timelike everywhere except on a null

hypersurface; this is the case of a supersymmetric Killing horizon, which was analyzed in ref. [11].
2Most of these references consider only base spaces which are a Gibbons-Hawking space [12], although [13]

considers more general metrics.

– 2 –



J
H
E
P
0
4
(
2
0
1
6
)
1
3
0

prescribed on a hypersurface S. Biquard has shown that the same method can be used to

construct a folded hyperkähker manifold from data prescribed on the singular hypersurface

S [2]. We will show that this method can be generalized to construct ambipolar hyperkähler

manifolds from the data on S. In all cases, the free data is equivalent to specifying two

functions on S.
Next we demonstrate the relevance of our definition for 5d supegravity. We focus on

5d minimal supergravity, whose bosonic sector consists of the metric g and a Maxwell field

F . We show that, if (g, F ) are smooth, admit a supercovariantly constant spinor, and

there exists an evanescent ergosurface, then the base space must satisfy our definition of

an ambipolar hyperkähler manifold. The singular surface S corresponds to the evanescent

ergosurface in 5d. In addition to the base space, the 5d solution is built from a scalar field

and 1-form defined on this base space [10] and we show how smoothness of the 5d solution

determines the behaviour of these quantities near S. We show that these necessary condi-

tions are also sufficient: given an ambipolar hyperkähler space, and a 1-form and scalar with

appropriate behaviour near S one can recover 5d fields (g, F ) with the properties just listed.

Usually one demands more then the existence of a supercovariantly constant spinor

— one would also like to satisfy the field equations. We show that these equations do

not impose any further restrictions on the base space beyond the condition that it be an

ambipolar hyperkähler manifold. To do this, we extend ‘initial value’ construction of the

base space to an initial value construction of a full 5d solution from data specified on S.
To warm up, we show how to extend the AJS method to determine the full 5d solution

from data prescribed on a non-singular hypersurface S within a hyperkähler base space,

which corresponds to a timelike hypersurface in 5d. The resulting solution is specified by

8 free functions on S (equivalent to 4 degrees of freedom in 4d). We then show how this

can be extended to the ambipolar case, for which S is singular. The resulting 5d solution

is smooth with an evanescent ergosurface at S. In this case, the solution is still specified

by 8 free functions on S, so the existence of an evanescent ergosurface does not impose

functional constraints on a solution.

This paper is structured as follows: in section 2, we review the ‘folded hyperkähler

metrics’ of [1, 2]. In section 3, we give a precise definition for ‘ambipolar hyperkähler met-

rics’ and show how to construct them from data on S. In section 4, we discuss ‘evanescent

ergosurfaces’ in 5d minimal supergravity, and demonstrate the connection to ambipolar

hyperkähler base manifolds. In section 5, we present an ‘initial value’ construction for

supersymmetric solutions of 5d supergravity, which is naturally suited to solutions in the

neighborhood of an evanescent ergosurface. Finally, in section 6, we discuss our results.

2 Folded hyperkähler metrics

2.1 Example and definition

In this section, we review ‘folded’ hyperkähler manifolds as defined in [1, 2]. The canonical

example is a particular Gibbons-Hawking metric:

h =
1

z
(dψ +A)2 + z (dx2 + dy2 + dz2), dA = dx ∧ dy. (2.1)
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The triplet of Kähler 2-forms are given by

X1 = (dψ +A) ∧ dx− z dy ∧ dz, (2.2)

X2 = (dψ +A) ∧ dy − z dz ∧ dx, (2.3)

X3 = (dψ +A) ∧ dz − z dx ∧ dy. (2.4)

We see that h is undefined at z = 0, has signature (++++) for z > 0, and signature

(−−−−) for z < 0. Under the involution ι : z 7→ −z, we have

ι∗h = −h, ι∗X1 = X1, ι∗X2 = X2, ι∗X3 = −X3. (2.5)

While h is undefined at z = 0, the 2-forms X1, X2, X3 are smooth there. Pulling them

back to 2-forms on S, we have

S∗X1 = θ ∧ dx, S∗X2 = θ ∧ dy, S∗X3 = 0, where θ ≡ dψ +A. (2.6)

Noting that dθ = dx ∧ dy, we see that

θ ∧ dθ = dψ ∧ dx ∧ dy 6= 0, (2.7)

and hence θ is a contact form on S.
From this canonical example, Hitchin [1] extracts a notion of a ‘folded’ hyperkähler

manifold. A formal definition has been given by Biquard [2]:

Definition 2.1 (Biquard). A folded hyperkähler structure consists of a smooth 4-manifold

M, a smooth imbedded hypersurface S ⊂ M (the fold surface), three smooth, closed,

2-forms Xi on M, and a smooth diffeomorphism ι : M → M such that

1. S divides M into two disjoint connected components: M\ S ≃ M+ ∪M−;

2. the 2-forms Xi define a hyperkähler structure on M± with hyperkähler metric h±

where h+ has signature (++++) and h− has signature (−−−−);

3. on the surface S ⊂ M, one has S∗X1 6= 0, S∗X2 6= 0, S∗X3 = 0 and the distribution

D ⊂ TS given by D ≡ kerS∗X1 ⊕ kerS∗X2 is a contact distribution.3

4. ι is an involution that fixes S and maps M± to M∓ such that

ι∗h± = −h∓, ι∗X1 = X1, ι∗X2 = X2, ι∗X3 = −X3. (2.8)

2.2 Construction of folded hyperkähler manifolds

In ref. [2], Biquard gives an ‘initial value’ construction of folded hyperkähler manifolds.

Given a 3-manifold S and a pair of closed 2-forms Y 1 and Y 2 on S such that D = kerY 1⊕
kerY 2 is a contact distribution, he constructs, for small enough ǫ > 0, a folded hyperkähler

3Note that S∗X1 and S∗X2 are non-vanishing 2-forms on the 3-manifold S, which implies that they

have 1-dimensional kernels.
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structure on the manifold M = (−ǫ, ǫ)× S such that S∗X1 = Y 1 and S∗X2 = Y 2, where

we identify S with {0} × S ⊂ M.

In more detail, Biquard argues that one can define 1-forms θ, ρ1, ρ2 on S such that θ

is a contact form for the distribution D (hence θ ∧ dθ 6= 0), dθ = ρ1 ∧ ρ2, Y 1 = ρ2 ∧ θ,

Y 2 = θ ∧ ρ1. He then introduces a coordinate x ∈ (−ǫ, ǫ) so that the involution acts via

ι : x 7→ −x and S is the surface x = 0 in M. The 2-forms that he constructs can be

expanded around S as

X1 = x dx ∧ ρ1 + ρ2 ∧ θ +O(x2),

X2 = x dx ∧ ρ2 + θ ∧ ρ1 +O(x2),

X3 = dx ∧ θ + x ρ1 ∧ ρ2 +O(x2).

(2.9)

and the metric can be expanded around S as

h = x−1 θ2 + x
(
dx2 + (ρ1)2 + (ρ2)2

)
+O(x3)(dx, ρ1, ρ2, x−1θ), (2.10)

The final term denotes terms quadratic in (dx, ρ1, ρ2, x−1θ) with coefficients of order x3.

Biquard’s construction is a modification of the Ashtekar-Jacobson-Smolin (AJS) initial

value construction of hyperkähler manifolds [14–16], which we review briefly here and

it more detail in appendix A. The AJS construction consists of choosing three linearly

independent vector fields Vi on S which preserve a fixed volume form v on S. One then

extends these vector fields off S using the Nahm evolution equations

∂

∂x
V1 + [V2, V3] = 0,

∂

∂x
V2 + [V3, V1] = 0,

∂

∂x
V3 + [V1, V2] = 0, (2.11)

and, defining a fourth vector V0 = ∂/∂x, one obtains the hyperkähler 2-forms and metric via

Xi = dx ∧ h(Vi) + iVi
v, h(Vµ, Vν) = v(V1, V2, V3) δµν , (2.12)

Because the Vi preserve v, one finds that the coordinate x is always harmonic with re-

spect to h.

To apply this method, Biquard defines (η1, η2, η3) to be the frame of vector fields on

S dual to (ρ1, ρ2, θ). The fact that Y 1 and Y 2 are closed implies that η1, η2 preserve the

volume form v = θ ∧ dθ = ρ1 ∧ ρ2 ∧ θ. One then solves Nahm’s equations subject to the

initial conditions

V1(0) = η1, V2(0) = η2, V3(0) = 0. (2.13)

Standard theorems guarantee existence and uniqueness of a solution of Nahm’s equations

for x ∈ (−ǫ, ǫ) for sufficiently small ǫ. It is easy to see that {V1(−x), V2(−x),−V3(−x)} is a

solution with the same initial data and hence uniqueness implies that V1, V2 must be even

and V3 must be odd. The condition dθ = ρ1∧ρ2, combined with this parity symmetry gives

V3(x) = x η3 +O(x3). (2.14)

The 2-forms (2.9) and metric (2.10) are then obtained from the formulae (2.12). The

existence of the involution follows from the parity symmetry. The only difference from the
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AJS construction is that the vector fields are not linearly independent on S. This difference
gives a folded hyperkähler manifold instead of a hyperkähler manifold.

In summary, a folded hyperkähler manifold M can be constructed from the data on

the fold surface S. It would be nice to have a proof of (local) uniquenes of this manifold (up

to diffeomorphisms, extendibility etc). In other words, could there be some other folded

hyperkähler manifold with the same data on S? For the case of standard hyperkähler

manifold, the answer is no: if one defines x to be a harmonic coordinate which vanishes

on S then one can recover the Nahm equations (see appendix A) and uniqueness follows

from uniquess of solutions of the Nahm equations. The same would be true in the folded

hyperkähler case if one could argue that it is possible to choose a harmonic coordinate that

vanishes on S [2]. However, proving this looks non-trivial because the harmonic condition

depends on the metric, which is singular at S.

3 ‘Ambipolar’ hyperkähler metrics

3.1 Motivation and definition

The definition of a folded hyperkähler manifold was motivated by the example (2.1). Con-

sider now a general Gibbons-Hawking metric:

h =
1

V
(dψ +A)2 + V (dx2 + dy2 + dz2), dA = ⋆

3
dV, (3.1)

If V vanishes on some surface S then the metric near S has some similarity with (2.10).

However, in general this will not satisfy the definition of a folded hyperkähler manifold

because it lacks the involution symmetry (2.8). For example, one could consider a case for

which V = 0 on a sphere in R
3, such as the negative-mass Taub-NUT metric, with

V = 1− m

r
, r ≡

√
x2 + y2 + z2. (3.2)

In this example, the hyperkähler 2-forms are smooth at the surface r = m which partitions

the manifold into regions M+,M− in which the metric has (++++) or (−−−−) sig-

nature respectively. Given that such manifolds play an important role in 5d supergravity,

it is desirable to generalize definition 2.1 to encompass such examples. We will adopt the

following definition:

Definition 3.1. An ambipolar hyperkähler structure consists of a smooth 4-manifold M,

a smooth imbedded hypersurface S ⊂ M, and three smooth, closed, 2-forms Xi on M,

such that

1. S divides M into two disjoint connected components: M\ S ≃ M+ ∪M−;

2. the 2-forms Xi define a hyperkähler structure on M± with hyperkähler metric h±

where h+ has signature (++++) and h− has signature (−−−−);

3. (a) At each point of S, the subspace W = span{S∗X1,S∗X2,S∗X3} of Λ2T ∗S is

2-dimensional. (b) Let D be the union of the kernels of the non-zero elements of W.

Then D is a contact distribution.
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Point 3(b) may need a little more explanation. Introduce a basis {β1, β2} forW. The 2-

forms β1, β2 are non-zero and therefore have 1-dimensional kernels (as S is 3-dimensional).

Let the vectors η1, η2 be non-zero elements of these kernels. Choose another vector η3 such

that {η1, η2, η3} is a basis for the tangent space of S. Let {θi} denote the dual basis of

1-forms. Then β1 is proportional to θ2∧θ3 and β2 is proportional to θ1∧θ3 so W is the set

of 2-forms of the form (a1θ
1+a2θ

2)∧θ3. It is then easy to see that D = span{η1, η2}, so, at
any point, D is a 2-dimensional subspace of the tangent space of S. The non-trivial content
of point 3(b) of our definition is that D must be a contact distribution, i.e., [η1, η2] /∈ D.

Equivalently, θ3 must be a contact form, i.e.,

θ3 ∧ dθ3 6= 0. (3.3)

Compared to the definition of a folded hyperkähler structure, we have eliminated

condition 4 and weakened condition 3. Compared to previous work in the supergravity

literature, we have, in point 3, specified precisely how the hyperkähler structure should

degenerate on S.

3.2 Construction of ambipolar hyperkähler manifolds

We will now show how to construct an ambipolar hyperkähler manifold given the data on S.
The method is a generalization of Biquard’s construction of folded hyperkähler manifolds.

Let S be an oriented 3-manifold and let Y i, i = 1, 2, 3, be closed 2-forms on S such that

W ≡ span{Y 1, Y 2, Y 3} is everywhere 2-dimensional. Let D be the union of the kernels of

the non-zero elements ofW. Assume that D is a contact distribution. We will construct, for

small enough ǫ > 0, an ambipolar hyperkähler structure on the manifold M = (−ǫ, ǫ)× S
such that S∗Xi = Y i, where we identify S with {0} × S ⊂ M.

If Y i 6= 0 then it has a 1-dimensional kernel inside D; let the vector field ti on S be

a non-zero element of this kernel. If Y i = 0 then we define ti = 0. The vector fields ti
are linearly dependent and span D. Now pick an arbitrary volume form v on S. If ti is

non-zero then the 2-form ιti v has a 1-dimensional kernel containing ti. This implies that it

is a multiple of Y i. Obviously the same holds if ti = 0. Hence by rescaling ti appropriately

we can arrange that

ιti v = Y i (3.4)

which implies that the ti are divergence-free w.r.t. v:

Lti v = d (ιti v) = dY i = 0. (3.5)

The idea now is to define vector fields Vi on M by solving Nahm’s equations (2.11) with

initial data

Vi|x=0 = ti. (3.6)

We then define V0 = ∂/∂x. The volume form v is extended into M by Lie transport

w.r.t. V0. The metric and 2-forms Xi given by (2.12) will then satisfy our definition of an

ambipolar hyperkähler structure. We will now show this in more detail.
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Let {η1, η2} be a basis for D. We can expand our vector fields ti in terms of this basis:4

ti = tai ηa (3.7)

Since tai t
b
i is positive-definite, we can normalize the basis vectors ηa so that

tai t
b
i = δab (3.8)

Since the Y i are linearly dependent there exists a map u : S → S
2 that tells us which linear

combination of them vanishes:

uiY
i = 0, uiui = 1 (3.9)

Equation (3.4) implies that uiti = 0 and hence

uit
a
i = 0 (3.10)

We can regard t1i , t
2
i and ui as orthonormal vectors in R

3. The overall sign of ui is arbitrary;

we fix this sign by demanding

ǫijkt
a
i t

b
juk = ǫab (3.11)

We now extend ηa to a basis {η1, η2, η3} of vector fields on S. There is freedom in choosing

η3: we could just as well use

η′3 = αaηa + βη3 (3.12)

where β 6= 0. The condition that D is a contact distribution is equivalent to [η1, η2]
3 6= 0.

By appropriate choices of αa and β we can arrange that [ηa, η3]
3 = 0 and [η1, η2]

3 = −1,

so we can write

[η1, η2] = εabκb ηa − η3, [ηa, η3] = −λb
a ηb (3.13)

for certain functions κb and λb
a on S. Since the ti = tai ηa are divergence-free, it follows

that the κa can be written

κa = tbi ηb(t
a
i ). (3.14)

The precise form of the λa
b, however, will be unimportant.

Let {θ1, θ2, θ3} be the dual basis, so θ3 is a contact form. In terms of the dual basis

we have

dθa = −εabκb θ
1 ∧ θ2 + λa

b θ
b ∧ θ3, dθ3 = θ1 ∧ θ2. (3.15)

Next we exploit the freedom to choose the volume form v. If we make some other choice

v′ then we have v′ = λv for some non-zero function λ. This gives t′i = λ−1ti and hence

η′a = λ−1ηa. We then find η′3 = λ−2η3. Hence θa
′

= λθa, θ3
′

= λ2θ3 so

v′ = λv = λv123θ
1 ∧ θ2 ∧ θ3 = λ−3v123θ

1′ ∧ θ2
′ ∧ θ3

′

(3.16)

and we now choose λ3 = v123. This shows that it is consistent with our above choice of

basis to pick

v = θ1 ∧ θ2 ∧ θ3 (3.17)

4Latin indices a, b, c, . . . will take the values 1, 2.
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From equation (3.4) we now have

Y i = ǫabtai θb ∧ θ3 (3.18)

We can now solve Nahm’s equations (2.11). Writing

Vi = V a
i ηa + V 3

i η3 (3.19)

these are a system of ODEs for V a
i and V 3

i . By standard theorems, there exists ǫ > 0 such

that for x ∈ (−ǫ, ǫ) there exists a unique solution of Nahm’s equations obeying the initial

condition (3.6), i.e.,

V a
i |x=0 = tai V 3

i |x=0 = 0. (3.20)

By explicit calculation we find that this solution can be expanded as

Vi
a = tai + x tbi ε

acεbd µcd +O(x2), (3.21)

Vi
3 = x(1 + xµa

a)ui +O(x3), (3.22)

where the quantity

µab ≡ −εact
c
i ηb(ui), µa

a ≡ δabµab (3.23)

will appear in several places in the expansions of h and Xi. Note that our assumption that

D is a contact distribution ensures that Vi
3 becomes non-zero at order x. This ensures that

the vector fields Vi are linearly independent for x 6= 0.

To assemble the metric tensor, we first define

ϕ = v(V1, V2, V3) = (θ1 ∧ θ2 ∧ θ3)(V1, V2, V3), (3.24)

and a calculation gives

ϕ = x
(
1 + 2xµa

a

)
+O(x3). (3.25)

We now choose coordinates yi on S and use (x, yi) as coordinates on M = (−ǫ, ǫ)×S and

identify S with the surface x = 0 in M. We can regard the Vi as vector fields on M which

are tangent to the level sets of x. We define a fourth vector field V0 = ∂/∂x. The metric

and 2-forms Xi on M are then defined by (2.12).

More explicitly, the metric can be written as

h = ϕ
(
dx2 +Habθ

a ⊗ θb
)
+ h33

(
θ3 −HabV

3
i V

b
i θa

)2
(3.26)

where Hab is the inverse of

Hab ≡ V a
i V

b
i (3.27)

and

h33 =
ϕ

V 3
i V

3
i −HabV

3
i V

a
i V

3
j V

b
j

(3.28)

We emphasize that the x-dependence of the metric arises entirely from the x-dependence

of the Vi, in particular θa and θ3 are independent of x. For x 6= 0, the coordinate x is

harmonic w.r.t. h.
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From the expressions (3.21), (3.22) we see that Vi
3Vi

a = O(x3), which greatly simplifies

the expansions of the metric components. Expanding in x, one has

Hab = δab + 2x εacεbdµcd +O(x2), (3.29)

and hence, since µab is a 2× 2 symmetric matrix,5 one obtains

Hab = (1− 2xµc
c)(δab + 2xµab) +O(x2), h33 = x−1 +O(x). (3.30)

This implies that the metric h can be expanded around x = 0 as

h = x−1(θ3)2 + x
(
1 + 2xµa

a

)
dx2 + xδab

(
θa + xµac θ

c
)
⊗
(
θb + xµbd θ

d
)

+O(x3)(dx, θa, x−1 θ3),
(3.31)

and expanding the 2-forms Xi gives

Xi = dx ∧
[
(1 + xµc

c)
(
ui θ

3 + xtai θ
a
)
+ x2tai µab θ

b
]
+ xui(1 + xµc

c) θ
1 ∧ θ2

+
[
(1 + xµc

c)t
b
i − xtai µab

]
εbd θd ∧ θ3 +O(x3)(dx, θa, x−1 θ3).

(3.32)

We now can now check that the above construction satisfies our definition. We identify the

regions M± as the regions x > 0 and x < 0 respectively and S as the surface x = 0. We

see that the 2-forms are smooth at x = 0, as required. The metric has signature (++++)

in M+ and (−−−−) in M−. Condition 2 of our definition is satisfied in M± because our

construction reduces to the standard AJS construction of a hyperkähler manifold in these

regions. Finally, if we use (3.32) to calculate the pullback Xi to x = 0 it agrees with our

expression (3.18) for Y i and hence condition 3 of our definition is satisfied because of the

assumed properties of the Y i.

We have construced an ambipolar hyperkähler manifold given the data on S. One

can now ask about (local) uniqueness of this manifold: could there be some other ambipo-

lar hyperkähler space with the same data on S? Just as for a folded hyperkähler space,

uniqueness would follow if one could argue that it is always possible to introduce a har-

monic coordinate x that vanishes on S because one could then define vector fields Vi as in

appendix A, recover Nahm’s equations and deduce uniqueness from uniqueness of solutions

of Nahm’s equations. However, as in the folded case, proving that one can define such a

coordinate x is non-trivial because the harmonic condition depends on the metric, which

is singular on S.
In appendix A we explain that the initial data for the standard AJS construction is

equivalent to specifying 2 functions on the initial surface S. It is interesting to see how

this counting works for an ambipolar hyperkähler space. Fix a coordinate chart yi on

S. The solution is determined once we have chosen the vector fields ti and the volume

form v on S. The vector fields ti must span a 2d space, which is a single functional

constraint on them. They must also be divergence free w.r.t. v, which is 3 constraints. So

5To show that µab is symmetric, use uiY
i = 0, and write 0 = d(uiY

i) = −d(iuitiv) = −d(iti(uiv)) =

−Lti(uiv) = −Lti(ui)v hence εabµab = −tai ηa(ui) = −Lti(ui)v = 0.
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choosing the components of the ti involves 3× 3− 1− 3 = 5 free functions of yi. Of course

there is freedom to perform coordinate transformations of the yi, i.e., 3 free functions are

gauge. This leaves 5− 3 = 2 gauge-invariant free functions. As in the standard AJS case,

the freedom to choose v is equivalent to a freedom in specifying the coordinate x, i.e.,

it is gauge. Hence an ambipolar hyperkähler space is determined by 2 gauge invariant

free functions on S, equivalent to a single “degree of freedom”, exactly as for a regular

hyperkähler space.

4 Evanescent ergosurfaces in 5d supergravity

One idea that has consistently appeared in the microstate geometry program, but was only

recently given a name, is the notion of an evanescent ergosurface [7]. Supersymmetric

solutions of 5d supergravity admit a Killing vector field that is everywhere timelike or

null [17]. An evanescent ergosurface is a timelike hypersurface such that this canonical

Killing vector field is timelike outside the hypersurface but null on the hypersurface. Since

the Killing vector field cannot be spacelike, there is no actual ergoregion; an evanescent

ergosurface is essentially the limit of an ergoregion as it flattens out into a surface of zero

thickness.

For supersymmetric microstates geometries in 5d supergravity, the existence of evanes-

cent ergosurfaces is actually necessary due to the uniqueness of R4 as a strict hyperkähler

manifold. The presence of such surfaces has proven to have interesting physical conse-

quences [8]. Here, however, we will show they have mathematical consequences: the pres-

ence of an evanescent ergosurface naturally corresponds to a ‘base space’ geometry which

is an ambipolar hyperkähler metric, satisfying our definition Definition 3.1.

We start by reviewing the canonical form of supersymmetric configurations of 5d mini-

mal supergravity, as determined in [10]. We then assume that we have a 5d supersymmetric

spacetime with an evanescent ergosurface and prove that the corresponding base space must

be an ambipolar hyperkähler manifold, with the 1-form defined on this base behaving in a

certain (singular) way near S. Finally, we prove the converse: given such a base space and

1-form one obtains smooth 5d fields with an evanescent ergosurface.

4.1 Supersymmetric configurations of 5d minimal supergravity

In this section we will review properties of supersymmetric configurations of 5d minimal

supergravity, as determined in ref. [10]. We say “configurations” rather than “solutions”

because many of the results of ref. [10] rely only on the existence of a supercovariantly

constant spinor, rather than the full field equations.

The bosonic sector of 5d minimal supergravity consists of a metric tensor g and a

Maxwell field F , with action

S =
1

4πG

∫ (
1

4
⋆
5
R− 1

2
F ∧ ⋆

5
F − 2

3
√
3
F ∧ F ∧A

)
, F ≡ dA. (4.1)

A canonical form for supersymmetric bosonic configurations (g, F ) of this theory was de-

termined in ref. [10]. By definition, such a configuration admits a globally defined super-

covariantly constant spinor field ǫ. From ǫ one can construct a scalar field f , a vector field
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K and three 2-forms Xi, all quadratic in ǫ, satisfying the algebraic relations

KαK
α = −f2, (4.2)

ιK Xi = 0, (4.3)

ιK ⋆
5
Xi = −f Xi, (4.4)

Xi ∧Xj = 2 δijf ⋆
5
K, (4.5)

Xi
γαX

jγ
β = δij

(
f2 ηαβ +KαKβ

)
− f εijk X

k
αβ , (4.6)

where ηαβ = diag(−1, 1, 1, 1, 1) and ⋆5 denotes the 5d Hodge dual. Since f is real, K must

be timelike or null, but never spacelike.6

From the Killing spinor equation, one obtains differential constraints [10]. First, K is

Killing and generates a symmetry of the metric and Maxwell fields

LK g = 0, LK F = 0, (4.7)

where g is the 5d metric. We also have

df = − 2√
3
ιK F, (4.8)

dK = − 4√
3
f F − 2√

3
⋆
5
(F ∧K), (4.9)

dXi = 0, (4.10)

d ⋆
5
Xi = − 2√

3
F ∧Xi. (4.11)

It is then easy to see that K also generates a symmetry of f and Xi.

If f2 > 0, then K is timelike so we can introduce coordinates (t, xm) so that

K =
∂

∂t
, (4.12)

and since K generates a symmetry, every quantity is independent of the coordinate t. By

taking a quotient of the 5d spacetime w.r.t. this symmetry one obtains a 4d manifold with

coordinates xm, referred to as the ‘base space’. The 5d metric can be written

g = −f2 (dt+ ω)2 + f−1 h, (4.13)

where h = hmn dx
mdxn is a Riemannian metric on the base space and ω = ωm dxm is a

1-form living on h. The reason for the factor of f−1 in front of h is because then f drops

out of equations (4.3), (4.5) and (4.6):

Xi = − ⋆
4
Xi, Xi ∧Xj = −2 δij volh, (4.14)

(Xi)m
p(Xj)p

n = −δijδm
n + εijk (X

k)m
n. (4.15)

6It can be shown that K cannot vanish [10].
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where ⋆4 is the Hodge dual w.r.t. h. Hence the Xi define a hyperkähler structure on the

base space, with associated metric h. Note that if f > 0 then h has signature (++++)

and if f < 0 then h has signature (−−−−).

Equations (4.8) and (4.9) determine the form of F :

F =

√
3

2

[
d (f(dt+ ω))− 2

3
G+

]
, (4.16)

where

G± =
1

2
f (1± ⋆

4
)dω (4.17)

So in terms of quantities which appear in the metric,

F =

√
3

2

[
− (dt+ ω) ∧ df +

2

3
f dω − 1

3
⋆
4
f dω

]
, (4.18)

which will be useful later.

So far, we have assumed only the existence of a supercovariantly constant spinor for

which f 6= 0. For the fields (g, F ) to be a solution of the field equations we also need to

impose the equations of motion for the Maxwell field (the Einstein equation is then satisfied

automatically [10]). Together with the definition of G+, this gives the ‘BPS equations’:

dG+ = 0, (4.19)

d ⋆
4
df−1 =

4

9
G+ ∧G+, (4.20)

dω = f−1G+ + f−1G−, (4.21)

These equations form an upper-triangular linear system which can be solved as follows [18]

(see also [6]). First one chooses a base space metric. Next one finds self-dual G+ sat-

isfying (4.19), and then f satisfying (4.20). Finally one can take the exterior derivative

of (4.21) to obtain an equation for anti-self-dual G−. Solving this, one substitutes the

result back into (4.21) to obtain an equation which can be solved for ω. The metric and

Maxwell field are then fully determined.

4.2 Evanescent ergosurfaces

We now assume that our 5d spacetime has an evanescent ergosurface. By this, we mean

that there exists a smooth timelike hypersurface S such f(p) = 0 if, and only if, p ∈ S.
In other words, K is timelike off S and null on S. We assume that our supercovariantly

constant spinor is smooth at S, which implies that f , K and Xi are also smooth at S. We

assume also that the 5d metric and Maxwell field are smooth at S.
Since K generates a symmetry, we can still take a quotient of our 5d spacetime to

obtain a 4d base space. The evanescent ergosurface corresponds to a certain hypersurface

in the base space which we will also call S. Away from S, we will have the structure

described above, in particular the base space is hyperkähler. The 2-forms Xi are smooth

at S but the the hyperkähler structure degenerates on S. We will show that it degenerates

in precise agreement with our definition of an ambipolar hyperkähler manifold. That is,
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our definition of an ambipolar hyperkähler manifold can be thought of as naturally arising

from the Killing spinor conditions of 5d minimal supergravity.

The proof is in two parts. First, we show that smoothness of the 5d metric implies

that, on S, W = span{S∗X1,S∗X2,S∗X3} is two-dimensional, in agreement with condition

3(a) of our definition. Second, we show that smoothness of the Maxwell field implies that

condition 3(b) is also satisfied. To do this we need one technical assumption, namely that

f has a first order zero on S. This assumption can be justified by appeal to genericity;

alternatively, one can use the equation of motion for the Maxwell field to show that f

cannot have a higher-order zero on S (see appendix B). This is the only place where we

use the equations of motion.

4.2.1 Smoothness of the 5d metric

We start by introducing a coordinate chart in a neighbourhood of S. We assume that

the 5d spacetime is globally hyperbolic with Cauchy surface Σ. Hence each orbit of K

intersects Σ exactly once. Let T be the parameter distance from Σ along orbits of K.

We can introduce coordinates xm on Σ and ‘carry’ them along the integral curves of K to

define spacetime coordinates (T, xm). The 5d metric can be written in ADM form

ds2 = −(f2 + gmnβ
mβn) dT 2 + gmn(dx

m + βm dT )(dxn + βn dT ) (4.22)

with K = ∂/∂T . Since f is constant along orbits of K, it follows that these orbits must

be tangent to S because S is the set of points with f = 0.7 The intersection S ∩ Σ is a

hypersurface within Σ.

Next we define a function x as follows. We require that x be a K-invariant solution of

the wave equation:

d ⋆
5
dx = 0, LK x = 0, (4.23)

Working in the coordinates (T, xm) one sees that this is equivalent to x satisfying a certain

elliptic equation on Σ. By the Cauchy-Kowalevski theorem there exists, in a neighbourhood

of S ∩Σ, a solution satisfying x = 0 on S ∩Σ and n̂ ·∇x|S∩Σ = α̂ where n̂ is a unit normal

to S ∩ Σ (w.r.t. the induced metric on Σ) and α̂ is a non-zero free function on S. From a

5d perspective, this means that we can define a function x obeying (4.23) and satisfying

x|S = 0 n · ∇x|S = α (4.24)

where n is a unit normal to S (w.r.t. the 5d metric) and α is a non-zero K-invariant free

function on S.
The next step is to introduce coordinates yi on the 3d manifold S ∩Σ. On S we then

define t to be the parameter distance from S∩Σ along the integral curves of K. This defines

coordinates (t, yi) on S such that K = ∂/∂t on S. Finally we extend these coordinates off S
by defining them to be constant along the integral curves of Mµ = gµν(dx)ν . This defines a

coordinate chart (t, x, yi) such that 0 = Mµ∂µt = gµν(dx)ν∂µt = gtx and similarly 0 = gix.

7In fact (4.9) implies that K · ∇K = 0 on S so, on S, the orbits of K are affinely parameterized null

geodesics.
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This implies 0 = gtx = gix. Since K is a Killing field and LK x = 0 we have LK M = 0.

This implies that K = ∂/∂t everywhere.

In summary, we have shown that we can introduce coordinates (t, x, yi) in a neigh-

bourhood of S such that K = ∂/∂t and the 5d metric takes the form

g = −f(x, y)2 dt2 − 2νi(x, y) dt dy
i +N(x, y)2 dx2 + γij(x, y) dy

i dyj , (4.25)

where S is the surface x = 0 hence f = 0 on x = 0. All components are smooth at x = 0.

On S we have

K|S = −νi dy
i|S (4.26)

so νi dy
i cannot vanish on S. γij is a Riemannian metric on the 3-manifold Σ ∩ S. The

non-zero function N(x, y) is constrained by the wave equation in (4.23) which reduces to

∂

∂x

(
N−1

√
det g4

)
= 0, and hence N(x, y) = N0(y)

√
det g4, (4.27)

where g4 is what remains after erasing the dx2 term from the 5d metric (4.25). The non-

zero function N0(y) is pure gauge, and corresponds to the freedom to choose the function

α(y) in (4.24).

We now define the base space manifold M as the space of orbits of K [19]. We define

a map ψ : M5 → M (where M5 is the spacetime manifold) which maps a point p ∈ M5

to the orbit of K through p. Since this orbit is labelled by (x, yi) we can regard (x, yi) as

coordinates on M.8 The image of S under ψ is a hypersurface in M which we will also

denote as S. Since f is preserved by K, it can be regarded as a function on M, which is

smooth everywhere, including at S. From (4.3) and LK Xi = 0 it follows that the 2-forms

Xi can also be regarded as (closed) 2-forms on M [19]. Since these 2-forms are smooth in

5d they will also be smooth on S within M.

If x > 0 or x < 0 then f 6= 0 so the 5d metric can also be written in the canonical

form (4.13). The base space appearing in (4.13) is simply the region x > 0 or x < 0 of M.

We refer to these two regions as M±. Clearly M\S ≃ M+ ∪M−. From (4.13), we can

identify the angular momentum 1-form ω and the 4d hyperkähler base metric h on M±:

ω ≡ f−2 νi dy
i, h = f−1 (νi dy

i)2 + f
(
N(x, y)2 dx2 + γij dy

i dyj
)
. (4.28)

These are smooth on M± but become singular on S. The signature of h is (++++) if

f > 0 and (−−−−) if f < 0. Hence in order to satisfy condition 2 of our definition 3.1

we need to show that f changes sign at S. This will be true if f has a first order zero on

S. This can be motivated either by appealing to genericity, or (as we will show below and

in appendix B) by using the equation of motion for the Maxwell field. If f has a first order

zero then we can choose the overall sign of our coordinate x so that f > 0 for x > 0 and

f < 0 for x < 0 so h has signature (++++) in M+ and signature (−−−−) in M−.

8As an abstract manifold, M is diffeomorphic to Σ but we do not want to regard M as a particular

hypersurface in spacetime.
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We can now explain why we chose our coordinate x to satisfy (4.23). The reason is

that these conditions imply that x is harmonic w.r.t. the metrics h on M±, i.e.,

d ⋆
4
dx = 0 (4.29)

This will be important when we use the AJS construction to construct the base space from

the data on S.9
We are free to choose an orthogonal basis for the 3-metric γij . We will choose one of

the basis 1-forms to be νidy
i and write

γij dy
i dyj = (ρ1)2 + (ρ2)2 +Q(x, y) (νi dy

i)2, (4.30)

for some function Q. Since γij dy
i dyj is smooth and non-degenerate at S, this implies that

we can choose ρ1, ρ2 that are smooth and non-vanishing on S and hence they are smooth

1-forms on M. The base space metric on M± is then

h = f−1(1 +Qf2) ν2 + fN2 dx2 + f δab ρ
a ρb. (4.31)

Next we consider the 2-forms Xi. On M± these are orthonormal and anti-self-dual with

respect to the volume form

volh = (1 +Qf2)1/2fN ρ1 ∧ ρ2 ∧ ν ∧ dx. (4.32)

It is convenient to introduce an orthonormal basis of anti-self dual 2-forms:

Ωa = fN dx ∧ ρa + (1 +Qf2)1/2 εabρb ∧ ν, (4.33)

Ω3 = N(1 +Qf2)1/2 dx ∧ ν + f ρ1 ∧ ρ2, (4.34)

These satisfy the algebra (4.14) on M±. The 2-forms Xi must be related to the 2-forms

Ωi by an SO(3) rotation:

Xi = Xi
jΩ

j (4.35)

for some SO(3) matrix Xi
j .

Note that the 2-forms Ωi are smooth at S and hence they can be regarded as smooth

2-forms on M. Since the Xi are also smooth, it follows that the matrix Xi
j must also be

smooth at S.10
When we pull-back to S we obtain

S∗Ωa = εab ρb ∧ ν|x=0 6= 0, S∗Ω3 = 0, (4.36)

where the first pullback is nonzero because the basis ρ1, ρ2, ν is non-degenerate at x =

0. We see that span{S∗Ω1,S∗Ω2,S∗Ω3} is 2-dimensional. Since the Ωi are related to

9From the 4d perspective it is not obvious that there exist solutions of (4.29) that vanish on S because

h± is singular on S. Our 5d definition of x shows that such a solution does indeed exist for the class of

base spaces arising from the 5d spacetimes under consideration here.
10In more detail: smoothness of the ρa ∧ ν components of Xi implies that Xi

a is smooth and smoothness

of the dx ∧ ν component implies that Xi
3 is smooth.
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Xi by an SO(3) rotation, it follows that W ≡ span{S∗X1,S∗X2,S∗X3} coincides with

span{S∗Ω1,S∗Ω2,S∗Ω3} and henceW is two-dimensional, in agreement with condition 3(a)

of our definition 3.1. Since S∗Ωa provide a basis for W we can determine the distribution

D by taking the sum of their kernels. The result is that D is the space of vectors on S that

is orthogonal to the 1-form S∗ν.

4.2.2 Smoothness of the Maxwell 2-form F

To satisfy condition 3(b) of our definition we must prove that S∗ν is a contact form on S.
We will show that this is a consequence of smoothness of the Maxwell 2-form at S in 5d,

assuming that f has a first order zero on S. We will then (in appendix B) use the Maxwell

equation to justifiy this assumption.

For x 6= 0 the Maxwell 2-form is given by (4.18) with ω = f−2ν. Our strategy will be

to write this in terms of the smooth basis {dt, dx, ν, ρ1, ρ2} and demand that the resulting

expression can be smoothly extended across x = 0.

It will be useful to define a basis of vector fields e1, e2, e3 dual to ρ1, ρ2, ν:

ρa(eb) = δab, ν(e3) = 1, ρa(e3) = 0, ν(ea) = 0. (4.37)

Then using

dω = −2f−3 df ∧ ν + f−2 dν, (4.38)

dν ≡ (dν)xν dx ∧ ν + (dν)xa dx ∧ ρa + (dν)aν ρ
a ∧ ν + (dν)12 ρ

1 ∧ ρ2, (4.39)

we obtain:

2
√
3F =− 3 dt ∧ df (4.40)

+ dx ∧ ν
[
− f−2∂xf + 2f−1(dν)xν + f−2(1 +Qf2)1/2N (dν)12

]

+ ρa ∧ ν
[
− f−2ea(f) + 2f−1 (dν)aν − f−2(1 +Qf2)1/2N−1 εab(dν)xb

]

+ dx∧ρa
[
2f−1(dν)xa−2f−1(1+Qf2)−1/2Nεabeb(f)+(1+Qf2)−1/2Nεab(dν)bν

]

+ ρ1∧ρ2
[
2f−1 (dν)12 − 2f−1(1+Qf2)−1/2N−1∂xf + (1+Qf2)−1/2N−1 (dν)xν

]
.

Next we will expand this for small x and demand that the singular terms vanish. To do

this we must return to the question of how f behaves at x = 0. Smoothness of f implies

that we have f = O(xp) for some positive integer p. In appendix B, we use the Maxwell

equation (4.20) to show that p = 1, i.e., f has a first order zero on S.11
We can now expand f and N as

f(x, y) = xf1(y) + x2f2(y) +O(x3), N(x, y) = N0(y) + xN1(y) +O(x3). (4.41)

where f1 and N0 are non-zero. As discussed above, we can define x so that f > 0 for x > 0

hence f1 > 0.

11There is an apparent contradiction between this result and the results of [20], wherein f is contrived

to vanish as O(xp) for p arbitrarily high; however, in that paper, smoothness of the Maxwell field was not

imposed.
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We see that there are singular parts of (4.40) at orders x−2 and x−1. Requiring these

to vanish implies that dν take the form12

dν =
(
∂xf − 2f(dν)xν

)
N−1 ρ1 ∧ ρ2 +

(
ea(f)− 2f(dν)aν

)
N εab ρb ∧ dx

+ (dν)xν dx ∧ ν + (dν)aν ρ
a ∧ ν +O(x2)(dx, ρa, x−1ν),

(4.42)

where the dx ∧ ν and ρa ∧ ν components are unconstrained. In particular, we see that

S∗dν = f1N
−1
0 S∗(ρ1 ∧ ρ2) + S∗

(
(dν)aν ρ

a ∧ ν
)
, (4.43)

hence S∗(ν ∧ dν) 6= 0 and so S∗ν is a contact 1-form on S. Thus we have shown that M
together with the 2-forms Xi satisfies all the conditions of our definition 3.1. In summary,

we have shown that a necessary condition for a 5d supersymmetric solution to have an

evanescent ergosurface is that its base space be an ambipolar hyperkähler space according

to our definition.

4.2.3 Comparison with section 3.2

The coordinate x introduced above is harmonic on the base space. Hence it must be

possible to write our base space in the form determined in section 3.2. We can compare

directly the metrics (3.26) and (4.31). In both cases, x is a harmonic coordinate on the

base space. However, in (3.26), x is completely determined whereas in (4.31) there is still

some gauge freedom in x arising from the freedom to choose N0 (or α). We can fix this

freedom by comparing the dx2 terms:

fN2 = ϕ = x
(
1 + 2xµa

a

)
+O(x3), (4.44)

and hence the appropriate gauge choice for comparing with section 3.2 is

N0 = f
−1/2
1 . (4.45)

We now compare other components of the metrics (3.26) and (4.31). By taking the norm

of η3 using both metrics we learn that

h33 = f−1ν(η3)
2 +O(x) ⇒ ν(η3)

2 =
f

x
+O(x2) (4.46)

where we used (3.30) in the second equality. By taking the inner product of η3 and ηa
w.r.t. both metrics we learn that

O(x2) = f−1ν(η3)ν(ηa) +O(x) ⇒ ν(ηa) = O(x2) (4.47)

hence we must have

ν =

[(
f

x

)1/2

+O(x2)

]
θ3 +O(x2)θa = f

1/2
1

(
1 +

xf2
2f1

+O(x2)

)
θ3 +O(x2)θa (4.48)

12Similarly to before, the notation O(x2)(dx, ρa, x−1ν) denotes e.g. O(x2)dx ∧ dρa or O(x)dx ∧ ν etc.
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where we used the freedom θ3 → −θ3, θ1 ↔ θ2 to fix the sign in the first term. From this

we obtain the behaviour of ω near S:

ω =

(
1

x2f
3/2
1

− 3f2

2xf
5/2
1

+O(1)

)
θ3 +O(1)θa (4.49)

In addition, by comparing (4.32) and (A.1), we can determine the volume form v,

v = (1 +Qf2)1/2N−1 ρ1 ∧ ρ2 ∧ ν, (4.50)

which is independent of x as a consequence of (4.27).

We can relate some of the other quantities used above to those of section 3.2. In

section 3.2 we denoted S∗Xi as Y i. From (3.18) and (4.35) we obtain

tai ǫ
abθb ∧ θ3 = S∗

(
Xi

jǫ
abρb ∧ ν

)
(4.51)

We identify

tai = Xi
a|x=0 ui = Xi

3|x=0 (4.52)

which satisfy the algebraic relations (3.8) and (3.11) because Xi
j is an SO(3) matrix.

From (4.51) we must now have13

θa = f
1/2
1 S∗ρa + βaS∗ν (4.53)

for some βa. The βa are uniquely determined by the condition dθ3 = θ1 ∧ θ2 which gives

θa = f
1/2
1 S∗ρa − f−1

1 εab(dν)bν S∗ν +
1

2
f−2
1 εab S∗

(
eb(f1) ν

)
. (4.54)

4.2.4 Sufficient conditions for smoothness

We have shown that necessary conditions for smoothness of a 5d supersymmetric configu-

ration with an evanescent ergosurface is that the base space be an ambipolar hyperkähler

space, that f behaves as in (4.41) with f1 > 0 (appealing to genericity or the Maxwell

equation), and that ω behave as in (4.49). These conditions are also sufficient for smooth-

ness. To see this, we plug the expansions (3.31), (4.41) and (4.49) into (4.13) to obtain the

expansion of the 5d metric as14

g =− x2f2
1 (1 + 2xf−1

1 f2) dt
2−2f

1/2
1

(
1+

1

2
xf−1

1 f2

)
dt θ3 + f−1

1 (1−xf−1
1 f2)(1+2xµa

a) dx
2

+ f−1
1 (1−xf−1

1 f2) δab(θ
a + xµac θ

c)(θb + xµbd θ
d) +O(x2)(x dt, dx, θa, x−1θ3), (4.55)

which is smooth at x = 0 with Lorentzian signature. Furthermore, x = 0 is a timelike

hypersurface on which f vanishes, i.e., an evanescent ergosurface.

Note that the (θ3)2 component of the metric is smooth at x = 0 but we cannot

determine its sign without taking the expansion of the base space metric to one order

higher than we have done. It is possible that the sign of this component might be negative,

13Of course θa and ρa are only defined up to SO(2) rotations. We have made a particular choice in (4.52).
14Again, the error term O(x2)(x dt,dx, θa, x−1θ3) means a quadratic form built out of the listed elements.
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in which case η3 would be timelike w.r.t. the 5d metric. If η3 has closed orbits then these

would be closed timelike curves. So our construction does not guarantee freedom from

closed timelike curves.

The expansions (3.31), (4.41) and (4.49) determine the behaviour of G+ as

G+ =
3

2
d

(
θ3

xf
1/2
1

)
+O(1). (4.56)

where O(1) denotes terms smooth at x = 0. The term in brackets here is the same as the

singular part of fω. Hence the singular part of (2/3)G+ cancels the singular part of d(fω)

in the expression (4.16) for the Maxwell field. Therefore the Maxwell field is also smooth

at x = 0.

In summmary, we have shown the following:

The necessary and sufficient conditions for a configuration (g, F ) of 5d minimal su-

pergravity to be smooth, with an evanescent ergosurface at which f has a first order zero,15

and admit a supercovariantly constant spinor, is that, when decomposed into the canoni-

cal form (4.13), the resulting base space is an ambipolar hyperkähler manifold (with met-

ric (3.26)) and the 1-form ω satisfies (4.49).

5 Initial value construction of supersymmetric solutions

5.1 Introduction

The result just summarized concerns configurations of 5d minimal supergravity that admit

a supercovariantly constant spinor. Now we want to ask whether any further restrictions

emerge from demanding that the configuration is a solution of the equations of motion, i.e.,

that it satisfies the BPS equations. In particular, given an arbitrary ambipolar hyperkähler

space M, can one use it to construct a 5d supersymmetric solution with an evanescent

ergosurface without further restrictions on M? We will prove that the answer is yes,

at least for the class of ambipolar hyperkähler spaces that can be constructed using the

method of section 3.2 (which may well be all such spaces).

The idea is to extend the ‘initial value’ construction of the base space to an ‘initial

value’ construction of a solution of the BPS equations. In the AJS construction, initial

data prescribed on a 3d manifold S is used to construct a hyperkähler manifold containing

S as a hypersurface [14]. We will show that prescribing additional data on S allows us

to solve the BPS equations on this manifold and thereby construct a 5d supersymmetric

solution. We will do this both for the case for which S is a regular hypersurface in a hy-

perkähler manifold and the case for which S is the privileged hypersurface of an ambipolar

hyperkähler manifold. In both cases, S corresponds to a timelike hypersurface in the 5d

spacetime. In the latter case, this hypersurface is an evanescent ergosurface.

This is to be contrasted with the usual initial value problem in GR in which data is

specified on a spacelike hypersurface and evolved in time. We are instead specifying data

15We repeat that the assumption of a first order zero can be justified by appealing to the equation of

motion for F . But here we are stating our result in a way that refers only to supersymmetry and does not

use the equations of motion explicity.
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on a timelike hypersurface and evolving in a spacelike direction. This is usually an ill-posed

problem. However, we are restricting ourselves to supersymmetric solutions, which are sta-

tionary and therefore expected to be analytic. Therefore one can hope that local existence

and uniqueness of solutions near S can be established using the Cauchy-Kowalevski theo-

rem. Of course it is difficult to discuss global regularity of solutions constructed this way

but exactly the same remark applies to the AJS construction.

In this section we will show that an AJS-like construction can indeed be developed for

solving the BPS equations. This is straightforward when S is a regular hypersurface in

a hyperkähler base space and, with some care, can also be done when S is the privileged

hypersurface of an ambipolar hyperkähler base space, corresponding to an evanescent er-

gosurface. In both cases, we find that the initial data is equivalent to specifying 8 free

functions on S, so the presence of an evanescent ergosurface does not impose functional

constraints on the solution.

5.2 Initial data on a regular hypersurface

In this section we will show how to solve the BPS equations starting from initial data

prescribed on a smooth, oriented, 3d manifold S for the case in which S is a regular

hypersurface within a hyperkähler space M.

The essence of the AJS ‘initial value’ construction of hyperkähler manifolds is that it

distills the hyperkähler problem into an evolution problem for a collection of vector fields

Vi. Therefore we seek to mimic this method for the BPS equations, by expressing quantities

in terms of such vector fields as much as possible.

We will solve the BPS equations in the order suggested by [18]. The novelty here is

that we will formulate each equation as an initial value problem.

We follow the notation of appendix A: we assume that we have constructed a hy-

perkähler space on the manifold M = (−ǫ, ǫ)×S with coordinates (x, yi) where x ∈ (−ǫ, ǫ)

and yi are coordinates on S. The hypersurface S is identified with the surface x = 0 in M.

We start with the equation (4.19). We can express the self-dual 2-form G+ in terms

of a vector field W tangent to the level sets of x via the formula

G+ = dx ∧W − ιW v, (5.1)

where v is the volume 3-form of the AJS construction, and W ≡ h(W ) is the 1-form

obtained by ‘lowering an index’ on W with the hyperkähler metric. We now impose dG+ =

0, which gives

d̂(ιW v) = 0 (5.2)

d̂W + ι∂xW v = 0. (5.3)

where d̂ denotes the pull-back of the exterior derivative to the level-sets of x (i.e. in coordi-

nates (x, yi) it involves differentiation only w.r.t. yi). Equation (5.3) uniquely determines

∂xW , i.e., it is a first-order evolution equation for W . The identity ddG+ = 0 implies that,

when this evolution equation is satisfied, we automatically have

∂xd̂(ιW v) = 0 (5.4)
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and hence if the divergence-free constraint (5.2) is satisfied on S then it is satisfied every-

where. Therefore we can solve the equation dG+ = 0 by specifying a divergence-free vector

field W on S and then using this as the initial condition to solve (5.3). Such initial data

contains 2 free functions, i.e., 1 4d degree of freedom, as expected if we regard G+ as a

self-dual solution of Maxwell’s equations in 4d.

Now consider (4.20) which is a standard Poisson equation for f−1. In terms of the AJS

vector fields Vi we find

d ⋆
4
df−1 =

(
∂2
x(f

−1) + Vi(Vi(f
−1))

)
v ∧ dx. (5.5)

We also find

G+ ∧G+ = 2W ∧ (ιW v) ∧ dx = 2h(W,W ) v ∧ dx, (5.6)

and hence (4.20) reduces to

∂2
x(f

−1) + Vi(Vi(f
−1)) =

8

9
h(W,W ). (5.7)

Local existence and uniqueness of solutions is guaranteed by the Cauchy-Kowalevski the-

orem if we prescribe f and its normal derivative on S. The only restriction is f |S 6= 0,

which is to be expected since we are not considering an ambipolar base space here. In

summary, we have to specify 2 free functions on S to solve (4.20), equivalent to 1 degree

of freedom in 4d.

Finally, to solve (4.21) we express the anti-self dual 2-form G− in terms of another

vector field Z tangent to the level sets of x via the formula

G− = dx ∧ Z + ιZ v, (5.8)

We now take the exterior derivative of (4.21) to obtain

d
[
f−1(G+ +G−)

]
= 0 (5.9)

which gives an evolution equation for Z

0 = ι∂xZ v + f−1 d̂f ∧ (W + Z) + f−1∂xf (ιW v − ιZ v)− d̂Z, (5.10)

together with a constraint

0 = d̂
(
ιZ v

)
+ f−1

(
W (f)− Z(f)

)
v. (5.11)

Similar to the case ofG+, one can show that the constraint (5.11) is automatically preserved

by the evolution equation (5.10). Thus the initial condition for Z consists of one vector

field on S satisfying one constraint on its divergence, leaving a total of 2 free functions on

S, i.e., one 4d degree of freedom.

Having solved for G− we now substitute it into the r.h.s. of (4.21). This determines ω

up to an exact differential da for some function a. The latter is a gauge degree of freedom

that can be eliminated by a shift in the time coordinate: t → t+ a.
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We have shown how a supersymmetric 5d solution can be constructed from initial data

on S for the case of a regular hyperkähler base space. We can count the degrees of freedom

from this prescription. First, the hyperkähler base is determined by 2 gauge invariant

functions on S (see appendix A). The 2-forms G± and the function f are each determined

by 2 more free functions on S. This gives a total of 8 functions on S. This is equivalent to
4 degrees of freedom in 4d.

5.3 Ambipolar base space

We now want to investigate whether we can formulate the BPS equations as an initial value

problem starting from the canonical surface S in an ambipolar hyperkähler base space, and

solve so that the resulting 5d solution is smooth with an evanescent ergosurface. We will

show that this can indeed be done for the class of ambipolar hyperkähler spaces that can

be constructed (locally) using the method of section 3.2. The difference from the previous

section is that there we assumed all quantities were smooth at S. However, we must now

deal with the fact that the base space metric h and the 1-form ω (and hence also G±) are

singular at S, i.e., we are trying to solve an initial value problem where some quantities are

singular at the initial surface. Nevertheless, since we have already determined the nature

of this singular behaviour, it will turn out that we can indeed solve each equation as an

initial value problem.

We assume that our base space is an ambipolar hyperkähler manifold constructed

using the method of section 3.2. The base space metric is given by (3.26). Expanding in

components we have

h = h33 (θ
3)2 + h3a

(
θ3 ⊗ θa + θa ⊗ θ3

)
+ hab θ

a ⊗ θb + hxx dx
2. (5.12)

We will expand each component as a series in x,

h33 = x−1h
(−1)
33 +

∞∑

k=0

xkh
(k)
33 , h3a =

∞∑

k=1

xkh
(k)
3a , hab =

∞∑

k=1

xkh
(k)
ab , (5.13)

where the coefficients are functions of the yi. Comparing to (3.31), we see in particular that

h
(−1)
33 = 1 h

(0)
33 = 0 (5.14)

We will also require that f is expanded as in (4.41) and that ω has the behaviour (4.49),

since we know these are necessary (and sufficient) for smoothness of the 5d fields.

5.3.1 The G+ equation

The behaviour of G+ near S required for 5d smoothness was determined in (4.56) where

f1 is a positive function. Expanding this gives

G+ = − 3

2f
1/2
1 x2

dx ∧ θ3 − 3

4xf
3/2
1

d̂f1 ∧ θ3 +
3

2xf
1/2
1

θ1 ∧ θ2 +O(1) (5.15)
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To solve the G+ equation (4.19), we first write G+ in terms of a vector field W tangent to

the level sets of x, as in (5.1) so that the G+ equation becomes (5.2) and (5.3). From the

above behaviour of G+ we see that W is O(x−1) as x → 0. In components we have

W = W a ηa +W 3 η3, (5.16)

W =
(
habW

b + h3aW
3
)
θa +

(
h3aW

a + h33W
3
)
θ3. (5.17)

The evolution equation (5.3) can be expanded in components,

0 = θ1 ∧ θ2
[
∂xW

3 + εcaηc
(
habW

b + h3aW
3
)
− εacκc

(
habW

b + h3aW
3
)

+ f1N
2
0

(
h3aW

a + h33W
3
)]

+ θb ∧ θ3
[
εab(∂xW

a)− η3
(
habW

a + h3bW
3
)
+ ηb

(
h3aW

a + h33W
3
)

+ λa
b

(
hacW

c + h3aW
3
)]
,

(5.18)

where κa, λ
a
b are defined in (3.13) and (3.14).

If the evolution equation is satisfied then we have (5.4) as above and hence

d̂(ιW v) = χ (5.19)

where ∂xχ = 0. Equation (5.2) is now equivalent to the condition χ = 0 on S. However,

since W is singular on S it is not immediately obvious how to arrange χ = 0 on S. To

investigate this we set

W =
1

x
W̃ (5.20)

where W̃ is smooth on S. We then have

d̂(ι
W̃

v) = xχ (5.21)

and hence

d̂(ι
∂xW̃

v) = χ (5.22)

The l.h.s. is now smooth on S. Hence the constraint χ = 0 reduces to

d̂(ι
∂xW̃

v)|S = 0, (5.23)

In other words, when the evolution equation is satisfied, (5.2) will also be satisfied iff ∂xW̃

is divergence-free on S.
Next we write series expansions in x for the components of W ,

W 3 = x−1W 3
(−1) +

∞∑

k=0

xkW 3
(k), W a = x−1W a

(−1) +
∞∑

k=0

xkW a
(k). (5.24)

where W 3
(k) and W a

(k) are functions on S. Matching to (5.15) determines the singular terms:

W 3
(−1) = −3

2
f
−1/2
1 , W a

(−1) = −3

2
εabηb

(
f
−1/2
1

)
, (5.25)
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We have

∂xW̃ |S = W a
(0)ηa +W 3

(0)η3 (5.26)

so our constraint equation will be satisfied iff the r.h.s. here is divergence-free.

Plugging the expansion into (5.18), we can extract the lowest few powers of x. First,

the θ1 ∧ θ2 component:

x−2 : 0 = −W 3
(−1) + h

(−1)
33 W 3

(−1), (5.27)

x−1 : 0 = h
(−1)
33 W 3

(0) + h
(0)
33 W

3
(−1), (5.28)

x0 : 0 = W 3
(1) + h

(−1)
33 W 3

(1) + h
(1)
33 W

3
(−1) + h

(0)
33 W

3
(0)

+ εcaηc
(
h
(1)
ab W

b
(−1) + h

(1)
3a W

3
(−1)

)
+ h

(1)
3a W

a
(−1)

− εacκc
(
h
(1)
ab W

b
(−1) + h

(1)
3a W

3
(−1)

)
,

(5.29)

using (5.14) we see that the O(x−2) terms cancel automatically and the O(x−1) terms give

W 3
(0) = 0. (5.30)

The O(x0) terms then fix W 3
(1) uniquely. Extending to higher orders we find that the O(xn)

terms fix W 3
(n+1) in terms of W 3

(k) and W a
(k) with k ≤ n.

Now, expanding the θb ∧ θ3 component, we get

x−2 : 0 = −εabW a
(−1) + ηb

(
h
(−1)
33 W 3

(−1)

)
, (5.31)

x−1 : 0 = ηb
(
h
(−1)
33 W 3

(0)

)
+ ηb

(
h
(0)
33 W

3
(−1)

)
, (5.32)

x0 : 0 = εabW a
(1) + ηb

(
h
(1)
33 W

3
(−1) + h

(−1)
33 W 3

(1)

)
+ ηb

(
h
(0)
33 W

3
(0)

)

− η3
(
h
(1)
ab W

a
(−1) + h

(1)
3b W

3
(−1)

)
+ ηb

(
h
(1)
3a W

a
(−1)

)

+ λa
b

(
h(1)ac W

c
(−1) + h

(1)
3a W

3
(−1)

)
,

(5.33)

Using (5.14) and (5.25) we find that the O(x−2) and O(x−1) terms cancel automatically.

The O(x0) terms fix W a
(1) uniquely. Extending to higher orders we find that the O(xn)

terms fix W 3
(n+1) in terms of W 3

(k+1) and W a
(k) with k ≤ n.

It follows that we can solve the evolution equation recursively, order by order to de-

termine all coefficients W 3
(n) and W a

(n) except for W a
(0), which is therefore the initial data

for the evolution equation. These two free functions are constrained by the condition that

W a
(0)ηa must be divergence-free, leaving 1 free function. However, we must not overlook

the singular part of W , which is determined by f1. It will be convenient to regard this

(positive) free function as part of the initial data for G+ rather than as initial data for f .

Therefore we have shown that one can solve (4.19) to determine G+ uniquely given initial

data consisting of 2 free functions on S.

5.3.2 The f equation

Next we tackle the f equation (5.7):

∂2
x(f

−1) + Vi(Vi(f
−1)) =

8

9
h(W,W ). (5.34)
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To find a solution, it is more convenient to expand f−1, rather than f itself, as a series

in x. Put

f−1 = x−1q(−1) +
∞∑

k=0

xkq(k), Vi =
∞∑

k=0

xk V
(k)
i . (5.35)

where the q(k) are functions on S with

q(−1) = f−1
1 . (5.36)

The left-hand side of the f equation becomes

∂2
x(f

−1) + (Vi(Vi(f
−1))

= 2x−3q(−1) + x−1
(
V

(0)
i

(
V

(0)
i

(
q(−1)

))

+
∞∑

k=0

xk
[
(k + 2)(k + 1)q(k+2) +

k+1∑

ℓ=0

(
V

(k−ℓ+1)
i

(
V

(ℓ)
i

(
q(−1)

))
(5.37)

+
k∑

m=0

k−m∑

ℓ=0

(
V

(m)
i

(
V

(k−m−ℓ)
i

(
q(ℓ)

))]
.

The source term on the r.h.s. is

8

9
h(W,W )=

8

9
x−3

[
h
(−1)
33 (W 3

(−1))
2
]

+
8

9
x−1

[
2h

(−1)
33 W 3

(−1)W
3
(1)+h

(1)
33 (W

3
(−1))

2+2h
(1)
3a W

3
(−1)W

a
(−1)+h

(1)
ab W

a
(−1)W

b
(−1)

]

+O(1), (5.38)

A calculation shows that the singular terms cancel between (5.37) and (5.38) upon plugging

in (5.14), (5.25), and applying (5.29). At O(xn), n ≥ 0, we obtain a recursion relation

relating q(n+2) to q(k) with k ≤ n. Hence the solution is uniquely determined once we have

specified q(0) and q(1), which are free data. So we have shown that (4.20) can be solved to

determine f uniquely given initial data on S consisting of 2 more free functions.

5.3.3 The ω equation

Finally, we address the ω equation (4.21). As before, we first write G− in terms of a vector

field Z tangent to the level sets of x, as in (5.8) and use (5.9) to obtain the evolution

equation (5.10) and the constraint (5.11).

The evolution equation has a θ1 ∧ θ2 component:

0 = ∂xZ
3 + f−1∂xf(W

3 − Z3)− h3aZ
a − h33Z

3

+ f−1 εcaηc(f)
(
habW

b + h3aW
3 + habZ

b + h3aZ
3
)

− εcaηc
(
habZ

b + h3aZ
3
)
+ εacκc

(
habZ

b + h3aZ
3
)
,

(5.39)
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and a θb ∧ θ3 component:

0 = εab(∂xZ
a) + f−1∂xf εab(W a − Za)− λa

b

(
hacZ

c + h3aZ
3
)

+ f−1ηb(f)
(
h3aW

a + h33W
3 + h3aZ

a + h33Z
3
)

− f−1η3(f)
(
habW

a + h3bW
3 + habZ

a + h3bZ
3
)

+ η3
(
habZ

a + h3bZ
3
)
− ηb

(
h3aZ

a + h33Z
3
)
.

(5.40)

The behaviour of Z near S required for 5d smoothness can be determined using (4.49)

together with the expansions of f and the base space metric. We find that this gives

Z =

(
− 1

2xf
1/2
1

− f2

2f
3/2
1

+O(x)

)
η3 +

(
3

2x
ǫabηb(f

−1/2
1 ) +O(1)

)
ηa (5.41)

and hence we can write

Z =
1

x
Z̃ (5.42)

where Z̃ is smooth at S.
The constraint equation (5.11) involves quantities singular on S. This problem can be

addressed in a way similar to what we did with the G+ equation. Let

ψ = f−1d̂
(
ιZ v

)
+ f−2

(
W (f)− Z(f)

)
v. (5.43)

Taking an exterior derivative of (5.9) shows that

∂xψ = 0 (5.44)

provided that the evolution equation (5.10) is satisfied. In terms of quantities smooth at

x = 0 we have

x2f̃ψ = d̂(ι
Z̃
v) + f̃−1

(
W̃ (f̃)− Z̃(f̃)

)
v (5.45)

where the smooth quantity W̃ was defined in (5.20) and the smooth non-zero quantity f̃

is defined by

f = xf̃ . (5.46)

Taking two x-derivatives of (5.45), we see that ψ vanishes at x = 0, and hence vanishes

everywhere, iff {
d̂(ι

∂2
xZ̃

v) + ∂2
x

[
f̃−1

(
W̃ (f̃)− Z̃(f̃)

)]
v
}∣∣∣

S
= 0 (5.47)

Hence if the initial data for Z satisfies this constraint then the evolution equation (5.10)

guarantees that the constraint (5.11) is satisfied everywhere.

We now expand as a series in x

Z3 = x−1Z3
(−1) +

∞∑

k=0

xkZ3
(k), Za = x−1Za

(−1) +
∞∑

k=0

xkZa
(k). (5.48)

where, from (5.41) we have

Z3
(−1) = −1

2
f
−1/2
1 , Z3

(0) = −1

2
f
−3/2
1 f2, Za

(−1) =
3

2
εabηb

(
f
−1/2
1

)
(5.49)
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In this case, one must tediously carry out the expansion of equations (5.39), (5.40) to three

orders in x in order to find the free functions in the Z expansions. The result of this

analysis is that

Za
(0) = W a

(0) −
3

2
f
−3/2
1 εabηb

(
f2
)
− 9

2
f−1
1 f2 ε

abηb
(
f
−1/2
1

)
, (5.50)

that Z3
(1) is determined uniquely in terms of the Z3

(n), Z
a
(n) for n < 1; but that Za

(1) and

Z3
(2) are unconstrained by the evolution equation. Once these functions are specified,

the evolution equation determines all higher order terms in the expansion. For example,

examining the O(x1) part of (5.40) determines uniquely Za
(2). Hence Za

(1) and Z3
(2) are the

initial data required to determine G−.

We now consider (5.47), which depends on Z3
(n) and Za

(n) for n ≤ 1. Hence this

equation imposes one constraint on Za
(1) in terms of known quantities. Hence specifying

Za
(1) is equivalent to specifying 1 free function on S. Z3

(2) is unconstrained so G− is uniquely

determined from initial data consisting of two free functions on S.
Now we know G±, equation (4.21) determines ω up to an exact form da, and we

can eliminate a via a shift of the time coordinates t → t + a. Of course the resulting ω

satisfies the condition (4.49) required for smoothness of the 5d solution because we used

this condition to fix the behaviour of G± as x → 0.

5.3.4 Summary

We have shown that we can solve the BPS equations as an initial value problem formulated

in terms of data specified on the canonical surface S of an ambipolar hyperkähler manifold

M. We saw previously that M is determined by two free functions on S. We have just

shown that two more free functions are required to determine each of G+, f and G− so the

total number of free functions required to construct the 5d solution is 8, equivalent to 4

degrees of freedom in 4d. This is exactly as we found for the case in which S was a regular

surface within a hyperkähler manifold. Note that no restrictions on M emerged from this

analysis so we have confirmed that it is possible to construct a smooth supersymmetric

5d solution with an evanescent ergosurface starting from any ambipolar hyperkähler base

space of the form constructed using the method of section 3.2.

6 Conclusions / discussion

In this paper we have defined the notion of an ambipolar hyperkähler manifold, generalizing

the notion of a folded hyperkähler manifold of [1, 2]. Such manifolds first arose in the

context of the ‘fuzzball’ or microstate geometries program [3–7] as a curious way of side-

stepping an inconvenient uniqueness theorem for hyperkähler metrics. By allowing metrics

which change signature from (++++) to (−−−−), the assumptions of this theorem are

violated. This feature is vitally important to the construction of large families of microstate

geometries in 5-dimensional supergravity.

Evanescent ergosurfaces are a phenomenon which has been observed to be associated

with the critical surfaces of ambipolar metrics [7]. On an evanescent ergosurface, a Killing
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vector which is asymptotically timelike becomes null, and then again timelike on the other

side. Thus unlike an ordinary ergosurface, an evanescent ergosurface is not the boundary

of an ergoregion; it is more like an ergoregion that has been squished into a surface of zero

thickness.

While it has been known that ambipolar hyperkähler manifolds and evanescent ergo-

surfaces are associated with one another in 5d supergravity, neither a precise definition of

such manifolds nor a precise explanation of this association, in full generality, has been

written down in the literature. In this paper we have supplied such a definition. This defi-

nition encompasses all of the explicit ambipolar hyperkähler metrics which can be written

down within the Gibbons-Hawking ansatz, but also includes much more general metrics

which cannot be written in this form. Using methods analogous to [2], we employed the

AJS construction [14] to show that an ambipolar hyperkähler manifold can be constructed

from data specified on the critical surface S.
We then considered the relation of such manifolds to solutions of 5d minimal super-

gravity with evanescent ergosurfaces. We proved that a supersymmetric field configuration

is smooth with an evanescent ergosurface if, and only if, the base space is an ambipolar

hyperkähler manifold (and the 1-form ω behaves appropriately near S). This result is

interesting because it means that the signature flip from (++++) to (−−−−) cannot

happen in an arbitrary way but only in the precise way specified by our definition.

Finally, we showed how the entire 5-dimensional supergravity solution can be con-

structed uniquely from ‘initial’ data specified on S. We did this first for the case in which

S is a surface within a regular hyperkähler manifold and second for S the canonical surface

of an ambipolar hyperkähler manifold. We found the same number of degrees of freedom

are present in both cases. Therefore the presence of evanescent ergosurfaces does not place

any functional constraints on the solution.

We will now make some suggestions for future research. We proved that the 5d metric

constructed from an ambipolar hyperkähler base space (and appropriate ω) is smooth with

an evanesecent ergosurface. However, this metric may still be causally pathological in the

sense that it may contain closed causal curves. Of course our construction is entirely local

so we can’t prove the absence of closed causal curves in general. But the usual way in

which such curves show up in supersymmetric solutions would correspond to the (θ3)2

component of the 5d metric (4.55) being non-positive at x = 0, which would give closed

causal curves if η3 has closed orbits. It might be interesting to extend our expansions to

higher order to determine the restriction on our initial data that results from demanding

that this component be positive on S. (Since this restriction is an inequality it will not

reduce the number of free functions on S.)
A straightforward generalization of our work would be to use the results of [21] to

show that everything we have done can be extended to 5d minimal supergravity coupled

to vector multiplets.

Our work can be placed into the context of a more general problem, namely under-

standing the nature of zero-sets of f . These can be classified by codimension. If the zero-set

of f has codimension 0 then f vanishes throughout some region. This is the ‘null class’ of

supersymmetric solutions classified in [10]. Codimension 1 corresponds to the case of f van-
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ishing on a hypersurface. This can be either null or timelike (because K must be tangent

to it). The null case is the case of a supersymmetric Killing horizon, which was analyzed

in [11]. The timelike case is the case of an evanescent ergosurface considered in this paper.

It would be interesting to investigate whether cases with higher codimension are possible.

We have investigated only supersymmetric solutions to 5d supergravity. Ambipolar-

type effects also show up in non-supersymmetric solutions [22–25], including some cases

where the base space is Kähler but not hyperkähler [26, 27]. It would be worth investigating

how smoothness of the 5d structures imposes constraints on the critical surfaces of the 4d

base space in these cases.

Finally, we have discussed evanescent ergosurfaces only in 5 dimensions. It would be

interesting to investigate them for supersymmetric solutions of supergravity theories in

other numbers of dimensions.
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A The AJS formalism for hyperkähler metrics

The Ashtekar-Jacobson-Smolin (AJS) formalism [14] is a convenient way to formulate the

problem of finding half-flat (or hyperkähler) metrics as an initial value problem. Here we

give a brief exposition in notation suited to our application.

The premise is as follows: suppose we have a hyperkähler metric h with Kähler 2-

forms Xi. Choose a harmonic coordinate x that vanishes on some hypersurface S. Let yi

be coordinates on S and extend them to a neighbourhood of S by ‘carrying’ them along

the integral curves of h−1(dx). This gives a coordinate chart (x, yi) in a neighbourhood of

S. Define a volume 3-form v on S and three vector fields Vi via

v ∧ dx = ‖dx‖2h volh, Vi = (h−1 ◦Xi)
( ∂

∂x

)
, (A.1)

here treating h and Xi as linear maps from TM → T ∗M. One can then show that the

following are true:

LVi
v = 0 (A.2)

∂xVi +
1
2εijk [Vj , Vk] = 0. (A.3)

Thus, the Vi are a set of divergence-free vector fields (with respect to v) on the level sets

of x, which solve a set of first-order evolution equations (the Nahm equations) in x. Since

x is harmonic, one finds

L∂x(v ∧ dx) = 0, and hence ∂xv = 0, (A.4)

so v is x-independent.
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The converse is also true: given any choice of x-independent volume 3-form v, a set of

vector fields satisfying (A.2), (A.3) can be used to assemble a hyperkähler metric on the

manifold R× S via the formulas

h(Vµ, Vν) = v(V1, V2, V3) δµν , Xi = dx ∧ h(Vi) + ιVi
v, (A.5)

where µ, ν ∈ {0, 1, 2, 3} and V0 ≡ ∂x (in a coordinate chart (x, yi) where yi are coordinates

on S). This enables one to construct the hyperkähler manifold from data on S, at least in
a neighbourhood of S. The method is the following. Let v be a volume form on S. Let

ti be three linearly-independent vector fields on S that are divergence-free w.r.t. v. Now

define Vi to be vector fields satisfying the evolution equation (A.3) with initial conditions

Vi|x=0 = ti (A.6)

Standard theorems guarantee existence and uniqueness of a solution for x ∈ (−ǫ, ǫ) for small

enough ǫ > 0. The Nahm equations guarantee that the divergence-free condition (A.2) is

preserved by the evolution. We now defineM to be the manifold (−ǫ, ǫ)×S. In a coordinate

chart (x, yi), where yi are coordinates on S, we define V0 = ∂/∂x. We extend v onto M
by Lie transport w.r.t. V0. The metric and hyper-kähler 2-forms are then given by (A.5).

Let us count the number of free functions in this data: first fix a coordinate chart yi on

S. Then each ti has 3 free components but is subject to the condition that it preserves v.

So each ti is equivalent to 2 free functions on S. Hence there are a total of 6 free functions in
the 3 vector fields ti. However, we have gauge freedom associated to the freedom to choose

the coordinates on S, which amounts to 3 free function. Specifying v appears to involve

another free function but from (A.1) it can be seen that this is equivalent to the freedom

to specify the normal derivative of the harmonic coordinate x on S, i.e., a gauge degree of

freedom. Finally, we could choose different locations for S within the same hyperkähler

space; this gauge freedom to specify the location of S is equivalent to another free function

on S. So overall the number of non-gauge free functions on S is 6 − 3 − 1 = 2. This is

equivalent to one ‘degree of freedom’ in 4d, exactly as one would expect for a hyperkähler

space since such spaces are half-flat.

B Behavior of f near S

An important result needed in the arguments of section 4 is that f should have a first

order zero on an evanescent ergosurface. The proof is in two steps: first, demand that the

Maxwell 2-form F is smooth at x = 0; second, demand that the Maxwell equation (i.e. the

f equation (4.20)) is satisfied.

Begin with the expression for the Maxwell 2-form from (4.40), and put in f = xpf̂ ,

where f̂ is smooth and nonzero at x → 0. We will later attempt to determine which values
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of p are consistent with the Maxwell equation (4.20). The Maxwell 2-form becomes

2
√
3F =− 3 dt ∧ df

+ dx ∧ ν
[
− px−p−1f̂−1 − x−pf̂−2∂xf̂ + 2x−pf̂−1(dν)xν

+ x−2pf̂−2(1 +Qf2)1/2N(dν)12

] (B.1)

+ ρa ∧ ν
[
− x−pf̂−2ea(f̂) + 2x−pf̂−1(dν)aν − x−2pf̂−2(1 +Qf2)1/2Nεab(dν)xb

]

(B.2)

+ dx ∧ ρa
[
2x−pf̂−1(dν)xa + (1 +Qf2)−1/2Nεab

(
− 2f̂−1eb(f̂) + (dν)bν

)]
.

+ ρ1 ∧ ρ2
[
2x−pf̂−1(dν)12 − (1 +Qf2)−1/2N−1

(
2px−1 + 2f̂−1∂xf̂ − (dν)xν

)]

Since p is variable, we will not try to work out all the regularity conditions. However, it is

simple to work out the lowest-order conditions by cancelling only the most singular part.

From (B.1) and (B.2), we obtain

(dν)12 = pxp−1f̂ +O(xp), and (dν)xa = xpεab
(
eb(f̂)− 2f̂(dν)bν

)
+O(xp+1). (B.3)

It will turn out that we will only require the first expression in (B.3).

Now turn to the f equation (4.20) and apply the regularity condition (B.3). First we

expand d ⋆4 df
−1 to remove the negative power of f from under the derivatives, resulting in

d ⋆
4
df = −4

9
f2G+ ∧G+ + 2f−1 df ∧ ⋆

4
df. (B.4)

The left-hand side of (B.4) is given by

d ⋆
4
df = ρ1 ∧ ρ2 ∧ ν ∧ dx×

×
{
∂x

[
(1 +Qf2)1/2N−1∂xf

]
− (1 +Qf2)1/2N−1∂xf

(
P a
ax − (dν)xν

)

+ ea

[
(1 +Qf2)1/2Nea(f)

]
− (1 +Qf2)1/2Nea(f)

(
P b
ba − (dν)aν

)

+ e3

[
f2(1 +Qf2)−1/2Ne3(f)

]
− f2(1 +Qf2)−1/2Ne3(f)

(
P a
aν

)}
,

(B.5)

where the quantities P a
ij are regular at x → 0 and defined by

dρa = P a
12 ρ

1 ∧ ρ2 + P a
bν ρ

b ∧ ν + P a
bx ρ

b ∧ dx+ P a
xν dx ∧ ν. (B.6)
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On the right-hand side of (B.4), we have16

−4

9
f2G+ ∧G+ + 2f−1 df ∧ ⋆

4
df = ρ1 ∧ ρ2 ∧ ν ∧ dx×

×
{
− 8

9
f−1(1 +Qf2)1/2N

[
1

2
(dν)12 + (1 +Qf2)−1/2N−1

(
∂xf − 1

2
f(dν)xν

)]2

− 8

9
f−1(1 +Qf2)1/2N−1

[
1

2
(dν)xa + (1 +Qf2)−1/2Nεab

(
eb(f)−

1

2
f(dν)bν

)] 2
(a)

+ 2f−1(1 +Qf2)1/2N−1(∂rf)
2 + 2f−1(1 +Qf2)1/2Nea(f)ea(f)

+ 2f(1 +Qf2)−1/2N
(
e3(f)

)2
}
. (B.7)

Putting f = xpf̂ and (B.3) into the above, and keeping only the lowest order terms, these

expressions vastly simplify. The f equation (B.4) becomes

p(p− 1)xp−2f̂ = −2p2xp−2f̂ + 2p2xp−2f̂ +O(xp−1) = 0 +O(xp−1). (B.8)

Therefore, if we demand that the Maxwell field F is smooth and the f equation is satisfied,

to just one order each, then we immediately conclude p = 1, and thus f must have a first

order zero at x = 0.
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