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1 Introduction

Tree-level amplitudes in gauge theories are known to satisfy color-kinematics (C/K) dual-
ity, i.e. they admit an expansion in terms of Feynman diagrams where the kinematic parts
of the numerators satisfy the same antisymmetry and Lie Algebra identities as their corre-
sponding color factors. This property was first observed by Bern, Carrasco and Johansson
for pure gauge amplitudes in [1, 2] and later extended to both massless and massive QCD
in [3-5]. One of most striking implications of the C/K duality is the existence of rela-
tions between color-ordered tree-level amplitudes [1] which, together with U(1) symmetry
and Kleiss-Kuijf relations [6], can be used to further reduce the number of independent
partial amplitudes to be considered in tree-level calculations. In [7], by adopting the Four-
Dimensional-Formulation (FDF) [8] variant of the Four-Dimensional-Helicity (FDH) [9-11]
regularization scheme, we studied the C/K-duality for tree-level amplitudes in d dimen-
sions and we derived a set of BCJ identities, for four- and five-point amplitudes, which
take into account the explicit dependence on the regulating parameter, together with a
general strategy for the determination of analogous relations between higher-multiplicity
amplitudes.



The recent development of on-shell [12, 13] and generalized unitarity techniques [14]
for quadruple-[15, 16], triple-[16-18], double-[19, 20] and single-[21-23] cut allowed tremen-
dous simplifications in one-loop calculations, where the knowledge of tree-level amplitudes
can be exploited in order to determine the coefficients of the known basis of integrals in
which any amplitude can be decomposed [24, 25]. In the framework of four-dimensional
generalized unitarity, the BCJ identities for tree-level amplitudes were used in [26] to derive
relations between coefficients of one-loop amplitudes in N' = 4 super Yang-Mills theory and,
more recently, in [27] these relations have been extended to integral coefficients for the cut-
constructible part of one-loop QCD amplitudes by showing that tree-level the C/K-duality
can significantly decrease the number of independent coefficients needed in one-loop com-
putations. When moving to d-dimensional generalized unitarity, extensions of tree-level
identities to one-loop amplitudes are expected to hold also between rational contributions,
as it was investigated in [28, 29]. Within a different approach, the BCJ relations have been
used in [30] to reconstruct the non-planar two-loop integrand contributions to the all plus
five-gluon amplitude from the planar ones.

In this paper, by making use of the BCJ identities for dimensionally regulated trees,
we provide a set of coefficient relations for one-loop QCD amplitudes which include the
contributions from rational terms. The paper is organized as follows: in section 2 we recall
the main results regarding the BCJ identities for tree-level amplitudes in d dimensions,
obtained by using the FDF scheme. In section 3 we review the decomposition of one-
loop amplitudes via integrand reduction [31-37] and we apply the d-dimensional BCJ
identities between four-point amplitudes in order to establish general relations between
the coefficients appearing in the decomposition. In section 4 we verify the coefficient
identities on a few concrete examples, by showing relations between the analytic expression
of the coefficients for scalar loop contributions to multi-gluon amplitudes, up to six points.
Finally, in appendix A we extend the results of section 3 by providing the set of coefficient
relations that can be derived from the BCJ identities between five-point amplitudes. Both
algebraic manipulations and numerical evaluations have been carried out by using the
MATHEMATICA package S@QM [38].

2 Color-kinematics duality in d dimensions

In this section we briefly review the study the C/K-duality for dimensionally regulated
amplitudes presented in [7] in the framework of FDF. FDF is a dimensional regularization
scheme, first introduced in [8], which allows a purely four-dimensional representation of
the additional degrees of freedom associated to the analytic continuation of the space-time
dimension. FDF has been recently applied to the computation of one-loop QCD corrections
in [39, 40|, where the processes g9 — g9, ¢¢ — g9, 99 — Hg, g9 — Hgg (in the heavy
top limit) and gg — ggg(g) were studied. In this formulation, virtual states are associated
to massive four-dimensional particles, whose mass acts as regulating parameter. The four-
dimensional degrees of freedom of the gauge bosons are carried by massive vector bosons
(denoted by ¢®) of mass p and their (d — 4)-dimensional ones by real scalar particles (s®)



Figure 1. Feynman diagrams for ¢®¢® — gg.

of mass p. At the same time, d-dimensional fermions of mass m are treated as a tardyonic
Dirac fields (¢®) with mass m + iuy®.

In order to show how the BCJ identities can be derived taking into account the effects
of dimensional regularization, we consider the process ¢*(p1)g®(p2) — g(p3)g(ps), where
two generalized gluons, i.e. with on-shell momentum p? = 2, produce a final state with
two massless ones. Analogous results can be proven for s°s® — gg as well. The four
Feynman diagrams contributing to the amplitude are shown in figure 1, where massive
particles are indicated with a dot. The color factors of the first three diagrams, which
involve the exchange of a virtual particle, are, respectively,

c1 = fagagbfba4a1, cy = falazbfba3a4? c3 = fa1(l3bfba4a2' (21)

The four-gluon interaction gives contribution to all of these color structures so that, by la-
belling with n; the kinematic parts of Feynman graph numerators, it can be decomposed as

C4Ng = C1N1;4 + C2N24 + C3N34. (2.2)

Therefore, each n;4, conveniently multiplied and divided by the corresponding kinematic
pole, can be absorbed into the definition of the numerators of the cubic graphs. As a result,
the amplitude is expressed in terms of diagrams involving three-gluon vertices only,

n3

s (2.3)
P}y — p?
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being PZ% = (pi + pj)z. We observe that FDF amplitudes receive contributions from both

massless and massive virtual states, as it is evident from the pole structure of the r.h.s.
of (2.3). The three color factors ¢; are related by the Jacobi identity

—c1t+c2te3=0, (2.4)

which allows us, for example by eliminating ¢y, to rewrite (2.3) in terms of two color-
stripped terms only,

As(p1,p2,p3,p1) = a1 K1 + c3K3, (2.5)

with

niy no
Ki= oo+ 5
P223_N2 P122

n3 ng

Ky= ——"—— —.
13224—M2 P122

(2.6)

From the explicit Feynman rules-expression of the numerators n;’s, it can be proven that,
when on-shell and transversality conditions (e(p;) - p; = 0) are imposed, the amplitude



satisfies the C/K-duality, i.e. the kinematic numerators obey the same Jacobi identity as
the color factors,

—n1 +ng +nz = 0. (27)

The set of equations (2.6) and (2.7) can be conveniently organized into a linear system
An =K,

1 1
e w0\ i) (G
—1 1 1 n3 0

Due to momentum conservation P3,+ Pg + P2, = 242 one can verify that the matrix A has
rank(A) = 2 (2.9)
or, equivalently, that a linear relation can be established between its rows,
(P35 — p*)A1 — (P3y — p)As + A3 = 0. (2.10)
Therefore, because of the consistency condition of the inhomogeneous system (2.8),
rank(A) = rank(A|K) = 2, (2.11)
a constraint analogous to (2.10) must hold between the elements of the vector K,

P2
K3 = 2237“’1(1 (2.12)
P.

24
Starting from the Feynman diagram expansions (2.6), it can be checked that the kinematic

factors K; exactly correspond to two different color-orderings of the amplitude,
K, = A(1,2,3,4), K3 = A(2,1,3,4), (2.13)

so that (2.12) can be rewritten as

A(2,1,3,4) = i 2A1,2:3,4) (2.14)

2
Py —
With similar considerations one can verify that

2
2P A(1,2,3 4),  A(2,4,1,3) = 2P12
P24 P23

A(2,4,1,3) = SA(2,1,3,4).  (2.15)
Egs. (2.14) and (2.15) show that the four-point amplitude involving two gluons and two
massive vector bosons, transforming under the adjoint representation of the gauge group,
satisfies the same BCJ identities which have been presented in [4, 5] for the scattering
of gluons with massive particles in the fundamental representation as a generalization of

the BCJ relation for pure gluon amplitudes [1] (here recovered by setting the dimensional



regulator p? to zero) and for massless QCD amplitudes [3]. It has been verified that all
2 — 2 tree-level amplitudes involving FDF particles, including adjoint scalars and tardyonic
fermions, obey the same kind of massive BCJ relations.

In general, when moving to higher-point amplitudes,

N
Cin;

Am(p1,p2, -+ Pm) = ; D, (2.16)
the kinematic numerators obtained in the standard Feynman rules-approach do not sat-
isfy the C/K-duality, because of the rising of anomalous terms, which have been shown
to originate from contact interactions. Nevertheless, starting from the set of Feynman
rules numerators n;, one can build a dual representation of the amplitude by means of a
generalized gauge transformation [41-47], i.e. a shift of the numerators

ni — n, + Ay, (2.17)

which leaves the amplitude unchanged,

(2.18)

N
(5./4571;66(101,2927 s 7pm) = Zl D
1=

cildi 0.

i
and reshuffles the contact terms among numerators, in such a way to restore the C/K-
duality. In [7] a diagrammatic approach was proposed to determine the explicit expressions
of the shifts to be performed on the numerators, purely based on the algebraic properties
of the higher-point generalization of the linear system (2.8) and on a systematic way to
generate the anomalous terms through the introduction of off-shell currents. In particular,
the computation of the rank of the kinematic matrix A can be used as constructive criterion
in order to detect the existing relations between color-ordered amplitudes.

As an example, we consider the scattering of two generalized gluons producing three
massless ones in the final state, ¢*(p1)g®(p2) — 9(p3)g9(p4)g(ps). After absorbing the
contributions from four-gluon vertices into the redefinition of the numerators of the cubic
graphs, the amplitude can be expressed in terms of 15 diagrams, each of them identified by
its pole structure, i.e. its two internal propagators. The color factors associated to these
diagrams satisfy a set of 9 independent Jacobi identities of the type

—C+c¢jt+cp= 0, (2.19)
which allow us to express the amplitude in terms of six individually gauge invariant
terms only,

6
As(p1,p2,p3, pasps) = Y _ GiKi, (2.20)
i=1
with
c1 = falagbfbagcfca4a5 cy= faga:gbfbcal f~ca4a5
cy = fazagbfba4cfca5a1’ o5 = fagbcfba3a4 J?casal7
c3 = falagbfbcas f~ca3a4 6 = f~a2a5bfbagcf~ca4a1 (221)



and
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The number of distinct gauge invariant contributions, obtained after Jacobi identities are
taken into account, corresponds to the number of independent color-ordered amplitudes
one gets after imposing Kleiss-Kuijf identity, [6, 48]. Since, conversely to the four-point
case, the numerators n;’s do not satisfy the same Jacobi identity as the color factors, (2.8)
is generalized to a system of 15 equations,

An =K + ¢, (2.23)
where
n=(ny,na,...,ms)",
K = ({Ki,K>,...,K¢},0,0,...,0)T,
¢ =(0,0,...,0,{¢j;mH" (2.24)
and the elements of the matrix A take values in
(A)ij € {0, £1, £(P)) ™ £(P5 — ) ™' (2.25)
The anomalous terms ¢y; ;) = —n; + nj + ny can be recursively determined starting from

four-point off-shell currents. By performing the set of shifts (2.18), one can build an
alternative representation of the amplitude, where the n;’s are substituted by a new set of
numerators n}’s satisfying the C/K dual system

An' = K. (2.26)



Because of momentum conservation, the rank of the matrix A turns out to be non-maximal,
rank(A) = 11, and the consistency condition

rank(A|K) =11 (2.27)

implies the existence of four linear relations between the kinematic factors K;’s, which can
be simply found by determining a complete set of vanishing linear combinations of the rows
of A. In this way, we obtain the set of identities

PjsKy — P§ K3 — (Pfy — i*)Ke = 0,
P122K1 - (P223 - MQ)K4 - (P225 - NQ)KG =0,
(P125 - MQ)K2 - P425K4 - (P225 - MQ)KG =0,
(Pgs — i) Ky — P Ks + (Piy + Pis — i*) K6 = 0, (2.28)

which reduce to two the numbers of independent K;’s. At higher multiplicities, rather than
corresponding to a single partial amplitude, each kinematic factor can be expressed as a
linear combination of color-ordered amplitudes. The relations between the K;’s and color-
ordered amplitudes can be found either by comparing their expansions in terms of Feynman
diagrams or, more conveniently, by first performing the usual color algebra on (2.20), in
order to express all ¢}s in terms of traces of generators 7%, and then by identifying the
combinations of K;’s that multiply each single trace with the corresponding color-ordered
amplitude. In this case, it can be shown that

K1 = A5(1,2,3,4,5) + As(1,2,4,3,5) + A5(1,3,2,4,5),

Ky = —A5(1,4,2,3,5),

Ky = A5(1,3,4,2,5) — A5(1,2,4,3,5),

Ky = A5(1,4,2,3,5) — 45(1,3,2,4,5),

Ks = —A5(1,3,4,2,5),

K¢ = A5(1,3,4,2,5) + A5(1,4,2,3,5) + A5(1,4,3,2,5). (2.29)

Therefore, by substituting (2.29) in (2.28), one can reduce from six to two the number of
independent color-ordered amplitudes and express all the others through the set of relations

—P122P425A5(1, 27 3747 5) + (P124 — 1UJ2)(P224 + P225 — 2ﬂ2)A5(1a 4a 37 27 5)

As(1,3,4,2,5) = ,
(Pfy — 1) (P35, — pi?)

_ _(P124 — /1’2)(P225_M2)A5(1747 3,2, 5)+P425(P122+P224 — M2>A5(17 2,3,4, 5)

A5(1,2,4,3,5) =
P325(P224—M2)
A5(1,4,2.3.5) = — PP A5(1,2,3,4,5) + (Pgs — p?) (P + P — 2u*) As(1,4,3,2,5)
P(Psy — 1?)

_ _(P124_M2)(P225_M2)A5(1347 37 27 5)+P122(P224+P425_M2)A5(17 27 3>4> 5)

As(1,3,2,4,5) = .

(P —p?)(P3,—p?)
(2.30)



Identities involving other color-ordered amplitudes can be obtained by making use of Kleiss-
Kuijf identities such as

A5(1,2,3,4,5) + A5(1,2,3,5,4) + A5(1,2,4,3,5) + A5(1,4,2,3,5) = 0,
(2.31)

which, substituted in (2.30), gives

(PE + Pl — 1) A5(1,2,3,4,5) + (P — %) A5(1,2,3,5,4)

A5(172747375) = (P224_M2)

(2.32)

The structure of the identities (2.30)—(2.32) for the five-point amplitude involving two
adjoint massive vectors bosons is analogous to the one of the BCJ identities for QCD
amplitudes with massive quarks [5, 49]. The BCJ relations for the five-gluon (massless)
amplitudes [1] can be recovered by setting y? = 0. The very same identities are satisfied
by the color-ordered amplitudes where the generalized gluons in the initial state are re-
placed by massive scalars (s*s® — ggg) and similar relations have been verified in [7] for a
five-point amplitude involving both FDF particles and quarks, namely ¢®¢®(s®s®) — ¢qg.
These diagrammatic construction of dual representations by means of generalized gauge
transformations (2.17) can find a straightforward generalization to higher multiplicities.

In the following section, we will show how FDF formulation of the BCJ identities for
d-dimensional tree-level amplitudes, such as (2.14) and (2.32), can be used in order to
determine coefficient relations for full d-dimensional one-loop amplitudes, including both
cut-constructible part and rational terms.

3 Coefficient relations for one-loop amplitudes in d dimensions

Since the introduction of generalized unitarity [14, 15] and complex kinematics for on-shell
particles [12, 13], the study of analyticity and factorization properties of scattering am-
plitudes has turned into an extremely powerful tool for their computation. Relying on
the decomposition of any amplitude in terms of a linear combination of master integrals
(MTI’s) [24, 25], the basic idea of unitarity based methods consists in extracting the coef-
ficients of the MI’s by matching multiple cuts of the amplitude with the cuts of the MI’s
themselves. In this framework, the integrand reduction method, first introduced for one-
loop amplitudes in [31] and [32], in four- and d-dimensions respectively, and more recently
extended to multi-loop case [33-37], exploits the knowledge of the algebraic structure of
Feynman integrands, which allows to decompose each numerator as a combination of prod-
ucts of denominators with polynomial coefficients, in order to reach the decomposition of
scattering amplitudes in terms of MI’s.

At one loop, if we split the d = 4 — 2¢ dimensional loop momentum [ into its four-
dimensional part [“ and a vector u® belonging to the —2e-subspace,

1 =1%+ u, P =1 (3.1)



we can write an arbitrary one-loop n-point color-ordered amplitude as

- N
Al—loop _ ddl—’ 9
" DoDi...D,q’ (3 )
with
Di=(+p)?—m?=(1+p)?—m?—p> (3.3)

The integrand reduction algorithm allows us to write the numerators N'(I, 4?) in terms of
denominators and, consequently, to obtain a decomposition of the integrand of the type

1 1 1
N(l, u?) _ nZ At (1, p12) +nz: A (l, 1?) +nz: Ak (L, p1?)
DoDi ... Doy A= DiD;DyDiDy, 4= D;D;DyD; = DD,y
n—1 n—
A (1, p?) A(1, %)
—_— _— 3.4
* —~  D;D; * Z D; 7’ (54
1<) 2

where i < m indicates lexicographic ordering. The functions A;..x(l, u?), called residues,
are polynomials in p? and in the components {x;} of I% which, according to the cut
D; = Dj = Dy = --- = 0 under consideration, is decomposed with respect to a suitable
basis £k = {e1, €2, e3, e4} of four-dimensional massless vectors defined in terms of spinor
variables,

4
j=1

Given such a decomposition of the loop momentum, the parametric expression of A;...;(1,?)
is process independent and, for renormalizable theories [31, 32, 35], it turns out to be

Nijrim = cii?,
Akl = o + c124 + cap® + cazap® + capt,
Agjk = coptcf gratcs gritcd gmit ol gm3tcy 01345 05+ co2i’ + o yrap® +cp yaap®,
Aj; = co0,0 + co1,0T1 + 00,2703:% + Cfo,ou + 6;07033?1 + 10023 + 627707()%’% + ci1’0z1m4
+ 1107173 + 00,0,2/127

Aj = 0,000 + €0,1,00%1 + €0,0,1,0C2 + €1 000%3 + ¢ 0.0,0%45 (3.6)
where, for each coefficient, a superscript labelling the specific cut is understood, ¢; = cl(i'"k).

As a consequence of (3.6), by neglecting all spurious terms which vanish upon inte-
gration, the amplitude (3.2) can be written in terms of MI’s

I slo] = / s (3.7)



and of the coefficients of the residues as

n—1

-loo ijkl 1) ) k ijk
A7111 P= Z [C[()] )Iijkl[ ] + CA(LJ ’ijl ] + Z |:C(){] Uk + C(()JQ )Iz]k[ﬂ?]}
i<l i<k
5> (6o il1] + e Tl + p2) - ea] + e§R L (1 + i) - 2)2) + i Tl
1<<j
n—1
+ Z C((Jz,z),o,oli[l]- (3.8)

In the original top-down formulation of the algorithm [31, 50, 51], all coefficients of the
integrand decomposition (3.4) are computed by sampling the numerator of the integrand,
after all non-vanishing contribution to higher-point residues have been subtracted, on a
finite set of on-shell solutions of the multiple cuts. Alternatively, starting from the tech-
niques presented in [16, 18], it has been shown in [52] that, by performing a suitable
Laurent expansion of the cut integrand with respect to one of the components of the loop
momenta which are left unconstrained by the on-shell conditions, one can determine the
unknown coefficients of the integrand reduction by comparison with the ones of the Laurent
expansion itself.

A full color-dressed amplitude is obtained as a combination of color-ordered ampli-
tudes, multiplied for the corresponding color structure. For instance, in the pure gluon
case, we have [53]

[n/2]+1
A}hb-loop =g" Z Z GrTL;C(O—)A}{;LOOP(O-)a
c=1 0€Sp/Snc
Crp.a(0) = NoTr(T% M - .. T%m),

Grp.c(0) = N Tr(T%® - .. T 0)Tr(T% @ ... T%C=D) > 1. (3.9)

Although it is sufficient to consider leading color contributions A,.(c) = A,(0), since
amplitudes associated to subleading colors can be obtained as a sum over permutations
of A, (0)’s [14], one should, in principle, fit the coefficients of the residues (3.6) for each
color-ordering. However, the C/K-duality satisfied by tree-level amplitudes, in which the
integrand factorizes when evaluated on unitarity cuts, can be used to determine relations
between coefficients of residues which differ from the ordering of external particles, and
thus to reduce the total number of coefficients to be individually computed.

In the following, we recall the extraction of coefficients via Laurent expansion, for which
we refer to [52] and [54], and we make use of the d-dimensional BCJ identities presented
in section 2 in order to determine the full set of relations between integral coefficients. As
we will explicitly show, these identities holds separately for both independent cut solutions
that must be averaged in the extraction of the integral coefficients. For sake of simplicity,
we derive relations between integral coefficient that can be obtained starting from the BCJ
identities at four points only and we collect in appendix A the set of relations that follow
from the C/K-duality for five points amplitudes. We expect similar results to hold even

,10,



Figure 2. Pentagon topologies for the cuts Clos. kj(k+1)...1|(1+1)...m|(m+1)..n. and
Co13... k| (k+1)...1| (141)....m| (m+1)...n-

when the BCJ identities for higher multiplicity amplitudes are taken into account but we
leave this generalization to future studies. For this reason, we will not discuss relations
between tadpoles coefficients, which would at least require the use of the BCJ identities
between six points tree-level amplitudes.

3.1 Relations for pentagon coefficients

The solutions of the quintuple cut D; = D; = Dy, = D; = D,,, = 0 can be parametrized as

lfﬁjk’lm)l/ _ _pli, + (L.legz]klm)u + $2€§z]klm)lx + 1_36:()’23klm)1/ + $4: M el(f]k:lm)u7 (310)
3

lgjklm)u _ _p;j + xlegz]klm)u + nggzjklm)u + xgeglzjklm)u i 1'4;_ H ez()’Z]klm)Z/’ (311)
3

where the full set of parameters z1,xs,x3, x4 and ,u2 is fixed by the cut conditions. The
single pentagon coefficient appearing in (3.4) can be computed evaluating the integrand on

the two on-shell solutions,

c* N

_ _ (ijklm)%, 2
, = =c we. 3.12
i|3|k|l|m Hh#i,j,k,hm Dh,:l: ( )

In order to see how the BCJ identities for tree-level amplitudes can be used to relate

different pentagon coefficients, let us consider the contributions shown in figure 2, which

share the same cut solutions. In addition, since these two pentagons differ in the ordering of

the external particles p; and py only, they can be obtained as the product of the same tree-

level amplitudes, with the only exception of the color-ordering of the four-point amplitude
involving p; and py. More precisely, for the ordering {1,2,...,n} we have

Ci

1213, k| (k+1)..0|(14+1)...m| (m+1)...n

+ + + + + +

= AT (=17, 1,2,05) AF (=15, Py o y) A% (=l 1o Poyrgs 1)

X A::Le—el—iﬁ (_ll:ip ]Dli+1...,m7 l’lj’I:’L) Agzri(inJrQ (_lrjy:H-la Pm-ﬁ-l...,’m lit) (313)
and C2il|3...k|(k+1)...l|(l+1)...m\(m+1)...n is obtained just by changing 1 <+ 2. The tree-level

amplitudes A (—lf, 1,2,l§) and Afree (—lli,Z, 1,l3i) are related by the d-dimensional
BCJ identity (2.15),

PL,—
Affee(—lit,Q,l,lét) _ PQZ::Q M2Airee(_lf:’l’2’l§3)’ (3.14)
—IF2
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which, substituted into the expression of C;- allow us to identify

21|3...k| (k+1)...0| (1 1)....m| (m+1)..n0
Pi —p
!
cE =32 o . (3.15)
213 k| (k)| (1)l (D)oo = P22 128kl (k1) ()] (D).
—
The ratio of the two propagators appearing in (3.15) evaluates to same constant value for
both cut solutions,

Pl
e o (3.16)
so that, by making use of (3.12), (3.15) becomes
L2U)E o (121)% (3.17)

Therefore, as simple byproduct of the BCJ identities at tree-level, the knowledge of a single
pentagon coefficient completely determines the other one.

3.2 Relations for box coefficients

Next we consider the quadrupole cut D; = D; = Dy = D; = 0, whose solutions can be
parametrized as

2
iklyy | T4+ 07 (ijkD)
17 + 641] 1/7

l(ijkl)l/
+ P,

= —p! + a1 STV g gyl g el

ijkl)y T4+ ,u2 (ijkl)v
€3

(kY —pi + $16§ AL e( + " + 23 ez(lijkl)yv (3.18)
3

being xl,xg,xg and x4 coefficients fixed by the cut conditions. The two non-spurious

coefficients c( ) and cffj ") can be extracted in the p? — 0 and p? — oo limits,
Ny (k)£
Cct S S— = ¢y 7"F 3.19a
ililkl Inti s Pnt |20 0 ( )
Ny (ijk)£ 4
C=. A - = +0 (1), 3.19b
W e D |~ HFOW) (3.19b)
and the box contribution to the amplitude (3.8) is obtained by averaging over the two cut
solutions,
. L/ (ijki ijkl)— jkl
Aer) =1 (C(()” g ) L (1] + &7 Tiguay 1], (3.20)
box

('lecl) (ijkl)+ _ (igkl)—
where we used ¢y ¢, =cy

. Analogously to the pentagon case, we consider
two box topologies d1ffering just from the ordering of the external particles p; and ps,
as depicted in figure 3. When the integrand associated to the ordering {1,2,...,n} is
evaluated on the on-shell solutions it factorizes into

C:I:

tree + + tree + +
12]3.. k| (k+1)...0|(14+1)..n Aj (_ll 12,03 ) Ay (_ls » Pk

ki)

X A;r—el§+2(_l]:gt+1a Pk+1...,l7 ll:l_:i_l) A237+2( ll+17 ]Dl+1 lit) (321)

— 12 —



Figure 3. Box topologies for the cuts Cig3.. kjk+1..0141..n A Co1j3. k|k+1...1)1+1...n

and the expression of C’21|3 EI(R41) | (141

tained by exchanging 1 <+ 2. Therefore, thanks to the BCJ identity between tree-level

in terms of tree-level amplitudes can be ob-

amplitudes (3.14), we can write

2 2
C:t 1313%2 —H

= c*
2113...k|(k+1)...0|(I+1)..n Pz R

12130 k| (k1) | (1 1)m” (3.22)

_MQ

It can be verified that the ratio of propagators sampled on the cut solutions converges to
a constant both for u? — 0 and p? — oo limits,

Ph
32 +
- = of, (3.23)
—1F2 1250
PL,— 1
152 n 1
s —at+0(). 3.24
PE - #2 4 i ( )
IF2 12500

so that, by evaluating both sides of (3.22) in the two limits, we can trivially obtain the
contributions from Co1j3. k|(k41)...1/(1+1)...n> ONC€ C12(3._ k|(k+1)...1|(1+1)...n has been calculated,

0521|"')i = az:-tc,gm”')i, 1=0,4. (3.25)
3.3 Relations for triangle coefficients

The solutions of the triple cut D; = D; = D), = 0 can be parametrized in terms of u? and
one free parameter t as

10 = —pt 4y efT :czeéijk)” T e (3.26)

t

where the coefficients x1, xo and x3 are fixed by the cut conditions. By considering the
expansion of the integrand in the large-t limit,

3

=3 I g 2 Z S, (3.27)

t—o00 m=0 m=0

Ny
I1h¢@$kl)mi

Ciote (8:17) =



Tk+1 k41

Figure 4. Triangle topologies for the cuts Ci23. k|(k+1).... a0d Co1j3. k| (k+1)...n-

the triangle contribution to the one-loop amplitude (3.8) can be obtained by averaging on
the two solutions (3.26).

1 1
21 — —
A% angle = 2 (Cg,o + Co,o) L+ (032 + 00,2) Iy 7] . (3.28)

The C/K-duality for tree-level amplitudes can be used to relate all coefficients of the
expansions (3.27) for different triangles. As an example, we consider the two triangle
contributions depicted in figure 4. When evaluated on the on-shell solutions, the triangle
with external ordering {1,2,...,n} factorizes into

C’i|:2|3 K|(k+1)... A;clree (_litv 17 27 l;}t) A‘]cgree (_l;)ta PS---k7 l]:gt_;_l) A:ﬁ?ﬁ& (_l]:gt_l,-l? PkJrl‘..,na li‘:)
(3.29)

2113k (k+1)... ,, is obtained by changing 1 <+ 2. As for the
previous cases, we can make use of the BCJ 1dentity (3.14) in order to establish a relation

and the analogous expression for C’

between 021\3 (o1, A0 C12|3 Kl (k+1)em?
2 2
CcE = 713[?2 . Claj3. k| (k+1) (3-30)
21(3...k|(k+1 2 _ 2 e .
| ) p_lﬁ L
According to the expansion (3.27), both C’21|3 El(k41)... ,, and C'12|3 K[(k41)..n €O be parame-

trized as
+ (12| BE-= 2 (12| BE-=
Cla(3. .| (k+1)...m Z t" 4 p Z t",

_ o2 2 o2
C21|3 Kk 1)en Cmo " F Co ™ (3.31)
m=0 m=0
There, if we consider the large-t limit of the ratio of the two propagators evaluated on the

cut solution, which is found in the form

P2 2 0 )
13:2 a + um 2 + um 1
—172 m=—3 m=—3

t—o00
we can insert the expansions (3.31) and (3.32) into (3.30) and, by matching each monomial
between the two sides, obtain the set of relations

m
(12].. (21].)% _ + (12]...)+ 12l
Za lOCHmO v Cm2 T Z (O‘ 122 Clmi20 T 010 Gl a ) (3.33)
1=0

Egs. (3.33) show that 021|3 K| (1)
C:I:

12]3...k|(k+1)..n°

can be fully reconstructed from the knowledge of
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Figure 5. Bubble topologies for the cuts Cigj3. ,, and Cyy3.. p-

3.4 Relations for bubble coefficients

Finally, we consider the double cut D; = D; = 0, whose solutions are parametrized as

Ny N\ NV Ny 21 b bo1/? Ny
ls:j) :_pi“ryegzg) +(a0+ya1>e(1]) +t€(1j) +M + o+t1y+ 2y 65113) 7

(ij)v I 1% 4 by + biy + bay? (ij)
t

(G = —pi +ye

+ (ap +yar) e +te (”)V7 (3.34)

where a; and b; are kinematic factors fixed by the cut conditions, whereas ¢ and y are free
parameters. The bubble coefficients are extracted from the large-t expansion,

()

—l

Ny — Al : m 2 i)+
CE(ty, ) = =—— — —InE ! tly + p2ey? (3.35)
ZU( ) [Tz Dhx k;:] Dy + ; 0 lmO 002"

t—o00

3
]

Here the reduced residues Al ket defined in [52], are needed in order to subtract spurious
contributions originating from triangle coefficients. The bubble contribution to the ampli-
tude (3.8) is

A}I'IOOP = C(()Z]) Iz'j [1]—!—0071,0]@' [(Q+pi) : 62] + CO,Q,OIij [((q +pi) ) ] + C(()]) I [ ] )

bubble
(3.36)
where we dropped the “+” label, since the coefficients appearing in the r.h.s. turn out to
be the identical for the two solutions. As usual, in order to show the role of the C/K-
duality in the reduction of the number of coefficients to be actually computed, we consider
two bubble contributions differing by the ordering of the external particles p; and ps, as
illustrated in figure 5. The two coefficients are given by

Cli2|3 = A‘Zree (7l1i7 17 27 lét) A:Lree (*lgt, Pg...n, lli) s
Coigm = AT (05,2, 1,15) AT (=15, Py, 1) (3.37)

and, using (3.14) to relate Al (—lli, 1,2, lg—L) and Afree (—lfc, 2,1, lét), we obtain

P
Coigm = 70 (3.38)
21|3..n leig _ H 12]3..n"
The ratio of the two propagators in the large-t limit is parametrized as
P% -2 1
l32 l M
]3237—/12 Zzalmot ym+—a 202+O<t3) (3.39)

00 1=—2m=0

,15,



3+%_7/W4+ 3+\<€{€"'/W4+
DT e, ! /‘.mr5+ 1T, ! /j.mr5+
\\%6'*' 2+ \%6'*'

Figure 6. Pentagon topologies for the cuts Cig3)4/5/6 and Ca13)4/5/6-

so that, by plugging in (3.38) the expansions

2
(12].)% 2 (12]..)%
12|3 n chlm,o ty" +MCO )

=0 m=0
+ (21]..)%£ (21\ Ot
021|3 n Z Zcz mo  ty" + 1iPeg ; (3.40)
=0 m=0

one can verify that the coefficients of C

51[3..n ATC completely determined by

2 min[m,2—r]
@x _ 3 3 + CETIES
Cl,m,O - ap_ r,m—s,0 rsO ’
r=l \ s=max[0,l+m—r7]

21 12 12]..)+
Céo‘z) _agoz go'o) + OOOC((]0|2) : (3.41)

4 Examples

We hereby verify on some explicit examples the coefficient relations we have derived in the
previous section. In order to obtain 