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1 Introduction

As far as known nature encompasses four fundamental forces. Three of these, the electro-

magnetic as well as the strong and weak nuclear forces are contained within the standard

model of particle physics. This model is formulated as a Lagrangian perturbative quantum

field theory, with a strong focus on symmetries such as those of special relativity. The

fourth force of nature is gravity. As a theory of nature this is encapsulated in the theory of
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general relativity. Although this can be formulated as a classical Lagrangian field theory,

perturbative quantisation of this theory leads to difficulties, usually captured in the phrase

that “the theory is not renormalisable”. Hence perturbative quantisation does not seem

to lead to a consistent effective quantum theory at experiment-accessible length scales:

degrees of freedom at arbitrarily high energy scales which could influence low energy pro-

cesses by the rules of quantum mechanics cannot be shown to decouple. Technically, this

is seen by inspecting ultra-violet divergences arising in loop diagrams within the Feynman

graph approach to perturbation theory.

However, the Feynman graph approach to perturbative Einstein gravity is technically

exceedingly complicated. Starting with the Einstein Hilbert Lagrangian,

SEH =

∫
dxD
√
−gR(g) (1.1)

one expands the metric field (g) around a flat background (G),

g = G+ h (1.2)

After choosing an appropriate gauge, graviton scattering amplitudes may be computed.

The obtained expressions are generically a complicated mess. This is the result of the

breaking of manifest local Lorentz invariance which is restored only in the final expression.

Although the problem of calculational complexity can be pushed back by roughly a loop

order using the background formalism, it is endemic to off-shell approaches to perturbative

quantum gravity.

The textbook way of approaching ultra-violet divergences in loop diagrams is therefore

an estimate based on inspection of individual terms in the perturbative expression. Under

the assumption there is no cancellation between terms, this gives the overall divergence.

Any cancellation would naturally be associated to a symmetry. The archetypical example

is the computation in [1] of the one-loop UV-divergent terms in pure Einstein gravity.

They found the sum cancels as a consequence of diffeomorphism invariance: there are

no diffeomorphism invariant terms in the Lagrangian which cannot be written as total

derivatives. Terms of this type are loosely referred to as counter-terms. For a long period

the consensus view has been however that Einstein gravity in four dimensions is intrinsically

non-renormalisable and that incurable divergences will set in. At two loops this has been

verified explicitly [2, 3], see [4] for a recent discussion. Adding Poincaré supersymmetry

was originally expected to improve the UV-behaviour to a divergence at three loops.

Starting with [5], there has been a remarkable shift in the canonical point of view for

UV-divergences in especially maximally supersymmetric gravity theories. The generally

accepted view, see for instance [6] for a particularly clear approach, is that these most

supersymmetric theories potentially diverges at seven loops in four dimensions (and at five

loops in five dimensions). Various related results for less supersymmetric theories of gravity

have been worked out. Even more interesting than these explicit results is the structure

that drives these cancellations dubbed “color-kinematic duality” [7, 8].

Color-kinematic duality is a precise statement about the structure of the gravity inte-

grand and its relations to that of a Yang-Mills theory. This had appeared already before

in another guise which is of interest for the current paper. For free fields it is obvious that
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spin-two field occur within the tensor product of two spin-one fields. In string theory, it is

known [9] that this observation stretches to the full tree-level S-matrix. Basically, the left

and right-moving modes of the string make up a ‘left’ and a ‘right’ open string contribution

to the worldsheet correlation function. Most of the work is in showing how to disentangle

the integrations over the closed string tree level worldsheet into two integrations over the

left and right contributions and rewriting the result as sum over products of tree level open

string amplitudes. In the limit that the string tension becomes very large compared to the

typical scale of the momentum invariants, roughly α′ → 0, the string S-matrix reduces to

the S-matrix of Einstein gravity, coupled to an anti-symmetric two-tensor and a dilaton

(the other two fields in the tensor product of two spin-one fields). The latter theory is

sometimes referred to as ‘N = 0 supergravity’. The S-matrix of this theory inherits its

double copy structure from the string theory. Understanding this factorisation property

of the tree-level S-matrix from a purely field theory point of view has long been lacking.

Color-kinematic duality is one way of making the factorisation manifest on a technical level

in field theory.

However, color-kinematic duality in its current form will only ever confirm the presence

or absence of divergences at a specific, fixed order amplitude (see [10] for an attempt to go

beyond). Even if a divergence is found, this does not necessarily mean the theory is not

renormalisable: there could be a symmetry relating all counter-terms. See [11] for specu-

lation in this direction for gauge theory. A second, orthogonal and so far less influential

way an understanding of a factorisation property in Einstein gravity has been achieved

is through the action, see [12] and especially [13] (see also [14]). In the approach of [13]

general relativity is rewritten to incorporate string theory T-duality at the field theory

level. The result is known as ‘double field theory’ (DFT), see e.g. [15] for a review. Po-

tentially, this is a much more powerful way of approaching the question of UV-divergences

as actions are usually simpler to handle than explicit scattering amplitudes. In this paper

we push development of the double-field theory approach to understanding perturbative

gravity further towards maturity.

This paper is organised as follows: in section 2 we establish our notation and introduce

the double field theory formulation of ‘N = 0 supergravity’. This is followed by a discussion

of the Feynman graph perturbation theory in a covariant gauge in section 3. Of special

importance is the analysis of unitarity in this gauge, which is not manifest. Several explicit

calculations are presented. In the next section, section 4, we introduce lightcone gauge and

work out the propagator in this gauge. Next, we use this to analyse large BCFW shift

behaviour. Although our analysis does not reproduce the full known large shift behaviour,

enough is obtained to show that most of the N = 0 tree level S-matrix (including all

scattering amplitudes involving only gravitons) is reproduced by the double field theory

perturbation theory. Some interesting patterns of cancellations are pointed out which hold

for the gravity integrand. A discussion and conclusion sections ends the main presentation.

Of independent interest may be appendix C, which also includes a computation of the

Einstein-Hilbert lightcone gauge propagator, a result we have been unable to locate in

the literature.

A Mathematica notebook available at this url contains many explicit details of the

computations reported here.
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2 Review of double field theory in a flat background

In this section the double field theory Lagrangian describing metric perturbations around a

flat background is reviewed, roughly following [13] (see also [14]). The low-energy effective

action of closed bosonic string theory in D-dimensional spacetime is

S =

∫
dx
√
ge−2φ

(
R+ 4 ∂iφ∂

iφ− 1

12
H2

)
, (2.1)

where R is the Ricci-scalar of the metric gij with “mostly plus” signature, Hijk = 3∂[ibjk] is

the 3-form field strength of the 2-form bij , and φ is the dilaton field. Moreover, here one ab-

breviates H2 = gikgjlgpqHijpHklq. In principle, this action could be used to compute (tree-

level) scattering amplitudes for quantum excitations around a constant flat background,

gij(x) = Gij + g
(fluc.)
ij (x) , bij(x) = Bij + b

(fluc.)
ij (x) , φ(x) = 〈φ〉+ φ(fluc.)(x) , (2.2)

where Gij is the D-dimensional background Minkowski metric again with “mostly plus” sig-

nature and Bij , 〈φ〉 are the constant backgrounds of the B-field and dilaton, respectively.1

The derivation of Feynman rules in gravity theories such as (2.1) is almost arbitrarily la-

borious due to an infinite number of interaction terms in the Lagrangian. At the same

time, unlike the S-matrix that is protected by what is sometimes called the “equivalence

theorem” (stated in, e.g. [3] and reference [25] therein), Feynman rules and their resulting

individual Feynman diagrams do not have an intrinsic meaning for they change with field

redefinitions. As a consequence, a better choice of field redefinitions can possibly simplify

the computation of Feynman rules and Feynman diagrams. In what follows we will sum-

marise the field redefinitions that lead to such a simplification for (2.1) and also circumvent

the need to explicitly expand the density factor
√
g in D dimensions.

In [13] it has been pointed out that another equivalent double field theoretical for-

mulation of (2.1) exists with a certain index factorisation property that is guaranteed by

O(D,D) “T-duality”: after a (non-linear) field redefinition tensor fluctuations are described

by a field eij where i (j) is called a left-index (right-index), respectively, and the Lagrangian

does not have terms with mixed left-right index contractions. The DFT extension [16, 17]

of (2.1) is given in terms of objects Eij = gij + bij and a density d with
√
ge−2φ = e−2d

that both depend on the “doubled spacetime coordinates” (x̃, x). Its action reads

S =

∫
dxdx̃ e−2d

[
− 1

4
gikgjlDpEklDpEij +

1

4
gkl
(
DjEikDiEjl + D̄jEkiD̄iElj

)
+
(
Did D̄jEij + D̄idDjEji

)
+ 4DidDid

]
, (2.3)

where

Di =
∂

∂xi
− Eij

∂

∂x̃j
D̄i =

∂

∂xi
+ Eij

∂

∂x̃j
, (2.4)

and indices are raised by the inverse of the symmetric part of E .

1Note that without loss of generality constant backgrounds Bij and 〈φ〉 could be set to zero.
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As shown in [17], the DFT Lagrangian (2.3) is an extension of (2.1) in that setting

all fields independent of x̃i, i.e. ∂̃ = 0, the two Lagrangians are equivalent (up to a total

derivative which in perturbation theory around a flat background one may safely discard).

For fluctuations eij defined as follows,

Eij = Gij +Bij +

((
1− 1

2
eG−1

)−1
)
i

k

ekj , (2.5)

the DFT Lagrangian exhibits the left-right index factorisation [13]. Note that the factori-

sation at the level of the Lagrangian descends to a factorisation at the level of Feynman

rules. The existence of such factorised Feynman rules fits into the KLT [9] picture where

tree-level closed string amplitudes factorize into (sums of) products of two tree-level open

string amplitudes. In the limit α′ → 0 this decomposition descends to one in which ampli-

tudes of (2.1) are given in terms of products of two color-ordered amplitudes associated to a

“left” and “right” Yang-Mills gauge theory, respectively. However, while such relations can

be explicitly checked for low leg numbers it turns out that the KLT decomposition is not

manifest at the level of the double field theory Lagrangian despite the index factorisation.

Subsequently, rather than using the DFT action (2.3) and the non-linear field redefini-

tion (2.5), on a technical level it is even more convenient to use another equivalent action

written in terms of Siegel’s frame fields [18] (his formalism is nicely reviewed in [13]). This

is due to the fact that in expanding (2.3) to a given order in eij at intermediate steps one

has to deal with interaction terms that violate the left-right index factorisation although

eventually such terms all cancel out. In contrast, it is by construction that Siegel’s action

has manifest index factorisation. Siegel’s Lagrangian reads

1

4
L =− 1

2
Φ2GabG c̄d̄

(
GcdeaM∇cec̄MebN∇ded̄N − Gcdec̄M∇aecMed̄N∇debN

+ Gāb̄eaM∇āec̄MebN∇d̄eb̄N
)

+ ΦGabG c̄d̄
(
ea
M∇c̄ed̄M∇bΦ− ec̄M∇aebM∇d̄Φ

)
− 2Gab∇aΦ∇bΦ , (2.6)

where

ea
M∇bec̄M = Dbhac̄ − hbd̄Dd̄hac̄, ∇aΦ = Daϕ− hab̄Db̄ϕ,

ec̄
M∇aebM = −Dahbc̄ + had̄D

d̄hbc̄, ∇āΦ = Dāϕ+ hbāD
bϕ ,

ea
M∇b̄ec̄M = Db̄hac̄ + hdb̄D

dhac̄ , (2.7)

are given in terms of fields hab̄ and ϕ. The derivatives D will be identified below (after

solving the strong constraint, see also [13]). Furthermore, one has Φ = e−d = 1 + ϕ and

tangent space metrics

Gab = 〈Gab〉+ ha
c̄hbc̄, Gāb̄ = 〈Gāb̄〉+ hcāhcb̄ , (2.8)

whose inverses are given by

G−1 = 〈G〉−1
∞∑
n=0

(−1)n
(
h〈Ḡ〉hT 〈G〉−1

)n
(2.9)

– 5 –



J
H
E
P
0
4
(
2
0
1
6
)
1
2
0

and similarly for Ḡ. Unbarred/barred “tangent” indices are raised or lowered with metrics

Gab, Gāb̄, . . ., respectively. Note that in this formulation the only infinite expansions arise

from metric inverses. Again, the equivalence of the two theories holds only up to total

derivative terms in the Lagrangian [13]. However, since we aim at describing scattering

amplitudes in a flat background, such total derivative terms are eventually irrelevant due

to momentum conservation.

In order to establish the connection between the actions (2.6) and (2.3), objects with

“tangent” GL(D) × GL(D) indices have to be translated to ones with “world indices”.

Furthermore, we are free to choose the SO(D,D)-frame in which fields do not depend on

the extra coordinates x̃i. Based on [13], we thus arrive at the following dictionary:

hab̄ → eij , hab̄ → − 1

4
eij ,

〈Gab〉 → − 2Gij , 〈Gāb̄〉 → 2Gij , 〈Gab〉 → − 1

2
Gij , 〈Gāb̄〉 → 1

2
Gij

Da → ∂i , Dā → ∂i , Da → − 1

2
∂i , Dā → 1

2
∂i . (2.10)

In these replacement rules the order of indices is preserved in that a first/second index

remains first/second and, hence, the manifest index factorisation in (2.6) descends directly

to the equivalent DFT Lagrangian (2.3) (e.g.: Dahbc̄Dahbc̄ → 1
8∂

iejk∂iejk).

3 Perturbation theory: covariant gauge

The recipe for the computation of scattering amplitudes from a given Lagrangian is con-

tained in the LSZ formalism. This instructs one to compute a time-ordered correlation

function of fields, denoted G(1, 2, 3, . . .), amputate the external propagators and take the

limit in which the momentum of the participating fields are on-shell, e.g.

A(1, 2, 3, . . . ) =
∏
i

lim
pi→m2

i

G(i, i)−1G(1, 2, 3, . . .) (3.1)

Behind this recipe is a careful analysis of the degrees of freedom contained in the off-

shell fields of the theory. For double field theory, just as for any theory with a local gauge

invariance, an ambiguity arises as there are more degrees of freedom in the off-shell fields as

there are for the on-shell field content. Hence one should carefully specify the prescription

for the external fields.

To compute the needed correlation functions in the specific example under study, one

first expands the DFT Lagrangian using (2.6) and (2.10) to a given order in eij . The kinetic

terms in the Lagrangian2 read

L(2) =
1

4
eijMij

mnemn + eij∂i∂jϕ+ ϕ∂i∂jeij − 4ϕ∂i∂iϕ , (3.2)

where

Mij
mn = δmi δ

n
j ∂

k∂k − δnj ∂i∂m − δmi ∂j∂n . (3.3)

2For convenience, we multiply the Lagrangian from [13] by an overall factor of 4. Also note our convention

that a derivative always only acts to the field immediately to its right.
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After adding the gauge-fixing term of [13] that in terms of “world indices” reads

Lgauge-fixing =
1

4
ejk
(
∂k∂

nδmj + ∂j∂
mδnk

)
emn + 2∂jϕ∂ieij − 2∂iϕ∂iϕ , (3.4)

one obtains

L(2) + Lgauge-fixing =
1

4
eij∂k∂keij − 2ϕ∂i∂iϕ (3.5)

from which the propagators can easily be derived. Note that the kinetic term of the field ϕ

has the wrong sign3 which after quantisation would lead to ϕ-excitations of negative energy.

The existence of this negative energy excitation is reminiscent of the time-like compo-

nent of the vector boson Aµ in QED (or more generally Yang-Mills theory). The unphysical

part of the excitation connected to ϕ must never be produced in a physical scattering pro-

cess. In Yang-Mills theory this is guaranteed by gauge invariance. The story in double

field theory will turn out to be more intricate, see below in subsection 3.3.

The cubic interaction terms are (subsequently, if not stated differently all indices are

“world indices” despite using letters from the beginning of the alphabet)

L(3)
eϕϕ =− ϕ(∂jeij∂

iϕ+ ∂ieij∂
jϕ)− 4eij∂

iϕ∂jϕ ,

L(3)
eeϕ =

1

2
ϕ∂xeab∂yecdT

abcdxy
1 +

1

2
eij∂xeab∂yϕT

abijxy
2 ,

L(3)
eee =

1

4
eij∂xeab∂yecdT

abcdijxy
3 , (3.6)

where the following spacetime tensors are defined in terms of the background Minkowski

metric tensor Gij .

T abcdxy1 = GayGbdGcx −GacGbdGxy +GacGbyGdx

T abijxy2 = GayGbjGix +GaxGbjGiy +GaiGbxGjy +GaiGbyGjx

T abcdijxy3 = GacGbdGixGjy −GaiGbdGcxGjy −GacGbjGdxGiy (3.7)

Note that cubic interactions of the form ϕ3 are absent.

As to quartic couplings we will furthermore explicitly give the h4 (e4) terms as well

as the ones with h3ϕ (e3ϕ) because these are the ones needed for explicitly computing the

tree-level amplitudes with up to five physical legs. Since they are not given in [13] we first

also give their expression in terms of “tangent indices”:

L(4)
hhhh = 2

(
− hcēDēhac̄h

cf̄Df̄h
ac̄ + haēD

ēhcc̄h
cf̄Df̄h

ac̄ − heāDehac̄h
fc̄Dfh

aā

+Dchac̄Ddh
ac̄hcēh

dē −Dahcc̄D
dhac̄hcēhdē +Dchac̄D

chad̄hec̄hed̄

−Dbhdc̄Ddhbd̄hec̄h
ed̄ +Dchac̄D

chbc̄haēhbē −Dahcc̄D
chbc̄haēhbē

+Dāhac̄D
c̄hab̄heāheb̄ +Dāhac̄D

d̄haāhec̄hed̄ +Dāhac̄D
c̄hbāhaēhbē

)
(3.8)

L(4)
hhhϕ = 8ϕ

(
− heāDehac̄D

c̄haā − haēDchac̄Dēhcc̄ + hcēD
ēhac̄D

chac̄
)

− 4Deϕ
(
hab̄hec̄D

b̄hac̄ + hac̄h
ad̄Dc̄hed̄ + hab̄heb̄D

c̄hac̄

)
− 4Dēϕ

(
haēhbc̄D

bhac̄ + hcc̄hcēD
ahac̄ + hab̄h

bb̄Dahbē

)
(3.9)

3The spacetime metric has signature (−+ . . .+).
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In terms of “world indices” one finds:

L(4)
eeee =

1

16
eab∂xecd∂yeefeghT

abcdefghxy
4 , (3.10)

and

L(4)
eeeϕ = −1

2
ϕ∂xeab∂yecdeefF

abcdefxy
1 − 1

4
∂yϕ∂xeabecdeefF

abcdefxy
2 , (3.11)

with the spacetime tensors

T abcdefghxy4 =−GagGbyGceGdfGhx +GacGbyGdfGegGhx +GayGbdGceGfhGgx

−GayGbhGceGdfGgx +GayGbhGcgGdfGex −GagGbfGceGdhGxy

+GagGbfGcyGdhGex −GaeGbhGcgGdfGxy +GaeGbhGcyGdfGgx

+GagGbfGceGdyGhx +GagGbyGceGdhGfx +GaeGbhGcgGdyGfx , (3.12)

F abcdefxy1 =GaeGbdGcxGfy +GacGex
(
GbyGdf −GbdGfy

)
F abcdefxy2 =GaeGbyGcxGdf +GacGbxGdfGey +GayGbfGceGdx

+GacGbfGdyGex +GacGbfGdxGey +GaxGbdGceGfy . (3.13)

Note that despite transferring unbarred and barred “tangent indices” to “world indices”,

the factorisation property of the DFT Lagrangian — first indices of the eij are never

contracted into second indices of the eij — is maintained. Furthermore, we double-checked

the quartic e couplings in (3.10) by directly expanding the DFT action (2.2) of [13] around

a constant background and using the non-linear field redefinition (2.12) of [13].

As to quintic couplings we only need the h5(e5) interaction terms for the explicit

computation of the e5 scattering amplitude. In terms of both “tangent indices” and “world

indices” one finds

L(5)
h5

= 4
(
heāh

iāhib̄D
ehac̄D

c̄hab̄ + heāh
ic̄hid̄D

ehac̄D
d̄haā + hab̄h

eāhbb̄Deh
ac̄Dc̄hbā

+ haēhab̄h
bb̄Dchbc̄Dēh

cc̄ − hab̄hbb̄hcēDēhac̄Dchbc̄ + haēh
cb̄hdb̄D

dhac̄Dēhcc̄

− hcēhcb̄hdb̄Dēhac̄D
dhac̄ + haēhic̄h

id̄Dchad̄Dēh
cc̄ − hcēhic̄hid̄Dēhac̄D

chad̄
)
,

(3.14)

which yields

L(5)
e5

=
1

16
eabecdeef∂xegh∂yeijT

abcdefghijxy
5 (3.15)

with the spacetime tensor

T abcdefghijxy5 =GgiGaeGbyGcxGdfGhj +GgeGiaGbfGcxGdyGhj −GgaGbyGcxGdfGieGhj

−GgaGbdGceGfyGhjGix −GgiGaxGjbGceGhdGfy

+GgiGaxGbyGceGjdGhf −GgiGaxGbfGceGjdGhy

−GgeGiaGbfGcxGjdGhy −GgaGbyGceGjdGhfGix . (3.16)

The Mathematica notebook at this url can be used to further expand the Lagrangian,

as required.
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3.1 Feynman rules

From the aforementioned terms in the Lagrangian we can read off the following Feynman

rules. The propagators for internal lines with momentum p read

ϕ i

4p2
,

ij mn
e − 2i

p2
GimGjn . (3.17)

Here, vertices are always defined with outgoing momenta labelled k1, k2, . . . and e-legs are

labelled with their two spacetime indices in order to distinguish them from ϕ-legs. The

cubic vertices read:

ij

k1

k2 k3

−2iki1k
j
1 + 4i(ki2k

j
3 + ki3k

j
2) ,

ab

cd

k1

k2 k3

− i
2

(
k1xk2y(T

abcdxy
1 − T abcdxy2 + T cdabyx1 − T cdabyx2 )

−k1xk1yT
abcdxy
2 − k2xk2yT

cdabxy
2

)
,

ab

cd ij

k1

k2 k3

− i
4

(
k1xk2y(T

abcdijxy
3 + T cdabijyx3 − T abijcdxy3 − T cdijabyx3

−T ijcdabxy3 − T ijabcdyx3 )− k1xk1y(T
abijcdxy
3 + T ijabcdxy3 )

−k2xk2y(T
cdijabxy
3 + T ijcdabxy3 )

)
.

(3.18)

The e4-vertex is

ab

k1

cd

k2

gh

k4

ef

k3

− i

16

(
k2xk3yT̃

abcdefghxy
4 + k2xk4yT̃

abcdghefxy
4 + k3xk4yT̃

abefghcdxy
4

+ k1xk2yT̃
efabcdghxy
4 + k1xk3yT̃

cdabefghxy
4 + k1xk4yT̃

cdabghefxy
4

)

given in terms of

T̃ abcdefghxy4 = T abcdefghxy4 + T ghcdefabxy4 + T abefcdghyx4 + T ghefcdabyx4 . (3.19)
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Vertices for the e3ϕ and e5 interactions

ab

k1

cd

k2

k4

ef

k3

ab

cd

ef gh

ij
k1

k2

k3 k4

k5

(3.20)

are not given explicitly but they can be found in the Mathematica notebook at this url.

They have 54 and 1080 terms, respectively.

In the computation of the tree-level e4-scattering amplitude it is advantageous to

simplify already the cubic vertices e2ϕ and e3 by using (A) momentum conservation in

order to eliminate the dependence on what is to become an internal momentum and (B)

transversality of the polarisation tensors, ξijki = ξijkj = 0, at each future external leg.

While these manipulations drastically reduce the number of terms in the e4-scattering

amplitude, at this stage from just the DFT Lagrangian it may not be directly clear why

transversality is expected to hold given that the gauge symmetry is of a completely different

kind and, hence it is not immediate that ordinary Ward identities should hold. On the

other hand, we know that the DFT Lagrangian is physically equivalent to the low-energy

theory (2.1) of the closed bosonic string where the transversality must be invoked owing

to conformal symmetry on the world sheet. This issue is resolved below in subsection 3.3.

Taking transversality as a given for now, one finds

abon

cdon

k1

k2 k3

ik1 · k2G
acGbd ,

abon

cdon ij

k1

k2 k3

i

4

(
2kc1k

d
1G

aiGbj − kd1ki1GacGbj − kc1k
j
1G

aiGbd + 2ka2k
b
2G

ciGdj

−kb2ki2GacGdj − ka2k
j
2G

bdGci − 2kb2k
c
1G

aiGdj

+kb2k
i
1G

acGdj − 2ka2k
d
1G

bjGci + kd1k
i
2G

acGbj

+ka2k
j
1G

bdGci − ki2k
j
1G

acGbd + kc1k
j
2G

aiGbd − ki1k
j
2G

acGbd
)
.

(3.21)

Note that the e4-vertex with four on-shell legs only slightly simplifies by means of momen-

tum conservation. It consists of 132 different terms.

3.2 Explicit amplitudes at tree level

3.2.1 DFT tree-level 3-point amplitude and KLT

We have already stated that ϕ-scattering should not occur in order to avoid energetic

instabilities. In what follows we will give another reason: one can see already in 3-point
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amplitudes that setting external leg factors for ϕ to zero is indeed required since the

tree-level e3-amplitude is precisely the KLT 3-tensor amplitude while the “eϕ2-amplitude”

would otherwise be non-zero. In other words, the complete tree level S-matrix of N = 0

SUGRA at three points is contained in the e3 derived amplitude.

To amplify this point, the tree-level would-be scattering amplitude for eϕ2-scattering

derived from direct application of the LSZ formalism is

Aeϕ2 ∝ ξij(k1)ζ(k2)ζ(k3)k2ik2j , (3.22)

which for arbitrary kinematical configurations vanishes only if the external leg factors

ζ associated to ϕ vanish. Furthermore note that e2ϕ-scattering vanishes due to special

kinematics. As to e3-scattering, using momentum conservation and transversality one finds

Ae3 = Aabcdef
e3

ξab(k1)ξcd(k2)ξef (k3)

∝
(
− 2ka2k

b
2G

ceGdf + 2kb2k
c
1G

aeGdf − kb2ke1GacGdf + kb2k
e
2G

acGdf

+2ka2k
d
1G

bfGce − 2kc1k
d
1G

aeGbf + kd1k
e
1G

acGbf − kd1ke2GacGbf

−ka2k
f
1G

bdGce + kc1k
f
1G

aeGbd + ke2k
f
1G

acGbd + ka2k
f
2G

bdGce

−kc1k
f
2G

aeGbd + ke1k
f
2G

acGbd
)
ξab(k1)ξcd(k2)ξef (k3) , (3.23)

which up to an overall constant equals the KLT expression,(
A partial

3 (1, 2, 3)
)ace (

A partial
3 (1, 2, 3)

)bdf
ξab(k1)ξcd(k2)ξef (k3) , (3.24)

with the partial Yang-Mills theory amplitudes defined in appendix D. Implicitly, here we

also used the KLT relation for the polarisation tensors

ξab(k1) = ξa(k1)ξb(k1) , . . . . (3.25)

An obvious consequence is that the e3-amplitude satisfies the usual Ward identities,

k1aAabcdefe3
ξcd(k2)ξef (k3) = 0 ,

k1bAabcdefe3
ξcd(k2)ξef (k3) = 0 , (3.26)

(cf. appendix B). In what follows we will always use ζ(k) = 0 for external leg factors.

This naively breaks perturbative unitarity: there are graphs with ϕ exchange and non-zero

residues for six points and above. This issue is resolved in subsection 3.3.

3.2.2 DFT tree-level 4-point amplitude

The tree-level e4-amplitude is given by the e4-vertex as well as e and ϕ exchange diagrams,

+
4∑
i=2

1

i

e
+

4∑
i=2

1

i

ϕ

(3.27)
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where spacetime indices are suppressed. In our representation it consists of 669 terms.

Using transversality of polarisations and momentum conservation it can be written as the

KLT expression in terms of partial Yang-Mills amplitudes defined in appendix D,

Ae4 = Aabcdefgh
e4

ξab(k1)ξcd(k2)ξef (k3)ξgh(k4)

∝ s
(
Apartial

4 (1, 2, 3, 4)
)aceg (

Apartial
4 (1, 2, 4, 3)

)bdhf
ξab(k1)ξcd(k2)ξef (k3)ξgh(k4) ,

(3.28)

wher s = (k1 + k2)2 is the Mandelstam invariant. As a consequence, the Ward identities

are satisfied. In fact, in the DFT representation,

k1aAabcdefghe4
ξcd(k2)ξef (k3)ξgh(k4) = kb1A

′cdefgh
e4

ξcd(k2)ξef (k3)ξgh(k4) ,

k1bAabcdefghe4
ξcd(k2)ξef (k3)ξgh(k4) = ka1 A

′cdefgh
e4

ξcd(k2)ξef (k3)ξgh(k4) , (3.29)

which due to transversality vanish upon contraction with ξb(k1), ξa(k1), respectively. Note

that it is due to (3.21) that no poles arise from ϕ-exchange.

3.2.3 DFT tree-level 5-point amplitude

The tree-level e5-amplitude has been computed from the following 81 Feynman diagrams.

+
∑
i<j

i

j

e +
∑
i<j

i

j

ϕ

+
1

2

5∑
i=1

∑
j<k;j,k 6=i

j

k

e

i

e
+

1

2

5∑
i=1

∑
j<k;j,k 6=i

j

k

ϕ

i

ϕ

+

5∑
i=1

∑
j<k;j,k 6=i

j

k

e

i

ϕ
+

5∑
i=1

∑
j<k;j,k 6=i

j

k

ϕ

i

e

(3.30)

Here, i, j, k ∈ {1, 2, 3, 4, 5} label the legs while their spacetime indices are suppressed. The

factors of 1
2 compensate for summing identical Feynman diagrams. In our representation

the e5-amplitude is given in 127.920 terms. Note that internal ϕ-lines always connect

to a three-vertex with two on-shell external e-legs. Hence, due to (3.21) no poles arise

from ϕ exchange. This is no longer true in the case of the e6-amplitude and beyond. We

numerically checked that the Ward identity is satisfied.
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3.2.4 On higher points

From the above computation it is easy to see that in the perturbative computation using

the double field theory, although much more efficient than the Einstein-Hilbert Lagrangian

complexity still increases drastically with increasing numbers of legs. Although we have

searched hard for a organising principle of these Feynman graphs into a sum over squares

of Yang-Mills amplitudes as is known to exist from the KLT relations, we have been unable

to find one. We interpret this to mean that the double field theory action does not make

color-kinematic duality manifest - at least not in this form. It would be very interesting to

find an organising principle. This also means that the motivation to push for higher order

results is lacking, although our Mathematica notebook at this url allows one to push on

using Feynman diagrams, if a motivation would be found.

3.3 On-shell gauge invariance in double field theory and perturbative unitarity

The analysis above leaves several issues to be resolved. One is the proof of transversality:

that polarisation vectors have to be orthogonal to the momentum,

ki,µξ
µ
i = 0 (3.31)

A second issue is the on-shell gauge invariance of the theory. Both are closely related to a

third issue: the question of perturbative unitarity.

Starting with on-shell gauge invariance, what is needed is a direct proof in DFT that

replacing one polarisation vector for the eij fields by its on-shell momentum makes the

scattering amplitude vanish. As a warm-up it is useful to note that even in Yang-Mills

theory the derivation of ‘transversality’ involves the gauge transformation only indirectly.

One considers there instead the Schwinger-Dyson equation for a single off-shell gluon field,

〈∂µFµνX〉bLSZ= 0 (3.32)

where X stands for the other on-shell legs. Isolating the single particle pole in this expres-

sion which survives LSZ reduction and dropping the contact terms of the other fields in

the correlator which do not have single particle poles in their momenta allows one to only

consider the linear term,

〈
(
p2Aν − pνpµAµ

)
X〉bLSZ= 0 (3.33)

Moreover, the first term will also not contribute a single particle pole. Hence, for non-zero

momentum, on-shell gauge invariance or transversality for Yang-Mills scattering amplitudes

follows.

In the double field theory this derivation can be repeated, with minor modifications.

The starting point is the Schwinger-Dyson equation for the εij field that follows from (3.2)

〈
(

1

2
Mij

mnemn + 2∂i∂jϕ

)
X〉bLSZ= 0 (3.34)

where all terms with multi-particle but not single particle poles in the off-shell leg have

been eliminated. Now contract this field equation with ξi, the polarisation vector of the

off-shell leg. Then, all terms proportional to pi will get cancelled and we obtain

〈
(
ξipjeij

)
X〉bLSZ= 0 (3.35)
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Choosing to contract equation (3.34) with ξj leads to the conjugate result. The upshot of

this simple analysis is that scattering amplitudes computed with the double field theory

action will obey on-shell Ward identities.

Actually, there is more information in equation (3.34). Contracting this with momen-

tum pi and pushing through the derivation gives

〈
(
pipjeij

)
X〉bLSZ= 0 (3.36)

Finally, consider a vector q such that q · p 6= 0. Then, contracting with qiqj gives after

dropping terms which do not survive the LSZ limit,

〈
(
qipjeij + 2(q · p)ϕ

)
X〉bLSZ= 0 (3.37)

Equations (3.36) and (3.37) play a crucial role in proving unitarity of the DFT in the

gauge employed in this section. Consider for this the residue at the pole of an internal

propagator. This residue can, in the employed covariant gauge, be written in terms of

correlators as

Res = lim
p2→0

−1/2〈XLeij〉p2p2〈eijXR〉+ 4〈XLϕ〉p2p2〈ϕXR〉 (3.38)

Here the XL and XR stand for the remaining parts of the correlators. Note the numeric

factors are a results of the non-standard normalisations of the propagators. This is almost,

but not quite, the LSZ computation for the scattering amplitudes on left and right hand

side. The difference is the metric contraction, which needs to be rewritten into sums over

polarisations. By completeness using polarisation vectors ξ in a lightcone gauge specified

by a lightcone vector q,

ηij =

(∑
ξiξj

)
+
piqj + pjqi

p · q
(3.39)

holds, where the sum ranges over all polarisations. In Yang-Mills theory in Feynman-’t

Hooft gauge, the second term drops out by on-shell gauge invariance. Using this formula,

one can swap metric contractions for sums over polarisation vectors. Using equations (3.36)

and (3.37) it follows that equation (3.38) gives

Res = lim
p2→0

−1/2〈XLeij〉p2

(∑
ξiξk

)(∑
ξjξl

)
p2〈eklXR〉 (3.40)

which reduces to left and right scattering amplitudes computed using only the ‘eij ’ fields.

The minus sign of the ϕ propagator is crucial to make this happen!

The analysis shows that if scattering amplitudes are computed using only the ‘eij ’ fields

and LSZ on the outside legs, the residue of internal propagators also only involve scattering

amplitudes calculated using this prescription. The ϕ is therefore a ghost field, designed to

kill off an unphysical degree of freedom. Novel is that this ghost field contributes already

at tree level. We are not aware of a similar type tree level ghost field. The same analysis

applies to residues of cut loop propagators. This saves perturbative unitarity in this gauge:

only physical residues appear.
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Finally, let us study transversality: the property that the polarisation vectors must be

transverse. As was shown above, in the covariant gauge the propagating degrees of freedom

which appear as residues of kinematic poles are the transverse modes only. Hence, the mode

pµξ
µ is not a physical degree of freedom and must be eliminated on physical grounds. More

prosaically, if one leaves it in, one obtains non-gauge invariant quantities: for instance, the

three point function computed in the covariant gauge would give a different result to the

three point function computed in the lightcone gauge explored below.

3.4 String corrections in double field theory: local contributions

A question which has been attracting some attention recently, e.g. in [19–21] concerns string

corrections to general relativity, written in double field theory language. In this context

we note that a computation which becomes straightforward once unitarity is resolved is to

construct certain terms in the Lagrangian which correspond to ‘local’ scattering amplitudes.

Consider for instance the first correction to the closed type II superstring effective

action,

∼ (α′)3R4 (3.41)

which is a certain contraction of the Riemann tensor [22]. These terms in perturbation

theory will lead to a plethora of Feynman graphs: at order (α′)3 these contain a single vertex

from the above Lagrangian, dressed with Einstein-Hilbert-generated graphs. However for

four point amplitudes, and for four points only, this particular term only contributes a local

Feynman graph: one without internal propagators. For terms of this type the connection

between Lagrangian and amplitude is most direct. Similarly, a Rn type term, perhaps

accompanied by derivatives, will contribute locally to a n-point amplitude.

Locally-contributing terms in the Lagrangian can easily be written down in the double

field theory. The key observation is that in lightcone gauge, one only needs to consider

terms which are a function of eij . Hence to reproduce the four point scattering amplitude

of four gravitons sourced by the term in equation (3.41) for instance, one can use the

known form

L4 gravitons+ = T ijklT abcde1,iae2,jbe3,kce4,ld (3.42)

where the tensors T are defined for instance in [22]. In fact, all superstring four point

scattering amplitudes are of this form. Hence, the right hand side of this expression forms

the complete four point, all e interactions of the double field theory. Of course, there can

be more four point terms in the action involving at least one ϕ field. These will however

not contribute to the scattering amplitude as they do not have single-particle poles.

In terms of the useful IIB on-shell superspace [23] the IIB string amplitude in a flat

background can be written as

AD=10
4 =

δ10(K)δ16(Q)

s t u

[
Γ (α′s+ 1) Γ (α′t+ 1) Γ (α′u+ 1)

Γ (1− (α′s)) Γ (1− (α′t)) Γ (1− (α′u))

]
, (3.43)

Here the supersymmetric delta function contains all the dependence on the polarisation

vectors. Its details are unimportant; what is important here is that all α′ corrections to
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scattering have a universal form. They are momentum factors times a universal Lorentz

structure. Hence,

L4 gravitons+ = T ijklT abcde1,iae2,jbe3,kce4,ld

∞∑
i=0=j

aijs
i
2s
j
3 (3.44)

where

s2 = (α′)2(s2 + t2 + u2) s3 = (α′)3(s3 + t3 + u3) (3.45)

are the two completely symmetric basis polynomials which generate all symmetric polyno-

mials of the usual Mandelstam invariants, up to momentum conservation. Here the notation

s (e1ae2be3ce4d) = 2 (∂µe1a∂
µe2be3ce4d) (3.46)

t (e1ae2be3ce4d) = 2 (e1a∂µe2b∂
µe3ce4d) (3.47)

u (e1ae2be3ce4d) = 2 (∂µe1ae2b∂
µe3ce4d) (3.48)

See [24] for an explanation as well the extension of this too higher points. The expansion

coefficients aij can be obtained to high order easily.

It will be interesting to see what extra information can be obtained from the double

field theory action by comparing to the string theory scattering amplitudes. At the very

least, the lightcone gauge offers a very direct way to verify if conjectured actions satisfy

basic consistency with string theory. However, the just derived expressions would only be

obtained after implementing the (correct generalisation of) the strong constraint.

4 Perturbation theory: lightcone gauge

There are several motivations to study lightcone gauge in the double field theory. First and

foremost, in lightcone gauge typically only physical degrees of freedom propagate. This

usually facilitates a more direct comparison between amplitudes and actions. Lightcone

gauge can also be used to study large BCFW shifts of the gravity integrand, which will

lead to a proof that much of the tree level S-matrix of N = 0 supergravity is reproduced

by the DFT. Interestingly, the proof holds for integrands as well.

4.1 Lightcone gauge propagator in DFT

Surprisingly, we have been unable to locate an expression for the gravity lightcone gauge

propagator, not even for the usual Einstein-Hilbert action. As indicated in appendix C, the

most naive extension of the usual derivation technique of the propagator through currents

fails as the resulting system of equations does not have a solution. This is a consequence

of the fact that not all components of the current are needed. Below we show how to

circumvent this problem in DFT by adopting a special set of coordinates. In the appendix

the same analysis is applied to the Einstein-Hilbert action.

The free double field theory action, after imposing the strong constraint reads after a

partial integration

L = eij

(
1

4
M ijkl

)
ekl + 2ϕ∂i∂jeij − 4ϕ�ϕ (4.1)
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where

M ijkl = ηikηjl∂m∂m − ηik∂j∂l − ηjl∂i∂k (4.2)

As usual, computing the propagator comes down to inverting the quadratic part of the

action in one form or the other. To obtain a well-defined inverse, a gauge must be chosen.

Here we choose the following variant of the lightcone gauge,

qihij = 0 = qjhij (4.3)

Note that in gravity often a slightly different choice is made which basically amounts to

qihij ∝ qj and its natural conjugate, see e.g. [25]. In that paper the focus however is on

deriving the lightcone Lagrangian, by integrating out non-propagating modes. Although

this would be interesting to pursue in the double field theory language, here we opt to focus

on the lightcone gauge propagator, for which equation (4.3) is more convenient.

To begin, define the projector on the space orthogonal to q and p

Ri
j ≡ ηij −

p[iq
j

q · p
− qip

[,j

q · p
(4.4)

where

p[i = pi −
p2

2qp
qi (4.5)

is a massless vector by construction. Note that

Ri
jRj

k = Ri
k (4.6)

and

piRi
j = pjRi

j = qiRi
j = qjRi

j = 0 (4.7)

The following completeness relation holds,

ηi
j = Ri

j +
p[iq

j

q · p
+
qip

[,j

q · p
(4.8)

Using this, one can write for the field h in lightcone gauge,

hij = Ri
kRj

lhkl +Ri
k qj
q · p

hklp
[,l +

qi
q · p

Rj
lp[,khkl +

qiqj
(q · p)2

p[,khklp
[,l (4.9)

The action of M on this can be computed to give

M ijklhkl = (RikRjlhkl)p
2 − pjRi,khklp[,l − piRjlp[,khkl + (q - containing) (4.10)

where the unwritten terms with a remaining q vector with either on i or j index will

contract in the action with a field which is orthogonal to this vector in both indices. This

can be inserted into the Lagrangian to obtain

L =
1

4
hij

(
RikRjlhklp

2 − pjRi,khklp[,l − piRjlp[,khkl
)

+ 2ϕp[,khklp
[,l − 4ϕ2p2 (4.11)
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For convenience, define

hijT ≡ R
ikRjlhkl hk ≡ hklp[,l h̄l ≡ p[,khkl h ≡ p[,khklp[,l (4.12)

Importantly, these are independent quantum fields as long as one is careful not to con-

tract any remaining space-time indices with either p or q. In these coordinates, the La-

grangian reads

L =
1

4
hT,ijp

2hijT −
1

4
hkh

k − 1

4
h̄lh̄

l + 2ϕh− 4ϕ2 p2 (4.13)

where one should include the restricted metric Rij to perform any index contractions.4

This form of the Lagrangian makes the computation of the propagators almost trivial,

except for the correlators involving h and ϕ. For these it is easiest to introduce sources

into the Lagrangian first,

L′ = 2ϕh− 4ϕ2p2 + Jh+Kϕ (4.14)

and compute the generating functional for the correlation functions in the standard way.

For this one shifts the fields ϕ and h such that the linear terms in these fields vanish. This

requires one to solve the equations of motion,

2ϕ+ J = 0 2h− 8ϕp2 +K = 0 (4.15)

which yields

ϕ = −1

2
J h = −1

2
K − 2Jp2 (4.16)

The Lagrangian then contains the following quadratic terms in the sources

L′ = −1

2
JK − J2p2 (4.17)

The correlators of the h and ϕ fields simply follow from this by functional differentiation.

This leads to the following list of non-vanishing correlators,

〈hT,ij , hT,kl〉 = − 2

p2
RikRjl (4.18)

〈hi, hk〉 = 2Rik (4.19)

〈h̄j , h̄l〉 = 2Rjl (4.20)

〈hϕ〉 = −1/2 (4.21)

〈hh〉 = −2p2 (4.22)

These results can be translated back into the original variables, yielding

〈hijϕ〉 = −1

2

qiqj
(q · p)2

(4.23)

〈hij , hkl〉 = − 2

p2
RikRjl + 2Rik

qjql
(q · p)2

+ 2
qiqk

(q · p)2
Rjl − 2p2 qiqkqjql

(q · p)4
(4.24)

4In effect, this is simply the Lagrangian in terms of ‘lightcone’ indices (+,−, iT ). In this language, Rij
is the metric in the transverse space, trivially embedded in the D-dimensional space. The advantage of the

current expression is its manifest covariance.
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By re-expressing the projector R in terms of p and q the latter correlator can also be

written as

〈hij , hkl〉 = −i
2

p2

(
ηik −

qipk + qkpi
q · p

)(
ηjl −

qjpl + qlpj
q · p

)
(4.25)

whose numerator is simple the square of the numerator of the usual Yang-Mills lightcone

gauge propagator. Hence, in lightcone gauge, the double field theory two point function

obeys a direct form of color-kinematic duality. Note that the lightcone gauge propagator

in Einstein-Hilbert gravity, derived in appendix C, does not have this property.

Note the absence of a 〈ϕϕ〉 correlator or a pole in the 〈ϕh〉 correlator: in lightcone

gauge the ϕ field does not propagate and it is purely an auxiliary field providing contact

interactions in perturbation theory in this gauge. Hence the only source of single-particle

poles is in the 〈hT,ij , hT,kl〉 correlator. Therefore these fields carry all the physical degrees

of freedom. Since these are effectively D − 2 × D − 2 tensors, this is consistent with the

generic expectation that in lightcone gauge only physical degrees of freedom propagate.

Stronger, in the absence of un-physical singularities associated with the factors of 1
q·p in

loops, the perturbation theory is manifestly unitary to all loop orders. Potential singular-

ities from the 1
q·p factors would be regulated in practice using the Mandelstam-Leibbrandt

prescription, see [26].

In practice, when computing a scattering amplitude in this gauge, one should insert hij
fields on the external legs as these are the only fields to yield the single-particle poles needed

for a non-trivial LSZ reduction. Hence in this gauge one can reduce the residues at poles

directly to strict h correlators, in contrast to the Feynman-’t Hooft like gauge explored

above where the Schwinger-Dyson equations were needed. We have verified explicitly that

with the above lightcone gauge propagators the four point amplitude is correctly obtained.

In fact, the computation even works without the lightcone condition on q which would

correspond to an axial-type gauge.

4.2 BCFW on-shell recursion: general setup

As in [27], we set up the BCFW on-shell recursion [28, 29] for scattering amplitudes in

(D ≥ 4) spacetime dimensions as follows: we analytically continue the momenta of leg 1

and 2 such that they are kept on-shell and momentum conservation is maintained, i.e. the

BCFW shift is taken to be

k1 → k̂1 = k1 + qz , k2 → k̂2 = k2 − qz , (4.26)

for a q with q · k1,2 = 0 and q2 = 0 and a complex parameter z. Without loss of generality

the D-dimensional momenta of leg 1 and 2 can be chosen to be back-to-back,

k1 = (1, 1, 0, 0,~0), k2 = (1,−1, 0, 0,~0) (4.27)

and q = (0, 0, 1, i,~0) must necessarily be complex. In order for the e-polarisations ξ to

remain transversal to their momenta, they need to be analytically continued too. For legs
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1 and 2 the shifts for the polarisations are given by (3.25) and

ξ−(k1) = ξ+(k2) = q → ξ̂−(k̂1) = ξ̂+(k̂2) = q ,

ξ+(k1) = q∗ → ξ̂+(k̂1) = q∗ − zk2 ,

ξ−(k2) = q∗ → ξ̂−(k̂2) = q∗ + zk1 ,

ξT (k1) = ξT (k2) = ξ̂T (k̂1) = ξ̂T (k̂2) = (0, 0, 0, 0, . . . , 1, . . . , 0) , (4.28)

with SO(D − 2) little group indices {−,+, T}. Using on-shell gauge invariance, the z-

independent polarisation vectors result in 1
z suppressed contributions. Given an ampli-

tude A, let Â denote the analytically continued amplitude obtained after the shifts (4.26)

and (4.28). Then the BCFW formula reads5

A =

∮ ′
z=0

Â
z
dz = −

∑
I

Resz=zI
Â

z
+ Resz→∞

Â
z
, (4.29)

where one sums over all subsets I ⊂ {k2, . . . , kn} of the set of external momenta (excluding

k1) such that

zI =

(∑
i∈I ki

)2
2
∑

i∈I ki · q
∈ C\{0} (4.30)

is non-zero. The BCFW recursion for an en-amplitude A is possible if the residue at infinity

in (4.29) vanishes. As derived in this form first in [27], the large BCFW shift behaviour,

z →∞, gives

lim
z→∞

A(z) ∝ z2ξ̂1,mnξ̂2,kl

(
ηmk +

1

z
Bmk +O

(
1

z2

))(
ηnl +

1

z
Bnl +O

(
1

z2

))
(4.31)

where the tensor B is antisymmetric in its indices. This takes the form of the square of the

behaviour of two Yang-Mills amplitudes and guarantees that for any helicity on legs 1 and

2 a BCFW shift exists for which A(z) ∼ 1
z2

. This proves the existence of BCFW on-shell

recursions relations. If this behaviour can be proven for the DFT Lagrangian, then the

S-matrix must coincide with that of Einstein Hilbert gravity by unitarity since the three

point amplitude agree. Before investigating this in more detail let us first discuss BCFW

on-shell recursion for the e4 and e5-amplitude.

One explicitly finds that the amplitude

A−−++
e4

= Aabcdefgh
e4

ξ−−ab (k1)ξ++
cd (k2)ξef (k3)ξgh(k4) (4.32)

scales with 1/z2 as z → ∞ and thus the residue at infinity in (4.29) vanishes. Hence —

in the absence of ϕ-poles — A−−++
e4

can be expressed in terms of analytically continued

e3-amplitudes:

A−−++
e4

= Âabefij
e3

ξ̂−−ab (k̂1)ξef (k3)
−2iGimGjn

t
Âcdghmn
e3

ξ̂++
cd (k̂2)ξgh(k4)

∣∣∣
z= t

2k4·q

+ Âabghij
e3

ξ̂−−ab (k̂1)ξgh(k4)
−2iGimGjn

u
Âcdefmn
e3

ξ̂++
cd (k̂2)ξef (k3)

∣∣∣
z= u

2k3·q

. (4.33)

5Here,
∮ ′
z=0

= 1
2πi

∮
z=0

and the contour around z = 0 is anticlockwise.
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Pictorially, this is

A−−++
e4

=

4∑
i=3

1̂−−

i

e

2̂++

∣∣∣
z=− s1i

2ki·q

. (4.34)

Note that in (4.33) the e-propagator as in (3.17) appears. Other helicity configurations

can be checked analogously.

We also checked numerically that the large-z scaling for the A−−++
e5

amplitude defined

analogously as in (4.32) is again 1/z2. Hence this amplitude can be computed by summing

over the residues of the following 6 channels,

A−−++
e5

=

5∑
i=3

1̂−−

i

e

2̂++

∣∣∣
z=− s1i

2ki·q

+

5∑
i=3

2̂++

i

e

1̂−−

∣∣∣
z=

s2i
2ki·q . (4.35)

4.3 BCFW on-shell recursion: large BCFW shifts in DFT

To verify the S-matrix generated by the double field theory, one can try to verify that the

large BCFW shift behaviour of the tree level scattering amplitude reproduces the known

result (4.31). More generally, one can try to prove a similar result for the loop level

integrand, in order to verify a conjecture in [10] that the integrand can, in principle, be

reconstructed from its single cuts. The technique to be used below is the same as applied

to Yang-Mills theory in [10]: consider the Feynman diagrams in the natural lightcone

gauge specified by the BCFW shift vector. The usefulness of this gauge choice was first

advocated in [27].

The Feynman diagrams split into two categories: those where the two shifted legs

appear on a three vertex and those where this does not happen. The reason the three-vertex

case is special is that the momentum flowing through the off-shell leg of these Feynman

diagrams is orthogonal to the shift vector: q · (k1 + k2) = 0 and therefore the lightcone

gauge choice q is at face value illegal for this class of Feynman graphs. As explained in [10]

for Yang-Mills theory, this class of diagrams can be treated by first imposing a lightcone

gauge choice using the vector q̃ = q + xk1, and then sending x to zero.

For the case at hand, there are three Feynman graphs with the shifted legs connected

to the three vertex: one with a e2 propagator and two with the mixed propagator eϕ. Since

q̃ · (k1 + k2) = x(k1 · k2) (4.36)

both propagators have up to a second order pole in x. This is however a fictitious pole:

gauge invariance of the overall expression ensures that the full result is independent of
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the gauge choice used to compute it. First consider the graph with the ϕ field off-shell.

The vertex with two on-shell e fields is listed in equation (3.21); it’s structure, “∝ z0ηη”,

confirms to equation (4.31). Taken together with the ϕe propagator this contribution is

proportional to

∝ ηacηbd
qkql

x2(k1 · k2)
(4.37)

where the indices k, l are contracted into the vertex the propagator connect to (this is not

the three vertex which the shifted legs connect to).

The vertex with two on-shell and one off-shell e field is special. Since in the on-shell

limit this reproduces the three point graviton scattering amplitude, it’s structure is very

closely related to the ‘square’ of two Yang-Mills vertices. In fact, the difference of the

product of two three point Yang-Mills vertices with one off-shell leg and that the DFT

three point vertex with one off-shell leg is:

(DFT )3 − ((YM)3)2 = −4(k1 + k2)i(k1 + k2)jηacηbd (4.38)

Here a, b and c, d are the indices of the shifted legs and i, j are the indices of the off-shell

leg. When contracted into the eϕ propagator, this is a pure, x-independent contact terms

whose structure is “∝ z0ηη”. When contracted into the ee propagator, the propagator

almost vanishes, leaving

∝ −4ηacηbd
qkql

4x2(k1 · k2)
(4.39)

The remaining terms are simply the square of the Yang-Mills result in the large z limit,

written out explicitly in equation 2.12 in [10]. This follows since the vertex is basically

such a square and the ee lightcone gauge propagator in DFT is concerning its numerator

the square of the Yang-Mills result. In all, this shows that the three point contribution to

the large z limit in DFT is exactly captured by the known gravity result, equation (4.31).

Let us study further classes of diagrams contributing to the large z behaviour. There

are two sources of positive powers of z which are always accompanied by the gauge choice

vector q. These two sources are the lightcone gauge propagator as well as the vertices

themselves. Both come maximally with one power of z, but many graphs contribute at

this order. Note though that both of these two sources of positive powers of z are, in a

real sense, orthogonal: the positive power of z in the propagator comes with four q vectors

which contract into the vertices. Since this vector should not contract into another e field,6

for maximal contribution these should contract into the momenta of the vertex. Hence,

the two positive sources of z’s are orthogonal.

4.3.1 DFT S-matrix from on-shell recursion

Note that this is enough already to prove BCFW on-shell recursion at tree level for a large

class of scattering amplitudes with external gravitons. In D dimensions, two particle on-

shell momenta and a choice of BCFW shift vector span a three dimensional space. Given

6This vector can contract into the shifted polarisation vectors, for which a single negative power of z is

obtained.
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the polarisation vector of the graviton, one can always choose a BCFW shift vector to it

into a special set of four dimensions. Hence without loss of generality we can assume one

of the graviton legs is in four dimensions. There is always a BCFW shift for which the

polarisation vector of a graviton scales as 1
z2

. As long as the other BCFW-shifted leg does

not have the exact same graviton polarisation as the other leg, its scaling behaviour is z0 or

better. Taken together with the result that the leading, z2, part of the large BCFW shift

scales with two metrics, this means that for the other shifted legs any graviton polarisation

one always obtains a 1
z fall-off of the scattering amplitude.

All scattering amplitudes with only gravitons have at least one opposite pair of helic-

ities. The crucial observation is that if all external particles have the same helicities, then

one can choose a gauge for which like helicity polarisation vectors are orthogonal,

ξ±1,µξ
±,µ
2 = 0 (4.40)

holds. It is easy to check that in every Feynman graph, there must be at least half of

the indices of external particles being contracted. Hence, like helicity amplitudes (all-plus)

vanish. As check above the three point amplitude matches between DFT and Einstein

gravity. Therefore using BCFW on-shell recursion shows the complete tree-level S-matrix

of Einstein-Hilbert gravity is reproduced from the double field theory.

This result easily extends to the integrand of gravity amplitudes in supersymmetric

theories - for which it is known there are no like-helicity scattering amplitudes. However,

this only shows that the integrand may be reconstructed from lower-loop amplitudes as

well as single cuts. See [10] for a discussion.

4.3.2 Explicit off-shell sub-cancellations using index ordering

Vertex dependence

In order to look for further structure and to compare to Yang-Mills theory through the

double copy construction, we have studied sub-leading terms in the large z limit. To spot

structure in the graphs, it pays to pay attention to index contractions within the graphs.

For instance, within the vertices a positive power of z can only arise if a z dependent

hard momentum (i.e. either p1 or p2) is contracted directly into a momentum of one of the

other off-shell legs; otherwise, a q contracts either into a leg orthogonal to q due to the

lightcone propagator, or it contracts directly into a shift vector (which gives a z-suppressed

contribution). This leaves an index contraction between all the legs, which looks remarkably

like a color-ordered amplitude. Note that the number of legs must be even, and the vertex

contributing at this order reads

lim
z→∞

Vn = (1 + ϕ)2
(
∂meab∂mecdG

acGdb
)

+O
(
z0
)

(4.41)

First consider the contributions without ϕ field. Since the propagator connecting vertices

of this type will be 1
z , there are many contributions for a given number of off-shell external

legs connecting to the hard line graph. These can be ordered and labelled consecutively.

The intuition is that it is hard for two contributions with interchanged legs to cancel in any
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Figure 1. Six point index-ordered graph contributions with two sets of legs on opposite sides .

meaningful way. This is important as it gives a group-theory-like structure to the large z

limit graphs. We will refer to this as “index-ordering”.

Consider now four point graph contributions generated by the above vertex: two of

the legs are BCFW shifted. However, we will assume the BCFW shifted legs appear on the

right or left side of the graphs, as a part of a larger current. The momenta of these currents

will be labelled a and b respectively. Note q · pa is only zero if this current contains only

one leg. There are two graph topologies: either expanding the ‘left’ or the ‘right’ vertex in

equation (4.41). The results are

lim
z→∞

G4(a, 1, 2, b) = −2z(p2 · q + pa · q)ηR(e2)L +O
(
z0
)

(4.42)

and

lim
z→∞

G4(a, b, 1, 2) = −2z(p1 · q + pa · q)ηL(e2)R +O
(
z0
)

(4.43)

where G is the four point Green’s function whose arguments are index-ordered. Let us

stress that all the legs are off-shell. For all legs on-shell it is easy to cross-check that

the above contribution is anti-symmetric under interchange of the indices not associated

to the metric contraction: this confirms the earlier statement about the shift of the four

point amplitude.

For six point graph contributions, there are three index-ordered contributions possible.

There are two which involve a metric contraction between the a and b legs. These read

lim
z→∞

G4(a, 1, 2, 3, 4, b) = −2z
(p1 · q)(p4 · q)

q · (p1 + p2 + pa)
ηR(e4)L +O

(
z0
)

(4.44)

and for the conjugate

lim
z→∞

G6(a, b, 4, 3, 2, 1) = −2z
(p1 · q)(p4 · q)

q · (p3 + p4 + pa)
ηL(e4)R +O

(
z0
)

(4.45)

Note that at order z0, the index structure of the non-metric term is irrelevant, see equa-

tion (4.31).

The remaining contraction is G4(a, 1, 2, b, 3, 4), which involves summing the three Feyn-

man graphs in figure 1. Taking a to be a BCFW shifted leg so that pa · q = 0, we obtain

lim
z→∞

G6(a, 1, 2, b, 3, 4) ∝ z (p2 · q)(p3 · q)(q · (p1 + p2 + p3 + p4))

q · (p3 + p4) q · (p1 + p2)
+O

(
z0
)

(4.46)
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Hence, if leg b would be taken to be the other BCFW shifted leg, the order z contribution

of these graphs vanishes. The legs 1 through 4 remain off-shell: this shows cancellations in

a sub-class of Feynman graphs. Taking a and b to be BCFW shifted legs, it is interesting

to check the index structure of the order z0 term: according to equation (4.31) this should

either involve a metric contraction on the left or right sides between the indices of the

shifted legs, or it should be antisymmetric under inversion of the indices of either the left

or right sides. Since there is no metric contraction in G6(a, 1, 2, b, 3, 4), one should study

the symmetry properties of the index-ordered expressions. The symmetry in indices comes

down to checking inverting the order on one of the sides of the index ordered expression.

One computes

lim
z→∞

G6(a, 1, 2, b, 3, 4) + lim
z→∞

G6(a, 2, 1, b, 3, 4) = 0 +O
(
z−1
)

(4.47)

which shows that as expected the order z0 index contractions are anti-symmetric in the left

side. The computation involving an inversion of 34 follows analogously. We have verified

the sub-leading, O
(
z−1
)
, term in this computation is indeed antisymmetric in momenta 3

and 4 or in momenta 1 and 2 (or in both), needed for the O
(
z−1
)

term in equation (4.31).

For eight point graph contributions, there are four index-ordered contributions possible,

two of which are related by left-right symmetry. Taking pa · q = 0,

lim
z→∞

G8(a, 1, 2, 3, 4, 5, 6, b) =

− 2z
(p1 · q)(p6 · q)(q · (p1 + p2 + p3))

(q · (p1 + p2))(q · (p1 + p2 + p3 + p4))
ηR(e6)L +O

(
z0
)

(4.48)

and

lim
z→∞

G8(a, 1, 2, 3, 4, b, 5, 6) ∝

z
(p1 · q)(p4 · q)(p5 · q)(q · (p1 + p2 + p3 + p4 + p5 + p6))

q · (p1 + p2) q · (p1 + p2 + p3 + p4) q · (p5 + p6)
O
(
z0
)

(4.49)

are obtained. If leg b is also a BCFW-shifted leg, the latter expression vanishes. This is

the result of summing 8 Feynman graphs. Furthermore,

lim
z→∞

G8(a, 1, 2, 3, 4, b, 5, 6) + lim
z→∞

G8(a, 1, 2, 3, 4, b, 6, 5) = 0 +O
(
z−1
)

(4.50)

and

lim
z→∞

G8(a, 1, 2, 3, 4, b, 5, 6) + lim
z→∞

G8(a, 4, 3, 2, 1, b, 5, 6) = 0 +O
(
z−1
)

(4.51)

hold. We have verified the sub-leading, O
(
z−1
)
, term in both computations is indeed

antisymmetric in reversing 5 and 6 or in (1, 2, 3, 4) (or both), needed for the O
(
z−1
)

term

in equation (4.31).

For ten or more graphs the combinatorics gets more and more complicated. One class

of diagrams which is easier are those with one metric contraction. In fact, we strongly
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suspect that

lim
z→∞

Gn+2(a, 1, . . . , n, b) =

−2z
(pn · q)(q · p1)(q · (p1 + p2 + p3 + pa) . . . (q · (p1 + . . .+ pn−1 + pa))

(q · (p1 + p2 + pa))(q · (p1 + p2 + p3 + p4 + pa)) . . . (q · (p1 + . . .+ pn−2 + pa))

ηR(en)L +O
(
z0
)

(4.52)

holds, together with its natural conjugate. This we checked through n = 14, where the last

involves summing 64 Feynman graphs. Furthermore, we obtained

lim
z→∞

G8(a, 1, . . . , 6, b, 7, 8) = lim
z→∞

G8(a, 1 . . . , 4, b, 5, . . . , 8)

= lim
z→∞

G10(a, 1, . . . , 8, b, 9, 10)

= lim
z→∞

= G10(a, 1, . . . , 6, b, 7, . . . , 10) = O
(
z0
)

(4.53)

for BCFW-shifted legs a and b.

Adding ϕ legs does not alter any of statements above on the order of z contributions

or on the index structure. To see this derive the Schwinger-Dyson equation for the e field,

dropping all contact terms as before,

〈1
2
M ijklekl + 2pipjϕ+

δ

δeij
Ln>2|X〉 = 0 (4.54)

where X stands for an arbitrary collection of on-shell fields and we have split the contri-

butions into those of the quadratic Lagrangian and those beyond, with the latter denoted

Ln>2. The last term is effective singling out one particular leg of a vertex in a Feynman

graph computation. In lightcone gauge, the first two terms lead to very particular further

contributions which can be written in similar notation. First contract the equation with a

single momentum,

〈−1

2
pj(pkplekl) + 2p2pjϕ+ pi

δ

δeij
Ln>2|X〉 = 0 (4.55)

Then, use the explicit form of the lightcone gauge propagators to derive

〈pj δ
δϕ
Ln>2 + pi

δ

δeij
Ln>2|X〉 = 0 (4.56)

Again, the zero on the r.h.s. is the absence of contact terms after LSZ reduction on the

non-displayed, on-shell legs. Note this absence only holds as long as p 6= 0. The just

derived equation can be used to solve part of the lightcone gauge perturbation theory, at

least at tree level. Here, it can be used to interchange an added ϕ leg for an e field leg.

Hence, the analysis just presented directly applies to graphs including ϕ fields. In fact, we

have observed in examples that adding a ϕ improves large z behaviour. In conclusion, the

Lagrangian in equation (4.41) generates a perturbation theory which, as far as checked, in

the large z limit displays the structure of equation (4.31), even off-shell. Explicit checks

were performed for up to Green’s functions with up to 12 gravitons.
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Figure 2. Propagator large z contributions.

At order z0 one can have additional vertex contributions which involve the vertices

in the Lagrangian beyond those displayed in equation (4.41). We have been unable to

formulate a general argument for its scaling contribution; this seems to depend crucially

on the structure of the vertex.

Propagator dependence. Let us briefly study the propagator contribution at order z

in more detail. It will be useful to study first the result of contracting an off-shell field on

a vertex with two q vectors, in the large z limit. We conjecture,

lim
z→∞

qmqn〈
∂

∂emn
Ln>2, X〉

?
= O

(
z−1
)

(4.57)

for on-shell fields in the set X. This is in effect the graviton current contracted with q’s.

Naively, this quantity scales as z0 by power counting. To the extend it can be proven, this

eliminates the order z term from the momentum dependence of the propagator.

The scaling of the propagator comes with two q’s contracted into the left and right

currents. Because of the gauge choice, most terms vanish or are sub-leading. The only

non-vanishing vertex is generated by

lim
z→∞

qmqn
∂

∂emn
Vn = (1 + ϕ)2qmqn

(
∂meab∂

necdG
acGdb

)
+O

(
z−1
)
, (4.58)

where the sub-leading terms for instance involve a contraction of q with one of the BCFW

shifted legs. In addition, there are vertices generated by the Lagrangian in equation (4.41).

Combined with index ordering this can be used to verify equation (4.57) for the first few

contributions. The contributions with internal ϕ legs can be traded for e legs using the

Schwinger-Dyson equations as above.

The simplest case involves two q′s contracted into a vertex with two e fields in addition

to the current leg contracted with the two q′s. This current can be computed from three

index-ordered Feynman graphs, see figure 2, and is proportional to

∝ (q · p1)(q · pa) +O
(
z−1
)
, (4.59)

which vanishes if the a leg is taken to be on-shell.

The next case is four e fields. There are three index-ordered Feynman graphs which

contribute: all legs on the vertex, or mixing two vertices from equations (4.41) and (4.58).
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Their sum vanishes up to sub-leading terms for on-shell leg a. Note that the other legs

remain off-shell. For four additional e fields the combinatorics is more complicated. Sum-

ming all graphs confirms (4.57). Note that for this computation one can recycle the results

obtained above as on-leg off-shell currents.

Summarising results on sub-leading terms. In this sub-sub-section we have explored

the possibility to investigate sub-leading cancellations within Feynman graphs. The results

above are enough to prove equation (4.31) at order z for tree level scattering amplitudes

with up to eight legs. It is obvious that the above off-shell cancellations will drive even

higher order cancellations and in general we have no doubt that the result equation (4.31)

follows for DFT. These off-shell cancellations are very intriguing and deserve further study.

Note that they seem closely related to improved BCFW shift behaviour of permutation

sum shifts studied in [30].

5 Discussion

In this article we have studied the perturbation theory of the double field theory formulation

of N = 0 supergravity: Einstein-Hilbert gravity coupled to a two-form and a dilaton. This

is the low energy effective action of tree level closed string theory and is special as it features

left-right index factorisation. Above we have verified explicitly that the DFT reproduces

most the tree level S-matrix, with the exception of scattering amplitudes which do not

involve any external gravitons. In principle these could be proven by pushing the analysis

of BCFW shifts one order further than done above or, alternatively, by including explicit

supersymmetry, e.g. as in [31]. Our result on large BCFW shifts for gravity show that

gravity integrands can, in principle, be reconstructed from their single cuts. Obtaining

explicit recursion relations at loop level would of course be even more exciting.

A further interesting direction for future research is the issue of α′ corrections to the

double field theory. Above we showed that for four points / four field terms a fairly simple

result may be obtained. In order to extend this, one should first obtain the completion of

this result under gauge invariance. Then, one may study higher point amplitudes. The

bottleneck here will be computational complexity; the lightcone gauge will be instrumental

in such a program. On the other hand, given a result for α′ corrections obtained through

for instance more geometric arguments, the lightcone gauge offers a quick way to verify

consistency of the obtained result. This might have interesting cross-connections with work

on DFT on curved background, [32].

A prime motivation for the present article was color-kinematic duality. The hope was

that by studying higher point amplitudes one would start to see some of the kinematic

algebra structure needed to project the gravitational scattering amplitudes down to Yang-

Mills scattering amplitudes. Although some of this structure makes an appearance in the

large BCFW shift where it was shown to involve index ordering, in general we have been

unable to identify a clear ‘square root’. In this sense, it seems color-kinematic duality

and double field theory share some characteristics, but seem to address fundamentally

different structures: we have found little evidence that color-kinematic duality and T-

duality are equivalent beyond index factorisation. On the other hand, the double field
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theory equations of motion neatly bundle graviton, two-form and dilaton into a single

package, which might be useful technically for studies of double copies beyond scattering

amplitudes, e.g. as in [33].

Finally, it might be interesting to integrate out the dependent degree of freedom out

of the DFT action to obtain the Lightcone Lagrangian of the theory, along the lines of [25]

for Einstein-Hilbert. This should be an easier way to derive fully supersymmetric ver-

sions of DFT.
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A Conventions

The metric signature is “mostly plus”. This paper is about perturbative quantum gravity

around a constant background Minkowski metric Gij = diag(−1, 1, . . . , 1). The Mandel-

stam variables are defined in terms of the outgoing momenta of the 4-point amplitude as

s = (k1 + k2)2 , t = (k1 + k3)2 , u = (k1 + k4)2 . (A.1)

More generally, beyond the 4-point amplitude we use

sij = (ki + kj)
2 , sijk = (ki + kj + kk)

2 , . . . . (A.2)

B Physical degrees of freedom in DFT: equations of motion

We find it reassuring to check that the DFT Lagrangian describes precisely the physical

degrees of freedom associated to the massless excitations of the closed bosonic string. To

this end, we analyse the linearised equations of motion in the light-cone gauge.

From the kinetic terms (3.2) in the DFT Lagrangian without a gauge-fixing term one

obtains the following linearised equations of motion:

∂2ϕ− 1

4
∂i∂jeij = 0 ,

∂2eij − ∂i∂kekj − ∂j∂keik + 4∂i∂jϕ = 0 . (B.1)

The full DFT Lagrangian has a gauge symmetry. For restricted fields that do not depend

on the coordinates x̃i the gauge transformations are given in terms of gauge parameters
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λi(x) and λ̄i(x) as follows [13, 37]:

δλ,λ̄eij =∂iλ̄j + ∂jλi

+
1

2
(λ+ λ̄) · ∂eij +

1

2
(∂j λ̄

k − ∂kλ̄j)eik +
1

2
(∂iλ

k − ∂kλi)ekj

− 1

4
eik(∂

lλ̄k + ∂kλl)elj ,

δλ,λ̄ϕ =
(1 + ϕ)

4
∂ · (λ+ λ̄) +

1

2
(λ+ λ̄) · ∂ϕ . (B.2)

Here, the gauge transformation of ϕ has been derived from

δλ,λ̄d = −1

4
∂ · (λ+ λ̄) +

1

2
(λ+ λ̄) · ∂d , (B.3)

using the redefinition 1 + ϕ = e−d as in [13]. It can easily be checked that the linearised

field equations (B.1) are invariant under (B.2) (modulo higher orders of fields).

In order to extract the physical degrees of freedom of a given field excitation, the fields

eij and ϕ are Fourier-transformed and are assumed to describe infinitesimal fluctuations,

O
(

1
∞
)

say, around the background. As a result, in terms of light-cone components,

x+ =
1√
2

(x0 + x1) , x− =
1√
2

(x0 − x1) , (B.4)

one finds

δλ,λ̄e
++ = ip+(λ+ + λ̄+) +O

(
(λ, λ̄, e)2

)
,

δλ,λ̄e
+− = ip+λ̄− + ip−λ+ +O

(
(λ, λ̄, e)2

)
,

δλ,λ̄e
−+ = ip−λ̄+ + ip+λ− +O

(
(λ, λ̄, e)2

)
,

δλ,λ̄e
+I = ip+λ̄I + ipIλ+ +O

(
(λ, λ̄, e)2

)
,

δλ,λ̄e
I+ = ipI λ̄+ + ip+λI +O

(
(λ, λ̄, e)2

)
, (B.5)

where I ∈ {2, . . . , D − 1} label the transverse directions. For physical excitations with

p+ 6= 0 one can therefore successively gauge away all the infinitesimal plus components,

e+i = 0 +O
(

1

∞2

)
, ei+ = 0 +O

(
1

∞2

)
, (B.6)

for all i. Using the linearised equations of motion (B.1), one then finds

ϕ = 0 +O
(

1

∞2

)
, pie

ij = 0 +O
(

1

∞2

)
, pje

ij = 0 +O
(

1

∞2

)
, (B.7)

which eliminates ϕ and shows that components e−i, ei− are given in terms of the physical

degrees of freedom eIJ satisfying the Klein-Gordon equation

p2eIJ = 0 +O
(

1

∞2

)
, (B.8)
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for all I, J . Being an SO(D − 2)-tensor, eIJ precisely encodes the massless excitations of

the closed bosonic string.

A natural question to ask is whether or not one can gauge away ϕ(x) at each spacetime

point simultaneously. In order to do so one would have to solve the differential equation

for δλ,λ̄ϕ(x) = −ϕ(x) for an arbitrary (not necessarily infinitesimal) configuration ϕ(x).

As of now, we are not sure if this is possible, since we are unable to solve the differential

equation resulting from (B.2).

We end this discussion by giving the field redefinitions to lowest order that follow from

the definitions in [13]:

φ =
1

4
Tr(eG)− ϕ+O(e2) +O(ϕ2) ,

ě = e+O(e2) , (B.9)

where φ is the dilaton field and ě is the finite fluctuation around a constant background

G+B to be quantised using the Lagrangian (2.1). Using (B.2) it is easy to check that φ is in

fact gauge-invariant to lowest order (and beyond). Note that the dilaton φ = 1
4ei

i−ϕ+ . . .

contracts left and right indices and, hence, the physical degree of the dilaton is obscured in

the factorised Lagrangian. This is the price we have to pay for the factorisation property.

C Derivation of the q-light-cone propagator: canonical approach

Generalising the discussion in (B) choose q-light-cone gauge

qieij(p) = 0 , qjeij(p) = 0 , (C.1)

for excitations with p · q 6= 0 and a given light-like Lorentz vector qi. From the equations

of motion one again obtains ϕ = 0. In Yang-Mills theory this gauge (qiAi(p) = 0) can

be used to derive q-transversal propagators which can be useful in the discussion of the

large-z behaviour (e.g. [10]). In gravity an obstacle to a straightforward derivation of the

propagators exists which may be interesting to others.

The standard, usually fail-safe method of deriving propagators adds generic sources

Jij and J to the DFT fields,

L(2)′ = L(2) + Jije
ij + Jϕ (C.2)

where the quadratic Lagrangian L(2) without gauge-fixing is given in (3.2). Solving the

classical equation of motion and plugging this back into the Lagrangian gives a Lagrangian

quadratic in both fields and in sources: the second part contains the propagators.

It is because of q2 = 0 that there are only finitely many terms in the most general

linear shifts

eij = e′ij + eijstJ
st + ẽijJ ,

ϕ = ϕ′ + ϕstJ
st + ϕ̃J (C.3)

– 31 –



J
H
E
P
0
4
(
2
0
1
6
)
1
2
0

where schematically

eijst =
1

p2

(
GG+

Gp q

p · q
+
Gq q p2

(p · q)2
+
Gpp

p2
+
p p p p

p4

+
p p p q

p · qp2
+

p p q q

(p · q)2
+
p q q q p2

(p · q)3
+
q q q q p4

(p · q)4

)
ijst

,

ẽij =
1

p2

(
G+

p q

p · q
+
p p

p2

)
ij

,

ϕij =
1

p2

(
G+

p q

p · q
+
p p

p2

)
ij

,

ϕ̃ =
1

p2
. (C.4)

In order for e′ij to also satisfy the gauge conditions (C.1) one also requires

qieijst = qjeijst = 0 , qiẽij = qj ẽij = 0 . (C.5)

One finds that one cannot further constrain the coefficients such that in the q-light-cone

gauge all mixed terms in (C.2) vanish. As a consequence, in this gauge it is impossible to

derive the propagator of DFT using this method. The same problem arises if one does not

introduce a current for ϕ (i.e. J = 0). On the other hand, note that upon restricting J ij to

J ijqiqj = 0 it is possible to get rid of the mixed terms. This, however, comes at the cost of

introducing ambiguities in the quadratic term that lead to ambiguities in the propagator.

In the main text a work-around is shown.

It is easy to check that the current method gives the well-known result in Yang-Mills

theory. However we also studied q-light-cone gauge in the original formulation of N = 0

supergravity given in (2.1). The propagator of the dilaton being gauge-invariant is clearly

not affected by the gauge choice. The kinetic terms for the B-field read [17]

− 1

12
H2 = −1

4

(
GacGbdGxy − 2GayGbdGcx

)
∂xbab∂ybcd . (C.6)

Here, in q-light-cone gauge

qabab = qbbab = 0 (C.7)

there is a linear shift

bab = b′ab + ωabcdJ
cd (C.8)

for a generic, antisymmetric source Jab that respects the gauge condition and removes the

mixed terms in the Lagrangian. The resulting propagator is unique and q-transversal:

i

p2

[ (
GmsGnt−GmtGns

)
+

Gns
(
qmpt + pmqt

)
−Gnt (qmps + pmqs)+Gmt (qnps + pnqs)−Gms

(
qnpt + pnqt

)
p · q

+
pmqnptqs − qmpnptqs + qmpnpsqt − pmqnpsqt

(p · q)2

]
(C.9)
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As to the metric, expanding the Einstein-Hilbert term in (2.1) one finds (e.g. [1]:

√
gR|(2) = hkl,xhmn,y

1

2

(
GmnGlyGkx −GmxGkyGln +

1

2
GxyGkmGln − 1

2
GxyGklGmn

)
(C.10)

It turns out that no shift of hij exists that eliminates the mixed terms for generic symmetric

sources Jij . The obstacle to direct derivation of a q-light-cone propagator in DFT is thus

related to its impossibility in pure gravity. Note that again for restricted sources Jij
with Jijq

iqj mixed terms can be eliminated which, however, leads to ambiguities in the

propagator.

C.1 Lightcone gauge propagator in Einstein-Hilbert

For completeness we will derive the lightcone gauge propagator in Einstein-Hilbert gravity

using the method indicated in the text. For this, expand the symmetry tensor h in lightcone

gauge in terms of the space spanned by q and p and its orthogonal complement as

hmn = h̃mn +
hm qn + hn qm

q · p
+ h

qmqn
(q · p)2

(C.11)

where

h̃mn = Rm
iRn

jhij (C.12)

hm = piRm
jhjm (C.13)

h = pipjhij (C.14)

Note the potential terms proportional to p vanish by the gauge condition. Plugging this

expansion into equation (C.10) gives after the dust settles

√
gR|(2) =

1

2
h̃ijp

2h̃ij − 1

2

(
h̃i
i
)2

+ h
(
h̃i
i
)
− hmhm (C.15)

Isolating the trace part of the symmetric tensor as

h̃ij = ĥij +
1

D − 2
Rij h̃m

m (C.16)

shows that the degrees of freedom neatly split into traceless symmetric tensor ĥij , the trace

of h̃ij , the vector hm and the scalar h,

√
gR|(2) =

1

2
ĥijp

2ĥij − (D − 3)

2(D − 2)

(
h̃i
i
)2

+ h
(
h̃i
i
)
− hmhm (C.17)

The kinetic mixing term between trace and scalar h is important, as introducing sources

Kh+ Jh̃i
i and inverting gives for the sources

∼ 3− d
2(d− 2)

K2p2 − JK (C.18)
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Importantly, the quadratic Lagrangian only generates hh and hh̃i
i correlators which do not

have poles,

〈hh〉 = i
3− d

(d− 2)
p2 (C.19)

〈hh̃ii〉 = −i (C.20)

Hence, these degrees of freedom are auxilliary. Similarly, for the field hm we obtain

〈hmhk〉 = −i2Rmk (C.21)

while for the traceless symmetric tensor

〈ĥij ĥmn〉 = i
RimRjn
p2

(C.22)

holds. This completes the list of non-vanishing correlators in the lightcone gauge. The

only correlator with a pole is the last one. Hence the physical degrees of freedom of the

gravitational field, in lightcone gauge, are contained in the traceless symmetric tensor ĥij
which is transverse and orthogonal to q. This is of course well-known physical field content

of Einstein gravity.

Plugging the expansion into the correlator of the general field hij gives for the full

correlator

〈hmnhkl〉 = i

(
RmkRnl
p2

)
+

2i

(q · p)2
(qmqkRnl + qmqlRnk + qnqkRnl + qnqlRmk)

+
i

(q · p)4

(
qmqnqkql

3− d
(d− 2)

p2

)
− i

(q · p)2

(
Rmn
d− 2

qkql +
Rkl
d− 2

qmqn

)
(C.23)

This is the lightcone-gauge propagator of Einstein gravity. Plugging in the definition of the

R projector does not yield particularly insightful results. In particular, the numerator does

not have the form of the numerator squared of the Yang-Mills lightcone gauge propagator.

D Partial amplitudes in Yang-Mills theory

In Yang-Mills theory partial Yang-Mills amplitudes at tree-level are defined by

Atree
n = gn−2

∑
σ∈P3/Z3

Tr (T aσ(1) . . . T aσ(n)) Atree
n (σ(1), . . . , σ(n)) , (D.1)

where g is the SU(N) gauge coupling and the sum is over non-cyclic permutations. The

gauge group generators are chosen to satisfy

Tr
(
TATB

)
=

1

2
δAB , [TA, TB] = ifABCTC , (D.2)
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and the SU(N) Fierz identity needed to express product of traces in terms of sums of single

traces of generators is

TAijTAkl =
1

2

(
δilδjk − 1

N
δijδkl

)
. (D.3)

The partial 3-point amplitude reads(
A partial

3 (1, 2, 3)
)ace

= 2i (Gae(k1 − k3)c +Gce(k3 − k2)a +Gac(k2 − k1)e) , (D.4)

and the partial 4-point amplitudes are given by(
Apartial

4 (1, 2, 3, 4)
)aceg

= 2i(2GaeGcg −GagGce −GacGeg)

+
2i

s

(
2Gaikc1 − 2Gcika2 +Gac(k2 − k1)i

)
(2δei k

g
3 − 2δgi k

e
4 +Geg(k4 − k3)i)

+
2i

u

(
2Gaikg1 − 2Ggika4 +Gag(k4 − k1)i

)
(2δei k

c
3 − 2δcik

e
2 +Gce(k2 − k3)i) ,(

Apartial
4 (1, 2, 4, 3)

)acge
= % with {u↔ t, k3 ↔ k4, e↔ g} ,(

Apartial
4 (1, 3, 2, 4)

)aecg
= % with {s↔ t, k2 ↔ k3, c↔ e} . (D.5)

The partial amplitudes satisfy the Ward identities(
Apartial

3 (1, 2, 3)
)ace

k1a ξc(k2) ξe(k3) = 0 , etc. (D.6)

(and analogous expressions for n points) due to momentum conservation and transversality

ξ(k) · k = 0 of the polarisation vectors.
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