
J
H
E
P
0
4
(
2
0
1
6
)
1
0
7

Published for SISSA by Springer

Received: March 2, 2016

Accepted: April 5, 2016

Published: April 18, 2016

Boundary conditions and partition functions in higher

spin AdS3/CFT2

Jan de Boer and Juan I. Jottar

Institute for Theoretical Physics, University of Amsterdam,

Science Park 904, Postbus 94485, 1090 GL Amsterdam, The Netherlands

E-mail: J.deBoer@uva.nl, J.I.Jottar@uva.nl

Abstract: We discuss alternative definitions of the semiclassical partition function in two-

dimensional CFTs with higher spin symmetry, in the presence of sources for the higher

spin currents. Theories of this type can often be described via Hamiltonian reduction

of current algebras, and a holographic description in terms of three-dimensional Chern-

Simons theory with generalized AdS boundary conditions becomes available. By studying

the CFT Ward identities in the presence of sources, we determine the appropriate choice

of boundary terms and boundary conditions in Chern-Simons theory for the various types

of partition functions considered. In particular, we compare the Chern-Simons description

of deformations of the field theory Hamiltonian versus those encoding deformations of the

CFT action. Our analysis clarifies various issues and confusions that have permeated the

literature on this subject.

Keywords: AdS-CFT Correspondence, Conformal and W Symmetry, Gauge-gravity

correspondence, Higher Spin Gravity

ArXiv ePrint: 1407.3844

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP04(2016)107

mailto:J.deBoer@uva.nl
mailto:J.I.Jottar@uva.nl
http://arxiv.org/abs/1407.3844
http://dx.doi.org/10.1007/JHEP04(2016)107


J
H
E
P
0
4
(
2
0
1
6
)
1
0
7

Contents

1 Introduction 1

2 Hamiltonian deformations and the canonical partition function 4

2.1 Partition function in first order form 5

2.2 A W3 theory in Hamiltonian form 7

2.3 Adding central extensions 9

2.4 Symmetries of the action 10

2.5 Ward identities 12

3 Action deformations and the holomorphic partition function 13

3.1 Chiral deformations 13

3.2 The coupling to the modular parameter and the notion of energy 15

3.3 Non-chiral deformations 18

4 Holography 19

4.1 Canonical boundary conditions and variational principle 20

4.2 Canonical thermodynamics revisited 23

4.3 Holomorphic boundary conditions and thermodynamics 26

4.4 Other holomorphic boundary conditions 28

4.5 Field redefinitions 30

4.6 Modular transformations 33

5 Discussion 34

A A U(1) example 37

B Useful W3 formulae 39

C Non-chiral stress tensor deformations 41

D Tr
[

a
2

z̄

]

and the OPE 43

D.1 N = 2 47

D.2 N = 3 48

D.3 N = 4 50

1 Introduction

The study of higher spin theories in anti-de Sitter (AdS) space has been recently revitalized,

partly because they provide an example of holographic duality in which the field theory

is essentially non-interacting, and one often has good analytic control over both local

and non-local observables. At least in principle, this feature allows for a very precise

holographic dictionary to be established and tested: roughly speaking, the higher spin
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symmetries emerge in a regime in which one can compute reliably in both the bulk and

the boundary sides of the correspondence. A very interesting example of these dualities

is the conjecture [1] of Klebanov and Polyakov relating three-dimensional critical O(N)

vector models and the Fradkin-Vasiliev higher spin theories in AdS4 [2–4], for which robust

evidence has been provided recently (see [5] and references therein).

Another setup where both sides of the duality are amenable to study is that of

AdS3/CFT2: here the boundary theories correspond to two-dimensional CFTs with ex-

tended current algebras, and the gauge sector of the three-dimensional bulk gravitational

theory can be formulated as a Chern-Simons gauge theory. Indeed, starting with the pro-

posal of Gaberdiel and Gopakumar [6, 7] relating the three-dimensional interacting higher

spin theories [8, 9] to a family of minimal model coset CFTs with W-symmetry,1 several

results have been obtained that show agreement between quantities computed in CFT and

from the bulk duals. These include the spectrum [11–15], partition functions [16–18], scalar

correlators [19, 20], and entanglement entropies [21–23], to name a few. While the full re-

alization of the duality also involves matter fields in the bulk, which couple to operators

other than conserved currents, the pure higher spin sector of the correspondence already

provides an interesting arena where universal aspects of the duality can be explored.

In the present article we will focus on the sector of the latter dualities describing the

CFT’s conserved currents, where the corresponding symmetries emerge via Hamiltonian

reduction of current algebras and admit a simple holographic description in terms of two

copies of Chern-Simons theory. Our main goal will be to clarify the interpretation of differ-

ent boundary conditions in Chern-Simons theory from the point of view of the dual CFT, in

the presence of sources for the conserved currents furnishing the extended (possibly higher

spin) symmetries. In particular, we will argue that certain boundary conditions correspond

to a deformation of the CFT Hamiltonian, while others correspond to deformations of the

CFT action.

More precisely, given a CFT with Hamiltonian HCFT and action SCFT, we can distin-

guish at least four types of deformations depending on whether they are chiral or non-chiral

and whether they are defined as modifications of SCFT or HCFT:

S = SCFT +

∫

d2z
∑

s

µsWs (1.1)

S = SCFT +

∫

d2z
∑

s

µsWs +

∫

d2z
∑

s

µ̄sWs + · · · (1.2)

H = HCFT +

∮

dσ
∑

s

µsWs (1.3)

H = HCFT +

∮

dσ
∑

s

µsWs +

∮

dσ
∑

s

µ̄sWs . (1.4)

Here Ws and Ws are a set of currents of weight (s, 0) and (0, s), respectively, obeying

appropriate Poisson or Dirac bracket chiral algebras which will typically be non-linear ex-

tensions of the Virasoro algebra, and σ denotes a compact coordinate on the cylinder. The

1See [10] for a comprehensive review of W-symmetry in CFT.
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deformation parameters µs and µ̄s can be thought of as chemical potentials or background

gauge fields: provided they transform suitably, the partition functions defined from the

above Hamiltonians/actions will be invariant under the symmetry algebra furnished by

the currents. The dots in (1.2) denote the fact that, in the presence of deformations of

both chiralities, the corresponding action requires terms to all orders in the chemical po-

tentials in order to realize the symmetry. On the other hand, as we will discuss in detail

in due course, at the level of the Hamiltonian the linear couplings suffice, even when both

chiralities are present, because Ws and Ws Poisson-commute.

The program that we will follow can be summarized quite simply. The fact that

the partition functions associated with the various types of deformations above enjoy a

symmetry will as usual result in Ward identities for the one-point functions of the currents

in the presence of sources. The precise form of these Ward identities will depend on the

particular type of deformation under consideration, but in all cases one can encode them

as a flatness condition on suitable 2d gauge connections in “Drinfeld-Sokolov form” [24].

If we now regard the CFT as being defined on the boundary of a 3d manifold, these 2d

gauge connections become boundary conditions for 3d Chern-Simons gauge fields, with the

flatness conditions enforced by the Chern-Simons equations of motion. From a practical

point of view, the advantage of this formulation is that one can now use Chern-Simons

theory to derive a number of universal results for the boundary theories quite efficiently,

including thermodynamic quantities such as entropy and free energy, and even non-local

observables such as entanglement and Rényi entropies which are usually quite difficult to

obtain using solely CFT techniques. For example, formulae for the thermal entropy in the

presence of higher spin chemical potentials written entirely in terms of the Chern-Simons

connections were derived in [25, 26], and two proposals for higher spin entanglement entropy

in terms of Wilson lines in Chern-Simons theory were put forward in [21] and [22].

It is worth mentioning that the logic behind the holographic formulation of the current

sector of these theories predates the advent of the AdS/CFT correspondence, and can be

seen as a special case of the usual connection between Chern-Simons theory and Wess-

Zumino-Witten (WZW) models. In fact, the different types of deformations we discuss as

well as their associated symmetries were studied more than two decades ago in the context

of gauging of W-algebras and the so-called W-gravity. Similarly, the connection between

deformations of the Hamiltonian and chiral deformations of the CFT action was discussed

in [27] from a field-theoretical perspective. Our main goal will be to derive the implications

of these results for the Ward identities and their connection to Chern-Simons theory, in the

hope that these considerations will help to bridge the gap between the existing literature

and the recent discussions in the context of higher spin AdS3/CFT2.

Importantly, in order to derive the Chern-Simons formulation one does not use holog-

raphy or the existence of a holographic dual of the starting CFT. Our analysis, however,

is only valid at the classical level (which in the dual CFT corresponds to a limit where

c → ∞, with c the central charge), and uses no properties of the CFT except that it pos-

sesses particular symmetries. It is only when studying subleading corrections to various

quantities that one would need to have a more detailed knowledge of the matter content

of the field theory, which in the bulk corresponds to specific couplings of matter fields
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to Chern-Simons theory. In the latter situation the details of the full-fledged holographic

correspondence become important.

While the problem at hand may appear to be of a fairly technical nature, it is conceiv-

able that the techniques developed in the context of the higher spin AdS3/CFT2 duality

may find an application to realistic systems. In fact, Hamiltonians of the form (1.3) feature

prominently in the study of the dynamics of one-dimensional integrable condensed matter

systems following a quantum quench, where they are referred to as a “generalized Gibbs

ensemble” or GGE (see e.g. [28] and references therein). Similarly, the large-N limit of

certain coset CFTs proposed to describe strange metals in one spatial dimension has been

related to higher spin theories on AdS3 [29]. Furthermore, even though most of the re-

sults that we will derive are strictly speaking applicable in the large central charge regime,

one may hope that some of the conclusions and lessons from the holographic analysis will

retain their validity in other corners of parameter space, which would make these results

appealing to a wider community. In fact, some of the predictions for entanglement en-

tropy in the presence of sources derived in [21] using a novel holographic proposal have

been recently argued to apply beyond the large central charge limit from a purely CFT

perspective [23, 30], with the first perturbative correction in the higher spin sources being

moreover universal.

The rest of the article is organized as follows. In section 2 we consider Hamiltonian

deformations of the CFT and rewrite the canonical partition function as a path integral in

first order form, and exploit this representation to derive the Ward identities obeyed by the

one-point function of currents in the presence of sources. Although we employ a free boson

realization to perform the calculation, we will find that the resulting Ward identities take

a generic form, independent of the specific realization and particular symmetry algebra.

Moreover, we will discover that these Ward identities have a slightly different structure

from the ones usually discussed in the literature. In section 3 we consider deformations

of the CFT action instead, and exhibit the form of the corresponding Ward identities.

In section 4 we determine the precise “Drinfeld-Sokolov pair” that allows to rewrite the

Ward identities for Hamiltonian and action deformations as the flatness condition on 2d

connections. Using holography, we then extend them into 3d flat connections with suitable

boundary conditions, and use the associated variational principle to derive expressions for

the free energy and entropy, for example. We also revisit and discuss a few results that have

generated some confusion in the recent literature, and point out a useful relation obeyed

by flat connections in Drinfeld-Sokolov form. Furthermore, we comment on the modular

transformation properties of the partition function corresponding to action deformations.

We conclude in section 5. Useful formulas and examples that complement the discussion

are collected in the appendices.

2 Hamiltonian deformations and the canonical partition function

The basic object of interest is the canonical torus partition function

Zcan [τ, αs, ᾱs] = TrH exp 2πi

[

τ
(

L0−
c

24

)

−τ̄
(

L̄0−
c

24

)

+
∑

s

(

αsW
(0)
s −ᾱsW

(0)
s

)

]

(2.1)
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where the trace is assumed to be taken over the Hilbert space H of the CFT, W
(s)
0 and

W
(s)
0 denote the zero modes of conserved currents of weight (s, 0) and (0, s), respectively,

and αs, ᾱs the corresponding sources. In our conventions the torus has volume Vol(T 2) =

4π2Im(τ) with τ = τ1 + iβ/(2π), where β is the inverse temperature. The sum over s

runs over the particular spectrum of operators present in the theory, which depends on

the symmetry algebra in question.2 Before proceeding further it is convenient to clarify

our terminology: in agreement with common usage in the literature, we will refer to the

CFT operators of conformal dimension greater than two as “higher spin operators”, to the

symmetries they generate as “higher spin symmetries”, and to their sources as “higher spin

sources/chemical potentials”. Therefore, in our CFT discussion we will often use the terms

conformal dimension and spin interchangeably.

One notices that

2πiτ
(

L0 −
c

24

)

− 2πiτ̄
(

L̄0 −
c

24

)

= −βH + 2πiτ1J , (2.2)

where H = L0+ L̄0− c
12 is the Hamiltonian and J = L0− L̄0 the angular momentum, with

L0, L̄0 the Virasoro generators on the cylinder.3 Defining the chemical potentials

Ω ≡ iτ1
β

, µs ≡
iαs

β
, µ̄s ≡ − iᾱs

β
(2.3)

we see that the partition function describes a theory with density operator

ρ̂ =
e−βHµ

Zcan [β,Ω, µs, µ̄s]
, (2.4)

where the deformed Hamiltonian Hµ is given by

Hµ ≡ H − 2πΩJ − 2π
∑

s

(

µsW
(0)
s + µ̄sW

(0)
s

)

. (2.5)

2.1 Partition function in first order form

We will now assume the theory possesses a Lagrangian representation. Denoting the set

of fields collectively by φ, and their (Euclidean) conjugate momenta by P , the partition

function can be written in a path integral representation as

Zcan [β,Ω, µs, µ̄s] =

∫

DφDP eĨ
(E)(P,φ) , (2.6)

where the Hamiltonian form of the action is

Ĩ(E)(P, φ) =

∫ β

0
dtE

∫ 2π

0
dσ

[

−Pφ̇−H+ΩJ +
∑

s

(

µsWs + µ̄sWs

)

]

(2.7)

2In the holographic realization that we will study in section 4, the spectrum is fixed by the choice of

gauge algebra g ⊕ g for the bulk Chern-Simons theory, plus a choice of embedding of the sl(2,R) factor

corresponding to the gravitational (spin-2) degrees of freedom into g.
3As usual, one thinks of the torus as a cylinder of finite length with the ends identified up to a twist.
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with φ̇ = ∂tEφ and

∮

dσH = H ,

∮

dσ

2π
J = J ,

∮

dσ

2π
Ws = W

(s)
0 ,

∮

dσ

2π
Ws = W

(s)
0 . (2.8)

A few comments are in order here. First, we notice that it is the rescaled sources

µ = iβ−1α, namely the chemical potentials, that enter in the action. This is the usual

result in finite-temperature field theory, and can be established by carefully discretizing

the operator trace (see [31, 32] for example). Secondly, in the reasoning above the potential

Ω for angular momentum was treated in the same footing as the other deformations. We

can instead “geometrize” this potential by introducing a twist in the boundary conditions.

Doing so the partition function becomes

Zcan [β,Ω, µs, µ̄s] =

∫

DφDP eI
(E)(P,φ) (2.9)

with I(E) (P, φ) =

∫

T 2

d2z

[

−Pφ̇−H+
∑

s

(

µsWs(P, φ) + µ̄sWs(P, φ)
)

]

(2.10)

where d2z is the standard measure on the Euclidean plane (we are assuming a flat torus)

and the path integral is performed with boundary conditions

φ(z) = φ(z + 2π) = φ(z + 2πτ). (2.11)

Notice that while we have been working with constant µs, µ̄s up to now, we are free to

make µs and µ̄s time- and space-dependent in this path integral representation of Zcan, as

long as we specialize to constant µs, µ̄s when we want to compute Zcan.

A point that will be crucial for the considerations to follow is that in general the cur-

rentsWs corresponding to higher spin operators are at least cubic in momenta. Therefore, if

we transition to a Lagrangian path integral description by integrating out the momenta (i.e.

Legendre-transforming) we find that the resulting action is non-linear in the sources, and

in fact it will generically involve mixing between the two chiral sectors. What this means

is that the canonical partition function is in general quite different from a simple second

order version of the path integral with linear couplings, which we denote by ZLag,naive:

ZLag,naive [β,Ω, µs, µ̄s] =

∫

Dφ e−S0(φ)e−
∫
T2 d2z

∑
s(µsWs(φ)+µ̄sWs(φ)) (2.12)

where S0 is the Lagrangian action in the absence of deformations. Fortunately, as we will

discuss in detail in the rest of this section, for the purpose of deriving the Ward identities

obeyed by the partition function Zcan it will suffice to stay within the first order form of the

action, where the deformations appear only linearly and the two chiral sectors do not mix.

It is important to emphasize that the action deformed by linear couplings which enters

the path integral (2.12) is not invariant under the higher spin symmetries furnished by

the currents when both chiral sectors are deformed simultaneously, even if one allows

the sources to transform. When both chiralities are present an invariant action involves

corrections to all orders in the sources [33–35], and we will return to this point in section 3.3.

– 6 –
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In general, this means that the naive partition function ZLag,naive does not obey the usual

Ward identities when both µs and µ̄s are switched on. The fact that Zcan and ZLag,naive

are different objects is in fact true even for deformations involving “lower spin” currents

(relevant operators), and has important consequences for modular invariance, for example.

To illustrate this point, in appendix A we review an example involving U(1) currents in a

free compact boson realization.

Our next goal is to derive the Ward identities obeyed by the canonical partition func-

tion Zcan. For the sake of concreteness, we will often resort to a theory with W3 symmetry

deformed by sources for the stress tensor and weight-3 currents as our basic example. Even

though we will use a simple boson realization to derive these identities, we will find that

the result is completely fixed by the symmetry algebra and does not rely on details of the

explicit realization. By the same token, our conclusions will be general enough to later

allow us to make a connection with flat connections in three dimensions and to find the

appropriate boundary conditions these should obey in order to reproduce the canonical

computations (cf. section 4). We will first work in Lorentzian signature, where the discus-

sion of symmetries, conserved charges and Ward identities is more transparent. When dis-

cussing the Lorentzian theory on the cylinder we will often refer to the chemical potentials

µ, µ̄ as the sources. On the other hand, once we transition to the finite temperature theory

defined on the torus we will reserve the term sources to denote the α = −iβµ, ᾱ = iβµ̄.

2.2 A W3 theory in Hamiltonian form

Free field realizations of the W-current algebras were originally discussed in [36, 37]. Here

we will follow the Hamiltonian approach employed in [38], which will prove very advan-

tageous. Consider then a theory of n real bosons Xi (i = 1, . . . , n) on the cylinder with

coordinates (t, σ) (where σ ≃ σ + 2π). We denote the canonical momentum conjugate to

Xi by Pi, with equal-time Poisson brackets

{

Pi(σ, t), X
j(σ′, t)

}

= δji δ(σ − σ′) , (2.13)

and raise and lower Latin indices with the flat metric δij .
4 Define now

Πi
± =

1√
2

(

P i ± ∂σX
i
)

, (2.14)

which satisfy

{

Πi
±(σ, t),Π

j
∓
(

σ′, t
)

}

= 0 (2.15)
{

Πi
±(σ, t),Π

j
±
(

σ′, t
)

}

= ∓δij∂σδ(σ − σ′) . (2.16)

One then constructs the generators

W
(s)
± =

1

s
di1...isΠ

i1
± . . .Πis

± , (2.17)

4If so desired, it is possible to introduce a non-trivial metric on the target space [33, 34].
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with s = 2, 3, . . . N , where the di1...is are constant symmetric tensors of rank s. The basic

Poisson brackets (2.15)–(2.16) imply that these generators fulfill two decoupled copies of

the WN algebra (with no central extensions) provided the coefficients di1...is satisfy certain

algebraic relations that guarantee the closure of the algebra [34]. For example, defining

T± = W
(2)
± and W± = W

(3)
± , in the W3 case one finds5

{

T±(σ), T±(σ
′)
}

= ∓
[

2T±(σ)∂σδ
(

σ − σ′)+ δ
(

σ − σ′) ∂σT±(σ)
]

(2.18)
{

T±(σ),W±(σ
′)
}

= ∓
[

3W±(σ)∂σδ
(

σ − σ′)+ 2δ
(

σ − σ′) ∂σW±(σ)
]

(2.19)
{

W±(σ),W±(σ
′)
}

= ∓4κ
[

T±(σ)
2∂σδ

(

σ − σ′)+ δ(σ − σ′)T±(σ)∂σT±(σ)
]

(2.20)

provided [33, 39]

dij = δij , d(ijkd
k
m)n = κ δ(ijδm)n . (2.21)

Below we will discuss how to generalize this construction to allow for a semiclassical central

charge c, in terms of which κ = −16/c. The condition on dijk guarantees that the spin-4

term in the r.h.s. of the {W,W} bracket is proportional to T 2, closing the algebra of the

stress tensor T and the dimension-3 current W , albeit non-linearly. We stress that, since

we are using Poisson brackets and working at the semiclassical level, we have considered

the product of currents such as T 2 without worrying about operator ordering issues.

Before integrating over momenta, the partition function for the deformed theory in-

volves the first-order action

I =

∫

dσdt

[

PiẊ
i − 1

2

(

P iPi + ∂σX
i∂σXi

)

− µ+
2 T+ − µ−

2 T− − µ+
3 W+ − µ−

3 W−

]

(2.22)

whose symmetries we want to study. The dot notation indicates time derivatives as usual.

A convenient feature of the first order formalism is that the W
(s)
+ and W

(s)
− generators

Poisson-commute, so the separation of left- and right-movers is exact. To avoid unnecessary

clutter we will often work exclusively with the + sector and drop the subindex to simplify

the notation, i.e. we use T ≡ T+, W ≡ W+ and so forth when there is no risk for confusion.

Naturally, all the conclusions apply to the other chiral sector as well.

The key point we want to stress is that integrating out the momenta one obtains the

second order form of the action, which is non-linear in the sources and mixes left- and right-

movers in a non-trivial way. A related observation is that, in the absence of deformations

(i.e. µ±
2 = µ±

3 = 0) the equation of motion for Pi implies Pi = ∂tX
i, so that Πi

± = ∂±Xi

in the undeformed theory. The undeformed currents are then schematically of the form

W
(s)
± ∼ (∂±X)s and obviously chiral. On the other hand, when the chemical potentials

are switched on the Pi acquire explicit dependence on them to all orders, and so do the

currents themselves. For the purpose of studying the symmetries of the partition function

and the associated Ward identities it will be very advantageous to stay within the first order

formulation, because the sources enter linearly and the chiral sectors remain factorized.

5Since we are working with equal-time Poisson brackets, in order to simplify the notation we will often

suppress the explicit time dependence of the currents and other quantities.
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2.3 Adding central extensions

We will now extend the Hamiltonian analysis of [38] to include classical central extensions.

This can be achieved by adding improvement terms to the generators, often times called

“background charges” in the literature, along the lines of [33, 37, 39]:

T =
1

2
δijΠ

iΠj + ai∂σΠ
i (2.23)

W =
1

3
dijkΠ

iΠjΠk + eij∂σΠ
iΠj + fi∂

2
σΠ

i , (2.24)

where the ai, eij and fi are constant coefficients. With these additions, the W3 Poisson

algebra becomes

{

T (σ), T (σ′)
}

= −
[

2T (σ)∂σδ
(

σ − σ′)+ δ
(

σ − σ′) ∂σT (σ) +
c

12
∂3
σδ

(

σ − σ′)
]

(2.25)
{

T (σ),W (σ′)
}

= −
[

3W (σ)∂σδ
(

σ − σ′)+ 2δ
(

σ − σ′) ∂σW (σ)
]

(2.26)
{

W (σ),W (σ′)
}

=
64

c

[

T 2(σ)∂σδ(σ − σ′) + δ(σ − σ′)T (σ)∂σT (σ)
]

+ 3 ∂σδ(σ − σ′)∂2
σT (σ) + 5 ∂2

σδ(σ − σ′)∂σT (σ) (2.27)

+
2

3
δ(σ − σ′)∂3

σT (σ) +
10

3
∂3
σδ(σ − σ′)T (σ) +

c

36
∂5
σδ(σ − σ′)

provided the various coefficients satisfy (B.3)–(B.13) (in particular aia
i = − c

12 , where c

is the semiclassical central charge), and similarly in the other chiral sector. A feature

that distinguishes the non-linear Poisson algebras such as (2.25)–(2.27) from their linear

counterparts is that, upon normal-ordering the products of currents, the Jacobi identities

(associativity) will imply that the structure constants in the quantum version of the algebra

acquire O(1/c) corrections (see e.g. [39]). It is in this sense that the non-linear Poisson

bracket algebra is a “large-c” version of the full quantum algebra.

With the Poisson algebra at our disposal, we can compute the transformation of the

currents under the various symmetries. Defining the integrated spin-2 and spin-3 charges

Q(2) =

∫

dσ′ ǫ
(

σ′)T
(

σ′) (2.28)

Q(3) =

∫

dσ′ χ
(

σ′)W
(

σ′) , (2.29)

under an infinitesimal spin-2 transformation one finds

δǫT =
{

Q(2), T
}

= ǫ ∂σT + 2T ∂σǫ+
c

12
∂3
σǫ (2.30)

δǫW =
{

Q(2),W
}

= ǫ ∂σW + 3W∂σǫ (2.31)

(with similar expressions in the other chiral sector) and we recognize the transformation

of the stress tensor and a weight-3 primary operator under diffeomorphisms of the form
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x+ → x+ + ǫ(σ). Similarly, under the spin-3 symmetry one finds

δχT =
{

Q(3), T
}

= 2χ∂σW + 3W∂σχ (2.32)

δχW =
{

Q(3),W
}

= −
[

64

c

(

χT ∂σT + T 2 ∂σχ
)

+
c

36
∂5
σχ

+
1

3

(

2χ∂3
σT + 9 ∂σχ∂2

σT + 15 ∂2
σχ∂σT + 10T ∂3

σχ
)

]

. (2.33)

2.4 Symmetries of the action

Let us now discuss the symmetries of the action. To this end it is useful to think of the

sources as gauge fields, i.e. Lagrange multipliers imposing constraints that generate the W
algebra or any other symmetry in question. We emphasize however that the sources are

background fields which are not being integrated over in the path integral. We will denote

the currents generating the symmetry of interest by a vector ~J with components Jα, and

the corresponding Lagrange multipliers by a vector ~µ with components µα. In our W3

example we will have ~J = {T+, T−,W+,W−} and ~µ = {µ+
2 , µ

−
2 , µ

+
3 , µ

−
3 }. The action we

consider is then of the generic form

I =

∫

dσdt
(

PiẊ
i −H0 − µαJα

)

(2.34)

where H0 denotes the undeformed Hamiltonian. We will study the symmetries of the

associated partition function using the improved generators, i.e. when the algebra acquires

semiclassical central extensions:

{

Jα(σ), Jβ(σ
′)
}

=

∫

dx f γ
αβ (σ, σ′, x)Jγ(x) + cαβ(σ, σ

′) , (2.35)

where as before we have suppressed the explicit time dependence of the currents for the

sake of notational simplicity. The functions cαβ are proportional to the semiclassical central

charge c, but do not depend on the phase space variables.

Before moving forward, we can take two steps that will simplify the task of finding

the Ward identities obeyed by the currents in the presence of sources. First, we note that

the undeformed Hamiltonian is simply H0 = T+ + T−.6 It is then possible to eliminate

H0 from the action by shifting the spin-2 chemical potentials as µ±
2 → ν±2 − 1, while

keeping the higher spin chemical potentials the same. Consequently, for practical purposes

we will define a new vector ~ν with components {ν+2 , ν−2 , µ+
3 , µ

−
3 , . . .} and drop H0. Even

though the shift in the spin-2 deformation could be thought of as a “gauge choice”, the

undeformed theory has generically a non-zero Hamiltonian H0, so we must remember to

translate our results back to the µα at the end if we are to interpret the sources strictly as

deformations of the original theory. Secondly, we will define for convenience an auxiliary

6More precisely, in the presence of improvement terms we have H0 = 1
2

(

P iPi + ∂σX
i∂σXi

)

= T+ +

T
−
− a+

j ∂σΠ
j
+ − a−

j ∂σΠ
j
−

, but the total σ-derivatives do not contribute to the Hamiltonian
∫

dσH0.
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action Ic which includes an “identity gauge field” νc which can be thought of as coupling

to an extra Abelian generator [40]:

Ic =

∫

dσdt
(

PiẊ
i − ναJα − νc · 1

)

. (2.36)

The role of this additional Lagrange multiplier, which is purely a bookkeeping device,

is to cancel contributions to the variation of the action coming from central extensions.

Naturally, at the end of the day we will set νc = 0 in order to obtain the Ward identities

obeyed by the original partition function.

We are now in position to discuss the symmetries of the action in the presence of

deformations. It is straightforward to check that under an infinitesimal transformation of

the fields and sources of the form

δPi(σ) =

∫

dσ′ ǫα(σ′)
{

Jα(σ
′), Pi(σ)

}

(2.37)

δXi(σ) =

∫

dσ′ ǫα(σ′)
{

Jα(σ
′), Xi(σ)

}

(2.38)

δνα(σ) = ǫ̇α(σ)−
∫

dσ′dx νβ(x)ǫγ(σ′)f α
γβ (σ′, x, σ) (2.39)

δνc(σ) = ζ̇(σ)− νβ(σ)

∫

dσ′ ǫγ(σ′)cγβ(σ
′, σ) , (2.40)

the auxiliary action (2.36) changes by a boundary term:

δIc =

∫

dtdσ ∂t
(

PiδX
i − ǫαJα − ζ

)

. (2.41)

Let us now specialize these expressions to our W3 example. Using (B.15)–(B.20) we

can obtain the explicit transformation of the sources from (2.39) (with ǫα = {ǫ, χ, . . .})

δν2 = ∂tǫ− ν2∂σǫ+ ǫ∂σν2 −
32

c
T
(

χ∂σµ3 − µ3∂σχ
)

+
2

3
µ3∂

3
σχ− 2

3
χ∂3

σµ3 − ∂σµ3∂
2
σχ+ ∂σχ∂

2
σµ3 (2.42)

δµ3 = ∂tχ− ν2∂σχ+ 2χ∂σν2 + ǫ∂σµ3 − 2µ3∂σǫ (2.43)

where we used the shorthand ν2 ≡ ν+2 and µ3 ≡ µ+
3 , with similar expressions for the sources

in the other chiral sector. Shifting back to the original spin-2 source µ2 = ν2− 1 we obtain

the desired transformation rules:

δµ2 = ∂−ǫ− µ2∂σǫ+ ǫ∂σµ2 −
32

c
T
(

χ∂σµ3 − µ3∂σχ
)

+
2

3
µ3∂

3
σχ− 2

3
χ∂3

σµ3 − ∂σµ3∂
2
σχ+ ∂σχ∂

2
σµ3 (2.44)

δµ3 = ∂−χ− µ2∂σχ+ 2χ∂σµ2 + ǫ∂σµ3 − 2µ3∂σǫ . (2.45)

Notice the appearance of the chiral derivative defined as ∂− = ∂t − ∂σ (∂+ = ∂t + ∂σ).

We then see that the only effect of the undeformed Hamiltonian H0 is to turn the time

derivatives in (2.39) into chiral derivatives.
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It is worth emphasizing that the theory and in particular the partition function are

defined at fixed values of the sources. The fact that one needs to transform the µα in order

to realize the symmetry, therefore moving in the space of theories, shows that generically

these deformations will explicitly break the original conformal as well as higher spin and

Lorentz symmetries.7

2.5 Ward identities

Having derived the transformation of the sources, the basic result (2.41) showing the in-

variance of the action under the combined transformation of background sources and fun-

damental fields will imply a Ward identity for the currents. From the point of view of

the path integral, changing the fields Xi and momenta Pi is a just a change of integration

variables. Hence, the symmetry (2.37)–(2.40) implies

〈∫

dσdt

(

δIc
δνα

δνα +
δIc
δνc

δνc

)〉

≃ 0 , (2.46)

where ≃ denotes equivalence up to surface terms (the integral of total time derivatives).

Setting νc = 0 in order to recover the Ward identity obeyed by the original partition

function we obtain
∫

dσdt

(

−Jαδν
α +

∫

dσ′ νβ(σ) ǫγ(σ′)cγβ(σ
′, σ)

)

≃ 0 , (2.47)

where the Jα are interpreted as the one-point function of the currents in the presence of

external sources. Plugging the explicit form (2.39) of the variations δνα and integrating

by parts we find the identity

∂tJα(σ) +

∫

dσ′dx νβ(x)f γ
αβ (σ, x, σ′)Jγ(σ

′) +

∫

dσ′ νβ(σ′)cαβ(σ, σ
′) = 0 . (2.48)

Note that defining the extended Hamiltonian

Hν ≡
∫

dσ να(σ)Jα(σ) , (2.49)

the above Ward identity takes a very compact form:

∂tJα(σ) =
{

Hν , Jα(σ)
}

. (2.50)

In other words, in Hamiltonian language the Ward identities are just the equations of

motion of the currents, with the time evolution generated by the deformed Hamiltonian Hν .

We emphasize that the source vector να in (2.48) and (2.50) contains the shifted spin-2

deformation ν2 = µ2+1 that allowed us to absorb the undeformed Hamiltonian H0. In the

7The theory naively has new higher spin and Lorentz symmetries which one obtains by (i) performing a

higher spin transformation that puts all sources equal to zero, (ii) performing a higher spin transformation

in the undeformed theory and (iii) performing the inverse higher spin transformation that puts all sources

back to their original value. As we will discuss in section 5, it is not entirely clear whether this is a proper

symmetry of the deformed theory.
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specific W3 example, using (B.15)–(B.20) it is easy to see that (2.48) yields, after shifting

back to µ2,

∂−T = µ2∂σT + 2T∂σµ2 +
c

12
∂3
σµ2 + 3W∂σµ3 + 2µ3∂σW (2.51)

∂−W = µ2∂σW + 3W∂σµ2 −
64

c

(

T 2∂σµ3 + µ3T∂σT
)

− 10

3
T∂3

σµ3 − 5∂σT∂
2
σµ3 − 3∂2

σT∂σµ3 −
2

3
µ3∂

3
σT − c

36
∂5
σµ3 , (2.52)

where ∂− = ∂t − ∂σ. Just as before, shifting back to µ2 produced an extra term that

combined with the time derivatives in (2.48) to turn them into chiral derivatives. This was

to be expected, because ∂−T = 0 and ∂−W = 0 are the Ward identities in the free theory

(i.e. when µ2 = µ3 = 0). More generally, if in a slight abuse of notation we let Jα, f
γ

αβ and

cαβ denote the currents, structure constants and central extensions on a single chiral copy

of the algebra, our results for the Ward identity in terms of the original sources µβ becomes

∂−Jα(σ) +

∫

dσ′dxµβ(x)f γ
αβ (σ, x, σ′)Jγ(σ

′) +

∫

dσ′ µβ(σ′)cαβ(σ, σ
′) = 0 , (2.53)

with a similar expression in the other chiral sector (∂+J̄α(σ) + . . . = 0).

Even though the Ward identities were derived using an explicit realization in terms

of scalars, it is clear from (2.48) and (2.53) that the end result is completely fixed by the

symmetry algebra and therefore independent of the particular realization we have chosen.

In other words, (2.51)–(2.52) are the semiclassical (large-c) Ward identities associated to the

canonical partition function in any theory with W3 symmetry, in the presence of sources. It

is also clear from the derivation that (2.53) extends to any other closed symmetry algebra.

It is somewhat peculiar that the right-hand side of the Ward identities involves σ-

derivatives as opposed to x+-derivatives, which to our knowledge has not been emphasized

in the literature before. As we have seen this is an automatic consequence of our canonical

treatment, with the Hamiltonian as the starting point. In section 4.1 we will show that

these Ward identities can be written as the flatness condition on sl(N,R)⊕sl(N,R) gauge

fields with appropriate boundary conditions.

3 Action deformations and the holomorphic partition function

By now we have established the structure of the Ward identities corresponding to a defor-

mation of the CFT Hamiltonian by higher spin currents. Our next task is to consider a

different partition function obtained by deforming the CFT action. Many of the technical

aspects in the analysis below are analogous to the canonical case discussed in depth in the

previous section, so in what follows we will omit unessential details for the sake of brevity.

3.1 Chiral deformations

We will begin by studying the symmetries of the partition function and the associated

Ward identities in the presence of chiral deformations. To this end we will again resort to
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the free boson realization, and consider an action of the form

S =

∫

d2x

(

1

2
∂+X

i∂−Xi − λαGα

)

(3.1)

where the vector G = {L,W} contains the currents8

L =
1

2
∂+X

i∂+X
i , W =

1

3
dijk∂+X

i∂+X
j∂+X

k (3.2)

and λ = {λ2, λ3} the corresponding sources. Following the Noether procedure, it was

established long ago that this linear coupling is in fact enough for the action with chiral

deformations to enjoy a gauge invariance [33, 34], akin to a chiral half of (2.37)–(2.39).

A particularly transparent way of understanding this result, which also allows to make

direct contact with the calculations in section 2, is to realize that the above action is

amenable to study in a Hamiltonian formalism with the light-cone direction x− thought of

as “time” [34, 41, 42], and where the undeformed Hamiltonian is identically zero, H0 = 0.

The key observation in [42] is that, after taking into account the presence of the second

class constraint (1/2)∂+Xi − Pi = 0, the basic Dirac bracket {, }D reads
{

∂+Xi(x
+, x−), ∂+Xj(y

+, x−)
}

D
= δij ∂+δ

(

x+ − y+
)

. (3.3)

Given the form of this bracket and the currents (3.2) (compare with the basic canonical

bracket (2.16) and currents (2.17)), from the reasoning in the previous section it is clear

that the holomorphic currents enjoy the Dirac bracket algebra
{

L(x+),L(y+)
}

D
= −

[

2L(x+)∂+δ
(

x+ − y+
)

+ δ
(

x+ − y+
)

∂+L(x+)
]

(3.4)
{

L(x+),W(y+)
}

D
= −

[

3W(x+)∂+δ
(

x+ − y+
)

+ 2δ
(

x+ − y+
)

∂+W(x+)
]

(3.5)
{

W(x+),W(y+)
}

D
= −4κ

[

L(x+)2∂+δ
(

x+ − y+
)

+ δ(x+ − y+)L(x+)∂+L(x+)
]

(3.6)

provided d(ijkd
k
m)n = κ δ(ijδm)n as before. Classical central extensions can be incorporated

exactly as in the canonical analysis by adding improvement terms to the generators, which

will now involve terms of higher order in chiral derivatives, e.g. L = (1/2)∂+X
i∂+X

i +

ai∂
2
+X

i (compare with (2.23)). It is then immediate that the improved generators fulfill

one copy of the centrally extended algebra (2.25), (2.26), (2.27), with spatial derivatives

∂σ replaced by chiral derivatives ∂+, provided the coefficients of the improvement terms

obey the constraints (B.3)–(B.13). In simple terms, all the calculations performed in the

canonical formulation carry over to the chiral deformation case provided one replaces Πi
+ →

∂+X
i and ∂σ → ∂+.

Parameterizing the extended Dirac brackets of the currents as (in order to simplify the

notation we omit the explicit x− dependence below)

{

Gα(x
+), Gβ(y

+)
}

D
=

∫

dz+ f γ
αβ (x+, y+, z+)Gγ(z

+) + cαβ(x
+, y+) , (3.7)

8As the notation indicates, these chiral currents are different from their canonical counterparts (2.17),

and only agree with them in the absence of sources.
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it was shown in [42] that under the infinitesimal transformation

δXi =
∑

n≥1

(−1)n−1∂n−1
+

(

ǫα
∂Gα

∂
(

∂n
+Xi

)

)

(3.8)

δλα = ∂−ǫ
α −

∫

dy+dz+ λβ(y+, x−)ǫγ(z+, x−)f α
γβ (z+, y+, x+) (3.9)

the action (3.1) transforms as9

δS ≃ −
∫

dx−dx+dy+ λβ(x+, x−) ǫγ(y+, x−)cγβ(y
+, x+) , (3.10)

where as before ≃ denotes equivalence up to surface terms. Repeating the manipulations

that lead to (2.48), in this case we find the Ward identities

∂−Gα(x
+) +

∫

dz+dy+ λβ(y+)f γ
αβ (x+, y+, z+)Gγ(z

+) +

∫

dz+ λβ(z+)cαβ(x
+, z+) = 0 .

(3.11)

Using the fact that the structure constants f γ
αβ and central extensions cαβ now involve

∂+ derivatives (as opposed to ∂σ derivatives), in the W3 example we find

∂−L = µ2∂+L+ 2L∂+µ2 +
c

12
∂3
+µ2 + 3W∂+µ3 + 2µ3∂+W (3.12)

∂−W = µ2∂+W + 3W∂+µ2 −
64

c

(

L2∂+µ3 + µ3L∂+L
)

− 10

3
L∂3

+µ3 − 5∂+L∂2
+µ3 − 3∂2

+L∂+µ3 −
2

3
µ3∂

3
+L − c

36
∂5
+µ3 . (3.13)

Just as for the algebra itself, the Ward identities associated with a chiral deformation

of the field theory action have the same form as those associated with a chiral deformation

of the Hamiltonian, but with spatial derivatives ∂σ replaced by light-cone derivatives ∂+.

As shown in e.g. [43], these Ward identities also follow by computing the one point of

L and W in the presence of the insertion e
∫
d2z λαGα by expanding the exponential and

using the OPE of the holomorphic currents. In this sense, (3.12)–(3.13) could be said to

be the “usual” Ward identities. As discussed in section 4 and appendix D, these Ward

identities (in fact two chiral copies of them) can be rewritten as the flatness condition on

sl(N)⊕ sl(N) gauge fields with appropriate boundary conditions.

3.2 The coupling to the modular parameter and the notion of energy

Consider adding to the Euclidean free boson action a chiral stress tensor deformation and

a chiral deformation by a weight-s current:

S =

∫

d2z

(

1

2
∂zX

i∂z̄X
i − µ2L − µsWs

)

(3.14)

where

L =
1

2
∂zX

i∂zX
i , Ws =

1

s
di1...is∂zX

i1 . . . ∂zX
is . (3.15)

9Just as in the case of a Hamiltonian deformation, one can alternatively introduce an extra Abelian

generator whose transformation is such that the modified action is invariant.
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For simplicity we have not added improvement terms to the generators, which as we have

seen allow to incorporate semiclassical central charges. We will moreover restrict to odd

s, in which case the closure of the Dirac bracket algebra (obtained interpreting z̄ as time)

requires [34]

di (i2...isd
i
j2...)js

=
κ

2s−1
δ(i2i3 . . . δjs−1)js . (3.16)

Allowing µ2 and µs to have spacetime dependence, the above action is invariant under the

following infinitesimal transformation of fields and sources:

δXi = ǫ2
δL

δ (∂zXi)
+ ǫs

δWs

δ (∂zXi)
(3.17)

= ǫ2 ∂zX
i + ǫs d

i
i2...is∂zX

i2 . . . ∂zX
is (3.18)

δµ2 = ∂z̄ǫ2 − µ2∂zǫ2 + ǫ2∂zµ2 +
κ

2
Ls−2

(

ǫs∂zµs − µs∂zǫs
)

(3.19)

δµs = ∂z̄ǫs + (s− 1) ǫs∂zµ2 − µ2∂zǫs − (s− 1)µs∂zǫ2 + ǫ2∂zµs (3.20)

with associated Ward identities

∂z̄L = µ2∂zL+ 2L∂zµ2 + (s− 1)µs∂zWs + sWs∂zµs (3.21)

∂z̄Ws = µ2∂zWs + sWs∂zµ2 + κ

(

Ls−1∂zµs +
s− 1

2
µsLs−2∂zL

)

. (3.22)

In order to discuss a thermal partition function, we now take µ2 and µs to be con-

stant chemical potentials and put the theory on a torus with modular parameter τ , with

2πIm(τ) = β as before. In the canonical formulation of section 2, the modular parameter τ

of the torus couples by definition to the Virasoro zero modes. We would now like to under-

stand what are the quantities that couple to τ and τ̄ in the presence of chiral deformations

of the action. This is an important question, as these couplings define for example the

quantity that is conjugate to the inverse temperature β, namely the energy of the system.

The original torus has metric and identifications given by

ds2 = dzdz̄ , with z ≃ z + 2π ≃ z + 2πτ , (3.23)

and volume Vol(T 2) = 4π2Im(τ). Since the periodicity of the coordinates depends on τ ,

care must be exercised when taking variations with respect to the modular parameter. A

convenient way of dealing with this problem consists in passing first to coordinates (w, w̄)

of fixed periodicity, e.g. [44]

z =
1− iτ

2
w +

1 + iτ

2
w̄ , z̄ =

1− iτ̄

2
w +

1 + iτ̄

2
w̄ , (3.24)

which implies

w ≃ w + 2π ≃ w + 2πi . (3.25)

One then takes variations of the action in the (w, w̄) coordinates, and transforms back to

(z, z̄) at the end. In this way one obtains for example

δτ,τ̄
(

∂zX
i
)

= i
δτ ∂zX

i + δτ̄ ∂z̄X
i

2Im(τ)
(3.26)

δτ,τ̄
(

∂z̄X
i
)

= −i
δτ ∂zX

i + δτ̄ ∂z̄X
i

2Im(τ)
. (3.27)

– 16 –



J
H
E
P
0
4
(
2
0
1
6
)
1
0
7

Denoting the free (undeformed) boson action by S0 and taking the variation as indi-

cated yields the expected result10

δS0 =

∫

d2z

2iIm(τ)

(

Lδτ − Lδτ̄
)

(3.28)

with L as in (3.15) and

L =
1

2
∂z̄X

i∂z̄X
i . (3.29)

Extending the above computation to include the effects of the chiral deformations

requires some caution, as we first have to define what exactly are the independent ther-

modynamic variables that we are going to use. It might be tempting to use µs and µ̄s,

besides τ, τ̄ , as independent variables, but we will find it more natural and convenient to

use Im(τ)µs, Im(τ̄)µ̄s, τ and τ̄ as independent variables. We make this choice because (i)

a similar choice was made in eq. (2.3), (ii) when taking µs and Ws constant the integral
∫

d2z µsWs reduces to 4π2Im(τ)µsWs, and (iii) this is also the standard procedure in ther-

mal field theory in the presence of chemical potentials [32]. An additional independent

reason supporting this choice of thermal sources, motivated from holographic considera-

tions, will be given in section 4.4. In the present context this means that we must take the

τ -variation of the action with

δ
(

Im(τ)µ
)

= 0 . (3.30)

This illustrates a subtle yet crucial point: in the presence of deformations by conserved

currents, the precise definition of the sources affects the definition of the energy and other

thermodynamic quantities of interest.

Taking into account the contribution of the chiral deformations and performing the

variation of (3.14) as described one obtains

δS =

∫

d2z

2iIm(τ)

(

L+ 2µ2L+ sµsWs

)

δτ

−
∫

d2z

2iIm(τ)

(

L − µ2∂zX
i∂z̄X

i − µsdi1...is∂zX
i1 . . . ∂zX

is−1∂z̄X
is
)

δτ̄ . (3.31)

We would now like to rewrite this variation entirely in terms of the generators themselves.

To this end we can use the reparametrization freedom of the path integral and consider a

(non-local) field redefinition such that

δ
(

∂zX
i
)

= γ2∂zX
i + γsd

i
i2...is∂zX

i2 . . . ∂zX
is . (3.32)

The variation of the free action will then cancel the offending terms in the second line

of (3.31) provided we set

γ2 = − µ2

2iIm(τ)
δτ̄ and γs = − µs

2iIm(τ)
δτ̄ . (3.33)

Taking into account the new terms generated by the variation of the (µ2L+ µsWs) piece,

the final result for the combined variation of the complex structure plus field redefinition is

δS =

∫

d2z

2iIm(τ)

(

Eδτ − Eδτ̄
)

(3.34)

10Notice one keeps the invariant measure d2z
Im(τ)

= d2w fixed in this variation.
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where we defined the “energies” E and E as

E = L+ 2µ2L+ sµsWs , E = L − 2µ2
2L − κµ2

sLs−1 . (3.35)

The above simple-minded calculation glossed over many details: it did not take central

terms into account, it applies to a single higher spin deformation only, and the field redef-

inition we have performed is non-local. A rigorous calculation should involve e.g. treating

the kernel of the derivative operator (in particular zero modes) carefully. Barring these

technical complications, the naive calculation exemplifies some facts that should remain

true once these subtleties are taken into account. In particular, it shows that even for a

chiral deformation the notion of energy on the opposite chiral sector is modified. In fact,

the generalization of (3.35) was obtained in [25] using Chern-Simons theory.11 We now see

that the mixing of chiralities has a very simple origin in field theory: it arises due to the

mixing of left- and right-movers in (3.26) and (3.27). We will return to this result and its

interpretation in section 4.3 and appendix D.

3.3 Non-chiral deformations

Having studied chiral deformations of the CFT action, a natural question is whether one

can simultaneously turn on sources for both left- and right-moving chiral algebras in such a

way that the Ward identities consist of two copies of (3.11) (with ∂+ and ∂− interchanged).

As we have anticipated, a naive second order path integral with linear couplings, i.e.

ZLag,naive [β, µs, µ̄s] =

∫

Dφ e−S0(φ)e−
∫
T2 d2z

∑
s(µsWs(φ)+µ̄sWs(φ)) (3.36)

would not lead to the desired Ward identities. A simple way to appreciate the problems

associated with this definition is to notice that in order to derive the desired Ward identities

one would need to assume that the chiral sectors are decoupled, whereas in practice the

OPE between e.g. Ws and Ws involves contact terms. In terms of free bosons Xi, these

contact terms arise for example from ∂Xi(z, z̄)∂̄Xj(w, w̄) ∼ δijδ(2)(z −w, z̄ − w̄). Though

contact terms are perhaps often associated to quantum effects, it is straightforward to see

that here Ws transforms non-trivially under a higher spin transformation generated by Ws

already at the classical level, thereby spoiling the derivation of the Ward identities.

In certain cases one can indeed write down a partition function whose symmetries

result in two copies of the chiral Ward identities, at the expense of introducing auxiliary

fields [35]. As anticipated, integrating out the auxiliary fields results in an action involving

infinitely many higher order terms in µs and µ̄s, which would be the Lagrangian version of

the theory with well-separated left- and right-movers. Even though we will not discuss the

auxiliary field formalism in detail, in appendix C we review an example involving non-chiral

stress tensor deformations that illustrates various general features of the construction. We

emphasize that the difficulties associated with non-chiral deformations do not arise in the

holographic formulation using Chern-Simons theory. In particular, it was already shown

11The calculation performed in [25] moreover involved non-chiral deformations, but reduces to the above

results once the chemical potentials in the barred sector are switched off.
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in [43] that two copies of the chiral Ward identities arise as the flatness condition on

sl(N) ⊕ sl(N) gauge fields with appropriate boundary conditions (cf. section 4.3). The

difficult only emerges when one tries to associate a deformed CFT path integral to the

bulk theory with these boundary conditions.

In our considerations above, the non-decoupling of the chiral sectors in the path in-

tegral (3.36) was easy to see because it involved classical field variations only. One could

however contemplate other definitions of the path integral, for example using conformal

perturbation theory, where contact terms play no role since one regularizes the integrated

correlators by excising small disks around each operator insertion. At first sight, this pre-

scription then leads to a factorization of the chiral and non-chiral deformations, since they

only interact through contact terms in correlation functions of the form 〈WW〉, and there-

fore also to the correct separate Ward identities.12 It is somewhat puzzling that conformal

perturbation theory naively yields an answer which differs from that obtained using classi-

cal field variations, especially since the disagreement is already there at the classical level

and has nothing to do with quantum issues. One possibility is that the treatment using

conformal perturbation theory becomes subtle when going to higher orders, since one needs

to separate the chiral and anti-chiral insertions from each other, and that this induces some

mixing. Alternatively, we are dealing with two different prescriptions which simply differ

by finite local counterterms. It would be interesting to investigate this issue further.

4 Holography

The semiclassical analysis in sections 2 and 3 culminating in the Ward identities (2.53)

and (3.11), respectively, was purely field-theoretical and did not presume the existence of

a holographic description. In particular, for any theory with W3 symmetry we showed

that the symmetries of the canonical partition function in the presence of sources result in

equations (2.51)–(2.52) for the one-point function of the stress tensor and the dimension

3 operator, in the semiclassical limit. For chiral deformations of the field theory action,

the analogous results (3.12)–(3.13) hold. Solely a consequence of symmetries, these results

are generally valid in the large central charge limit, and in particular independent of the

existence of a holographic realization.

As we have mentioned, the WN algebras are an example of symmetries that emerge

via the so-called Hamiltonian or Drinfeld-Sokolov [24] reduction of current algebras, and

such theories can be described in terms of Chern-Simons theories on a three-dimensional

manifold with boundary (see the recent [6, 17, 18, 43, 45–50], and [51–57] for earlier work).

The pure Chern-Simons sector is in fact a consistent truncation of the full interacting

Prokushkin-Vasiliev theory [8, 9], where the matter sector decouples. When the connec-

tions are valued in sl(N,R) ⊕ sl(N,R) the dual CFT possesses WN symmetry [45, 46].

Replacing the gauge algebra by two copies of the infinite-dimensional hs[λ] algebra, the re-

sulting theory enjoys W∞[λ] symmetry [47, 49]. For a succinct overview of the basic facts

concerning the formulation of three-dimensional gravitational theories in Chern-Simons

language, as applied to higher spin AdS3/CFT2, we refer the reader to [21, 25]. Full details

can be found in the comprehensive reviews [7, 48, 58].

12We thank Per Kraus for bringing this scenario to our attention.
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We do not need the full machinery referred to in the previous paragraph to describe the

connection to Chern-Simons theory, however. Consider Chern-Simons theory, augmented

with a suitable boundary term and boundary conditions, on a three-manifold with bound-

ary. The Chern-Simons gauge fields will depend in some particular way on the sources µs

and µ̄s, and also on the expectation values (EVs) 〈Ws〉µ and 〈Ws〉µ in the deformed CFT.

If the variation of the Chern-Simons action with boundary term and boundary conditions

takes the schematic form

δS ∼
∫

M
Tr [δA ∧ F ] +

∫

∂M
d2x (EVs) δ(sources) (4.1)

and F = 0 restricted to the boundary agrees with the Ward identities of the dual deformed

CFT, then the on-shell value of the Chern-Simons action plus boundary term yields a

functional which will automatically solve the Ward identities. Interestingly, we obtain a

solution for each choice of three-manifold M with the same boundary ∂M . What this

analysis does not tell us is which M to pick, whether to sum over all possible M , and

whether all solutions of the Ward identities can be obtained in this way. In the remainder,

we will assume the latter to be true, and in order to select a three-manifold we will pick the

dominant saddle point suggested by AdS/CFT in the case where the sources are turned off.

We expect this to remain the dominant saddle for sufficiently small values of the sources,

but an analysis of exactly which saddle dominates for which values of the sources is beyond

the scope of the present paper.

Note that (4.1) requires one to identify precisely what sources one chooses, and different

choices of sources or thermodynamic variables will correspond to different boundary terms

and boundary conditions, as recently discussed in [25]. A class of boundary conditions was

studied in [59–65] that lead to the so-called “canonical thermodynamics”, consistent with

canonical definitions of conserved charges and thermodynamics in gravitational theories,

with a perturbative application of Wald-like formulae for the entropy and energy [66], and

with the thermal limit of entanglement entropy calculations in higher spin theories [21, 22].

A feature of the canonical approach is that, once sources for the currents are switched on,

quantities such as the energy and higher spin charges, for example, acquire an explicit

dependence on the chemical potentials and differ from their undeformed counterparts. On

the other hand, alternative “holomorphic” boundary conditions were employed in [17, 26,

43, 50] which yielded results consistent with various independent CFT calculations [18–20].

The question that concerns us here is what is the precise interpretation of these boundary

conditions in terms of the dual field theory.

The picture we want to put forward is that while canonical boundary conditions are

associated with deformations of the CFT Hamiltonian, of the type studied in section 2, the

holomorphic ones are related to deformations of the CFT action as described in section 3.13

4.1 Canonical boundary conditions and variational principle

We will begin our discussion from the perspective of holography by deriving the boundary

conditions that realize the canonical structure discussed in section 2. Taking the W3 case

as our guiding example, we then ask what are the boundary conditions in Chern-Simons

13See [27] for a detailed discussion of the relation between chiral deformations of the action and

Hamiltonian in CFT.
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theory that are consistent with the symmetry transformations (2.30)–(2.33) of the currents,

and the Ward identities (2.51)–(2.52) (or, equivalently, the transformation (2.44)–(2.45) of

the sources). The first part of the question, concerning the transformation of the charges,

was already answered in [46]: focusing on the unbarred sector for simplicity, one starts by

gauging away the dependence of the connection on the bulk radial coordinate ρ and works

with the reduced or “two-dimensional” connection a defined through

A = b−1(ρ)a(t, σ)b(ρ) + b−1(ρ)db(ρ) . (4.2)

To obtain the right Ward identities, one needs to choose the asymptotic boundary condi-

tions to be of Drinfeld-Sokolov form, i.e.14

aσ = L1 +Q (4.3)

where Q a highest weight matrix ([Q,L−1] = 0) whose entries contain the stress tensor and

the higher spin currents. For example, in the spin-3 case we write the spatial component

of the sl(3,R) connection as

aσ = L1 +
T

k
L−1 −

W

4k
W−2 (4.4)

where k = ℓ
4G3

. By definition, the asymptotic symmetry algebra is generated by the gauge

transformations that respect these boundary conditions, and it corresponds to the (infinite)

global symmetries of the dual CFT. Perfoming an infinitesimal gauge transformation with

parameter λ as δa = dλ+ [a, λ], one finds that (4.4) is preserved if λ takes the form [46]

λ =

1
∑

i=−1

ǫiLi +

2
∑

m=−2

χmWm (4.5)

with the parameters fixed in terms of ǫ1 ≡ ǫ and χ2 ≡ χ by (B.23)–(B.28). Under such

transformations, the change in the currents is precisely given by (2.30)–(2.33).

The remaining question is how to incorporate the sources µ2, µ3 in the connection. The

guiding principle is that the asymptotic equations of motion, namely the flatness condition

on the reduced connection a(t, σ), should reproduce the Ward identities (2.51)–(2.52).

Having fixed the form of aσ, the complete sl(3,R) flat connection is found to be

aσ = L1 +
T

k
L−1 −

W

4k
W−2 (4.6)

at = aσ + µ2L1 + µ3W2 − ∂σµ2 L0 − ∂σµ3W1 +

(

1

2
∂2
σµ3 +

2T

k
µ3

)

W0

+

(

1

2
∂2
σµ2 +

2W

k
µ3 +

T

k
µ2

)

L−1 +

(

−1

6
∂3
σµ3 −

5

3k
T∂σµ3 −

2

3k
µ3∂σT

)

W−1 (4.7)

+

(

1

24
∂4
σµ3 +

2

3k
T∂2

σµ3 +
7

12k
∂σT∂σµ3 +

(

T 2

k2
+

1

6k
∂2
σT

)

µ3 −
1

4k
µ2W

)

W−2 .

Note that when µ2 = µ3 = 0 one has at = aσ, i.e. a− = 0 in the absence of sources.

14We adopt the same convention as [46] for the sl(3,R) generators L1, L0, L−1 andWj (j = −2,−1, . . . , 2),

but rescale the currents by a factor of 2π.
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The general structure at play is more clearly appreciated in terms of a “Drinfeld-

Sokolov pair”, consisting of one component of the connection carrying the currents as

highest weights, and a conjugate component carrying the corresponding sources as lowest

weights. This is conveniently summarized as15

aσ = L1 +Q (4.8)

at − aσ = M + . . . (4.9)

where as before Q is linear in the currents and satisfies [Q,L−1] = 0, M is a matrix linear

in the sources which satisfies [M,L1] = 0, and the dots stand for higher weight terms

completely fixed by the equations of motion once a suitable normalization of the sources is

chosen (see [25, 63] and appendix D for details). In particular, in the above example we have

M = µ2L1 + µ3W2 . (4.10)

As a further consistency check, acting on (4.7) with the gauge parameter (4.5) (sub-

ject to (B.23)–(B.28)) one easily verifies that the change in the lowest weights of the

connection is

δ (at − aσ) = δµ2L1 + δµ3W2 + (higher weights) , (4.11)

with δµ2 and δµ3 given precisely by (2.44)–(2.45). We have then shown that the equations

of motion of Chern-Simons theory with boundary conditions (4.8)–(4.9) (and a Dirichlet

variational principle for the sources) agree with the Ward identities we obtained from the

canonical partition function in field theory. To make sure that the partition functions also

agree, all that remains is to find an appropriate boundary term which is compatible with

the Dirichlet boundary conditions on the sources, and which will guarantee that the charges

are indeed coupled in the right way to the currents. We will turn back to these boundary

terms momentarily.

In order to facilitate comparison with the recent literature, we note that the above

boundary conditions written in light-cone coordinates x± = t± σ read

a+ − a− = L1 +Q (4.12)

2a− = M + . . . (4.13)

Recalling that the a− component is zero for undeformed solutions (such as pure AdS), we

see that incorporating the sources in a− we can readily interpret them as deformations of

the original theory.

Turning back to the boundary terms, the necessary techniques to find these were

introduced in [25], generalizing the results of [59]. The Lorentzian Chern-Simons action on

a three-dimensional manifold M reads16

ICS =
kcs
4π

∫

M
Tr

[

CS(A)− CS(Ā)
]

(4.14)

15In the N = 3 case, these boundary conditions have been recently advocated in [62, 65] from a purely

bulk perspective. Here we have arrived at them following a different route, using as guiding principle the

(1 + 1)-dimensional field theory Ward identities in the presence of Hamiltonian deformations.
16All traces in this section are taken in the fundamental representation.
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where [11]

kcs =
k

2Tr [L0L0]
(4.15)

in order to match with the normalization of the Einstein-Hilbert action in the pure grav-

ity case. With this normalization, the central charge in the dual CFT is given by c =

12kcsTr [L0L0]. The total action will be of the form

I = ICS + IB , (4.16)

where IB is the required boundary term. In terms of the ρ-independent connections a, ā,

the variation of the bulk action ICS, evaluated on-shell, is easily seen to be

δICS|os = −kcs
4π

∫

∂M
Tr

[

a ∧ δa− ā ∧ δā
]

(4.17)

= −kcs
2π

∫

∂M
d2xTr

[

a+δa− − a−δa+ − ā+δā− + ā−δā+
]

, (4.18)

where d2x ≡ (1/2)dx− ∧ dx+ = dt dσ. The necessary boundary term is

IB = −kcs
2π

∫

∂M
d2xTr

[

(a+ − a− − 2L1) a−
]

− kcs
2π

∫

∂M
d2xTr

[

(ā− − ā+ + 2L−1) ā+

]

,

(4.19)

and the variation of the full action I, evaluated on-shell, is then

δI|os = −kcs
2π

∫

∂M
d2xTr

[

(a+ − a− − L1) δ (2a−) + (ā− − ā+ + L−1) δ (2ā+)
]

. (4.20)

This confirms that the boundary term above is well-suited to the Dirichlet problem (fixed

sources).

4.2 Canonical thermodynamics revisited

We will now describe the boundary conditions in the Euclidean formulation of Chern-

Simons theory, and derive general expressions for the free energy and entropy in the dual

theory. In order to introduce temperature, the Euclidean time direction is compactified

and the topology of the three-dimensional manifold M becomes that of a solid torus. Com-

plex coordinates (z, z̄) are introduced by analytically continuing the light-cone directions

as x+ → z, x− → −z̄, with identifications z ≃ z + 2π ≃ z + 2πτ , where τ is the modular

parameter of the boundary two-torus. In the semiclassical limit (large temperature and

central charges), the CFT partition function is obtained from the saddle point approxima-

tion of the Euclidean on-shell action:

lnZ = −I(E)
os = −

(

I
(E)
CS + I

(E)
B

)∣

∣

∣

os
, (4.21)

where

I
(E)
CS =

ikcs
4π

∫

M
Tr

[

CS(A)− CS(Ā)
]

(4.22)
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and I
(E)
B denotes the Euclidean continuation of the boundary term (4.19),

I
(E)
B = −kcs

2π

∫

∂M
d2zTr

[

(az + az̄ − 2L1) az̄

]

− kcs
2π

∫

∂M
d2zTr

[

(āz̄ + āz − 2L−1) āz

]

. (4.23)

Mirroring the field theory discussion in section 3.2, when computing the variation of

the Chern-Simons action one should acknowledge that the modular parameter of the torus

is varying. As before, a convenient way of dealing with this fact is to compute the variation

in coordinates with fixed-periodicity (where τ appears in the connection itself), and change

back to the z coordinates at the end. Following the steps detailed in [25], in the present

case we find that the variation of the full action, evaluated on-shell, is given by

δI(E)
os = −2πikcs

∫

∂M

d2z

4π2Im(τ)
Tr

[

1

2
(az + az̄)

2 δτ + (az + az̄ − L1) δ ((τ̄ − τ)az̄)

−1

2
(āz + āz̄)

2 δτ̄ + (āz + āz̄ − L−1) δ ((τ̄ − τ)āz)

]

. (4.24)

First, we notice that the quantities conjugate to τ and τ̄ , namely the left- and right-moving

energies T and T , are given by

T = −kcs
2
Tr

[

(az + az̄)
2
]

, T = −kcs
2
Tr

[

(āz + āz̄)
2
]

. (4.25)

In particular one notices that the mixing of chiralities encountered in 3.2 from the field

theory perspective, and in [25] from the Chern-Simons perspective, does not arise when

using canonical boundary conditions. Secondly, we see that the quantities coupling to the

higher spin currents are (τ̄ − τ) az̄ and (τ̄ − τ) āz, so the Euclidean version of the boundary

conditions (4.12)–(4.13) is

az + az̄ = L1 +Q āz + āz̄ = L−1 −Q (4.26)

(τ̄ − τ) az̄ = M + . . . (τ̄ − τ) āz = M + . . . (4.27)

with the difference that the matrix M does not contain the spin-2 source anymore, because

the latter has been incorporated as the modular parameter of the torus. Equation (4.27)

makes manifest the fact that the sources get rescaled by the temperature when transitioning

to the Euclidean formalism. In other words, the matrix elements of az̄ and āz contain the

chemical potentials µ (i.e. the deformation parameters in the Lorentzian description), while

the matrices M and M contain the actual sources α ≃ Im(τ)µ.17 This agrees with our

field theory discussion in section 2.1 (cf. (2.3)).

As explained in [25], for the theory determined by choosing the principal embedding of

sl(2) into sl(N), resulting in WN as the asymptotic symmetry algebra, the normalization

17A slightly different definition of the sources was employed in [63], as lowest weights in τaz + τ̄az̄. One

notes however that τaz + τ̄az̄ = (τ̄ − τ)az̄ + τ (az + az̄), and since az + az̄ is a highest weight matrix, this

implies that the lowest weights in τaz + τ̄az̄ and (τ̄ − τ)az̄ are in fact the same. By the same token, in the

Lorentzian theory the sources can be said to be the lowest weights in at − aσ or equivalently in at, because

aσ is a highest weight matrix. The difference between these two approaches amounts simply to a shift in

the definition of the spin-2 source.
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of the currents and sources can be chosen such that

−kcs (τ̄ − τ) Tr
[

Qaz̄
]

=
N
∑

s=3

αsWs (4.28)

−kcs (τ̄ − τ) Tr
[

L1az̄
]

=
N
∑

s=3

(s− 1)αsWs (4.29)

Similar expressions hold in the other chiral sector. To adapt the above formulae to non-

principal embeddings one simply replaces s by the conformal weight of the operator, with

the sum running over the appropriate spectrum. The above formulae rely solely on the

lowest/highest weight structure of the solutions, and therefore are valid even for non-

constant connections. See appendix D for a general derivation.

So far we have been discussing the variation of the on-shell value of the Chern-Simons

action, for which the choice of three-manifold was irrelevant. To find the actual value of

the Chern-Simons action, we however need to pick a three-manifold M . In the absence

of sources the dominant saddle point in the high-temperature regime is the one where

the Euclidean time-circle is smoothly contractible in the interior. We will therefore pick

this particular three-manifold M , as we expect this to still be the dominant saddle point

for sufficiently small values of the sources. In this particular case, where moreover the

connections are constant, we can explicitly evaluate the on-shell action and therefore the

partition function Z and the free energy F as −βF = lnZ = − I(E)
∣

∣

os
,18 obtaining

lnZcan = −2πikcsTr

[

1

2
(az+az̄)

2 τ+(τ̄−τ)L1az̄−
1

2
(āz+āz̄)

2 τ̄+(τ̄ − τ)L−1āz

]

. (4.30)

As usual, the free energy is a function of the temperature and chemical potentials. A

standard Legendre transform produces the entropy, a function of the charges. The term

implementing the Legendre transformation can be read off from (4.24), and the thermal

entropy is then

Scan = lnZcan − 2πikcsTr

[

1

2
(az + az̄)

2 τ − 1

2
(āz + āz̄)

2 τ̄

+ (az + az̄ − L1) (τ̄ − τ) az̄ + (āz + āz̄ − L−1) (τ̄ − τ) āz

]

(4.31)

which after using (4.30) yields

Scan = −2iπkcsTr
[

(az + az̄) (τaz + τ̄ az̄)− (āz + āz̄) (τ āz + τ̄ āz̄)
]

. (4.32)

This formula for the entropy was first derived in [25]. In the particular case of the W3

theory (N = 3) in the principal embedding, it agrees with a result derived in the metric

formulation [61], as well as the perturbative application of Wald’s entropy formula [66]. We

emphasize however that equations (4.30) and (4.32) are valid for any N , and any choice

of embedding. Moreover, they are valid for the hs[λ] theory as well, provided the trace is

interpreted accordingly (see section 4 of [63] for a complete discussion of this case). The

above form of the entropy has been also recovered as the thermal limit of entanglement

entropy proposals for higher spin theories [21, 22].

18See [59] for a discussion of the subtleties associated with the evaluation of the bulk piece.
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It is important to mention that the charges and their conjugate sources have to be

related in a particular way for the first law of thermodynamics to hold. In the Chern-Simons

formulation this requirement has been encoded in an elegant way in terms of holonomies of

the connection [43]. In a few words, one demands that the connection has trivial holonomy

around the thermal cycle of the boundary torus, that becomes contractible in the bulk.

This is the Chern-Simons analogue of the familiar statement for Euclidean black holes that

the thermal circle should be smoothly contractible. Using these holonomy conditions, it was

also shown in [25] that the above formula for the entropy can be written very compactly as

Scan = 2πkcsTr
[

(

λ− λ
)

L0

]

, (4.33)

where λ and λ are diagonal matrices containing the eigenvalues of the component of the

connection along the non-contractible cycle of the boundary torus, i.e.

λ ≡ Eigen (az + az̄) , λ ≡ Eigen (āz + āz̄) . (4.34)

Given the boundary conditions (4.26)–(4.27), it is evident from (4.33) that the entropy

is a function of the charges. The particular combination of zero modes implied by (4.33)

can be then viewed as the generalization of the Cardy formula for higher spin theories. As a

side remark we note that in the principally-embedded sl(N,R)⊕sl(N,R) theory, the above

expression for the entropy can be also written in a representation-independent way as [21]

Scan = 2πkcs

〈

~λ− ~λ , ~ρ
〉

(4.35)

where ~λ, ~λ are the weight vectors dual to λ and λ (which belong to the Cartan subalgebra),

~ρ denotes the Weyl vector of sl(N) (which is dual to L0), and the brackets denote the usual

inner product induced by the Killing form.

4.3 Holomorphic boundary conditions and thermodynamics

The holomorphic partition functions we discussed in this paper correspond to deformations

of the Lagrangian instead of the Hamiltonian. The analysis proceeds exactly as for the

canonical case, the main difference being that the boundary conditions become19

az = L1 +Q āz̄ = L−1 −Q (4.36)

(τ̄ − τ) az̄ = M + . . . (τ̄ − τ) āz = M + . . . (4.37)

instead of (4.26), and similarly in Lorentzian signature (see [25]) where they result in two

copies of the Ward identities (3.11) [43]. Accordingly, instead of (4.23) the appropriate

boundary term now reads

I
(E)
B = −kcs

2π

∫

∂M
d2zTr

[

(az − 2L1) az̄

]

− kcs
2π

∫

∂M
d2zTr

[

(āz̄ − 2L−1) āz

]

. (4.38)

19These boundary conditions were referred to as “canonical” in [25]. We apologize for any confusion this

change in nomenclature may generate.
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As discussed in [25], the corresponding free energy is

−βFholo = lnZholo = −2πikcsTr

[

τ

(

a2z
2

+ azaz̄ −
ā2z
2

)

− τ̄

(

ā2z̄
2

+ āz̄āz −
a2z̄
2

)

+ (τ̄ − τ) (L1az̄ + L−1 āz)

]

. (4.39)

There are several marked differences with the canonical case. For example, under

variations of the complex structure one finds [25]

δτ,τ̄ lnZholo = −2πi

∫

d2z

4π2Im(τ)

(

Eδτ − Eδτ̄
)

(4.40)

with

E = −kcs
2
Tr

[

a2z + 2azaz̄ − ā2z

]

, E = −kcs
2
Tr

[

ā2z̄ + 2āz̄āz − a2z̄

]

. (4.41)

We then see that the operator that couples to τ is now much more complicated, and

involves a mixture of left and right movers. The content of (4.41) is that the energy of

the system is manifestly modified by the higher spin sources, and in particular it does

no longer correspond to the zero modes of the stress tensor as defined in the undeformed

theory. We presented a qualitative field theory explanation of this mixture in section 3.2,

and it would be very interesting to derive the form of this operator directly from the path

integral. A hint as to how this might come about comes from a property of Drinfeld-Sokolov

connections that we discuss below.

In order to characterize the operators E and E, we note that the Drinfeld-Sokolov

form of the connection with holomorphic boundary conditions is easily seen to imply (cf.

appendix D)

−kcs
2
Tr

[

a2z
]

= L (4.42)

−kcsTr
[

azaz̄
]

=
∑

s≥3

sµsWs , (4.43)

with L the stress tensor, and similarly in the other chiral sector.20 The only quantity left

to characterize is then −kcsTr
[

a2z̄
]

. In appendix D we point out the useful relation

− kcsTr
[

a2z̄
]

= Resz→w

[

(z − w)∆LN (z)∆LN (w)
]

+ ∂2 (PN ) , (4.44)

where ∆LN ≡ ∑N
s=2 µsWs is the deformation operator, and provide the explicit form of

PN for N = 2, 3, 4. We notice however that PN does not contribute under the integral

sign in (4.40). In other words, the contribution of −kcsTr
[

a2z̄
]

to the energies is given

precisely by the second order pole in the OPE of the Lagrangian deformation with itself.

We emphasize that (4.44) holds for arbitrary spacetime-dependent sources, and it therefore

applies beyond the thermodynamic analysis. We leave a further study of this curious

relation to future work.
20Note that we have not included a spin-2 source µ2 in the connection, as we would have done if using

coordinates with fixed periodicity, i.e. for a square torus. The full general expressions containing µ2 can be

found in appendix D.
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In order to obtain the entropy we need to perform an appropriate Legendre transform

of the free energy, which in this case reads

Sholo = lnZholo − 2πikcsTr

[

(τ̄ − τ) (az − L1) az̄ + τ

(

a2z
2

+ azaz̄ −
ā2z
2

)

− (τ̄ − τ) (−āz̄ + L−1) āz − τ̄

(

ā2z̄
2

+ āz̄āz −
a2z̄
2

)]

(4.45)

and evaluates to the same expression (4.32) for the entropy as in the canonical case, namely

Sholo = −2πikcsTr
[

(az + az̄) (τaz + τ̄ az̄)− (āz + āz̄) (τ āz + τ̄ āz̄)
]

. (4.46)

In particular, this result can be written in the same form as 4.33. However, despite the

apparent similarity, there is an important difference once again: whereas in the canonical

case (az + az̄) depends on the charges only and the eigenvalues λ and λ̄ immediately yield

an expression for the entropy as a function of the charges, in the holomorphic case az + az̄
depends on both the charges and chemical potentials in a complicated way. Hence, in order

to find an expression for the entropy, in the latter case one needs to explicitly solve the

monodromy conditions which allow to express the sources in terms of the charges.

4.4 Other holomorphic boundary conditions

In the context of holography, the first discussion of boundary conditions in the pres-

ence of higher spin sources and the associated thermodynamics was given in the original

work [43] of Gutperle and Kraus on higher spin black holes. For the bulk theory based on

sl(3,R) ⊕ sl(3,R) with principally embedded sl(2,R), for example, the boundary condi-

tions advocated therein agree with our holomorphic boundary conditions, and resulted in

two copies of the Ward identities (3.12)–(3.13).21

For chiral deformations of this sort, we have given a particular partition function

in CFT which corresponds to a deformation of the action by a linear coupling, which

indeed reproduces a single chiral copy of these Ward identities. We have also pointed out

that when sources for currents of both chiralities are present, the corresponding partition

function in CFT that reproduces the Ward identities involves terms to all orders in the

sources, including terms that mix both chiralities. This can be understood, for example,

using the auxiliary field formalism introduced in [35], which unfortunately needs to be

formulated on a case by case basis.

By considering thermodynamics of Chern-Simons theory on a solid torus, an entropy

was found in [43] whose precise form was determined by the first law of thermodynamics

based on a definition of the sources (α, ᾱ) that involved rescaling the chemical potentials

(µ, µ̄) by the modular parameter τ of the boundary torus torus, e.g. α = τ̄µ and ᾱ = τ µ̄.22

21The structure of a general Drinfeld-Sokolov connection obeying these boundary conditions is described

in appendix D, and detailed examples are provided for the theory based on the sl(N,R)⊕ sl(N,R) algebra

for N = 2, 3, 4.
22The corresponding boundary conditions were referred to as “holomorphic” in [25].
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It was then shown in [25] that the entropy formula obtained in [43] can be written quite

generally as

SG-K = −2iπkcsTr
[

az (τaz + τ̄ az̄)− āz̄ (τ āz + τ̄ āz̄)
]

, (4.47)

or, equivalently,

SG-K = 2πkcsTr
[(

λz − λz

)

L0

]

, (4.48)

where λz and λz are diagonal matrices containing the eigenvalues of the az and āz̄ compo-

nents of the connection.

It may appear strange that although the Ward identities take the same “holomorphic”

form in [43] as we obtained from deformations of the action, the entropy (4.46) one ob-

tains from the latter formulation is clearly distinct from (4.47). The explanation of this

discrepancy lies in the different choices of sources α, ᾱ in the thermal case: even with iden-

tically looking Ward identities (in terms of the chemical potentials µ, µ̄), different choices

of sources α, ᾱ can give rise to different notions of free energy and entropy. Moreover, the

modular parameter τ of the torus does not enter the Ward identities directly and always

needs a separate treatment.

These results illustrate a rather subtle point that was alluded to from a field theory

perspective in section 3.2, namely that the precise definition of the sources in the thermal

theory affects the notion of energy and other thermodynamic quantities. The bottom line

is that an unambiguous definition of the thermal partition function requires to specify

not only the boundary conditions on the plane/cylinder, but also the precise scaling of

the sources with the complex structure of the torus. In this light it should come as no

surprise that the same flat connection can yield two different results (4.32) and (4.47) for

the entropy, depending on precisely how the thermal sources are related to the chemical

potentials and the temperature.

We would like to mention, in passing, one more argument in favor of the definition

α ≃ Im(τ)µ for the sources and the resulting canonical form (4.46) of the holomorphic

entropy. In the N = 2 theory, corresponding to pure gravity, there is an independent

holographic notion of entropy in the dual CFT in terms of the thermal entropy of black

hole solutions. The latter can be of course computed by the Bekenstein-Hawking area law

or any other standard method. As shown in [63], it is (4.46) and not (4.47) that coincides

with the area of the black hole horizon in the N = 2 theory. Moreover, the canonical

entropy was derived in [63] by adapting the Wald formalism to Chern-Simons theory, and

recently rederived in [67] using these techniques. These results indicate that the definition

α ≃ Im(τ)µ and consequently the entropy (4.46) are preferred from a bulk perspective.

This is reassuring, because it implies that both the canonical boundary conditions studied

in sections 4.1–4.2 and the holomorphic boundary conditions studied in [25] and reviewed

in section 4.3 yield the same thermal entropy functional, consistent with the idea that there

should be a single notion of thermal entropy in a bulk theory containing gravity.

Finally, to see how the Gutperle-Kraus result fits in our general framework, we would

like to present a computation in deformed 2d CFT which reproduces the appropriate free

energy and entropy. To this end, we first recall that one can find the free energy by e.g.
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varying the entropy to read off the sources and charges

δSG-K = −2πikcsTr

[

τ δ

(

a2z
2

)

− τ̄ δ

(

ā2z̄
2

)

+ τ̄ az̄ δ (az − L1) + τ āz δ (−āz̄ + L−1)

]

, (4.49)

and the free energy is then given by the corresponding Legendre transform [25]

−βFG-K = lnZG-K = −2πikcsTr

[

τ

(

a2z
2

)

− τ̄

(

ā2z̄
2

)

+ (τ̄L1az̄ − τL−1 āz)

]

. (4.50)

One can derive from the results in [25] that this free energy follows by computing the

partition function on a square torus of the following deformed CFT

S = SCFT + c1

(

1 +
iτ

2

)∫

d2z TCFT + c2τ̄

∫

d2z
∑

s

µsWs + c.c. (4.51)

with some numerical constants c1, c2 which we did determine explicitly. Let us reemphasize

that this theory lives on a square torus of fixed periodicities and that the dependence on

τ is only through the explicit appearance in the action. It remains to be seen whether

deformations of the type (4.51) have any particularly nice intrinsic properties, or whether

they were merely stumbled upon by accident as a by-product of the definitions in [43].

4.5 Field redefinitions

Even though different boundary conditions in Chern-Simons theory describe different par-

tition functions in the two-dimensional boundary theory, it was already pointed out in [25]

that field redefinitions exist which allow to map between different Drinfeld-Sokolov pairs.

This suggests that redefinitions of the sources might be possible which allow to relate par-

tition functions corresponding to, say, a chiral deformation of the Hamiltonian and a chiral

deformation of the action. We will now discuss to what extent this is indeed possible. It

will in general turn out to be relatively easy to find redefinitions of the charges in such a

way that the entropies transform into each other, but difficult to find redefinitions of the

sources to map the free energies into each other.

We will first use chiral stress tensor deformations as an example. This is, for the theory

defined on a torus T 2 with modular parameter τ , we would like to relate a Hamiltonian

deformation of the form

Zcan [τ, α2] = TrH
[

qL0− c
24 q̄L̄0− c

24 exp (2πiα2L0)
]

(4.52)

with q = e2πiτ , and an action deformation of the form

Zholo [τ, λ2] =

∫

Dφ e−S0(φ)e
−i

∫
T2

d2z
2πIm(τ)

λ2L (4.53)

with L the left-moving stress tensor.

Given a Drinfeld-Sokolov pair, for constant sources the flatness of the gauge connection

implies that the conjugate components of the gauge field commute. In the particular case

of a stress tensor deformation, that can be described by sl(2,R) connections, the two
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components are actually proportional to each other. Denoting the connection describing

the Hamiltonian deformation by a and that describing an action deformation by b, from our

discussion above in the canonical case plus the corresponding results for the holomorphic

case (see [25]) it follows that

az̄ =
α2

τ̄ − τ
(az + az̄) and bz̄ =

λ2

τ̄ − τ
bz . (4.54)

The precise proportionality coefficient is fixed by relations such as (4.28)–(4.29). The idea

is to now relate the two sets of gauge fields on the torus to each other through gauge

transformations.

Recall now that the only gauge-invariant information carried by the connection is con-

tained in the holonomy around cycles, with az +az̄ being the component of the connection

along the non-contractible cycle of the boundary torus, and τaz+ τ̄ az̄ the component along

the thermal cycle, which becomes contractible in the bulk (and similarly for b). Hence, the

two sets of gauge fields are gauge-equivalent if their spectrum matches (up to conjugation):

spec
(

az + az̄
)

∼ spec
(

bz + bz̄
)

(4.55)

spec
(

τaz + τ̄ az̄
)

∼ spec
(

τbz + τ̄ bz̄
)

. (4.56)

Using the on-shell relations (4.54) these conditions become

spec
(

az + az̄
)

∼
(

1 +
λ2

τ̄ − τ

)

spec (bz) (4.57)

(τ + α2) spec
(

az + az̄
)

∼
(

τ +
τ̄λ2

τ̄ − τ

)

spec
(

bz
)

, (4.58)

implying

1 +
iλ2

2Im(τ)
=

(

1− iα2

2Im(τ)

)−1

. (4.59)

This is precisely the same relation obtained in [27] using field theory techniques, reproduced

here with very simple manipulations in terms of flat connections in Chern-Simons theory.

Why did this work? The reason is that (4.55) implies that the gauge fields transform

under a global gauge transformation, i.e.

(az + az̄) = U−1(bz + bz̄)U (4.60)

(τaz + τ̄ az̄) = U−1(τbz + τ̄ bz̄)U , (4.61)

and therefore any quantity which consists of the trace of the products of gauge fields will

be left invariant under this transformation. The entropy is of this form in general, and that

is why transformations of this type can be used to find charge redefinitions which leave

the entropy invariant. For the free energy, however, the situation is more complicated.

The on-shell value of the Chern-Simons action is left invariant under the global gauge

transformations (4.60), but the boundary terms are not, because these contains terms like

Tr [L1az̄] which are not invariant under (4.60), given that L1 is kept fixed. Then why did

the computation for chiral stress-tensor deformations work? It did because it so happens

that the boundary terms vanish for such deformations.
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The general lesson is therefore that although we can relate in a fairly straightforward

way the different entropies to each other with redefinitions of the charges, the free energies

do not share this property. Although this does not say that there can not exist redefinitions

of the sources which relate the free energies, Chern-Simons theory does not appear to

provide a natural candidate, except in the case of stress-tensor deformations.

Let us now comment on an application involving non-chiral deformations. As we have

mentioned, using Chern-Simons theory the results (4.33) and (4.48) were derived in [25],

the first corresponding to canonical boundary conditions, and the second to holomorphic

boundary conditions, a particular choice of stress tensor coupling to τ and a particular

scaling α = τ̄µ and ᾱ = τ µ̄ of the sources with the modular parameter. On the other hand,

the components of the connection carrying the charges in either case are az + az̄ = L1 + Q̃

and az = L1 + Q, with similar expressions in the barred sector. Since both Q and Q̃ are

highest weight matrices which are linear in the corresponding charges, it follows that the

matrix az + az̄ in the canonical description has the same form as function of the tilded

charges that az has as function of the untilded charges in the holomorphic description.

From (4.33) and (4.48) it is then immediate that the functional form of the canonical

entropy, as a function of the canonical charges, is exactly the same as the functional form

of the Gutperle-Kraus entropy as a function of the holomorphic charges. This agreement

was first noticed in [63], and while establishing it from a field theory perspective would be

presumably quite involved, it emerges in a very transparent way when using the holographic

description in terms of Chern-Simons theory.

To be a bit more explicit about the above map at the level of free energies, consider

the canonical free energy (4.30) and the Gutperle-Kraus free energy (4.50). It is easy to

see that if we start with the former, and make the following change of variable (restricting

to the chiral sector for simplicity)

(τ̄ − τ)az̄ → τ̄ bz̄ , az + az̄ → bz (4.62)

we get precisely the Gutperle-Kraus free energy in terms of bz, bz̄. In addition, if (az+az̄, az̄)

was a Drinfeld-Sokolov pair, then so is (bz, bz̄), and the trivial monodromy around the con-

tractible cycle is preserved because τaz+ τ̄ az̄ = τbz+ τ̄ bz̄. The field redefinition (4.62) then

realizes a map between Hamiltonian deformations, dual to canonical boundary conditions,

and deformations of the type (4.51), which are dual to Gutperle-Kraus boundary conditions.

Given that the Gutperle-Kraus boundary conditions are dual to action deformations,

while the canonical boundary conditions are dual to Hamiltonian deformations, it might

seem surprising that a detailed agreement was found between the free energies computed

from the bulk theory with Gutperle-Kraus boundary conditions [17] and a CFT calculation

that involved Hamiltonian deformations by zero modes [18]. From the map (4.62) and the

above discussion it is clear that the functional form of the canonical free energy, as a

function of the canonical sources α ≃ Im(τ)µ , is exactly the same as that of the Gutperle-

Kraus free energy as a function of the sources αG-K = τ̄µ. This explains why the two

calculations seemingly agreed, even though they involve two a priori different partition

functions. We will further comment on the implications of these findings in section 5.
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4.6 Modular transformations

Recall that in 2d CFT modular transformations can be understood as a change of coor-

dinates followed by a scale transformation, which are symmetries of the deformed action

when the currents and sources transform appropriately [27]. In our example involving

stress tensor deformations, this implies in particular that λ2 above transforms covariantly

under modular transformations; from (4.59) it then follows that the canonical source α2

transforms in a complicated way. Another way to understand this fact is to notice that the

rescaling amounts to a gauge transformation, and that the combined effect of the change

of coordinates and gauge transformation preserves the Drinfeld-Sokolov form of the pair

(bz , bz̄), but not that of (az + az̄ , az̄). An additional compensating transformation would

be necessary to put the gauge field a back into the appropriate Drinfeld-Sokolov form,

which explains why the canonical source α2 transforms in a complicated way under mod-

ular transformations. Whether such transformations exist when higher sources are turned

on is not clear.

It is instructive to describe the Chern-Simons perspective on modular transformations,

an issue that was recently investigated in [68]. Here we will provide a succinct derivation

that will once more make it clear why modular transformations are simple for deformed

Lagrangians and complicated for deformed Hamiltonians. We will only consider chiral

deformations in what follows, but the results can be generalized to the non-chiral case in

a straightforward way.

As we have discussed, there are different possible three-manifolds we can use to evaluate

the Chern-Simons action. If the boundary is a two-torus, there is an entire SL(2,Z) family

of three-manifolds we can choose, each yielding a different answer for the on-shell value of

the action. To write this answer explicitly, we rewrite (4.39) for one chiral sector as

lnZholo = −πikcsTr

[

(τaz + τ̄ az̄)(az + az̄) + (τ̄ − τ)
(

(2L1 − az) az̄
)

]

(4.63)

where the first term is the contribution from the on-shell value of the Chern-Simons action,

and the second term is the contribution from the boundary term. For a different three-

manifold, labeled by an SL(2,Z) matrix

R =

(

α β

γ δ

)

(4.64)

the partition function becomes23

lnZholo[R] = −πikcsTr

[

(

α (τaz + τ̄ az̄) + β(az + az̄)
)(

γ (τaz + τ̄ az̄) + δ(az + az̄)
)

+ (τ̄ − τ)
(

(2L1 − az)az̄

)

]

. (4.65)

23As we have emphasized the boundary term is the same for any choice of three-manifold, but the on-shell

value of the Chern-Simons action depends on how the two-torus is filled, namely the choice of contractible

and non-contractible cycles in the bulk.
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In the first term, we recognize the product of the monodromies of the gauge field along the

new a-cycle and b-cycle of the boundary two-torus.

Suppose that in the above me make the substitution

az → (γτ + δ)−1 UbzU
−1 , az̄ → (γτ̄ + δ)−1 Ubz̄U

−1 (4.66)

with

U = exp
[

ln (γτ + δ)L0

]

. (4.67)

This substitution preserves the Drinfeld-Sokolov form of the gauge field, i.e. if (az, az̄) is

a Drinfeld-Sokolov pair then so is (bz, bz̄). Morever, by direct calculation, we observe that

after this substitution the partition function takes the original form (4.39) with τ replaced

by (ατ + β)/(γτ + δ). Thus, to summarize, we have shown that

lnZholo[R]
[

τ ; (γτ+δ)−1UbzU
−1, (γτ̄+δ)−1Ubz̄U

−1
]

= lnZholo[1]

[

ατ+β

γτ+δ
; bz, bz̄

]

, (4.68)

where Zholo[1] on the r.h.s. denotes the partition function in the original manifold, labeled

by R = 1. This is the Chern-Simons version of modular invariance, and we see that (4.66)

provides the transformation rules for the sources, in agreement with what one gets directly

from the deformed action.

Interestingly, for deformations of the Hamiltonian the above computation does not

work due to the different structure of the boundary term, and we have not succeeded in

deriving a general transformation rule under modular transformations for the sources in

that case. It would be very interesting to explore this issue further.

5 Discussion

Starting from two-dimensional CFTs with a (possibly higher spin) current symmetry al-

gebra, we have reviewed different types of deformations that are possible once sources are

switched on. While some of these can be understood as deformations of the CFT Hamilto-

nian, others are defined as changes directly at the level of the action. Associated with each

of these theories there is a notion of partition function that is a function of the background

sources, and whose associated Ward identities we have studied. Using the Ward identi-

ties as the guiding principle, we have argued that these different theories map to different

boundary conditions in a holographic realization in terms of Chern-Simons theory on a

three-dimensional manifold with boundary. The issue of boundary conditions in the higher

spin AdS3/CFT2 correspondence has proven to be particularly subtle, and it is therefore

worth summarizing how our analysis fits with the recent literature.

In the holographic context, a first set of boundary conditions in the presence of higher

spin sources was proposed in [43, 50], with the flatness condition on the connection resulting

in Ward identities of the form (3.11). We have argued that these boundary conditions most

naturally correspond to a deformation of the CFT action of the form (3.1) in the chiral case,

and to an action involving infinitely many higher order terms in the sources in the non-

chiral case. The latter can be rewritten linearly in the sources at the expense of introducing

auxiliary fields, but this formulation has to be constructed on a case by case basis.
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For the finite temperature version of the holomorphic theory on the torus, two defini-

tions of the thermal higher spin sources have been proposed. The first alternative was put

forward in [43, 50] and identifies the sources schematically as α = τ̄µ and ᾱ = τ µ̄, where

µ and µ̄ are the chemical potentials. This choice implies in particular that the expression

for the energy is the same as in the absence of sources, and leads to an entropy of the

form (4.47). This identification of the sources is not what one gets from deformations of

the form (3.1), but maps instead to a peculiar deformation of the form (4.51), with the

theory defined on a square torus. An alternative definition was studied in [25], which

consists in defining the thermal sources as α = −iβµ, ᾱ = iβµ̄ with β = 2πIm(τ) the

inverse temperature. This case precisely describes deformed actions of the form (3.1) and

the expression for the energy is explicitly modified with respect to the undeformed theory,

a fact that we have rederived from a field theory perspective in section 3.2, and one is led

in particular to the formula (4.46) for the entropy [25].

A different set of “canonical” boundary conditions in the presence of sources was

proposed in [62–65] from a bulk perspective, with the flatness condition on the connection

resulting in Ward identities of the form (2.53). We have shown that these boundary

conditions correspond to deformations of the CFT Hamiltonian of the form (2.5). In our

discussion of the finite temperature version of this theory on the torus, we have exploited

the holographic description in terms of Chern-Simons theory to provide expressions for

the stress tensor (4.25), free energy (4.30), and entropy (4.32), which are written entirely

in terms of the gauge connections and are valid in any embedding. It is satisfying to

note that, provided the thermal sources are always identified as α = −iβµ, Chern-Simons

theory yields the same functional for the entropy in theories corresponding to Hamiltonian

and Lagrangian deformations (cf. (4.32) and (4.46)), consistent with the expectation that

there should exist an unambiguous functional that computes the thermal entropy in a bulk

theory containing gravity.

It has been proposed [62, 65] that the solutions constructed in [43, 50] that realize the

holomorphicW3 boundary conditions are in factW(2)
3 boundary conditions in disguise. This

conclusion was arrived at by interpreting the solutions of [43, 50] in light of a canonical

Drinfeld-Sokolov pair of the form (4.8)–(4.9). In the original proposal, however, these

solutions are interpreted instead in terms of a holomorphic Drinfeld-Sokolov pair of the

form az = L1 + Q, az̄ = M + . . .. For chiral deformations, we have shown that the latter

choice realizes a canonical structure where one of the light-cone directions is chosen as the

“time” coordinate [41], cf. the Dirac bracket algebra (3.7) obtained by acknowledging the

presence of a second class constraint Pi = (1/2)∂+Xi. It is conceivable that a canonical

structure based on a null coordinate could be at odds with a well-posed Cauchy problem

in the bulk when sources of both chiralities are switched on, and this issue deserves further

scrutiny. On the other hand, we have argued that well-defined partition functions exist

in CFT whose Ward identities are indeed those obtained in [43, 50], and we expect them

to have a dual description in the bulk. Consequently, our point of view is that the W3

boundary conditions proposed in [43, 50] do indeed give rise to W3 symmetry, and that no

conflict arises when they are interpreted in a light-cone framework as in [41] (or a suitable

generalization thereof in the non-chiral case).
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To add to this, we emphasize than just providing a solution of the Chern-Simons

field equations, i.e. a flat connection, is not sufficient; we also need to specify an a priori

choice of boundary conditions, boundary terms, and identification of sources and dual

expectation values, and different choices can provide different interpretations for the same

flat connections. For one choice the flat connections in [43, 50] describe a solution with W3

boundary conditions, and for another choice they describe a solution with W(2)
3 boundary

conditions. Both are valid but inequivalent points of view.

Regarding the matching between bulk and boundary computations, it might appear

as somewhat surprising that a chiral half of the partition function (free energy) derived

in [17] from the bulk theory with Gutperle-Kraus boundary conditions, which as we have

seen here correspond to a linear deformation of the CFT action, has been matched by a

CFT calculation involving a chiral deformation of the Hamiltonian by zero modes [18]. To

clarify this issue, in section 4.5 we have shown that the functional form of the partition

function (as a function of the sources) and of the entropy (as a function of the charges)

is the same with canonical or Gutperle-Kraus boundary conditions, even though different

definitions of the sources and charges themselves are been used in one version of the theory

or the other. As we have discussed in depth, the detailed matching between charges and

sources in the bulk and boundary, namely the holographic dictionary, will however change

depending on what precise version of the theory we want to describe. As a consequence, one

should in principle expect observables such as correlators, which are generically not fixed

by symmetry or otherwise, to be sensible to these choices. These subtle differences have

indeed been noticed in calculations of thermal correlators of scalar primaries in CFTs with

higher spin symmetry [20], and we expect our analysis to shed light on these issues as well.

It is perhaps worthwhile to briefly discuss the validity and interpretation of the irrele-

vant deformations that we considered. A priori, theories deformed by irrelevant deforma-

tions are ill-defined. In the present case we are deforming by conserved currents, which

might improve the situation. Let us first think what happens when we expand the theories

as a power series in terms of the sources, with each term being an integrated correlation

function. These correlation functions are singular when points coincide and some regular-

ization has to be employed. In standard conformal perturbation theory, one cuts out small

disks around the points and subtracts all singularities that arise when shrinking the disks

to zero size. We expect this procedure to yield finite, well-defined answers, in particular

since the conserved currents cannot develop anomalous dimensions.24 Therefore, the the-

ories we consider may well have well-defined perturbative expansions in µs and µ̄s. These

perturbative expansions presumably have zero radius of convergence, and it is an interest-

ing questions whether one can directly define the deformed theories non-perturbatively e.g.

by choosing suitable complex contours.

There are two other arguments that these deformed theories make sense. First, one

the plane, we can perform a higher spin transformation which puts all µs = 0, mapping

24One might worry that contact terms produce divergences containing new operators which would need

to be added to the theory to make it consistent. For example, the OPE of two spin-three currents contains

T 2, the square of the energy-momentum tensor, which does not appear in the deformed theory. We do not

see any need, at least classically, to add such deformations to the theory.
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the deformed theory to the original, undeformed theory. The latter is clearly well-defined,

and so should the former? Perhaps, except that it is not clear that the required higher

spin transformations act in a reasonable way, they could for example map normalizable

field configurations into non-normalizable field configurations. Moreover, on a torus one

cannot get rid of the zero modes of the µs and µ̄s in this way and the argument no longer

applies. A second argument that these deformed theories are well-defined is that we can

use Chern-Simons theory to compute their partition functions, and the result is a non-

pathological function of µs and µ̄s. Clearly, more work is required before we can make

a definite statement about the existence of CFT’s deformed by irrelevant deformations of

conserved currents.

We have by no means exhausted the possible deformations of 2d conformal field the-

ories, nor have we exhausted the possible list of boundary conditions in Chern-Simons

theory. It would be interesting to examine whether other interesting boundary conditions

exist and if so what their 2d CFT interpretation is. Similarly, one could extend our consid-

erations to encompass the non-AdS (non-CFT) higher spin dualities studied in [69, 70]. As

discussed in section 4.6 and appendix A, the different types of partition functions we have

studied moreover differ in their modular transformations properties. We have not found

a change of variable which directly connects deformations of the action to deformations

of the Hamiltonian, however, and in particular we have not been able to determine the

behavior of the latter under modular transformations. It is possible that in order to find

such a change of variable additional operators need to be included, such as normal-ordered

products of higher spin fields and their derivatives, and it would be interesting to explore

whether such more general deformed theories still admit dual Chern-Simons descriptions.

These interesting questions will be discussed elsewhere.

Acknowledgments

It is a pleasure to thank Per Kraus and Daniel Robbins for enlightening discussions and

comments on a draft of this paper. We are also grateful to Marco Baggio, Max Bañados,
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A A U(1) example

Here we will briefly review a non-higher spin example from [71], involving deformations

by U(1) currents in a compact boson realization. The canonical partition function with

sources for left- and right-momenta is

Zcan [τ, αL, αR] =
1

(qq̄)1/24
Tr

[

qL0 q̄L̄0e2πiαLpLe−2πiαRpR
]

(A.1)
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where q = exp(2πiτ) and

pL =

∮

dσ

2π

(

∂σX − i∂tEX
)

, (A.2)

pR =

∮

dσ

2π

(

∂σX + i∂tEX
)

. (A.3)

It is tempting to conclude that the path integral representation of this partition function is

ZLag,naive =

∫

DX e−S0+
∫
T2 d2σ

√
gAi∂iX , (A.4)

where S0 is the free action

S0 =
1

4π

∫

T 2

d2σ
√
g gij∂iX∂jX =

1

4π

∫

T 2

d2σ
[

(∂tEX)2 + (∂σX)2
]

, (A.5)

(we consider a flat torus with ds2(T 2) = dzdz̄ = dt2E + dσ2) and the background gauge

field, whose components are the chemical potentials, given by

Az = −i
αR

2πIm(τ)
= µR , Az̄ = i

αL

2πIm(τ)
= µL . (A.6)

In particular, since modular transformations correspond to a change of coordinates followed

by a Weyl rescaling, which are symmetries of the deformed action, ZLag,naive is modular

invariant:

ZLag,naive

[

aτ + b

cτ + d
,

αL

cτ + d
,

αR

cτ̄ + d

]

= ZLag,naive [τ, αL, αR] . (A.7)

On the other hand, following the standard steps to discretize the operator trace, the

path integral representation of Zcan is found to be

Zcan =

∫

DP DX e
∫
T2 d2σ[− 1

2π (PẊ− 1
2
(P )2+ 1

2
(∂σX)2)+AtE

P+Aσ∂σX] (A.8)

with P the momentum conjugate to X. Integrating out P one concludes [71]

Zcan [τ, αL, αR] = e
−π(αL+αR)2

Im(τ) ZLag,naive [τ, αL, αR] , (A.9)

which in particular implies (cf. (A.7))

Zcan

[

aτ + b

cτ + d
,

αL

cτ + d
,

αR

cτ̄ + d

]

= e
2πic
cτ+d

α2
Le−

2πic
cτ̄+d

α2
RZcan [τ, αL, αR] . (A.10)

Therefore, the canonical partition function in the presence of sources is not modular invari-

ant, but rather modular covariant. The bottom line is that, even in simple examples such

as a deformation of the Hamiltonian by constant U(1) chemical potentials, it is important

to acknowledge that the proper representation of the canonical partition function involves

the path integral in first order form, and to exercise care when Legendre-transforming to

pass to the Lagrangian version of the theory.
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B Useful W3 formulae

As explained in the main text, the improved W3 generators in the bosonic realization are

T =
1

2
δijΠ

iΠj + ai∂σΠ
i (B.1)

W =
1

3
dijkΠ

iΠjΠk + eij∂σΠ
iΠj + fi∂

2
σΠ

i . (B.2)

The improved TT bracket takes the usual form (2.25) provided

aia
i = − c

12
, (B.3)

where c denotes the classical central charge. Similarly, the form of the TW bracket requires

aif
i = 0 , fi = ajeji , 3aieij = aieji , e(ij) = d k

ij ak . (B.4)

Finally, the improved WW bracket (2.27) requires (2.21) to be satisfied with

κ = −16

c
, (B.5)

and

fif
i = − c

36
(B.6)

ai = ejif
j (B.7)

eijf
j =

1

3
ejif

j (B.8)

d k
ij (ekℓ − eℓk)− 2d k

ℓ(j eki) =
32

c
δijaℓ (B.9)

−2d k
ij fk + ekiekj =

5

3
δij (B.10)

ek[ie
k

j] = 0 (B.11)

e(ike
k
j) = δij (B.12)

6d k
ij fk + eike

k
j +

64

c
aiaj = −δij (B.13)

in addition to (B.3) and (B.4). It is worth pointing out that there is some degree of

redundancy in these constraints; if so desired, one could choose a minimal set that contains

all the information. We emphasize that the above conditions were derived semiclassically, at

the level of Poisson brackets, and therefore ignoring operator ordering issues. The resulting

expressions can be viewed as the “large-c” version of the full constraints obtained from the

quantum W3 algebra, derived in [39]. An immediate consequence of the conditions on the

various coefficients is that at least two scalars are needed in order to support an arbitrary

semiclassical central charge.

When the above conditions are satisfied, the improved generators satisfy the Poisson

algebra

{

Jα(σ), Jβ(σ
′)
}

=

∫

dx f γ
αβ (σ, σ′, x)Jγ(x) + cαβ(σ, σ

′) , (B.14)
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with

f T
TT (σ, σ′, x) = −δ (σ − x) ∂xδ

(

x− σ′)+ δ
(

x− σ′) ∂xδ (σ − x) (B.15)

f W
TW (σ, σ′, x) = −δ (σ − x) ∂xδ

(

x− σ′)+ 2δ
(

x− σ′) ∂xδ (σ − x) (B.16)

f W
WT (σ, σ′, x) = δ

(

σ′ − x
)

∂xδ (x− σ)− 2δ (x− σ) ∂xδ
(

σ′ − x
)

(B.17)

f T
WW (σ, σ′, x) = 2κT (x)

[

−δ (σ − x) ∂xδ
(

x− σ′)+ δ
(

x− σ′) ∂xδ (σ − x)
]

− 2

3
∂3
xδ(σ − x)δ(x− σ′) + ∂2

xδ(σ − x)∂xδ(x− σ′)

− ∂xδ(σ − x)∂2
xδ(x− σ′) +

2

3
δ(σ − x)∂3

xδ(x− σ′) (B.18)

and

cTT (σ, σ
′) = − c

12
∂3
σδ(σ − σ′) (B.19)

cWW (σ, σ′) =
c

36
∂5
σδ(σ − σ′) . (B.20)

Writing the boundary Chern-Simons connection in highest weight gauge,25

aσ = L1 +
T

k
L−1 −

W

4k
W−2 , (B.21)

it was found in [46] that the gauge transformations δa = dλ + [a, λ] that respect the

Drinfeld-Sokolov form of aσ are generated by an infinitesimal parameter

λ =
1

∑

i=−1

ǫiLi +
2

∑

m=−2

χmWm (B.22)

with

ǫ0 = −∂σǫ (B.23)

ǫ−1 =
1

2
∂2
σǫ+

T

k
ǫ+

2W

k
χ (B.24)

χ1 = −∂σχ (B.25)

χ0 =
1

2
∂2
σχ+

2

k
χT (B.26)

χ−1 = −1

6
∂3
σχ− 5

3k
T∂σχ− 2

3k
χ∂σT (B.27)

χ−2 =
1

24
∂4
σχ+

2

3k
T∂2

σχ+
7

12k
∂σT∂σχ

+
1

6k
χ∂2

σT +
1

k2
χT 2 − ǫ

4k
W (B.28)

where ǫ1 ≡ ǫ and χ2 ≡ χ. Under such transformations, the change in the charges is

precisely given by (2.30)–(2.33).

25We follow the conventions of [46] up to a rescaling of the currents by a factor of 2π.
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C Non-chiral stress tensor deformations

In certain cases it is possible to write down a partition function whose symmetries give

rise to two decoupled copies of Ward identities of the type (3.12)–(3.13), at the expense

of introducing auxiliary fields [35] (see [72] for a review). The auxiliary field formalism

is non-universal and has to be constructed on a case-by-case basis, but we can illustrate

many of its important features by considering a simple example involving stress tensor

deformations. Consider then the action for the scalar field theory with both left- and

right-moving stress tensor deformations

Saux = 2

∫

d2x

(

−1

2
∂+X

i∂−X
i −Πi

+Π
i
− +Πi

+∂−X
i +Πi

−∂+X
i − µ−−T++ − µ++T−−

)

(C.1)

where Πi
± denote the auxiliary fields and

T±± ≡ 1

2
Πi

±Π
i
± . (C.2)

For the sake of simplicity, we have omitted improvement terms that would generate classical

central extensions. When µ±± = 0, Saux yields the free boson action upon integrating out

the auxiliary fields. When deformations are present, the action is invariant under the

infinitesimal transformation

δXi = p−Π
i
+ + p+Π

i
− (C.3)

δµ±± = ∂±p± + p±∂∓µ±± − µ±±∂∓p± (C.4)

δΠi
± = ∂±

(

p∓Π
i
±
)

. (C.5)

Since the path integral contains an integration over X and Π, this symmetry yields the

Ward identity
∫

d2x

〈

δSaux

δµ++
δµ++ +

δSaux

δµ−−
δµ−−

〉

= 0 . (C.6)

Plugging the explicit variation (C.4) of the sources we obtain

∂−T++ = µ−−∂+T++ + 2T++∂+µ−− (C.7)

∂+T−− = µ++∂−T−− + 2T−−∂−µ++ (C.8)

which are the familiar holomorphic Ward identities (in the absence of central extensions).

In the context of holography, these Ward identities (including central extensions) and

their supersymmetric extension were derived in [73] using the Chern-Simons formulation

of three-dimensional anti-de Sitter gravity.

One notices that the equation of motion for the auxiliary fields is

Πi
± = ∂±X

i − µ±±Π
i
∓ , (C.9)

which can be solved to give

Πi
± =

∂±Xi − µ±±∂∓Xi

1− µ−−µ++
. (C.10)
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From (C.2) we see that the stress tensor obeying the holomorphic Ward identities is not

merely ∼ (∂±X)2, but rather

T±± =
1

2

(

∂±Xi − µ±±∂∓Xi

1− µ−−µ++

)2

. (C.11)

The fact that the naive free-field expressions for the currents are modified in a source-

dependent way in the presence of non-chiral deformations is a general feature of the con-

struction.

Another general feature we have emphasized in the body of the paper is that the

process of integrating out the auxiliary fields results in a second order action which contains

corrections to all orders in the sources. To illustrate this point we can replace (C.10) back

into the action, obtaining a flat space theory with Lagrangian

Lag ≡ 1

(1− µ−−µ++)

[

(1 + µ−−µ++) ∂+X
i∂−X

i − µ++∂−X
i∂−X

i − µ−−∂+X
i∂+X

i

]

.

(C.12)

The spin-2 symmetries are of course still present: under the transformations (note the

infinitesimal parameters k± below are different from the p± above)

δXi = k+∂+X
i + k−∂−X

i (C.13)

δµ++ = ∂+
(

k− + µ++k
+
)

+
(

k− + µ++k
+
)

∂−µ++ − µ++∂−
(

k− + µ++k
+
)

(C.14)

δµ−− = ∂−
(

k+ + µ−−k
−)+

(

k+ + µ−−k
−) ∂+µ−− − µ−−∂+

(

k+ + µ−−k
−) (C.15)

the second order action changes as

δS =

∫

d2x
[

∂+
(

k+Lag
)

+ ∂−
(

k−Lag
)

]

. (C.16)

The fact that the action is non-linear in the sources should come as no surprise if

we recall that the gauging of spin-2 deformations is equivalent to putting the theory on a

curved background metric. Indeed, the second order action involving the Lagrangian (C.12)

can be written covariantly as

S =
1

2

∫

d2x
√−ggµν∂µX

i∂νX
i (C.17)

with metric [72]26

gµν =
Ω

(1− µ−−µ++)

(

2µ++ 1 + µ−−µ++

1 + µ−−µ++ 2µ−−

)

. (C.18)

As emphasized in [72], (C.18) does not correspond to partial gauge fixing: it is a general

parameterization of a two-dimensional metric. In our conventions
√−g = Ω is the confor-

mal mode of the metric, which as usual drops from the action because of Weyl invariance.

26Notice that our parameterization of the metric differs slightly from that in [72].
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It is straightforward to verify that the transformations of the covariant fields induced by

the transformation (C.13)–(C.15) of the sources are simply

δXi = £kX
i (C.19)

δgµν = £kgµν − (∇ρk
ρ) gµν . (C.20)

In other words, the symmetry transformations (C.13)–(C.15) are a combination of diffeo-

morphism generated by kµ plus a Weyl rescaling generated by − (∇ρk
ρ).

Note that the components of the covariant stress tensor

T̂µν =
1

2

(

∂µX
i∂νX

i − gµν
2

∂αX
i∂αXi

)

(C.21)

are given by

T̂++ = T++ + µ2
++T−− (C.22)

T̂−− = T−− + µ2
−−T++ (C.23)

T̂+− = µ++T−− + µ−−T++ . (C.24)

This illustrates yet another subtle point: the definition of the stress tensor depends on what

the sources are, namely what is kept fixed in the variation. While the covariant stress tensor

couples to the metric gµν , the currents T±± satisfying the usual Ward identities (C.7)–(C.8)

couple instead to the sources µ±±.

D Tr
[

a
2

z̄

]

and the OPE

In what follows we will exemplify various relations satisfied by flat connections in Drinfeld-

Sokolov form. A 2d Drinfeld-Sokolov connection consists of a component aJ that contains a

set of currents as highest weights, and a conjugate component aµ whose lowest weights are

linear in the corresponding sources. The various relations we discuss below rely exclusively

on this lowest/highest weight structure, and therefore apply to any choice of boundary

conditions. However, for the sake of concreteness we will exemplify them for holomorphic

boundary conditions, where the currents sit in az and the sources in az̄ and (z, z̄) denote

complex coordinates. We will moreover work with the theory defined by the principal sl(2)

embedding into sl(N), but the expressions adapt straightforwardly to other embeddings

as well (see [25] for example).

In the principal embedding, the sl(N) generators organize into N − 1 multiplets with

sl(2) spin s − 1 (s = 2, . . . , N), spanned by generators W
(s)
j with j = −s + 1, . . . , s − 1.

In particular, the sl(2) generators Lj (j = −1, 0, 1) correspond to the spin one multiplet

W
(2)
j = Lj . The structure of the general Drinfeld-Sokolov connection is then

az = L1 +
T (z, z̄)

k
L−1 +

N
∑

s=3

αsJs(z, z̄)W
(s)
−s+1 (D.1)

az̄ = µ2(z, z̄)L1 +
N
∑

s=3

βsµs(z, z̄)W
(s)
s−1 + (higher weights) . (D.2)

– 43 –



J
H
E
P
0
4
(
2
0
1
6
)
1
0
7

Here k ≡ c/6 and αs and βs are normalization constants which will be fixed as indicated

below, and the higher weight terms in az̄ are completely determined by solving the flatness

conditions. The latter contain N − 1 additional constraints which amount to the Ward

identities obeyed by the currents Js in the presence of sources µs.

In order to derive the symmetries associated to the above connection, one notices

that the most general gauge transformation δa = dΛ + [a,Λ] that preserves the form

of az contains N − 1 independent infinitesimal parameters ǫ2, . . . , ǫN . Moreover, given

that the flatness condition Fzz̄ = 0 and the condition δaz = 0 are essentially the same

equation (save for two components that yield the Ward identities in the former case and

the transformation of the currents in the latter), it is not hard to see that the matrix

parameter Λ that generates such a gauge transformation is obtained from az̄ by simply

replacing µs → ǫs for s = 2, . . . , N :

Λ = az̄|µs→ǫs
. (D.3)

Under this transformation the stress tensor and higher spin currents Js will transform,

so that

δaz =
δT

k
L−1 +

N
∑

s=3

αsδJs(z, z̄)W
(s)
−s+1 . (D.4)

Comparing these transformations with Noether’s theorem

δλO(w) = Resz→w

[

λ(z)J(z)O(w)
]

(D.5)

one reads off the semiclassical (large-c) OPEs of the WN currents. Their normalization αs

can be then determined (up to a sign) by fixing the normalization of the OPEs to be

Js(z)Js(w) ∼
c/s

(z − w)2s
+ . . . (D.6)

Having determined the normalization of the currents in this way, the normalization βs of

the sources is fixed by demanding

−kcsTr
[

(az − L1) az̄
]

= µ2(z, z̄)T (z, z̄) +
N
∑

s=3

µs(z, z̄)Js(z, z̄) (D.7)

−kcsTr
[

L1az̄
]

= µ2(z, z̄)T (z, z̄) +
c

12
∂2µ2(z, z̄) +

N
∑

s=3

(s− 1)µs(z, z̄)Js(z, z̄) (D.8)

where ∂ ≡ ∂z (∂̄ ≡ ∂z̄), all traces are taken in the fundamental representation, and

kcs =
k

2Tr [L0L0]
=

c

12Tr [L0L0]
(D.9)

is the Chern-Simons level. Note in particular that these expressions imply

−kcsTr
[

azaz̄
]

= 2µ2(z, z̄)T (z, z̄) +
c

12
∂2µ2(z, z̄) +

N
∑

s=3

s µs(z, z̄)Js(z, z̄) . (D.10)
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The trace relations (D.7)–(D.8) follow from properties of the sl(N) algebra and the flat-

ness condition on the Drinfeld-Sokolov pair, and are valid for arbitrary spacetime-dependent

sources as we now show. Without loss of generality, for the purpose of proving (D.7)–(D.8)

we choose the normalization of the generators in the principal embedding such that

[Lm, Ln] = (m− n)Lm+n (D.11)
[

Lm,W (s)
n

]

= (m(s− 1)− n)W
(s)
m+n (D.12)

and the Cartan-Killing form on sl(N,R) is then

Tr
[

W (s)
m W (r)

n

]

= t(s)m δr,sδm,−n (D.13)

where the explicit form of the coefficients t
(s)
m can be found in e.g. [11].

Since highest-weight generators have non-vanishing trace only against lowest-weight

generators in the same multiplet, it is immediate from (D.1)–(D.2) that

−kcsTr
[

(az − L1) az̄
]

= −Tr
[

L−1L1

]

2Tr [L0L0]
µ2T (z, z̄)− kcs

N
∑

s=3

αsβsµs(z, z̄)Js(z, z̄)t
(s)
s−1 . (D.14)

Our normalization implies Tr [L−1L1] = −2Tr [L0L0], so the last equation will be pre-

cisely (D.7) provided we choose

βs = − 1

kcsαst
(s)
s−1

= −2Tr [L0L0]

kαst
(s)
s−1

. (D.15)

Since we are always free to normalize the sources in this way, this proves (D.7).

In order to prove (D.8) we will first obtain the useful intermediate results

−kcsTr [L0az̄] =
k

2
∂µ2 (D.16)

kcsTr
[

[

(az − L1), L0

]

az̄

]

= µ2(z, z̄)T (z, z̄) +
N
∑

s=3

(s− 1)µs(z, z̄)Js(z, z̄). (D.17)

To this end, consider the flatness condition Fzz̄ = ∂az̄ − ∂̄az + [az, az̄] = 0 and its trace

against L−1:

0 = Tr [L−1Fzz̄] = ∂Tr [L−1az̄] + Tr
[

[L−1, az] az̄
]

, (D.18)

where we used the cyclicity of the trace and ∂̄Tr [L−1az]=0, which follows from Tr [L−1az]=

Tr [L−1L1]=constant. Noticing Tr [L−1az̄] = Tr [L−1L1]µ2 and also [L−1, az]=[L−1, L1] =

−2L0, which follows from (D.1) and (D.12), (D.18) becomes

0 = Tr [L−1L1] ∂µ2 − 2Tr [L0az̄] ⇒ Tr [L0az̄] = −Tr [L0L0] ∂µ2 . (D.19)

Multiplying this last equation by −kcs we obtain (D.16).
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In order to derive (D.17), let us define the matrix Q = az − L1. It follows that

[Q,L0] =
T (z, z̄)

k
[L−1, L0] +

N
∑

s=3

αsJs(z, z̄)
[

W
(s)
−s+1, L0

]

= −T (z, z̄)

k
L−1 −

N
∑

s=3

(s− 1)αsJs(z, z̄)W
(s)
−s+1 (D.20)

and therefore

kcsTr
[

[Q,L0] az̄

]

= −Tr [L−1L1]

2Tr [L0L0]
µ2(z, z̄)T (z, z̄)− kcs

N
∑

s=3

(s− 1)αsβsµs(z, z̄)Js(z, z̄)t
(s)
s−1

= µ2(z, z̄)T (z, z̄) +
N
∑

s=3

(s− 1)µs(z, z̄)Js(z, z̄) (D.21)

where in the last equality we used Tr [L−1L1] = −2Tr [L0L0] and the normalization (D.15).

With these results in hand we can now compute

−kcsTr [L1az̄] = −kcsTr
[

[L1, L0] az̄
]

= −kcsTr
[

[az −Q,L0] az̄
]

= −kcsTr
[

[az̄, az]L0 − [Q,L0] az̄
]

= −kcsTr
[(

∂az̄ − ∂̄az
)

L0 − [Q,L0] az̄
]

= −kcs∂Tr
[

az̄L0

]

+ kcsTr
[

[Q,L0] az̄

]

(D.22)

where as before we used the flatness condition and the cyclicity of the trace. Using (D.16)

and (D.17), equation (D.22) becomes precisely (D.8), completing the proof. As it should

be clear from the above derivations, it is a straightforward matter to extend these general

results to non-principal embeddings.

Let us continue with our discussion of symmetries. The transformation δµs of the

sources can be read off from the lowest weights of δaz̄ under the same allowed gauge trans-

formation with parameter (D.3) we employed above. We also note that, by construction,

the Ward identities in the presence of sources are obtained from the variation of the currents

by simply replacing the infinitesimal parameters ǫs by the sources µs, i.e.

∂Js = δJs|ǫs→µs
. (D.23)

Define now the quantity

∆LN (z, z̄) = µ2(z, z̄)T (z, z̄) +
N
∑

s=3

µs(z, z̄)Js(z, z̄) (D.24)

which is the deformation of the CFT Lagrangian in the chiral case. With the above

normalization one finds the curious relation

− kcsTr
[

a2z̄
]

= Resz→w

[

(z − w)∆LN (z)∆LN (w)
]

+ ∂2 (PN ) , (D.25)

where PN will be determined below for N = 2, 3, 4. In other words, up to a total sec-

ond derivative, the quantity −kcsTr
[

a2z̄
]

is the coefficient of the second order pole in the

∆LN (z)∆LN (w) OPE.
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D.1 N = 2

We employ the usual two-dimensional representation of sl(2,R) in terms of matrices

L0 =
1

2

(

1 0

0 −1

)

, L1 =

(

0 0

1 0

)

, L−1 =

(

0 −1

0 0

)

. (D.26)

The Drinfeld-Sokolov connection is

az = L1 +
1

k
T (z, z̄)L−1 (D.27)

az̄ = µ2(z, z̄)L1 − ∂µ2L0 +

(

1

k
Tµ2 +

1

2
∂2µ2

)

L−1 (D.28)

and the flatness condition amounts to the Ward identity

∂̄T = µ2∂T + 2T∂µ2 +
k

2
∂3µ2 . (D.29)

The general infinitesimal gauge transformation that preserves the form of az has pa-

rameter

Λ = az̄|µ2→ǫ = ǫ(z, z̄)L1 − ∂ǫL0 +

(

1

k
Tǫ+

1

2
∂2ǫ

)

L−1 . (D.30)

Under such a transformation, the stress tensor changes as

δT = ǫ∂T + 2T∂ǫ+
k

2
∂3ǫ . (D.31)

Similarly, from δaz̄ = δµ2L1+(higher weights) we read off the transformation of the source

δµ2 = ∂̄ǫ− µ2∂ǫ+ ǫ∂µ2 . (D.32)

Comparing the variation (D.31) with Noether’s theorem δǫT (w) = Resz→w [ǫ(z)T (z)T (w)]

we obtain the stress tensor OPE. The standard normalization requires

k =
c

6
= 2Tr [L0L0] kcs = kcs (D.33)

and we find

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
(D.34)

as expected.

With the normalization (D.33) the Drinfeld-Sokolov flat connection satisfies

− kcsTr
[

a2z̄
]

= µ2
2(2T ) +

c

4
µ2∂

2µ2 − ∂2
( c

24
µ2
2

)

. (D.35)

In the N = 2 case we have ∆L2 = µ2T and

Resz→w

[

(z − w)∆L2(z)∆L2(w)
]

= µ2
2(2T ) +

c

4
µ2∂

2µ2 . (D.36)

Therefore, −kcsTr
[

a2z̄
]

is indeed of the form (D.25) with P2 = − c
24µ

2
2.
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D.2 N = 3

Our convention for the sl(3,R) generators in the principal embedding is

L0 =







1 0 0

0 0 0

0 0 −1






, L1 =







0 0 0

1 0 0

0 1 0






, L−1 = −2







0 1 0

0 0 1

0 0 0






,

W2 = 2







0 0 0

0 0 0

1 0 0






, W1 =







0 0 0

1 0 0

0 −1 0






, W−2 = 8







0 0 1

0 0 0

0 0 0






,

W−1 = 2







0 −1 0

0 0 1

0 0 0






, W0 =

2

3







1 0 0

0 −2 0

0 0 1






.

The Drinfeld-Sokolov connection is of the form

az = L1 +
1

k
T (z, z̄)L−1 +

1

k β
W (z, z̄)W−2 (D.37)

az̄ = µ2(z, z̄)L1 −
β

4
µ3(z, z̄)W2 +

0
∑

j=−1

fj(z, z̄)Lj +
1

∑

m=−2

gm(z, z̄)Wm . (D.38)

Solving the flatness condition yields

f0 = −∂µ2 (D.39)

f−1 =
1

k
Tµ2 +

2

k
µ3W +

1

2
∂2µ2 (D.40)

g1 =
β

4
∂µ3 (D.41)

g0 = −β

2

(

1

k
µ3T +

1

4
∂2µ3

)

(D.42)

g−1 =
β

12k

(

2µ3∂T + 5T∂µ3 +
k

2
∂3µ3

)

(D.43)

g−2 = − β

48k

(

12

k
µ3T

2 − 48

β2
µ2W + 7∂T∂µ3 + 2µ3∂

2T + 8T∂2µ3 +
k

2
∂4µ3

)

(D.44)

plus two additional constraints that correspond to the Ward identities

∂T = µ2∂T + 2T∂µ2 + 2µ3∂W + 3W∂µ3 +
k

2
∂3µ2 (D.45)

∂W = µ2∂W + 3W∂µ2 −
β2

24
µ3

(

∂3T +
16

k
T∂T

)

− β2

48
∂µ3

(

9∂2T +
32

k
T 2

)

− 5β2

16
∂2µ3∂T − 5β2

24
T∂3µ3 −

β2

96
k∂5µ3 . (D.46)

In agreement with (D.3), the generator Λ of a general infinitesimal gauge transforma-

tion that preserves the form of az is obtained by replacing µ2 → ǫ and µ3 → χ in (D.38):

Λ = az̄|µ2→ǫ, µ3→χ . (D.47)
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Under such gauge transformations, the currents transform as

δT = ǫ∂T + 2T∂ǫ+
k

2
∂3ǫ+ 2χ∂W + 3W∂χ . (D.48)

δW = ǫ∂W + 3W∂ǫ− β2

24
χ

(

∂3T +
16

k
T∂T

)

− β2

48
∂χ

(

9∂2T +
32

k
T 2

)

− 5β2

16
∂2χ∂T − 5β2

24
T∂3χ− β2

96
k∂5χ . (D.49)

Similarly, from

δaz̄ = δµ2L1 −
β

4
δµ3W2 + higher weights (D.50)

we find the transformation of the sources

δµ2 = ∂̄ǫ+ ǫ∂µ2 − µ2∂ǫ−
β2

24k
χ
(

k∂3µ3 + 16T∂µ3

)

+
β2

48k
∂χ

(

32Tµ3 + 3k∂2µ3

)

− β2

16
∂2χ∂µ3 +

β2

24
∂3χµ3 (D.51)

δµ3 = ∂̄χ+ 2χ∂µ2 − µ2∂χ+ ǫ∂µ3 − 2µ3∂ǫ . (D.52)

Comparing the variations (D.48)–(D.49) with Noether’s theorem (D.5) we can read off the

large-c W3 OPEs. The standard normalization (D.6) requires

k =
c

6
= 2kcsTr [L0L0] = 4kcs , β2 = −8

5
(D.53)

and we obtain

T (z)W (w) ∼ 3W (w)

(z − w)2
+

∂W (w)

z − w
(D.54)

W (z)W (w) ∼ c/3

(z − w)6
+

2T (w)

(z − w)4
+

∂T (w)

(z − w)3
+

1

10

3∂2T (w) + 64
c T

2(w)

(z − w)2

+
1

15

∂3T (w) + 96
c T (w)∂T (w)

z − w
(D.55)

with TT as in (D.34).

With the normalization (D.53) we find that the flat connection in Drinfeld-Sokolov

form satisfies

−kcsTr
[

a2z̄
]

= 2µ2
2T + 6µ2µ3W +

1

10
µ2
3

(

3∂2T +
64

c
T 2

)

+ µ2 ∂
( c

4
∂µ2

)

+ µ3 ∂
(

T∂µ3 +
c

72
∂3µ3

)

− ∂2

(

1

6
µ2
3T +

c

24
µ2
2 −

c

180
(∂µ3)

2 +
c

120
µ3∂

2µ3

)

. (D.56)

On the other hand, in the N = 3 case we have ∆L3 = µ2T + µ3W and

Resz→w

[

(z − w)∆L3(z)∆L3(w)
]

= 2µ2
2T + 6µ2µ3W +

1

10
µ2
3

(

3∂2T +
64

c
T 2

)

+ µ2 ∂
( c

4
∂µ2

)

+ µ3 ∂
(

T∂µ3 +
c

72
∂3µ3

)

. (D.57)
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Hence, Tr
[

a2z̄
]

verifies (D.25) with

P3 = −1

6
µ2
3T − c

24
µ2
2 +

c

180
(∂µ3)

2 − c

120
µ3∂

2µ3 . (D.58)

D.3 N = 4

We employ the matrix realization of the sl(4,R) generators given in [74]. The Drinfeld-

Sokolov connection is of the form

az = L1 +
1

k
T (z, z̄)L−1 +

1

k β
W (z, z̄)W−2 +

1

k γ
U(z, z̄)U−3 (D.59)

az̄ = µ2(z, z̄)L1 −
5β

12
µ3(z, z̄)W2 +

5γ

18
µ4(z, z̄)U3 (D.60)

+
0

∑

j=−1

fj(z, z̄)Lj +
1

∑

m=−2

gm(z, z̄)Wm +
2

∑

n=−3

hn(z, z̄)Un (D.61)

where the constants k, β and γ will be fixed by demanding the OPEs to have the standard

normalization. The flatness conditions yields

f0 = −∂µ2 (D.62)

f−1 =
1

k
(Tµ2 + 2µ3W + 3µ4U) +

1

2
∂2µ2 (D.63)

g1 =
5β

12
∂µ3 (D.64)

g0 = −5β

3k

(

1

2
µ3T +

γ

β2
µ4W +

k

8
∂2µ3

)

(D.65)

g−1 =
5β

36k

(

2µ3∂T + 5T∂µ3 +
4γ

β2
(µ4∂W + 2W∂µ4) +

k

2
∂3µ3

)

(D.66)

g−2 =
1

βk
µ2W − 5β

36k

[

µ3

(

1

2
∂2T +

3

k
T 2 − 9U

γ

)

+
7

4
∂µ3∂T + 2T∂2µ3 +

k

8
∂4µ3

+
γ

β2
µ4

(

∂2W +
48

5k
TW

)

+
3γ

β2
∂µ4∂W +

13γ

5β2
W∂2µ4

]

(D.67)

h2 = −5γ

18
∂µ4 (D.68)

h1 =
5γ

36

(

∂2µ4 +
6

k
µ4T

)

(D.69)

h0 = −10γ

27k

(

3

4
µ4∂T + 2T∂µ4 +

k

8
∂3µ4

)

(D.70)

h−1 = − 5

6k
µ3W+

5γ

108k

[

3µ4

(

1

2
∂2T+

6

k
T 2+

6

γ
U

)

+
11

2
∂T∂µ4+7T∂2µ4+

k

4
∂4µ4

]

(D.71)

h−2 =
1

6k
(µ3∂W + 4W∂µ3)−

γ

18k

[

µ4

(

1

4
∂3T +

9

k
T∂T +

3

γ
∂U

)

+ ∂µ4

(

7

6
∂2T +

11

k
T 2 +

9

γ
U

)

+
25

12
∂2µ4∂T +

5

3
T∂3µ4 +

k

24
∂5µ4

]

(D.72)
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h−3 =
1

36k

[

36

γ
µ2U − µ3

(

∂2W +
30

k
TW

)

− 5∂W∂µ3 − 9W∂2µ3

+ µ4

(

23γ

6k
T∂2T +

3γ

k
(∂T )2 +

γ

12
∂4T +

22

k
TU +

10γ

k2
T 3 + ∂2U − 40γ

kβ2
W 2

)

+ ∂µ4

(

241γ

18k
T∂T +

17γ

36
∂3T + 4∂U

)

+ ∂2µ4

(

13γ

12
∂2T +

68γ

9k
T 2 + 5U

)

+
5γ

4

(

∂T∂3µ4 +
5

9
T∂4µ4 +

k

90
∂6µ4

)]

(D.73)

plus the Ward identities

∂T = µ2∂T + 2T∂µ2 + 2µ3∂W + 3W∂µ3 + 3µ4∂U + 4U∂µ4 +
k

2
∂3µ2 (D.74)

∂W = µ2∂W + 3W∂µ2 − 5β2µ3

(

2

9k
T∂T +

1

72
∂3T − 1

4γ
∂U

)

− 5β2∂µ3

(

1

16
∂2T +

2

9k
T 2 − 1

2γ
U

)

− 25β2

48
∂T∂2µ3 −

25β2

72
T∂3µ3 −

5kβ2

288
∂5µ3

− γ

k
µ4

(

3

2
W∂T +

17

9
T∂W +

5k

36
∂3W

)

− γ

9
∂µ4

(

26

k
TW + 5∂2W

)

− 7γ

9
∂W∂2µ4 −

7γ

18
W∂3µ4 (D.75)

∂U = µ2∂U + 4U∂µ2 −
γ

18k
µ3

(

25W∂T + 18T∂W +
k

2
∂3W

)

− γ

6
∂µ3

(

∂2W +
52

3k
TW

)

− 7γ

18
∂W∂2µ3 −

7γ

18
W∂3µ3

+
γ2

3k
µ4

[

∂T

(

59

72
∂2T +

4

k
T 2 +

7

3γ
U

)

+
13

36
T∂3T

+
k

144
∂5T +

7

3γ
T∂U +

k

12γ
∂3U − 10

β2
W∂W

]

+
γ2

9k
∂µ4

(

44

9
T∂2T +

295

72
(∂T )2 +

5k

36
∂4T +

14

γ
TU +

8

k
T 3 +

5k

4γ
∂2U − 30

β2
W 2

)

+ γ2∂2µ4

(

49

54k
T∂T +

7

162
∂3T +

1

4γ
∂U

)

+
γ2

6
∂3µ4

(

7

18
∂2T +

49

27k
T 2 +

1

γ
U

)

+
γ2

648

(

35∂T∂4µ4 + 14T∂5µ4 +
k

4
∂7µ4

)

(D.76)

In agreement with (D.3), the generator Λ of the most general infinitesimal gauge

transformation that preserves the form of az is obtained as

Λ = az̄|µ2→ǫ, µ3→χ, µ4→ξ . (D.77)

Under such gauge transformations, the transformation of the currents is obtained from the

right hand side of the Ward identities (D.74)–(D.76) by replacing µ2 → ǫ, µ3 → χ and

µ4 → ξ (cf. (D.23)). Comparing these variations with Noether’s theorem (D.5) we read off

the large-c W4 OPEs. The standard normalization (D.6) requires

k =
c

6
= 2kcsTr [L0L0] = 10kcs , β2 = −24

25
, γ2 =

27

35
. (D.78)

– 51 –



J
H
E
P
0
4
(
2
0
1
6
)
1
0
7

In addition to (D.34) and (D.54) we then obtain the following OPEs

T (z)U(w) ∼ 4U(w)

(z − w)2
+

∂U(w)

z − w
(D.79)

W (z)W (w) ∼ c/3

(z − w)6
+

2T (w)

(z − w)4
+

∂T (w)

(z − w)3
+

1

10

3∂2T (w) + 64
c T

2(w)− 24
γ U(w)

(z − w)2

+
1

15

∂3T (w) + 96
c T (w)∂T (w)− 18

γ ∂U(w)

z − w
(D.80)

W (z)U(w)

−γ
∼ 7

3

W (w)

(z − w)4
+

7

9

∂W (w)

(z − w)3
+

1

6

∂2W (w) + 104
c T (w)W (w)

(z − w)2

+
1

36

∂3W (w) + 300
c W (w)∂T (w) + 216

c T (w)∂W (w)

z − w
(D.81)

U(z)U(w) ∼ c/4

(z − w)8
+

2T (w)

(z − w)6
+

∂T (w)

(z − w)5
+

3

10

∂2T (w) + 28
c T (w)

2 + 18
7γU(w)

(z − w)4

+
1

5

1
3∂

3T (w) + 42
c T (w)∂T (w) +

27
14γ∂U(w)

(z − w)3
+

1

84

∂4T (w) + 9
γ∂

2U(w)

(z − w)2

+
1

c

225
14 W (w)2 + 36

5γT (w)U(w) +
59
28 (∂T (w))

2 + 88
35T (w)∂

2T (w) + 864
35cT (w)

3

(z − w)2

+
1

c

3c
140γ∂

3U(w) + 18
5γ (U(w)∂T (w) + T (w)∂U(w)) + 225

14 W (w)∂W (w)

z − w

+
1

7c

c
80∂

5T (w) + 177
20 ∂T (w)∂

2T (w) + 39
10T (w)∂

3T (w) + 1296
5c T (w)2∂T (w)

z − w
(D.82)

We have left explicit factors of γ in the OPEs in order to have the freedom to choose the

overall sign in the normalization of U (cf. (D.78)).

With the normalization (D.53) the flat connection in Drinfeld-Sokolov form satisfies

− kcsTr
[

a2z̄
]

= 2µ2
2T + 6µ2µ3W + 8µ2µ4U

+ µ2
3

(

32

5c
T 2 +

3

10
∂2T − 12

5γ
U

)

− 13γ

18
µ3µ4

(

∂2W +
48

c
TW

)

+ µ2
4

(

864

35c2
T 3 +

88

35c
T∂2T +

59

28c
(∂T )2 +

36

5cγ
TU +

225

14c
W 2 +

1

84
∂4T +

3

28γ
∂2U

)

+ µ2

( c

4
∂2µ2

)

+ µ3

(

c

72
∂4µ3 + ∂T∂µ3 + T∂2µ3 −

14γ

9
∂W∂µ4 −

7γ

6
W∂2µ4

)

+ µ4

(

1

12
T∂4µ4 +

1

15
∂3T∂µ4 +

3

20
∂2T∂2µ4 +

42

5c
T∂T∂µ4 +

21

5c
T 2∂2µ4

+
1

6
∂T∂3µ4 +

27

70γ
∂ (U∂µ4)−

7γ

9
∂W∂µ3 −

7γ

6
W∂2µ3 +

c

2880
∂6µ4

)

+ ∂2 (P4) (D.83)
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where the quantity P4 in the last line is defined as

P4 = − c

24
µ2
2 −

1

6
Tµ2

3 −
1

120
µ2
4

(

∂2T +
84

c
T 2 + 10γU

)

+
7γ

18
Wµ3µ4

− µ4

(

c

4032
∂4µ4 +

1

60
∂T∂µ4 +

1

20
T∂2µ4

)

+
1

30
T (∂µ4)

2

− c

120
µ3∂

2µ3 +
c

180
(∂µ3)

2 +
c

2520
∂µ4∂

3µ4 −
c

4480

(

∂2µ4

)2
. (D.84)

Denoting ∆L4 = µ2T +µ3W +µ4U one finds that Resz→w

[

(z−w)∆L4(z)∆L4(w)
]

is given

precisely by the first six lines of (D.83). Therefore, Tr
[

a2z̄
]

verifies (D.25) with P4 given

by (D.84).
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