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1 Introduction

Tree-level amplitudes in gauge theories are known to satisfy color-kinematics (C/K) dual-

ity, i.e. they admit an expansion in terms of Feynman diagrams where the kinematic parts

of the numerators satisfy the same antisymmetry and Lie Algebra identities as their corre-

sponding color factors. This property was first observed by Bern, Carrasco and Johansson

for pure gauge amplitudes in [1, 2] and later extended to both massless and massive QCD

in [3–5]. One of most striking implications of the C/K duality is the existence of rela-

tions between color-ordered tree-level amplitudes [1] which, together with U(1) symmetry

and Kleiss-Kuijf relations [6], can be used to further reduce the number of independent

partial amplitudes to be considered in tree-level calculations. In [7], by adopting the Four-

Dimensional-Formulation (FDF) [8] variant of the Four-Dimensional-Helicity (FDH) [9–11]

regularization scheme, we studied the C/K-duality for tree-level amplitudes in d dimen-

sions and we derived a set of BCJ identities, for four- and five-point amplitudes, which

take into account the explicit dependence on the regulating parameter, together with a

general strategy for the determination of analogous relations between higher-multiplicity

amplitudes.
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The recent development of on-shell [12, 13] and generalized unitarity techniques [14]

for quadruple-[15, 16], triple-[16–18], double-[19, 20] and single-[21–23] cut allowed tremen-

dous simplifications in one-loop calculations, where the knowledge of tree-level amplitudes

can be exploited in order to determine the coefficients of the known basis of integrals in

which any amplitude can be decomposed [24, 25]. In the framework of four-dimensional

generalized unitarity, the BCJ identities for tree-level amplitudes were used in [26] to derive

relations between coefficients of one-loop amplitudes inN = 4 super Yang-Mills theory and,

more recently, in [27] these relations have been extended to integral coefficients for the cut-

constructible part of one-loop QCD amplitudes by showing that tree-level the C/K-duality

can significantly decrease the number of independent coefficients needed in one-loop com-

putations. When moving to d-dimensional generalized unitarity, extensions of tree-level

identities to one-loop amplitudes are expected to hold also between rational contributions,

as it was investigated in [28, 29]. Within a different approach, the BCJ relations have been

used in [30] to reconstruct the non-planar two-loop integrand contributions to the all plus

five-gluon amplitude from the planar ones.

In this paper, by making use of the BCJ identities for dimensionally regulated trees,

we provide a set of coefficient relations for one-loop QCD amplitudes which include the

contributions from rational terms. The paper is organized as follows: in section 2 we recall

the main results regarding the BCJ identities for tree-level amplitudes in d dimensions,

obtained by using the FDF scheme. In section 3 we review the decomposition of one-

loop amplitudes via integrand reduction [31–37] and we apply the d-dimensional BCJ

identities between four-point amplitudes in order to establish general relations between

the coefficients appearing in the decomposition. In section 4 we verify the coefficient

identities on a few concrete examples, by showing relations between the analytic expression

of the coefficients for scalar loop contributions to multi-gluon amplitudes, up to six points.

Finally, in appendix A we extend the results of section 3 by providing the set of coefficient

relations that can be derived from the BCJ identities between five-point amplitudes. Both

algebraic manipulations and numerical evaluations have been carried out by using the

mathematica package S@M [38].

2 Color-kinematics duality in d dimensions

In this section we briefly review the study the C/K-duality for dimensionally regulated

amplitudes presented in [7] in the framework of FDF. FDF is a dimensional regularization

scheme, first introduced in [8], which allows a purely four-dimensional representation of

the additional degrees of freedom associated to the analytic continuation of the space-time

dimension. FDF has been recently applied to the computation of one-loop QCD corrections

in [39, 40], where the processes gg → gg, qq̄ → gg, gg → Hg, gg → Hgg (in the heavy

top limit) and gg → ggg(g) were studied. In this formulation, virtual states are associated

to massive four-dimensional particles, whose mass acts as regulating parameter. The four-

dimensional degrees of freedom of the gauge bosons are carried by massive vector bosons

(denoted by g•) of mass µ and their (d − 4)-dimensional ones by real scalar particles (s•)

– 2 –



J
H
E
P
0
4
(
2
0
1
6
)
1
2
5

Figure 1. Feynman diagrams for g•g• → gg.

of mass µ. At the same time, d-dimensional fermions of mass m are treated as a tardyonic

Dirac fields (q•) with mass m+ iµγ5.

In order to show how the BCJ identities can be derived taking into account the effects

of dimensional regularization, we consider the process g•(p1)g
•(p2) → g(p3)g(p4), where

two generalized gluons, i.e. with on-shell momentum p2 = µ2, produce a final state with

two massless ones. Analogous results can be proven for s•s• → gg as well. The four

Feynman diagrams contributing to the amplitude are shown in figure 1, where massive

particles are indicated with a dot. The color factors of the first three diagrams, which

involve the exchange of a virtual particle, are, respectively,

c1 = f̃a2a3bf̃ ba4a1 , c2 = f̃a1a2bf̃ ba3a4 , c3 = f̃a1a3bf̃ ba4a2 . (2.1)

The four-gluon interaction gives contribution to all of these color structures so that, by la-

belling with ni the kinematic parts of Feynman graph numerators, it can be decomposed as

c4n4 = c1n1;4 + c2n2;4 + c3n3;4. (2.2)

Therefore, each ni;4, conveniently multiplied and divided by the corresponding kinematic

pole, can be absorbed into the definition of the numerators of the cubic graphs. As a result,

the amplitude is expressed in terms of diagrams involving three-gluon vertices only,

A4(p1, p2, p3, p4) = c1
n1

P 2
23 − µ2

+ c2
n2

P 2
12

+ c3
n3

P 2
24 − µ2

, (2.3)

being P 2
ij = (pi + pj)

2. We observe that FDF amplitudes receive contributions from both

massless and massive virtual states, as it is evident from the pole structure of the r.h.s.

of (2.3). The three color factors ci are related by the Jacobi identity

−c1 + c2 + c3 = 0, (2.4)

which allows us, for example by eliminating c2, to rewrite (2.3) in terms of two color-

stripped terms only,

A4(p1, p2, p3, p4) = c1K1 + c3K3, (2.5)

with

K1 =
n1

P 2
23 − µ2

+
n2

P 2
12

, K3 =
n3

P 2
24 − µ2

−
n2

P 2
12

. (2.6)

From the explicit Feynman rules-expression of the numerators ni’s, it can be proven that,

when on-shell and transversality conditions (ǫ(pi) · pi = 0) are imposed, the amplitude
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satisfies the C/K-duality, i.e. the kinematic numerators obey the same Jacobi identity as

the color factors,

−n1 + n2 + n3 = 0. (2.7)

The set of equations (2.6) and (2.7) can be conveniently organized into a linear system

An = K,







1
P 2
23−µ2

1
P 2
12

0

0 − 1
P 2
12

1
P 2
24−µ2

−1 1 1













n1

n2

n3






=







K1

K3

0






. (2.8)

Due to momentum conservation P 2
12+P 2

23+P 2
24 = 2µ2 one can verify that the matrix A has

rank(A) = 2 (2.9)

or, equivalently, that a linear relation can be established between its rows,

(P 2
23 − µ2)A1 − (P 2

24 − µ2)A2 + A3 = 0. (2.10)

Therefore, because of the consistency condition of the inhomogeneous system (2.8),

rank(A) = rank(A|K) = 2, (2.11)

a constraint analogous to (2.10) must hold between the elements of the vector K,

K3 =
P 2
23 − µ2

P 2
24 − µ2

K1. (2.12)

Starting from the Feynman diagram expansions (2.6), it can be checked that the kinematic

factors Ki exactly correspond to two different color-orderings of the amplitude,

K1 = A(1, 2, 3, 4), K3 = A(2, 1, 3, 4), (2.13)

so that (2.12) can be rewritten as

A(2, 1, 3, 4) =
P 2
23 − µ2

P 2
24 − µ2

A(1, 2, 3, 4). (2.14)

With similar considerations one can verify that

A(2, 4, 1, 3) =
P 2
12

P 2
24 − µ2

A(1, 2, 3, 4), A(2, 4, 1, 3) =
P 2
12

P 2
23 − µ2

A(2, 1, 3, 4). (2.15)

Eqs. (2.14) and (2.15) show that the four-point amplitude involving two gluons and two

massive vector bosons, transforming under the adjoint representation of the gauge group,

satisfies the same BCJ identities which have been presented in [4, 5] for the scattering

of gluons with massive particles in the fundamental representation as a generalization of

the BCJ relation for pure gluon amplitudes [1] (here recovered by setting the dimensional
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regulator µ2 to zero) and for massless QCD amplitudes [3]. It has been verified that all

2 → 2 tree-level amplitudes involving FDF particles, including adjoint scalars and tardyonic

fermions, obey the same kind of massive BCJ relations.

In general, when moving to higher-point amplitudes,

Am(p1, p2, . . . , pm) =
N
∑

i=1

cini

Di
, (2.16)

the kinematic numerators obtained in the standard Feynman rules-approach do not sat-

isfy the C/K-duality, because of the rising of anomalous terms, which have been shown

to originate from contact interactions. Nevertheless, starting from the set of Feynman

rules numerators ni, one can build a dual representation of the amplitude by means of a

generalized gauge transformation [41–47], i.e. a shift of the numerators

ni → n′
i +∆i, (2.17)

which leaves the amplitude unchanged,

δAtree
m (p1, p2, . . . , pm) ≡

N
∑

i=1

ci∆i

Di
= 0, (2.18)

and reshuffles the contact terms among numerators, in such a way to restore the C/K-

duality. In [7] a diagrammatic approach was proposed to determine the explicit expressions

of the shifts to be performed on the numerators, purely based on the algebraic properties

of the higher-point generalization of the linear system (2.8) and on a systematic way to

generate the anomalous terms through the introduction of off-shell currents. In particular,

the computation of the rank of the kinematic matrix A can be used as constructive criterion

in order to detect the existing relations between color-ordered amplitudes.

As an example, we consider the scattering of two generalized gluons producing three

massless ones in the final state, g•(p1)g
•(p2) → g(p3)g(p4)g(p5). After absorbing the

contributions from four-gluon vertices into the redefinition of the numerators of the cubic

graphs, the amplitude can be expressed in terms of 15 diagrams, each of them identified by

its pole structure, i.e. its two internal propagators. The color factors associated to these

diagrams satisfy a set of 9 independent Jacobi identities of the type

−ci + cj + ck = 0, (2.19)

which allow us to express the amplitude in terms of six individually gauge invariant

terms only,

A5(p1, p2, p3, p4, p5) =

6
∑

i=1

ciKi, (2.20)

with

c1 = f̃a1a2bf̃ ba3cf̃ ca4a5 , c4 = f̃a2a3bf̃ bca1 f̃ ca4a5 ,

c2 = f̃a2a3bf̃ ba4cf̃ ca5a1 , c5 = f̃a2bcf̃ ba3a4 f̃ ca5a1 ,

c3 = f̃a1a2bf̃ bca5 f̃ ca3a4 , c6 = f̃a2a5bf̃ ba3cf̃ ca4a1 , (2.21)
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and

K1 =
n1

P 2
12P

2
45

+
n12

P 2
12P

2
35

+
n13

(P 2
24 − µ2)P 2

35

−
n10

(P 2
13 − µ2)(P 2

24 − µ2)
+

n15

(P 2
13 − µ2)P 2

45

,

K2 =
n2

(P 2
23 − µ2)(P 2

15 − µ2)
+

n7

(P 2
14 − µ2)(P 2

23 − µ2)
−

n14

(P 2
14 − µ2)P 2

35

+
n13

(P 2
24 − µ2)P 2

35

+
n11

(P 2
24 − µ2)(P 2

15 − µ2)
,

K3 =
n3

P 2
12P

2
34

+
n9

(P 2
13 − µ2)(P 2

25 − µ2)
−

n12

P 2
12P

2
35

−
n13

(P 2
24 − µ2)P 2

35

+
n10

(P 2
13 − µ2)(P 2

24 − µ2)

−
n8

(P 2
25 − µ2)P 2

34

,

K4 =
n4

(P 2
23 − µ2)P 2

45

−
n7

(P 2
14 − µ2)(P 2

23 − µ2)
+

n14

(P 2
14 − µ2)P 2

35

−
n13

(P 2
24 − µ2)P 2

35

+
n10

(P 2
13 − µ2)(P 2

24 − µ2)
−

n15

(P 2
13 − µ2)P 2

45

,

K5 =
n5

P 2
34(P

2
15 − µ2)

−
n9

(P 2
13 − µ2)(P 2

25 − µ2)
−

n10

(P 2
13 − µ2)(P 2

24 − µ2)
+

n8

(P 2
25 − µ2)s43

−
n11

(P 2
24 − µ2)(P 2

15 − µ2)
,

K6 =
n6

(P 2
14 − µ2)(P 2

25 − µ2)
+

n9

(P 2
13 − µ2)(P 2

25 − µ2)
+

n14

(P 2
14 − µ2)P 2

35

−
n13

(P 2
24 − µ2)P 2

35

+
n10

(P 2
13 − µ2)(P 2

24 − µ2)
. (2.22)

The number of distinct gauge invariant contributions, obtained after Jacobi identities are

taken into account, corresponds to the number of independent color-ordered amplitudes

one gets after imposing Kleiss-Kuijf identity, [6, 48]. Since, conversely to the four-point

case, the numerators ni’s do not satisfy the same Jacobi identity as the color factors, (2.8)

is generalized to a system of 15 equations,

An = K+ φ, (2.23)

where

n = (n1, n2, . . . , n15)
T ,

K = ({K1,K2, . . . ,K6}, 0, 0, . . . , 0)
T ,

φ = (0, 0, . . . , 0, {φ[i,j,k]})
T (2.24)

and the elements of the matrix A take values in

(A)ij ∈ {0,±1,±(P 2
ij)

−1,±(P 2
ij − µ2)−1}. (2.25)

The anomalous terms φ[i,j,k] = −ni + nj + nk can be recursively determined starting from

four-point off-shell currents. By performing the set of shifts (2.18), one can build an

alternative representation of the amplitude, where the ni’s are substituted by a new set of

numerators n′
i’s satisfying the C/K dual system

An′ = K. (2.26)
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Because of momentum conservation, the rank of the matrix A turns out to be non-maximal,

rank(A) = 11, and the consistency condition

rank(A|K) = 11 (2.27)

implies the existence of four linear relations between the kinematic factors Ki’s, which can

be simply found by determining a complete set of vanishing linear combinations of the rows

of A. In this way, we obtain the set of identities

P 2
45K1 − P 2

34K3 − (P 2
14 − µ2)K6 = 0,

P 2
12K1 − (P 2

23 − µ2)K4 − (P 2
25 − µ2)K6 = 0,

(P 2
15 − µ2)K2 − P 2

45K4 − (P 2
25 − µ2)K6 = 0,

(P 2
23 − µ2)K2 − P 2

34K5 + (P 2
23 + P 2

35 − µ2)K6 = 0, (2.28)

which reduce to two the numbers of independent Ki’s. At higher multiplicities, rather than

corresponding to a single partial amplitude, each kinematic factor can be expressed as a

linear combination of color-ordered amplitudes. The relations between the Ki’s and color-

ordered amplitudes can be found either by comparing their expansions in terms of Feynman

diagrams or, more conveniently, by first performing the usual color algebra on (2.20), in

order to express all c′is in terms of traces of generators T ai , and then by identifying the

combinations of Ki’s that multiply each single trace with the corresponding color-ordered

amplitude. In this case, it can be shown that

K1 = A5(1, 2, 3, 4, 5) +A5(1, 2, 4, 3, 5) +A5(1, 3, 2, 4, 5),

K2 = −A5(1, 4, 2, 3, 5),

K3 = A5(1, 3, 4, 2, 5)−A5(1, 2, 4, 3, 5),

K4 = A5(1, 4, 2, 3, 5)−A5(1, 3, 2, 4, 5),

K5 = −A5(1, 3, 4, 2, 5),

K6 = A5(1, 3, 4, 2, 5) +A5(1, 4, 2, 3, 5) +A5(1, 4, 3, 2, 5). (2.29)

Therefore, by substituting (2.29) in (2.28), one can reduce from six to two the number of

independent color-ordered amplitudes and express all the others through the set of relations

A5(1, 3, 4, 2, 5) =
−P 2

12P
2
45A5(1, 2, 3, 4, 5) + (P 2

14 − µ2)(P 2
24 + P 2

25 − 2µ2)A5(1, 4, 3, 2, 5)

(P 2
13 − µ2)(P 2

24 − µ2)
,

A5(1, 2, 4, 3, 5) =
−(P 2

14 − µ2)(P 2
25−µ2)A5(1, 4, 3, 2, 5)+P 2

45(P
2
12+P 2

24 − µ2)A5(1, 2, 3, 4, 5)

P 2
35(P

2
24−µ2)

,

A5(1, 4, 2, 3, 5) =
−P 2

12P
2
45A5(1, 2, 3, 4, 5) + (P 2

25 − µ2)(P 2
14 + P 2

25 − 2µ2)A5(1, 4, 3, 2, 5)

P 2
35(P

2
24 − µ2)

,

A5(1, 3, 2, 4, 5) =
−(P 2

14−µ2)(P 2
25−µ2)A5(1, 4, 3, 2, 5)+P 2

12(P
2
24+P 2

45−µ2)A5(1, 2, 3, 4, 5)

(P 2
13−µ2)(P 2

24−µ2)
.

(2.30)
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Identities involving other color-ordered amplitudes can be obtained by making use of Kleiss-

Kuijf identities such as

A5(1, 2, 3, 4, 5) +A5(1, 2, 3, 5, 4) +A5(1, 2, 4, 3, 5) +A5(1, 4, 2, 3, 5) = 0,

(2.31)

which, substituted in (2.30), gives

A5(1, 2, 4, 3, 5) =
(P 2

14 + P 2
45 − µ2)A5(1, 2, 3, 4, 5) + (P 2

14 − µ2)A5(1, 2, 3, 5, 4)

(P 2
24 − µ2)

. (2.32)

The structure of the identities (2.30)–(2.32) for the five-point amplitude involving two

adjoint massive vectors bosons is analogous to the one of the BCJ identities for QCD

amplitudes with massive quarks [5, 49]. The BCJ relations for the five-gluon (massless)

amplitudes [1] can be recovered by setting µ2 = 0. The very same identities are satisfied

by the color-ordered amplitudes where the generalized gluons in the initial state are re-

placed by massive scalars (s•s• → ggg) and similar relations have been verified in [7] for a

five-point amplitude involving both FDF particles and quarks, namely g•g•(s•s•) → qq̄g.

These diagrammatic construction of dual representations by means of generalized gauge

transformations (2.17) can find a straightforward generalization to higher multiplicities.

In the following section, we will show how FDF formulation of the BCJ identities for

d-dimensional tree-level amplitudes, such as (2.14) and (2.32), can be used in order to

determine coefficient relations for full d-dimensional one-loop amplitudes, including both

cut-constructible part and rational terms.

3 Coefficient relations for one-loop amplitudes in d dimensions

Since the introduction of generalized unitarity [14, 15] and complex kinematics for on-shell

particles [12, 13], the study of analyticity and factorization properties of scattering am-

plitudes has turned into an extremely powerful tool for their computation. Relying on

the decomposition of any amplitude in terms of a linear combination of master integrals

(MI’s) [24, 25], the basic idea of unitarity based methods consists in extracting the coef-

ficients of the MI’s by matching multiple cuts of the amplitude with the cuts of the MI’s

themselves. In this framework, the integrand reduction method, first introduced for one-

loop amplitudes in [31] and [32], in four- and d-dimensions respectively, and more recently

extended to multi-loop case [33–37], exploits the knowledge of the algebraic structure of

Feynman integrands, which allows to decompose each numerator as a combination of prod-

ucts of denominators with polynomial coefficients, in order to reach the decomposition of

scattering amplitudes in terms of MI’s.

At one loop, if we split the d = 4 − 2ǫ dimensional loop momentum l̄α into its four-

dimensional part lα and a vector µα belonging to the −2ǫ-subspace,

l̄α = lα + µα, l̄2 = l2 − µ2, (3.1)

– 8 –
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we can write an arbitrary one-loop n-point color-ordered amplitude as

A1-loop
n =

∫

dd l̄
N (l, µ2)

D0D1 . . . Dn−1
, (3.2)

with

Di = (l̄ + pi)
2 −m2

i = (l + pi)
2 −m2

i − µ2. (3.3)

The integrand reduction algorithm allows us to write the numerators N (l, µ2) in terms of

denominators and, consequently, to obtain a decomposition of the integrand of the type

N(l, µ2)

D0D1 . . . Dn−1
=

n−1
∑

i≪m

∆ijklm(l, µ2)

DiDjDkDlDm
+

n−1
∑

i≪l

∆ijkl(l, µ
2)

DiDjDkDl
+

n−1
∑

i≪k

∆ijk(l, µ
2)

DiDjDk

+
n−1
∑

i<j

∆ij(l, µ
2)

DiDj
+

n−1
∑

i

∆i(l, µ
2)

Di
, (3.4)

where i ≪ m indicates lexicographic ordering. The functions ∆i···k(l, µ
2), called residues,

are polynomials in µ2 and in the components {xi} of lα, which, according to the cut

Di = Dj = Dk = · · · = 0 under consideration, is decomposed with respect to a suitable

basis E(i···k) = {e1, e2, e3, e4} of four-dimensional massless vectors defined in terms of spinor

variables,

l(i...k) ν = −pi +

4
∑

j=1

xj e
ν
j . (3.5)

Given such a decomposition of the loop momentum, the parametric expression of ∆i···k(l,µ
2)

is process independent and, for renormalizable theories [31, 32, 35], it turns out to be

∆ijklm = cµ2,

∆ijkl = c0 + c1x4 + c2µ
2 + c3x4µ

2 + c4µ
4,

∆ijk = c0,0+c+1,0x4+c+2,0x
2
4+c+3,0x

3
4+c−1,0x3+c−2,0x

2
3+c−3,0x

3
3+c0,2µ

2 + c+1,2x4µ
2+c−1,2x3µ

2,

∆ij = c0,0,0 + c0,1,0x1 + c0,2,0x
2
1 + c+1,0,0x4 + c+2,0,0x

2
4 + c−1,0,0x3 + c−2,0,0x

2
3 + c+1,1,0x1x4

+ c−1,1,0x1x3 + c0,0,2µ
2,

∆i = c0,0,0,0 + c0,1,0,0x1 + c0,0,1,0x2 + c−1,0,0,0x3 + c+1,0,0,0x4, (3.6)

where, for each coefficient, a superscript labelling the specific cut is understood, cl = c
(i···k)
l .

As a consequence of (3.6), by neglecting all spurious terms which vanish upon inte-

gration, the amplitude (3.2) can be written in terms of MI’s

Ii···k[α] =

∫

dd l̄
α

Di · · ·Dk
(3.7)
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and of the coefficients of the residues as

A1-loop
n =

n−1
∑

i≪l

[

c
(ijkl)
0 Iijkl[1] + c

(ijkl)
4 Iijkl[µ

4]
]

+
n−1
∑

i≪k

[

c
(ijk)
0,0 Iijk[1] + c

(ijk)
0,2 Iijk[µ

2]
]

+
n−1
∑

i≪j

[

c
(ij)
0,0,0Iij [1] + c

(ij)
0,1,0Iij [(l + pi) · e2] + c

(ij)
0,2,0Iij [((l + pi) · e2)

2] + c
(ij)
0,0,2Iij [µ

2]
]

+
n−1
∑

i

c
(i)
0,0,0,0Ii[1]. (3.8)

In the original top-down formulation of the algorithm [31, 50, 51], all coefficients of the

integrand decomposition (3.4) are computed by sampling the numerator of the integrand,

after all non-vanishing contribution to higher-point residues have been subtracted, on a

finite set of on-shell solutions of the multiple cuts. Alternatively, starting from the tech-

niques presented in [16, 18], it has been shown in [52] that, by performing a suitable

Laurent expansion of the cut integrand with respect to one of the components of the loop

momenta which are left unconstrained by the on-shell conditions, one can determine the

unknown coefficients of the integrand reduction by comparison with the ones of the Laurent

expansion itself.

A full color-dressed amplitude is obtained as a combination of color-ordered ampli-

tudes, multiplied for the corresponding color structure. For instance, in the pure gluon

case, we have [53]

A1-loop
n = gn

[n/2]+1
∑

c=1

∑

σ∈Sn/Sn;c

Grn;c(σ)A
1-loop
n;c (σ),

Grn;1(σ) = NcTr(T
aσ(1) · · ·T aσ(n)),

Grn;c(σ) = NcTr(T
aσ(1) · · ·T aσ(c−1))Tr(T aσ(c) · · ·T aσ(c−1)), c > 1. (3.9)

Although it is sufficient to consider leading color contributions An;1(σ) ≡ An(σ), since

amplitudes associated to subleading colors can be obtained as a sum over permutations

of An(σ)’s [14], one should, in principle, fit the coefficients of the residues (3.6) for each

color-ordering. However, the C/K-duality satisfied by tree-level amplitudes, in which the

integrand factorizes when evaluated on unitarity cuts, can be used to determine relations

between coefficients of residues which differ from the ordering of external particles, and

thus to reduce the total number of coefficients to be individually computed.

In the following, we recall the extraction of coefficients via Laurent expansion, for which

we refer to [52] and [54], and we make use of the d-dimensional BCJ identities presented

in section 2 in order to determine the full set of relations between integral coefficients. As

we will explicitly show, these identities holds separately for both independent cut solutions

that must be averaged in the extraction of the integral coefficients. For sake of simplicity,

we derive relations between integral coefficient that can be obtained starting from the BCJ

identities at four points only and we collect in appendix A the set of relations that follow

from the C/K-duality for five points amplitudes. We expect similar results to hold even

– 10 –
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Figure 2. Pentagon topologies for the cuts C12|3...k|(k+1)...l|(l+1)...m|(m+1)...n and

C21|3...k|(k+1)...l|(l+1)...m|(m+1)...n.

when the BCJ identities for higher multiplicity amplitudes are taken into account but we

leave this generalization to future studies. For this reason, we will not discuss relations

between tadpoles coefficients, which would at least require the use of the BCJ identities

between six points tree-level amplitudes.

3.1 Relations for pentagon coefficients

The solutions of the quintuple cut Di = Dj = Dk = Dl = Dm = 0 can be parametrized as

l
(ijklm)ν
+ = −pνi + x1e

(ijklm)ν
1 + x2e

(ijklm)ν
2 + x3e

(ijklm)ν
3 +

x4 + µ2

x3
e
(ijklm)ν
4 , (3.10)

l
(ijklm)ν
− = −pνi + x1e

(ijklm)ν
1 + x2e

(ijklm)ν
2 + x3e

(ijklm)ν
4 +

x4 + µ2

x3
e
(ijklm)ν
3 , (3.11)

where the full set of parameters x1, x2, x3, x4 and µ2 is fixed by the cut conditions. The

single pentagon coefficient appearing in (3.4) can be computed evaluating the integrand on

the two on-shell solutions,

C±
i|j|k|l|m =

N±
∏

h 6=i,j,k,l,mDh,±
= c(ijklm)±µ2. (3.12)

In order to see how the BCJ identities for tree-level amplitudes can be used to relate

different pentagon coefficients, let us consider the contributions shown in figure 2, which

share the same cut solutions. In addition, since these two pentagons differ in the ordering of

the external particles p1 and p2 only, they can be obtained as the product of the same tree-

level amplitudes, with the only exception of the color-ordering of the four-point amplitude

involving p1 and p2. More precisely, for the ordering {1, 2, . . . , n} we have

C±
12|3...k|(k+1)...l|(l+1)...m|(m+1)...n

= Atree
4

(

−l±1 , 1, 2, l
±
3

)

Atree
k

(

−l±3 , P3···k, l
±
k+1

)

Atree
l−k+2

(

−l±k+1, Pk+1...,l± , l
±
l

)

×Atree
m−l+2

(

−l±l+1, Pl±+1...,m, l±m
)

Atree
n−m+2

(

−l±m+1, Pm+1...,n, l
±
1

)

(3.13)

and C±
21|3...k|(k+1)...l|(l+1)...m|(m+1)...n is obtained just by changing 1 ↔ 2. The tree-level

amplitudes Atree
4

(

−l±1 , 1, 2, l
±
3

)

and Atree
4

(

−l±1 , 2, 1, l
±
3

)

are related by the d-dimensional

BCJ identity (2.15),

Atree
4 (−l±1 , 2, 1, l

±
3 ) =

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
Atree

4 (−l±1 , 1, 2, l
±
3 ), (3.14)
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which, substituted into the expression of C±
21|3...k|(k+1)...l|(l+1)...m|(m+1)...n, allow us to identify

C±
21|3...k|(k+1)...l|(l+1)...m|(m+1)...n =

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
C±
12|3...k|(k+1)...l|(l+1)...m|(m+1)...n. (3.15)

The ratio of the two propagators appearing in (3.15) evaluates to same constant value for

both cut solutions,

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
= α, (3.16)

so that, by making use of (3.12), (3.15) becomes

c(21|...)± = αc(12|...)±. (3.17)

Therefore, as simple byproduct of the BCJ identities at tree-level, the knowledge of a single

pentagon coefficient completely determines the other one.

3.2 Relations for box coefficients

Next we consider the quadrupole cut Di = Dj = Dk = Dl = 0, whose solutions can be

parametrized as

l
(ijkl)ν
+ = −pνi + x1e

(ijkl)ν
1 + x2e

(ijkl)ν
2 + x3 e

(ijkl)ν
3 +

x4 + µ2

x3
e
(ijkl)ν
4 ,

l
(ijkl)ν
− = −pνi + x1e

(ijk)ν
1 + x2e

(ijkl)ν
2 +

x4 + µ2

x3
e
(ijkl)ν
3 + x3 e

(ijkl)ν
4 , (3.18)

being x1, x2, x3 and x4 coefficients fixed by the cut conditions. The two non-spurious

coefficients c
(ijkl)
0 and c

(ijkl)
4 can be extracted in the µ2 → 0 and µ2 → ∞ limits,

C±
i|j|k|l =

N±
∏

h 6=i,j,k,l Dh,±

∣

∣

∣

∣

µ2→0

= c
(ijkl)±
0 , (3.19a)

C±
i|j|k|l =

N±
∏

h 6=i,j,k,l Dh,±

∣

∣

∣

∣

µ2→∞

= c
(ijkl)±
4 µ4 +O

(

µ3
)

, (3.19b)

and the box contribution to the amplitude (3.8) is obtained by averaging over the two cut

solutions,

A1-loop
n

∣

∣

∣

∣

box

=
1

2

(

c
(ijkl)+
0 + c

(ijkl)−
0

)

Iijkl [1] + c
(ijkl)
4 I(ijkl)

[

µ4
]

, (3.20)

where we used c
(ijkl)
4 ≡ c

(ijkl)+
4 = c

(ijkl)−
4 . Analogously to the pentagon case, we consider

two box topologies differing just from the ordering of the external particles p1 and p2,

as depicted in figure 3. When the integrand associated to the ordering {1, 2, . . . , n} is

evaluated on the on-shell solutions it factorizes into

C±
12|3...k|(k+1)...l|(l+1)...n = Atree

4

(

−l±1 , 1, 2, l
±
3

)

Atree
k

(

−l±3 , P3···k, l
±
k+1

)

×Atree
l−k+2

(

−l±k+1, Pk+1...,l, l
±
l+1

)

Atree
n−l+2

(

−l±l+1, Pl+1...,n, l
±
1

)

(3.21)
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Figure 3. Box topologies for the cuts C12|3...k|k+1...l|l+1...n and C21|3...k|k+1...l|l+1...n.

and the expression of C±
21|3...k|(k+1)...l|(l+1)...n in terms of tree-level amplitudes can be ob-

tained by exchanging 1 ↔ 2. Therefore, thanks to the BCJ identity between tree-level

amplitudes (3.14), we can write

C±
21|3...k|(k+1)...l|(l+1)...n =

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
C±
12|3...k|(k+1)...l|(l+1)...n. (3.22)

It can be verified that the ratio of propagators sampled on the cut solutions converges to

a constant both for µ2 → 0 and µ2 → ∞ limits,

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

µ2→0

= α±
0 , (3.23)

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

µ2→∞

= α±
4 +O

(

1

µ

)

, (3.24)

so that, by evaluating both sides of (3.22) in the two limits, we can trivially obtain the

contributions from C21|3...k|(k+1)...l|(l+1)...n, once C12|3...k|(k+1)...l|(l+1)...n has been calculated,

c
(21|...)±
i = α±

i c
(12|...)±
i , i = 0, 4. (3.25)

3.3 Relations for triangle coefficients

The solutions of the triple cut Di = Dj = Dk = 0 can be parametrized in terms of µ2 and

one free parameter t as

l
(ijk)ν
+ = −pνi + x1e

(ijk)ν
1 + x2e

(ijk)ν
2 + t e

(ijk)ν
3 +

x3 + µ2

t
e
(ijk)ν
4 ,

l
(ijk)ν
− = −pνi + x1e

(ijk)ν
1 + x2e

(ijk)ν
2 +

x3 + µ2

t
e
(ijk)ν
3 + t e

(ijk)ν
4 , (3.26)

where the coefficients x1, x2 and x3 are fixed by the cut conditions. By considering the

expansion of the integrand in the large-t limit,

C±
i|j|k

(

t, µ2
)

=
N±

∏

h 6=i,j,k Dh,±

∣

∣

∣

∣

t→∞

=
3

∑

m=0

c
(ijk)±
m,0 tm + µ2

1
∑

m=0

c
(ijk)±
m,2 tm, (3.27)
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Figure 4. Triangle topologies for the cuts C12|3...k|(k+1)...n and C21|3...k|(k+1)...n.

the triangle contribution to the one-loop amplitude (3.8) can be obtained by averaging on

the two solutions (3.26).

A1-loop
n

∣

∣

triangle
=

1

2

(

c+0,0 + c−0,0

)

I3 [1] +
1

2

(

c+0,2 + c−0,2

)

I3
[

µ2
]

. (3.28)

The C/K-duality for tree-level amplitudes can be used to relate all coefficients of the

expansions (3.27) for different triangles. As an example, we consider the two triangle

contributions depicted in figure 4. When evaluated on the on-shell solutions, the triangle

with external ordering {1, 2, . . . , n} factorizes into

C±
12|3...k|(k+1)...n = Atree

4

(

−l±1 , 1, 2, l
±
3

)

Atree
k

(

−l±3 , P3···k, l
±
k+1

)

Atree
n−k+2

(

−l±k+1, Pk+1...,n, l
±
1

)

(3.29)

and the analogous expression for C±
21|3...k|(k+1)...n is obtained by changing 1 ↔ 2. As for the

previous cases, we can make use of the BCJ identity (3.14) in order to establish a relation

between C±
21|3...k|(k+1)...n and C±

12|3...k|(k+1)...n,

C±
21|3...k|(k+1)...n =

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
C12|3...k|(k+1)...n. (3.30)

According to the expansion (3.27), both C±
21|3...k|(k+1)...n and C±

12|3...k|(k+1)...n can be parame-

trized as

C±
12|3...k|(k+1)...n =

3
∑

m=0

c
(12|...)±
m,0 tm + µ2

1
∑

m=0

c
(12|...)±
m,2 tm,

C±
21|3...k|(k+1)...n =

3
∑

m=0

c
(21|...)±
m,0 tm + µ2

1
∑

m=0

c
(21|...)±
m,2 tm. (3.31)

There, if we consider the large-t limit of the ratio of the two propagators evaluated on the

cut solution, which is found in the form

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

t→∞

=
0

∑

m=−3

α±
m,0t

m + µ2
−2
∑

m=−3

α±
m,2t

m +O

(

1

t4

)

, (3.32)

we can insert the expansions (3.31) and (3.32) into (3.30) and, by matching each monomial

between the two sides, obtain the set of relations

c
(21|...)±
m,0 =

3−m
∑

l=0

α±
−l,0 c

(12|...)±
l+m,0 , c

(21|...)±
m,2 =

1−m
∑

l=0

(

α±
−l−2,2 c

(12|...)±
l+m+2,0 + α±

−l0 c
(12|...)±
l+m,2

)

. (3.33)

Eqs. (3.33) show that C±
21|3...k|(k+1)...n can be fully reconstructed from the knowledge of

C±
12|3...k|(k+1)...n.
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Figure 5. Bubble topologies for the cuts C12|3...n and C21|3...n.

3.4 Relations for bubble coefficients

Finally, we consider the double cut Di = Dj = 0, whose solutions are parametrized as

l
(ij)ν
+ = −pνi + y e

(ij)ν
1 + (a0 + y a1) e

(ij)ν
2 + t e

(ij)ν
3 +

µ2 + b0 + b1y + b2y
2

t
e
(ij)ν
4 ,

l
(ij)ν
− = −pνi + y e

(ij)ν
1 + (a0 + y a1) e

(ij)ν
2 +

µ2 + b0 + b1y + b2y
2

t
e
(ij)ν
3 + t e

(ij)ν
4 , (3.34)

where ai and bi are kinematic factors fixed by the cut conditions, whereas t and y are free

parameters. The bubble coefficients are extracted from the large-t expansion,

C±
i|j

(

t, y, µ2
)

=
N±

∏

h 6=i,j Dh,±
−

n−1
∑

k 6=i,j

∆R
ijk,±

Dk,+

∣

∣

∣

∣

∣

∣

t→∞

=
2

∑

l=0

2−l
∑

m=0

c
(ij)±
l,m,0 t

l ym + µ2c
(ij)±
0,0,2 . (3.35)

Here the reduced residues ∆R
ijk,±, defined in [52], are needed in order to subtract spurious

contributions originating from triangle coefficients. The bubble contribution to the ampli-

tude (3.8) is

A1-loop
n

∣

∣

∣

∣

bubble

= c
(ij)
0,0,0Iij [1]+c0,1,0Iij [(q+pi) · e2] + c0,2,0Iij

[

((q + pi) · e2)
2
]

+ c
(ij)
0,0,2Iij

[

µ2
]

,

(3.36)

where we dropped the “±” label, since the coefficients appearing in the r.h.s. turn out to

be the identical for the two solutions. As usual, in order to show the role of the C/K-

duality in the reduction of the number of coefficients to be actually computed, we consider

two bubble contributions differing by the ordering of the external particles p1 and p2, as

illustrated in figure 5. The two coefficients are given by

C±
12|3...n = Atree

4

(

−l±1 , 1, 2, l
±
3

)

Atree
n

(

−l±3 , P3···n, l
±
1

)

,

C±
21|3...n = Atree

4

(

−l±1 , 2, 1, l
±
3

)

Atree
n

(

−l±3 , P3···n, l
±
1

)

(3.37)

and, using (3.14) to relate Atree
4

(

−l±1 , 1, 2, l
±
3

)

and Atree
4

(

−l±1 , 2, 1, l
±
3

)

, we obtain

C±
21|3...n =

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2
C±
12|3...n. (3.38)

The ratio of the two propagators in the large-t limit is parametrized as

P 2
l±3 2

− µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

t→∞

=
0

∑

l=−2

−l
∑

m=0

αl,m,0 t
l ym +

µ2

t2
α−2,0,2 +O

(

1

t3

)

, (3.39)
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Figure 6. Pentagon topologies for the cuts C12|3|4|5|6 and C21|3|4|5|6.

so that, by plugging in (3.38) the expansions

C±
12|3...n =

2
∑

l=0

2−l
∑

m=0

c
(12|...)±
l,m,0 tl ym + µ2c

(12|...)±
0,0,2 ,

C±
21|3...n =

2
∑

l=0

2−l
∑

m=0

c
(21|...)±
l,m,0 tl ym + µ2c

(21|...)±
0,0,2 , (3.40)

one can verify that the coefficients of C±
21|3...n are completely determined by

c
(21|...)±
l,m,0 =

2
∑

r=l





min[m,2−r]
∑

s=max[0,l+m−r]

α±
l−r,m−s,0 c

(12|...)±
r,s,0



 ,

c
(21|...)±
0,0,2 = α±

−2,0,2 c
(12|...)±
2,0,0 + α±

0,0,0 c
(12|...)±
0,0,2 . (3.41)

4 Examples

We hereby verify on some explicit examples the coefficient relations we have derived in the

previous section. In order to obtain compact expressions and keep the discussion as simple

possible, we consider scalar loop contributions to gluon amplitudes only and we present

analytic results for convenient helicity configurations. Nevertheless, numerical checks of

the coefficient relations have been performed for all helicity configurations and gluon loop

contributions have been included as well. All results presented in this section have been

numerically validated against the ones provided by the C++ library NJet [55].

In addition, we would like to mention that, besides constituting one of the FDF ingredi-

ents needed for the computation of the full amplitude, the scalar contributions presented in

this section can been thought as the generators of rational terms in alternative frameworks,

such as supersymmetric decomposition [56, 57].

4.1 Pentagons

To begin with, we consider the six-gluon helicity amplitude A1-loop
6 (1+, 2+, 3+, 4+, 5+, 6+)

and we compute the quintuple cuts C±
12|3|4|5|6 and C±

21|3|4|5|6 of figure 6, with the use the

basis E(45012) = {e1, e2, e3, e4}, where

eν1 = pν4 , eν2 = pν5 , eν3 =
1

2
〈4 |γµ| 5] , eν4 =

1

2
〈5 |γµ| 4] , (4.1)

The solutions of the quintuple cut are

l+ν
5 = c eν3 −

µ2

s45c
eν4 , l−ν

5 = c eν4 −
µ2

s45c
eν3 , (4.2)
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where the parameters c and µ2 are fixed by the on-shell conditions. From the product of

tree-level amplitudes we obtain

C±
12|3|4|5 = Atree

4

(

−l±1 , 1
+, 2+, l±3

)

Atree
3

(

−l±3 , 3
+, l±4

)

Atree
3

(

−l±4 , 4
+, l±5

)

×Atree
3

(

−l±5 , 5
+, l±6

)

Atree
3

(

−l±6 , 6
+, l±1

)

=
iµ2[2|1]〈3|l5|4]〈4|l4|3]〈5|l1|6]〈6|l6|5]

〈1|2〉〈3|4〉2〈5|6〉2〈1|l1|1]
(4.3)

and

C21|3|4|5 = Atree
4

(

−l±1 , 2
+, 1+, l±3

)

Atree
3

(

−l±3 , 3
+, l±4

)

Atree
3

(

−l±4 , 4
+, l±5

)

×Atree
3

(

−l±5 , 5
+, l±6

)

Atree
3

(

−l±6 , 6
+, l±1

)

,

=
iµ2[2|1]〈3|l5|4]〈4|l4|3]〈5|l1|6]〈6|l6|5]

〈1|2〉〈3|4〉2〈5|6〉2〈2|l1|2]
. (4.4)

The two cuts are related by the BCJ identity (3.15),

C±
21|3|4|5 =

(

l±3 + p2
)2

− µ2

(

l±1 − p2
)2

− µ2
C±12|3|4|5|6. (4.5)

By using momentum conservation to express l±5 in terms of l±1 , l
±
3 , l

±
4 ,

l±1 = l±5 − p5 − p6, l±3 = l±5 + p3 + p4, l±4 = l±5 + p4, l±6 = l±5 − p5, (4.6)

one can verify that C±
12|3|4|5|6 takes the form

C±
12|3|4|5|6

=
iµ2s34

2s45
2s56

2[2|1][4|3][6|5]〈3|1 + 2|6]2〈6|1 + 2|3]2

tr5(6, 3, 5, 4)3〈1|2〉〈3|4〉〈5|6〉(s45tr5(1, 5, 2, 6)+s345tr5(1, 5, 4, 6)−s16tr5(3, 4, 5, 6))
, (4.7)

where sij = 〈ij〉[ji] and tr5(1, 2, 3, 4) = 〈1 |234| 1]− 〈1 |432| 1].

In a similar way, according to (3.16), we find

(

l±3 + p2
)2

− µ2

(

l±1 − p2
)2

− µ2
=

s45tr5(1, 5, 2, 6) + s345tr5(1, 5, 4, 6)− s16tr5(3, 4, 5, 6)

s45tr5(2, 5, 1, 6) + s345tr5(2, 5, 4, 6)− s26tr5(3, 4, 5, 6)
. (4.8)

Hence, substituting (4.7) and (4.8) in (4.5), we obtain

C±
21|3|4|5|6

=
iµ2s34

2s45
2s56

2[2|1][4|3][6|5]〈3|1 + 2|6]2〈6|1 + 2|3]2

tr5(6, 3, 5, 4)3〈1|2〉〈3|4〉〈5|6〉(s45tr5(2, 5, 1, 6)+s345tr5(2, 5, 4, 6)−s26tr5(3, 4, 5, 6))
, (4.9)

which reproduces the same result one could obtain from similar algebraic manipulations

on (4.4). The analytic expressions for the two cuts find numerical agreement with NJet.
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Figure 7. Box topologies for the cuts C12|3|4|5 and C21|3|4|5.

4.2 Boxes

As an example of identities between box coefficients, we consider the quadruple cuts C±
12|3|4|5

and C±
21|3|4|5 for the helicity amplitude A1-loop

5 (1−, 2+, 3+, 4+, 5−), depicted in figure 7. For

this configuration we use the basis E(40123) of eq. (4.1), where the cut solutions can be

parametrized as

l+ν
5 = c+ eν3 −

µ2

s45c+
eν4 , l−ν

5 = c− eν4 −
µ2

s45c−
eν3 , (4.10)

being c+ and c− coefficients determined by behavior of the on-shell solutions for µ2 → 0

and µ2 → ∞. By combining tree-level amplitudes we can write

C±
12|3|4|5 = Atree

4

(

−l±1 , 1
−, 2+, l±3

)

Atree
3

(

−l±3 , 3
+, l±4

)

Atree
3

(

−l±4 , 4
+, l±5

)

Atree
3

(

−l±5 , 5
−, l±1

)

=
〈1|l1|2]

2〈3|l5|4]〈4|l4|3]〈5|l1|1]

s12[5|1]〈3|4〉2〈1|l1|1]
(4.11)

and

C±
21|3|4|5 = Atree

4

(

−l±1 , 2
+, 1−, l±3

)

Atree
3

(

−l±3 , 3
+, l±4

)

Atree
3

(

−l±4 , 4
+, l±5

)

Atree
3

(

−l±5 , 5
−, l±1

)

=
〈1|l1|2]

2〈3|l5|4]〈4|l4|3]〈5|l1|1]

s12[5|1]〈3|4〉2〈2|l1|2]
(4.12)

and then relate two cuts through (3.22),

C±
21|3|4|5 =

(

l±3 + p2
)2

− µ2

(

l±1 − p2
)2

− µ2
C±
21|3|4|5. (4.13)

Momentum conservation allows us to write

l±1 = l±5 − p5, l±4 = l±5 + p4, l3 = l±5 + p3 + p4 (4.14)

and, consequently, to express C±
12|3|4|5 as

C±
12|3|4|5 = −

iµ4[4|3]tr5(η1,2, 4, 3, 5)
2

s12tr5(3, 4, 1, 5)[5|3][5|4]〈3|4〉2
, (4.15)

where we have introduced the complex momenta ηνi,j =
1
2 〈i |γ

ν | j]. We have verified that,

for this particular helicity configuration, the box coefficient is given by the ∼ µ4 term only.

Therefore, we just need to compute the ratio of the propagators in the large-µ2 limit,

(

l±3 + p2
)2

− µ2

(

l±1 − p2
)2

− µ2

∣

∣

∣

∣

∣

µ2→∞

= −1 +O

(

1

µ

)

. (4.16)
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Figure 8. Triangle topologies for the cuts C123|4|5, C132|4|5 and C213|4|5.

Thanks to this result, the expression for C21|3|4|5 obtained from (4.15) is

C±
21|3|4|5 =

iµ4[4|3]tr5(η1,2, 4, 3, 5)
2

s12tr5(3, 4, 1, 5)[5|3][5|4]〈3|4〉2
, (4.17)

which finds again agreement with NJet.

4.3 Triangles

For triple cuts we give an example of the coefficient relations obtained through identities

between five-point tree-level amplitudes, which are discussed in appendix A. Let us consider

A1-loop
5 (1+, 2+, 3−, 4−, 5−) and the three cuts of figure 8, C±

213|4|5, C±
123|4|5 and C±

132|4|5,

respectively. We use the basis E(40123) of eq. (4.1), where the cut solutions are given by

l+ν
5 = t eν3 −

µ2

s45t
eν4 , l−ν

5 = t eν4 −
µ2

s45t
eν3 , (4.18)

and from the product of tree-level amplitudes we obtain

C±
123|4|5 = Atree

5

(

−l±1 , 1
+, 2+, 3−, l±4

)

Atree
3

(

−l±4 , 4
−, l±5

)

Atree
3

(

−l±5 , 5
−, l±1

)

=
i〈5|l±1 |4|l

±
5 |5]〈3|1 + 2|l±1 |3〉

2

s123[5|4]2〈1|2〉〈2|3〉〈1|l
±
1 |1 + 2|3〉

−
iµ2[2|1]〈3|l±4 |2]

2〈5|l±1 |4|l5|5]

[5|4]2[3|l±4 |3|2]〈1|l
±
1 |1]〈1|2 + 3|l±4 |3〉

, (4.19)

C±
132|4|5 = Atree

5

(

−l±1 , 1
+, 3−, 2+, l±4

)

Atree
3

(

−l±4 , 4
−, l±5

)

Atree
3

(

−l±5 , 5
−, l±1

)

= −
i〈3|l±1 |1]

2〈3|l±4 |2]
2〈5|l±1 |4|l

±
5 |5]

[5|4]2[2|l±4 |2+3|1]〈1|l±1 |1|3〉〈2|l
±
4 |2|3〉

−
iµ2[2|1]4〈5|l±1 |4|l

±
5 |5]

s123[3|1][3|2][5|4]2[2|l4|2+3|1]
, (4.20)

C±
213|4|5 = Atree

5

(

−l±1 , 2
+, 1+, 3−, l±4

)

Atree
3

(

−l±4 , 4
−, l±5

)

Atree
3

(

−l±5 , 5
−, l±1

)

= −
i〈5|l±1 |4|l

±
5 |5]〈3|1 + 2|l±1 |3〉

2

s123[5|4]2〈1|2〉〈1|3〉〈2|l
±
1 |1+2|3〉

+
iµ2[2|1]〈3|l±4 |1]

2〈5|l±1 |4|l
±
5 |5]

[5|4]2[3|l±4 |3|1]〈2|l
±
1 |2]〈2|1+3|l±4 |3〉

. (4.21)

The three cuts are related by the BCJ identity (2.32),

C±
213|4|5 =

(

P 2
l±4 2

− µ2 + P 2
23

)

(

P 2
−l±1 2

− µ2
) C±

123|4|5 +

(

P 2
l±4 2

− µ2
)

(

P 2
−l±1 2

− µ2
)C±

132|4|5. (4.22)

By using momentum conservation,

l±1 = l±5 − p5, l±4 = l±5 + p4, (4.23)
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and expanding C±
123|4|5 and C±

132|4|5 for t → ∞, we obtain

C+
123|4|5

(

t, µ2
)

=
iµ2〈3|4〉2(〈1|4〉〈3|5〉+ 〈1|3〉〈4|5〉)

[5|4]〈1|2〉〈1|4〉2〈2|3〉
−

iµ2〈3|4〉3

[5|4]〈1|2〉〈1|4〉〈2|3〉
t, (4.24a)

C−
123|4|5

(

t, µ2
)

=
iµ2〈3|4〉〈3|5〉2

[5|4]〈1|2〉〈1|5〉〈2|3〉
+

iµ2〈3|5〉3

[5|4]〈1|2〉〈1|5〉〈2|3〉
t, (4.24b)

C+
132|4|5

(

t, µ2
)

= −
iµ2〈3|4〉3(〈1|4〉〈3|5〉+ 〈1|3〉〈4|5〉)

[5|4]〈1|3〉〈1|4〉2〈2|3〉〈2|4〉
+

iµ2〈3|4〉4

[5|4]〈1|3〉〈1|4〉〈2|3〉〈2|4〉
t, (4.24c)

C−
132|4|5

(

t, µ2
)

= −
iµ2(〈2|5〉〈3|4〉 − 〈2|3〉〈4|5〉)〈3|5〉3

[5|4]〈1|3〉〈1|5〉〈2|3〉〈2|5〉2
−

iµ2〈3|5〉4

[5|4]〈1|3〉〈1|5〉〈2|3〉〈2|5〉
t. (4.24d)

In a similar way, the expansion for large-t of the ratio of propagators returns

(

P 2
l+4 2

−µ2+P 2
23

)

(

P 2
−l+1 2

− µ2
)

∣

∣

∣

∣

∣

∣

∣

t→∞

=
µ2s12s24s25

s45t3〈4|2|5]3
+

s12s25
2

t3〈4|2|5]3
+

s12s25

t2〈4|2|5]2
+

s12

t〈4|2|5]
− 1+O

(

1

t4

)

,

(4.25a)
(

P 2
l−4 2

−µ2+P 2
23

)

(

P 2
−l−1 2

− µ2
)

∣

∣

∣

∣

∣

∣

∣

t→∞

=
µ2s12s24s25

s45t3〈5|2|4]3
+

s12s25
2

t3〈5|2|4]3
+

s12s25

t2〈5|2|4]2
+

s12

t〈5|2|4]
− 1+O

(

1

t4

)

,

(4.25b)
(

P 2
l+4 2

− µ2
)

(

P 2
−l+1 2

− µ2
)

∣

∣

∣

∣

∣

∣

∣

t→∞

= −
µ2s24s25 (s24 + s25)

s45t3〈4|2|5]3
−

s25
2 (s24 + s25)

t3〈4|2|5]3
−

s25 (s24 + s25)

t2〈4|2|5]2

−
s24 + s25

t〈4|2|5]
− 1 +O

(

1

t4

)

, (4.25c)

(

P 2
l−4 2

− µ2
)

(

P 2
−l−1 2

− µ2
)

∣

∣

∣

∣

∣

∣

∣

t→∞

= −
µ2s24s25 (s24 + s25)

s45t3〈5|2|4]3
−

s25
2 (s24 + s25)

t3〈5|2|4]3
−

s25 (s24 + s25)

t2〈5|2|4]2

−
s24 + s25

t〈5|2|4]
− 1 +O

(

1

t4

)

. (4.25d)

Therefore, by inserting these results into (4.22) we obtain

C+
213|4|5

(

t, µ2
)

= −
iµ2〈3|4〉2(〈2|4〉〈3|5〉+ 〈2|3〉〈4|5〉)

[5|4]〈1|2〉〈1|3〉〈2|4〉2
+

iµ2〈3|4〉3

[5|4]〈1|2〉〈1|3〉〈2|4〉
t, (4.26)

C−
213|4|5

(

t, µ2
)

= −
iµ2〈3|4〉〈3|5〉2

[5|4]〈1|2〉〈1|3〉〈2|5〉
−

iµ2〈3|5〉3

[5|4]〈1|2〉〈1|3〉〈2|5〉
t, (4.27)

which agrees with the t → ∞ expansion of (4.24d). The resulting contributions of the

three cuts to A1-loop
5 (1+, 2+, 3−, 4−, 5−) have been numerically checked with NJet.
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Figure 9. Bubble topologies for the cuts C12|345 and C21|345.

4.4 Bubbles

As a final example, we compute the double cuts C12|345 and C21|345 of the helicity amplitude

A1-loop
5 (1−, 2+, 3+, 4+, 5+), which are depicted in figure 9. For sake of simplicity, we will

consider only pure bubble contributions but we remark that spurious terms originating

from triangles, which should subtracted in order to recover the full integral coefficient, can

be related through the BCJ identities in the same way as discussed in section 3.4. For this

cut we use the basis E(02) = {e1, e2, e3, e4}, where

eν1 = (p1 + p2)
ν −

s12

s14 + s24
pν4 , eν2 = pν4 , eν3 =

1

2
〈e1 |γ

ν | e2] , eν4 =
1

2
〈e2 |γ

ν | e1] , (4.28)

and the cut solutions are parametrized by

l+ν
1 = y eν1 +

(1− y) s12
s14 + s24

eν2 + t eν3 +
(1− y) ys12 − µ2

(s14 + s24) t
eν4 , (4.29)

l−ν
1 = y eν1 +

(1− y) s12
s14 + s24

eν2 + t eν4 +
(1− y) ys12 − µ2

(s14 + s24) t
eν3 . (4.30)

By combining the tree amplitudes in which bubble factorizes, we can write the two cuts as

C±
12|345 = Atree

4

(

−l±1 , 1
−, 2+, l±3

)

Atree
5

(

−l±3 , 3
+, 4+, 5+, l±1

)

=
µ2[5|3 + 4|l±3 |3]〈1|l

±
1 |2]

2

s12〈3|4〉〈4|5〉〈1|l
±
1 |1]〈3|l

±
3 |3]〈5|l

±
1 |5]

, (4.31)

C±
21|345 = Atree

4

(

−l±1 , 2
+, 1−, l±3

)

Atree
5

(

−l±3 , 3
+, 4+, 5+, l±1

)

=
µ2[5|3 + 4|l3|3]〈1|l

±
1 |2]

2

s12〈3|4〉〈4|5〉〈2|l
±
1 |2]〈3|l

±
3 |3]〈5|l

±
1 |5]

(4.32)

and, according to (3.38), we can related them through

C±
21|345 =

(

l±3 + p2
)2

− µ2

(

l±1 − p2
)2

− µ2
C±
12|345. (4.33)

If we make use of l±3 = l±1 − p1 − p2 and we expand (4.31) in the large-t limit, we get

C+
12|345 = µ2 i[4|2]3〈1|2〉

s34s45[4|1]〈3|5〉2
, (4.34)

C−
12|345 = µ2 i〈1|4〉3

〈1|2〉〈2|4〉〈3|4〉2〈4|5〉2
, (4.35)
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whereas the expansion of the ratios of propagators reads

(

l+3 + p2
)2

− µ2

(

l+1 − p2
)2

− µ2

∣

∣

∣

∣

∣

t→∞

= −
(s14 − s24) [2|1]2[4|e1]2

(s14 + s24) [4|1]2[4|2]2
y

t2
−

[2|1]2〈2|4〉[4|e1]2

(s14 + s24) t2[4|1]2[4|2]

1

t2

−
[2|1][4|e1]

[4|1][4|2]

1

t
− 1 +O

(

1

t3

)

, (4.36)

(

l−3 + p2
)2

− µ2

(

l−1 − p2
)2

− µ2

∣

∣

∣

∣

∣

t→∞

= −
(s14 − s24) 〈1|2〉

2〈e1|4〉
2

(s14 + s24) 〈1|4〉2〈2|4〉2
y

t2
−

[4|2]〈1|2〉2〈e1|4〉
2

(s14 + s24) 〈1|4〉2〈2|4〉

1

t2

−
〈1|2〉〈e1|4〉

〈1|4〉〈2|4〉

1

t
− 1 +O

(

1

t3

)

. (4.37)

These expansions allow us to obtain the analytic expression of C±
21|345 from (4.33),

C+
21|345 = −µ2 i[4|2]3〈1|2〉

s34s45[4|1]〈3|5〉2
= −C+

12|345, (4.38a)

C−
21|345 = −µ2 i〈1|4〉3

〈1|2〉〈2|4〉〈3|4〉2〈4|5〉2
= −C−

12|345, (4.38b)

which agree with what we would obtain by considering the large-t expansion of (4.32).

5 Conclusions

In this paper we have presented a set of relations between the coefficients appearing in the

decomposition of one-loop QCD amplitudes in terms of master integrals, which have been

derived as a byproduct of the color-kinematics duality satisfied by tree-level amplitudes.

These relations reduce the number of independent integral coefficients to be individually

computed and, being valid for contributions to both cut-constructible part and rational

terms, they could play an important role in the optimization of numerical calculations.

The complete decomposition of a general one-loop amplitude can be obtained via the d-

dimensional integrand reduction algorithm, which can be used to express the amplitude

in terms of a known basis of loop integrals, whose coefficient can be extracted through

suitable Laurent expansions of the integrand evaluated on the on-shell solutions. Since the

on-shell integrand factorizes into a product of tree-level amplitudes, the BCJ identities at

tree-level have been exploited in order to establish relations between the integral coefficients

themselves. In order to be consistent with d-dimensional unitarity, hence to obtain a set

of identities valid for both cut-constructible part and rational terms, we have made use

of the BCJ identities for dimensionally regulated tree-level amplitudes, which have been

derived by working in the Four-Dimensional-Formulation scheme (FDF), where the effects

of dimensional regularization are carried by massive degrees of freedom. The coefficients

identities derived in this paper have been verified on a number of contributions to multi-

gluon scattering amplitudes, for which we have provided analytic expressions of the integral

coefficients. A natural extension of this work would be the study of similar relations for

higher-point one-loop amplitudes, which would require the use of the d-dimensional BCJ

identities between tree-level amplitudes with more than five external particles. Moreover,
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Figure 10. Pentagon topologies for the cuts C123|4...k|(k+1)...l|(l+1)...m|(m+1)...n,

C132|4...k|(k+1)...l|(l+1)...m|(m+1)...n and C231|4...k|(k+1)...l|(l+1)...m|(m+1)...n.

it would be interesting to investigate higher-loop coefficient relations that are expected to

descend from the BCJ identities at tree-level. To this end, future work will require, besides

a general parametrization of the residues of multi-loop integrands, the derivation of the BCJ

identities between FDF amplitudes involving more than two external generalized particles.
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A Coefficient relations from 5-point BCJ identities

In this appendix we collect the set of identities, obtained through the use of the d-

dimensional BCJ relations for five-point amplitudes of the type (2.32), that can be used

to relate integral coefficients associated to multiple cuts which, besides sharing the same

on-shell solutions, differ from the ordering of three external particles.

A.1 Relations for pentagon coefficients

We consider the three quintuple-cuts shown in figure 10, which differ from the ordering of

the particles p1, p2, p3. The contribution from the ordering {1, 2, 3} is given by

C±
123|4...r|(r+1)...s|(s+1)...t|(t+1)...n

= Atree
5

(

−l±1 , 1, 2, 3, l
±
4

)

Atree
r−1

(

−l±4 , P4···r, l
±
r+1

)

Atree
s−r+2

(

−l±r+1, Pr+1...,s, l
±
s+1

)

×Atree
s−t+2

(

−l±s+1, Ps+1···t, l
±
t+1

)

Atree
n−t+2

(

−l±t+1, Pt+1···n, l
±
1

)

(A.1)

and the other two cuts are obtained from the corresponding permutations of {1, 2, 3}.

Eq. (2.32) can be used in order to relate the amplitudes Atree
5

(

−l±1 , 1, 2, 3, l
±
4

)

,

Atree
5

(

−l±1 , 1, 3, 2, l
±
4

)

and Atree
5

(

−l±1 , 2, 1, 3, l
±
4

)

and, thus, to identify

C±
213|4...r|(r+1)...s|(s+1)...t|(t+1)...n (A.2)

=

(

P 2
l
±

4
2
+P 2

23−µ2
)

C±
123|4...r|(r+1)...s|(s+1)...t|(t+1)...n+

(

P 2
l
±

4
2
−µ2

)

C±
132|4...r|(r+1)...s|(s+1)...t|(t+1)...n

(

P 2
−l

±

1
2
− µ2

) .
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Figure 11. Box topologies for the cuts C123|4...k|k+1...l|l+1...n, C132|4...k|k+1...l|l+1...n and

C231|4...k|k+1...l|l+1...n.

Analogously to the case discussed in section 3.1, the constant ratios of propagators

P 2
l±4 2

− µ2

P 2
−l±1 2

− µ2
= α±,

P 2
l±4 2

+ P 2
23 − µ2

P 2
−l±1 2

− µ2
= β±, (A.3)

allow us to translate (A.2) into a simple identity between the coefficients of the expan-

sion (3.12) for the three cuts,

c(213|...)± = β±c(123|...)± + α±c(132|...)±. (A.4)

A.2 Relations for box coefficients

Similarly to the previous case, we can use the BCJ identities to relate the quadruple cuts

depicted in figure 11, given by

C±
123|4...r|(r+1)...s|(s+1)...n = Atree

5

(

−l±1 , 1, 2, 3, l
±
4

)

Atree
r−1

(

−l±4 , P4···r, l
±
r+1

)

(A.5)

×Atree
s−r+2

(

−l±r+1, Pr+1...,s, l
±
s+1

)

Atree
n−s+2

(

−l±s+1, Ps+1···n, l
±
1

)

and suitable permutations of {1,2,3} for C±
132|4...r|(r+1)...s|(s+1)...n and C±

213|4...r|(r+1)...s|(s+1)...n.

If we make use of (2.32) on the amplitudes involving the particles p1, p2 and p3, we

obtain

C±
213|4...r|(r+1)...s|(s+1)...n (A.6)

=

(

P 2
l±4 2

+ P 2
23 − µ2

)

C±
123|4...r|(r+1)...s|(s+1)...n +

(

P 2
l±4 2

− µ2
)

C±
132|4...r|(r+1)...s|(s+1)...n

(

P 2
−l±1 2

− µ2
) .

As shown in section 3.2, the two box coefficients contributing to the amplitude can be

extracted by taking the µ2 → 0 and µ2 → ∞ limits, where the ratios of propagators

behave like

P 2
l±4 2

− µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

µ2→0

= α±
0 ,

P 2
l±4 2

− µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

µ2→∞

= α±
4 +O

(

1

µ

)

,

P 2
l±4 2

+ P 2
23 − µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

µ2→0

= β±
0 ,

P 2
l±4 2

+ P 2
23 − µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

µ2→∞

= β±
4 +O

(

1

µ

)

. (A.7)

Thus, starting from (A.6) we can relate the coefficients of the expansions (3.19a)–(3.19b)

of the three quadruple cuts trough the identities

c
(213|...)±
i = β±

i c
(123|...)±
i + α±

i c
(132|...)±
i , i = 0, 4. (A.8)
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Figure 12. Triangle topologies for the cuts C123|4...k|(k+1)...n, C132|4...k|(k+1)...n and

C213|4...k|(k+1)...n.

A.3 Relations for triangle coefficients

Now we turn our attention to the triangle topologies shown in figure 12. The expression of

the cut with external ordering {1, 2, 3, . . . n} in terms of tree-level amplitudes is given by

C±
123|4...k|(k+1)...n

= Atree
5

(

−l±1 , 1, 2, 3, l
±
4

)

Atree
k−1

(

−l±4 , P4···k, l
±
k+1

)

Atree
n−k+2

(

−l±k+1, Pk+1...,n, l
±
1

)

(A.9)

and, as usual, C±
132|4...k|(k+1)...n and C±

213|4...k|(k+1)...n are obtained from the corresponding

permutations of {1, 2, 3}. Eq. (2.32) allow us to identify

C±
213|4...k|(k+1)...n=

(

P 2
l±4 2

+P 2
23−µ2

)

C±
123|4...k|(k+1)...n+

(

P 2
l±4 2

−µ2
)

C±
132|4...k|(k+1)...n

(

P 2
−l±1 2

− µ2
) (A.10)

and, following the procedure of section 3.3, we can take the large-t limit of the two ratios

of propagators,

P 2
l±4 2

− µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

t→∞

=

0
∑

m=−3

α±
m,0t

m + µ2
−2
∑

m=−3

α±
m,2t

m +O

(

1

t4

)

,

P 2
l±4 2

+ P 2
23 − µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

t→∞

=
0

∑

m=−3

β±
m,0t

m + µ2
−2
∑

m=−3

β±
m,2t

m +O

(

1

t4

)

, (A.11)

and use it in (A.10) in order to express the coefficients of the expansion (3.27) of

C±
213|4...k|(k+1)...n in terms of the ones of C123|4...k|(k+1)...n and C132|4...k|(k+1)...n,

c
(213|...)±
m,0 =

3−m
∑

l=0

[

β±
−l,0 c

(123|...)±
l+m,0 + α±

−l,0 c
(132|...)±
l+m,0

]

, (A.12)

c
(213|...)±
m,2 =

1−m
∑

l=0

[

β±
−l−2,2 c

(123|...)±
l+m+2,0 + β±

−l,0 c
(123|...)±
l+m,2 + α±

−l−2,2 c
(132|...)±
l+m+2,0 + α±

−l,0 c
(132|...)±
l+m,2

]

.

(A.13)

A.4 Relations for bubble coefficients

Finally, we use the BCJ identities in order to determine relations between the coefficients

of the bubble contributions shown in figure 13. The double cut with external ordering

{1, 2, 3 . . . , n} is given by

C±
123|4...n = Atree

5

(

−l±1 , 1, 2, 3, l
±
4

)

Atree
n−1

(

−l±4 , P4···n, l
±
1

)

, (A.14)

whereas C±
132|4...n and C±

213|4...n are obtained from the corresponding permutations of {1,2,3}.
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Figure 13. Bubble topologies for the cuts C123|4...n, C132|4...n and C213|4...n.

Hence, thanks to (2.32), we can identify

C±
213|4...n =

(

P 2
l±4 2

+ P 2
23 − µ2

)

C±
123|4...n +

(

P 2
l±4 2

− µ2
)

C±
132|4...n

(

P 2
−l±1 2

− µ2
) . (A.15)

As we did in section 3.4, after taking the t → ∞ limit of the two ratios of propagators,

P 2
l±4 2

− µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

t→∞

=
0

∑

l=−2

−l
∑

m=0

α±
l,m,0 t

l ym +
µ2

t2
α±
−2,0,2 +O

(

1

t3

)

,

P 2
l±4 2

+ P 2
23 − µ2

P 2
−l±1 2

− µ2

∣

∣

∣

∣

∣

∣

t→∞

=
0

∑

l=−2

−l
∑

m=0

β±
l,m,0 t

l ym +
µ2

t2
β±
−2,0,2 +O

(

1

t3

)

, (A.16)

we can substitute the expansion (3.35) for the three cuts in (A.15) and determine the

coefficients of C±
213|4...n from the knowledge of the ones of C±

123|4...n and C±
132|4...n,

c
(213|...)±
l,m,0 =

2
∑

r=l





min[m,2−r]
∑

s=max[0,l+m−r]

(

α±
l−r,m−s,0 c

(132|...)±
r,s,0 + β±

l−r,m−s,0 c
(123|...)±
r,s,0

)



 , (A.17a)

c
(213|...)±
0,0,2 = α±

−2,0,2 c
(132|...)±
2,0,0 +α±

0,0,0 c
(132|...)±
0,0,2 +β±

−2,0,2 c
(123|...)±
2,0,0 +β±

0,0,0 c
(123|...)±
0,0,2 . (A.17b)
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