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1 Introduction

Constrained superfields are useful in cosmology, both for the description of dark energy

via de Sitter supergravity, as well as for inflationary model building. However, it is often

believed that one can use non-linearly realized supersymmetry with constrained superfields

only at low energies, otherwise one may encounter a violation of unitarity. A simple example

of such a situation is when in supergravity in flat space the scalar component of a chiral

superfield is very heavy. As shown in [1], at energies above sc = 6
√
2πm3/2MP l, unitarity

may be violated. During inflation the relevant parameter is not the gravitino mass m3/2

but a combination of it with the Hubble parameter, which sets the scale of spontaneous
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supersymmetry breaking F ∼
√

m2
3/2 +H2MP l, as shown in [2]. Therefore, generically, it

was argued in [3, 4], that no violation of the unitarity bound is expected during inflation

at sub-Planckian energy density. The issue of the unitarity bound during inflation was also

raised in the context of inflationary models in [5] where it was shown that during inflation

no violation of unitarity takes place, due to specific features of these models.

However, during the exit from inflation and reheating as well as in particle physics, the

situation with the unitarity bound still has to be investigated. The experimental searches of

supersymmetry are usually based on the assumption that super-partners have somewhat

different masses. However, if there are models with constrained superfields where the

unitarity bound is not violated, maybe one can speculate that in some cases the ‘linear

superpartners’ of known particles are absent/extremely heavy?

The arguments above serve as a motivation for our study of a consistency of models

with constrained superfields where the action is invariant under a non-linearly realized

local supersymmetry. This involves a derivation of these models from the underlying mod-

els with linear supersymmetry with additional multiplets, Lagrange multipliers, where all

superfields are unconstrained.

The most famous example is the Volkov-Akulov (VA) model [6, 7], which has a spon-

taneously broken global supersymmetry and only a fermion field in the spectrum. The

non-linear partner of the one fermion state is a two-fermions state, there are no bosons in

the spectrum. The relation between linear and non-linear supersymmetries, often in the

superspace context, was investigated from the early days of supersymmetry, e.g. in [8–12],

where the nilpotent chiral multiplet S2 = 0 where S ≡ S(x, θ), was proposed to describe

the VA theory. Constrained superfields in global supersymmetry were suggested in the

past and many of them were described in [13]. The theory with a constrained nilpotent

superfield S2 = 0 was shown to be equivalent to the VA model [14]. A superfield expres-

sion of the Volkov-Akulov-Starobinsky supergravity and the explicit bosonic part of it was

proposed in [15].

During the last couple of years the strategy to find a complete local supergravity

action with non-linearly realized supersymmetry was proposed. The first step [16] was

to introduce a set of Lagrange multipliers in the superconformal theory where the chiral

multiplet superconformal calculus was used, and the corresponding F -term action was

supplemented by a Lagrange multiplier (LM) term. The superconformal action in such

case was defined as follows

L = [N(X, X̄)]D + [W(X)]F + [fAB(X)λ̄APLλ
B]F +

[

∑

k

ΛkAk(X)

]

F

, (1.1)

where the LM’s Λk are chiral superfields. All supersymmetries are linearly realized as long

as the chiral LM’s are present in the action. When the equations of motion for the Λk are

solved then they lead to constraints on the chiral superfields:

Ak(X) = 0 . (1.2)
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A specific example1 of one such LM in a superconformal theory is

L = [N(X, X̄)]D + [W(X)]F + [fAB(X)λ̄APLλ
B]F +

[

Λ(X1)2
]

F
. (1.3)

This is a linear superconformal model that becomes a theory of one nilpotent chiral mul-

tiplet (X1)2 = 0, interacting with other multiplets, when the equations of motion for the

LM Λ are solved. Other such models are associated with holomorphic constraints like

X1X2 = 0 or X1Wα = 0. In this last case the LM is a chiral multiplet Λα with spin. We

will discuss various LM superfields in detail. The underlying linear models for chiral con-

straints are defined by (1.1). A class of superfield expressions for the supergravity models

with constrained curvature superfield, their dual with the nilpotent superfield, and their

bosonic actions were presented in [18].

A complete supergravity action with fermions and non-linearly realized local super-

symmetry of the VA type, generalizing the global case to the so called ‘pure de Sitter

supergravity’, was presented in [19, 20] for one nilpotent superfield interacting with su-

pergravity, and for a general coupling with supergravity and other multiplets in [21, 22].

Another interesting aspect of the relation between linear and non-linear supergravities with

a nilpotent multiplet was revealed in [23], where it was shown that one can derive the model

with non-linear supersymmetry by taking a formal limit in which the mass of the sgoldstino

goes to infinity, starting from a model with a linearly realized supersymmetry. Examples

of linear supersymmetry models that do not support constrained multiplets were reviewed

in [24]. For the consistency of the non-linearly realized supersymmetry models it is possible

but not necessary to derive them from linear models. The method of Lagrange multipliers

of a general nature, which will be developed in this paper, is a direct tool for constructing

consistent models of non-linear supersymmetry and constrained superfields.

New orthogonal nilpotent superfields, which were recently used in the context of su-

pergravity inflation in [3, 4, 25, 26], are not described by the chiral LM’s. The so-called

‘relaxed set of constraints’ is given by the requirement that the inflaton superfield Φ and

the stabilizer superfield S satisfy the following constraint

S2 = 0 , Dα̇(SB) = 0 , (1.4)

where

B =
1

2i
(Φ− Φ̄) . (1.5)

The orthogonal nilpotent constraints are

S2 = 0 , SB = 0 . (1.6)

We will show that for the ‘relaxed set of constraints’ (1.4) the LM is a linear superfield,

whereas for the orthogonal nilpotent constraints (1.6) we will need a complex general

superfield, as was already proposed in [3]. This requires us to build superconformal models

with complex superfields as LM’s. In principle, the corresponding constructions may be

1In a global supersymmetry model the LM for the square of the chiral multiplet was introduced and

studied in [17].
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obtained from [27–29]. Here we will present them in the framework and in the notation

of [30] and with some modifications useful for the analysis of the non-linear supersymmetry.

Thus, our goal is to define the superconformal models of the type

Llinear = [N(X, X̄)]D + [W(X)]F + [fAB(X)λ̄APLλ
B]F +

[

∑

k

ΛkAk(X)

]

F

+

[

∑

ℓ

VℓBℓ(X, X̄, λA, · · · )
]

D

. (1.7)

Here Vℓ are some linear or general complex superfields, LM’s. All supersymmetries are

linearly realized as long as the LM’s are present in the action (1.7). When the equations

of motion for the Vℓ are solved, then the physical superfields satisfy the constraints

Bℓ(X, X̄, λA, · · · ) = 0 . (1.8)

Particular examples of such theories include the case of the ‘relaxed set of constraints’ (1.4)

and the orthogonal nilpotent supermultiplets in (1.6), studied in the supergravity context

in [3, 26]. An alternative method, not using LM’s, of relating linear supersymmetry and

supergravity models to non-linear ones, is developed in [31] for the constraints in (1.4)

and (1.6) by sending the masses of the sgoldstino, inflatino and sinflaton to infinity, as it

was done before for the case of one nilpotent multiplet in [23].

2 Various constraints and Lagrange multipliers

In this section, we will consider various constraints on multiplets. We consider here only the

Lagrangian term that provides the constraint, hence the terms with Λk or Vℓ in (1.7). We

will consider the form of this term for various cases, and give the consistent Weyl weights

for the constrained multiplets and the Lagrange multiplier multiplets. Note that there may

be arguments for a particular Weyl weight from the way in which the fields appear in other

parts of the action, and they can be modified by redefinitions of the form X ′ = (S0)pX, for

S0 the compensating chiral multiplet and p some convenient power. Such a replacement

just amounts to invertible field redefinitions. We consider below chiral multiplets X, Y and

a gauge multiplet Wα. The fields and possible (Weyl, chiral) weights are denoted as follows

multiplet fields weights (w, c) of defining field

X {X, PLΩX , FX} (w,w)

Y {Y, PLΩY , FY } (w′, w′)

Wα {PLλ, Vµ, D}
(

3
2 ,

3
2

)

(2.1)

In each case, there is the constraint X2 = 0. We demand that the rest of the Lagrangian

is such that the auxiliary field

FX 6= 0 . (2.2)

Other auxiliary fields can be zero or non-zero. In the latter case the Goldstino is a combi-

nation of various fermions. But in the following, we will take ΩX to be the Goldstino.
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We consider 5 models. The first 4 were already considered for rigid supersymmetry

in [13]. We give below the references to where the models were studied in supergravity.

model constraint w, w′ Dependent Independent Physical References

X2 = 0 X ΩX , FX SUGRA

1 XY = 0 Y ΩY , FY ΩY [26, 32]

2 X(Y − Y ∗) = 0 w′ = 0 ImY, ΩY , FY ReY ReY [3, 26]

3 X Y ∗ chiral w′ = 0 ΩY , FY Y Y [3, 26]

3′ XDα̇Y
∗ = 0

4 XWα = 0 λ Vµ, D Vµ [3, 26, 32]

5 XX∗DαY = 0 ΩY Y, FY Y [26]

Here, the column w, w′ gives restrictions on these weights in (2.1), if there are any. ‘De-

pendent’ fields are the fields that become functionals of other fields due to the constraint.

The remaining fields are independent. After the super-Brout-Englert-Higgs mechanism

and solving the field equations, the remaining fields are in the column denoted by ‘Phys-

ical’. Note that the first row is always included. This first row contains at the end the

‘pure de Sitter supergravity’ model [19, 20]. The line 3’ is an alternative formulation of

the constraint 3. Model 2 is the one where only a real inflaton remains together with

supergravity.

These constraints are implemented by the following Lagrange multiplier multiplets:

model LM type (w, c)

Λ0 chiral (3− 2w, 3− 2w)

1 Λ1 chiral (3− w − w′, 3− w − w′)

2 V2 complex (2− w, −w)

3 V3 complex linear (2− w, −w)

3′ V α̇
3 spinor

(

3
2 − w, −3

2 − w
)

4 Λα
4 chiral spinor

(

3
2 − w, 3

2 − w
)

5 Vα
5 complex

(

5
2 − 2w − w′, 3

2 − w′
)

(2.3)

3’ is an alternative formulation of the linear multiplet, corresponding to V3 = Dα̇V α̇
3 .

3 General principles in short

A complex multiplet corresponds to a complex superfield. In order that it can be upgraded

to supergravity, we need consistency with the Weyl and chiral weights, such that it can be

written in superconformal calculus. Complex multiplets have a first (complex) component

C, which can have (Weyl, chiral) weight (w, c) arbitrary.2 Three noteworthy subcases are

real multiplet : C = C∗ , if c = 0 ,

chiral multiplet : PRZ = 0 , if c = w ,

antichiral multiplet : PLZ = 0 , if c = −w , (3.1)

2Fields in the superconformal algebra are defined by the eigenvalues of 4 Casimirs of SU(2, 2) × U(1):

(w, c, J1, J2) (where J1 and J2 determine the Lorentz transformations of the fields). Limits for these weights

are obtained in [33]. See also appendix B.
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where Z is the (second) fermionic component of the complex multiplet. We will give

the detailed formulae below, including how to make general functions (e.g. products) of

complex multiplets to construct other such multiplets. One just has to take functions that

respect the homogeneity of the weights.

There are ‘density formulas’ producing real actions, that are denoted as [X]F , forX the

lowest component of a chiral multiplet, and [C]D for C the lowest component of a complex

multiplet. These formulas require

[X]F : X has (w, c) = (3, 3) ,

[C]D : C has (w, c) = (2, 0) . (3.2)

Finally, an operation that is often used is to project a chiral multiplet out of a complex

multiplet, which is the analogue of D̄2 in superspace. It is denoted as

T (C) for C having (w, c) = (w,w − 2) and then T (C) has weights(w + 1, w + 1) . (3.3)

Many of these results were already given in [27, 28]. Other operations are possible

involving spinor multiplets, which are also treated in [29]. We recapitulate the requirements

on weights for these more general multiplets in appendix B.

4 Components and transformation rules of the complex multiplet

The general complex scalar multiplet V has components3

{C, Z, H, K, Ba, Λ, D} , (4.1)

where C, H, K and D are complex scalars, and Z and Λ are Dirac fermions. The Q and

S-supersymmetry transformation laws are [27]

δǫ,ηC = 1
2 iǭγ∗Z ,

δǫ,ηPLZ = 1
2PL

(

iH− /B − i /DC
)

ǫ− i(w + c)PLη C ,

δǫ,ηPRZ = 1
2PR

(

−iK − /B + i /DC
)

ǫ+ i(w − c)PRη C ,

δǫ,ηH = −iǭPR

(

/DZ + Λ
)

+ i(w + c− 2)η̄PLZ ,

δǫ,ηK = iǭPL

(

/DZ + Λ
)

+ i(−w + c+ 2)η̄PRZ ,

δǫ,ηBa = −1
2 ǭ (DaZ + γaΛ) +

1
2 η̄(w + 1 + cγ∗)γaZ ,

δǫ,ηPLΛ = 1
2

[

γab (DaBb − iDaDbC) + iD
]

PLǫ− 1
2PL

(

iK + /B + i /DC
)

(w + cγ∗)η ,

δǫ,ηPRΛ = 1
2

[

γab (DaBb + iDaDbC)− iD
]

PRǫ+
1
2PR

(

iH− /B + i /DC
)

(w + cγ∗)η ,

δǫ,ηD = 1
2 iǭγ∗ /DΛ + iη̄(c+ wγ∗)

(

Λ + 1
2
/DZ

)

. (4.2)

3We redefined H and K w.r.t. [27–29]. Our H is in their terminology H+iK and our K is their H− iK. In

this way our fields have definite chiral weights. Note that we use Λ to denote the second to last component

of the complex multiplet V. It should be clear from the context whether we are referring to a chiral LM or

the component of V.
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The (Weyl,chiral) weights of the fields are (complex conjugation changes the sign of c)

C : (w, c) ,

PLZ :
(

w + 1
2 , c− 3

2

)

, PRZ :
(

w + 1
2 , c+

3
2

)

,

H : (w + 1, c− 3) , K : (w + 1, c+ 3) , Ba : (w + 1, c) ,

PLΛ :
(

w + 3
2 , c+

3
2

)

, PRΛ :
(

w + 3
2 , c− 3

2

)

,

D : (w + 2, c) . (4.3)

They determine dilatations and chiral transformations for any field Φ according to

δΦ = wλDΦ+ i cλTΦ . (4.4)

Finally, there are special conformal transformations for the following fields

δKBa = −2ic CλKa ,

δKΛ = (w + cγ∗)/λKZ ,

δKD = 2 (wDaC + 2icBa)λ
a
K . (4.5)

The covariant derivatives that appear in (4.2) are therefore

DµC = (∂µ − wbµ − icAµ)C − 1
2 iψ̄µγ∗Z ,

PLDµZ =
(

∂µ − (w + 1
2)bµ − i(c− 3

2)Aµ + 1
4ωµ

abγab

)

Z
−1

2PL

(

iH− /B − i /DC
)

ψµ − i(w + c)PLφµC ,

PRDµZ =
(

∂µ − (w + 1
2)bµ − i(c+ 3

2)Aµ + 1
4ωµ

abγab

)

Z
−1

2PR

(

−iK − /B + i /DC
)

ψµ − i(w − c)PRφµC ,

DaBb = eµa [(∂µ − (w + 1)bµ − icAµ)Bb + ωµbcB
c

+1
2 ψ̄µ (DbZ + γbΛ)− 1

2 φ̄µ(w + 1 + cγ∗)γbZ + 2ic Cfµb
]

,

PLDµΛ = PL

(

∂µ − (w + 3
2)bµ − i(c+ 3

2)Aµ + 1
4ωµ

abγab

)

Λ

−1
2

[

γab (DaBb − iDaDbC) + iD
]

PLψµ + 1
2PL

(

iK + /B + i /DC
)

(w + cγ∗)φµ

−(w + c)γaPRZfa
µ ,

PRDµΛ = PR

(

∂µ − (w + 3
2)bµ − i(c− 3

2)Aµ + 1
4ωµ

abγab

)

Λ

−1
2

[

γab (DaBb + iDaDbC)− iD
]

PRψµ − 1
2PR

(

iH− /B + i /DC
)

(w + cγ∗)φµ

−(w − c)γaPLZfa
µ . (4.6)

Furthermore, (4.2) contains the anticommutator of covariant derivatives on C:

D[aDb]C = −1
2 [wRab(D) + icRab(T )] C − 1

4 iRab(Q)γ∗Z . (4.7)

The superconformal curvatures for the dilatation D, U(1) symmetry T , and supersymmetry

Q, are defined in [30].
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The multiplet that starts with the complex conjugate field C∗ is
{

C∗,ZC ,K∗,H∗,B∗
µ,Λ

C ,D∗} , (4.8)

where C denotes charge conjugation, which in a Majorana spinor representation is the

complex conjugate.

4.1 The restrictions to real and (anti)chiral

The complex multiplet reduces to a real multiplet when C = C is real. That implies that

its chiral weight vanishes c = 0. Then Z = ζ and Λ are Majorana, i.e. (PRZ)C = PLZ.

Furthermore, K = H∗ while Bµ = Bµ and D = D are real:

{C, ζ, H, H∗, Bµ, λ, D} . (4.9)

The complex multiplet reduces to a chiral multiplet for PRZ = 0. This then implies

for consistency with (4.2)

PRZ = 0 , K = 0 , Bµ = iDµC , Λ = 0 , D = 0 . (4.10)

The remaining components can then be expressed in terms of the variables {X,PLV , F} of

a chiral multiplet [27]:
{

X, −i
√
2PLΩ, −2F, 0, iDµX, 0, 0

}

. (4.11)

However, for the conformal theory, this is only consistent when the chiral weight of C is

equal to its Weyl weight: (w, c) = (w,w).

Similarly for the antichiral multiplet {X∗, PRΩ, F
∗}, we have

{

X∗, i
√
2PRΩ, 0, −2F ∗, −iDµX

∗, 0, 0
}

. (4.12)

5 Multiplication laws

The tensor calculus in conformal and Poincaré N = 1 supergravity was developed in

several papers, the most complete version was given in [27, 29]. Other most relevant

papers are [28, 34–43].

The components of the multiplet C̃ = f(Ci) are4

C̃ = f ,

Z̃ = fiZ i ,

H̃ = fiHi − 1
2fijZ̄ iPLZj ,

K̃ = fiKi − 1
2fijZ̄ iPRZj ,

B̃µ = fiBi
µ + 1

4 ifijZ̄ iγ∗γµZj = fiBi
µ + 1

2 ifijZ̄ iPLγµZj ,

Λ̃ = fiΛ
i + 1

2fij

[

iγ∗/Bi
+ PLKi + PRHi − /DCi

]

Zj − 1
4fijkZ iZ̄jZk ,

D̃ = fiDi + 1
2fij

(

KiHj − Bi · Bj −DCi · DCj − 2Λ̄iZj − Z̄ i /DZj
)

−1
4fijkZ̄ i

(

iγ∗/Bj
+ PLKj + PRHj

)

Zk + 1
8fijkℓZ̄ iPLZjZ̄kPRZℓ . (5.1)

4Note that we use the Majorana conjugate, i.e. Z̄ = ZTC, which is for these complex spinors different

from the Dirac conjugate.
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In case the superfields have some spinor indices they may be treated as part of the indices

i in these formula. One can also use the explicit expressions in [29]. Note that

PLfijkZ iZ̄jZk = fijkPLZ iZ̄jPRZk , (5.2)

due to the Fierz identity

PLZ(iZ̄jPLZk) = 0 , (5.3)

where we indicated the symmetric part in (ijk).

If only chiral and antichiral multiplets occur, hence f(Xα, X̄ ᾱ), for multiplets

{Xα, PLΩ
α, Fα} and {X ᾱ, PRΩ

ᾱ, F ᾱ} (and α and ᾱ may run over a different range) this

reduces to

C̃ = f ,

Z̃ = i
√
2
(

−fαΩ
α + fᾱΩ

ᾱ
)

,

H̃ = −2fαF
α + fαβΩ̄

αΩβ ,

K̃ = −2fᾱF
ᾱ + fᾱβ̄Ω̄

ᾱΩβ̄ ,

B̃µ = ifαDµX
α − ifᾱ∂µX̄

ᾱ + ifαβ̄Ω̄
αγµΩ

β̄ ,

PLΛ̃ = −
√
2ifᾱβ

[

(/DXβ)Ωᾱ − F ᾱΩβ
]

− i√
2
fᾱβ̄γΩ

γΩ̄ᾱΩβ̄ ,

PRΛ̃ =
√
2ifαβ̄

[

(/DX̄ β̄)Ωα − FαΩβ̄
]

+
i√
2
fαβγ̄Ω

γ̄Ω̄αPLΩ
β ,

D̃ = 2fαβ̄

(

−DµX
αDµX̄ β̄ − 1

2 Ω̄
αPL /DΩβ̄ − 1

2 Ω̄
β̄PR /DΩα + FαF β̄

)

fαβγ̄

(

−Ω̄αΩβF γ̄ + Ω̄α(/DXβ)Ωγ̄
)

+ fᾱβ̄γ

(

−Ω̄ᾱΩβ̄F γ + Ω̄ᾱ(/DX β̄)Ωγ
)

+ 1
2fαβγ̄δ̄ Ω̄

αPLΩ
βΩ̄γ̄PRΩ

δ̄ . (5.4)

We did not consider here chiral multiplets that transform under the gauge group, in which

case a few extra terms appear ([30], section 14.4.3).

On the other hand: if all multiplets are real multiplets f(Ci) where the multiplets are

of the form in (4.9) we get [28]

C̃ = f ,

Z̃ = fiζ
i ,

H̃ = fiHi − 1
2fij ζ̄

iPLζ
j ,

K̃ = fiH∗i − 1
2fij ζ̄

iPRζ
j ,

B̃µ = fiB
i
µ + 1

4 ifij ζ̄
iγ∗γµζ

j ,

Λ̃ = fiλ
i + 1

2fij

[

iγ∗ /B
i
+ReHi − iγ∗ ImHi − /DCi

]

ζj − 1
4fijkζ

iζ̄jζk ,

D̃ = fiD
i + 1

2fij
(

HiH∗j −Bi ·Bj −DCi · DCj − 2λ̄iζj − ζ̄i /Dζj
)

−1
4fijk ζ̄

i
(

iγ∗ /B
j
+ReHj − iγ∗ ImHj

)

ζk + 1
8fijkℓζ̄

iPLζ
j ζ̄kPRζ

ℓ . (5.5)

– 9 –



J
H
E
P
0
4
(
2
0
1
6
)
0
6
5

6 Chiral projection for the complex multiplets

The operation T acts on a complex multiplet with c = w− 2, producing a chiral multiplet

with first component

T (C) = −1
2K . (6.1)

This transforms left chiral according to (4.2). The condition on the weights follows from

the requirement that the Weyl and chiral weights of the components of K are equal. In

superspace T is the operation D̄2 (see translation in appendix A).

It is useful to consider also T (C∗), for which we then need that C has c = 2− w. The

first component is then

T (C∗) = −1
2H∗ . (6.2)

In summary

T (C) : C : (w,w − 2) , T (C) : (w + 1, w + 1)

T (C∗) : C : (w, 2− w) , C∗ : (w,w − 2) , T (C∗) : (w + 1, w + 1) . (6.3)

We can thus express this as “T carries weights (1, 3)”. Further, note that in [29] this

operation has also been defined for multiplets with external spinor indices, with the same

restriction on weights, and restriction to multiplets with only chiral external indices.

The components of T (C) are

T (C) =
{

−1
2K,−1

2

√
2 iPL(/DZ + Λ), 12(D +✷

CC + iDaBa)
}

. (6.4)

If C is a chiral multiplet, i.e. of the form (4.11) then the condition on the weights for

T (C) is not compatible with w = c. However, if this chiral multiplet has w = 1, then T (C∗)

is defined and is a chiral multiplet with w = 2. This is then the map ([30], (16.36)) that

associates to a chiral multiplet {X, PLΩ, F} the multiplet {X ′, PLΩ
′, F ′}

X ′ = F ∗ , PLΩ
′ = /DPRΩ , F ′ = ✷

CX∗ . (6.5)

Note that an antisymmetric tensor multiplet (or ‘linear multiplet’) is defined as a real

multiplet with T (C) = 0.

7 Action formulae

We will explain the notations for the actions: [C]D and [X]F . We start from the action

formula of a chiral multiplet, which is ([30] (16.35)), where the notation SF is used. Here,

and in several other places we use another notation: [· · · ]F , the corresponding actions differ

by a factor 2. For a chiral multiplet {X,PLΩ, F}, this is

[X]F =

∫

d4x e

[

F +
1√
2
ψ̄µγ

µPLΩ+
1

2
Xψ̄µγ

µνPRψν

]

+ h.c. =

∫

d4x e 2ReF + . . . . (7.1)

Note that this is only applicable to a chiral multiplet with w = 3, such that F has

weights (4, 0).
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Then we define the action formula for a complex multiplet by

[C]D = 1
2 [T (C)]F . (7.2)

This is only consistent if the weights of C are (2, 0). The fact that the last term in (6.4) is

a total derivative, leads to the equation

[T (C)]F = [T (C∗)]F , (7.3)

when both sides of the equation are defined in the conformal setting, i.e. C should have

(w, c) = (2, 0).

Therefore, the action depends in fact on the real part of the multiplet. For a real

multiplet with Weyl weight w = 2 [27, 36]:

[C]D =
1

2

∫

d4x e
[

D +DaDaC + 1
2

(

iψ̄ · γPR(λ+ /Dζ)− 1
4 ψ̄µPLγ

µνψνH+ h.c.
)]

. (7.4)

After using expressions for the dependent superconformal gauge fields and further

manipulations discussed in ([30], appendix 17B) it can be written as

[C]D =
1

2

∫

d4x e
[

D − 1
2 ψ̄ · γiγ∗λ− 1

3C R(ω) + 1
6

(

C ψ̄µγ
µρσ − iζ̄γρσγ∗

)

R′
ρσ(Q)

+ 1
4ε

abcdψ̄aγbψc

(

Bd − 1
2 ψ̄dζ

)

]

. (7.5)

7.1 Theorems on T -operation

The T -operation vanishes on a chiral multiplet, and moreover

T (ZC) = Z T (C) , (7.6)

if Z is a chiral multiplet and the weights of C satisfy the first condition in (6.3). This

theorem follows directly from the expression of K̃ in (5.4) applied to ZC. Indeed, the T -

operation consists in (up to normalization) taking the chiral multiplet defined by the K
component. Since in the chiral multiplet the K component and the right-handed component

of Z vanish, the only remaining term is the product of the lowest component Z and the K
component of C.

Observe that this theorem remains true if the multiplets are spinor multiplets. The

extra spinor indices are then external indices, playing the same role as the indices i, j in

the product rules (5.1).

One application of these equations is the following theorem [44]. For any two chiral

multiplets Λ (with w = 0) and Z (with w = 1) we have

[(Λ + Λ∗)ZZ∗]D = [ΛZT (Z∗)]F . (7.7)

To prove this, the first step is to translate the left-hand side to the chiral form:

[(Λ + Λ∗)ZZ∗]D = 1
2 [T ((Λ + Λ∗)ZZ∗)]F . (7.8)

Then (7.3) implies that the term with Λ∗ is equal to the one with Λ, and (7.6) implies that

T acts only on Z∗. This proves (7.7).
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8 Solution of EOM for V versus constraints

It was shown in [45] that the equations of motion before or after the constraints are equiv-

alent. This means the following: we start with the action with Lagrange multipliers λi,

fields Xα and F a:

S(F a, Xα, λi) = S1(F
a, Xα) + λiCi(F

a, Xα) . (8.1)

Assume that

Xα = xα(F a) , (8.2)

solves the constraints, i.e.

Ci(F
a, xα(F a)) = 0 . (8.3)

In such a case, it was shown in [45] that such a solution of the constraints, solving also the

other field equations of (8.1), should be a solution of the effective Lagrangian where the

constraints are already inserted:

Seff(F
a) = S1(F

a, xα(F a)) . (8.4)

This solves in general a problem raised in ([17], appendix C).

We now prove that for any function of superfields f(Ci) it is equivalent to impose the

constraint f(Ci) = 0 or to add the Lagrange multiplier [Vf(Ci)]D to the action and solve

the equations of motion for the components of the complex multiplet V . Since [Vf(Ci)]D is

linear in the components of V and linear in the components of f(Ci), we find trivially that

f(Ci) = 0 solves the equations of motion arising from the LM term [Vf(Ci)]D. However,

since the equations of motion are linear combinations it is not immediately obvious that

f(Ci) = 0 is the unique solution to the LM equations of motions.

We start with the action for our LM term: [Vf(Ci)]D

[Vf(Ci)]D =
1

4

∫

d4x e

[

D̃ − 1

2
ψ̄ · γiγ∗Λ− 1

3
C̃R(ω) +

1

6

(

C̃ ψ̄µγ
µρσ − iZ̄γρσγ∗

)

R′
ρσ(Q)

+
1

4
εabcdψ̄aγbψc

(

B̃d −
1

2
ψ̄dZ

)]

+ h.c. . (8.5)

Denoting the components as follows

V = { C, Z, H, K, Bµ, Λ, D } ,
f(Ci) = { Cf , Zf , Hf , Kf , Bf

µ, Λf , Df } ,
Vf(Ci) = { C̃, Z̃, H̃, K̃, B̃µ, Λ̃, D̃ } ,

(8.6)

we find from the multiplication rules in (5.1)

C̃ = CCf ,

Z̃ = CfZ + CZf ,

H̃ = HCf + CHf −Zf
PLZ ,
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K̃ = KCf + CKf −Zf
PRZ ,

B̃µ = BµCf + CBf
µ +

i

2
Zf

γ∗γµZ ,

Λ̃ = CfΛ + CΛf +
1

2

(

iγ∗/B + PLK + PRH− /DC
)

Zf

+
1

2

(

iγ∗/Bf
+ PLKf + PRHf − /DCf

)

Z ,

D̃ = DCf + CDf +
1

2
KHf +

1

2
HKf − Bf

µBµ − Λ̄fZ − Zf
Λ− (DµC)(DµCf )

−1

2
Z /DZf − 1

2
Zf

/DZ . (8.7)

One can see that the Lagrange multiplier D appears only in the component D̃. Therefore

its equation of motion is simply that Cf = 0. Therefore, the equations of motion of all the

Lagrange multipliers imply that all components of f(Ci) vanish, as we now show.

Consider in general an invariant action

S = LiC
i , (δLi)C

i + Li δC
i = 0 . (8.8)

Here Li are some Lagrange multipliers that do not appear in other terms of the action,

and Ci are the constraints that then follow from the equations of motion of Li. We

use the Bryce deWitt notation in which the sum over the indices i contains a spacetime

integral. Now its clear that for any solution of the constraint, Ci = 0, we should have

that δCi = 0. Hence, if we have solved one particular constraint, then everything that

follows from taking transformations should also be true when all equations of motion of

the Lagrange multipliers are satisfied. At the end one checks that with the equations that

one has obtained, all Ci vanish.

It can be nontrivial to know which initial equation is sufficient to get all the equations

that one needs. One has to look for an equation of low dimension, and supersymmetry

gives then constraints of higher dimension. E.g. in the case above, we obtain Cf = 0.

Then the transformation of this gives Zf = 0, and so on for all the components. Hence all

constraints are solved.

9 Example of orthogonal nilpotent multiplets

If we want to treat a D-term as in ([3] (3.11)), we have to assign the weights as follows:

in order to be consistent with eq. (1.2) in that paper, and Φ is a chiral multiplet, Φ, Φ

and B should have weights (0, 0). Assigning weights (wS , wS) to S, the weights of the

LM V should be (2 − wS ,−wS) in order to construct such a D-term. wS can be chosen

conveniently. Then the weights of the chiral Λ in (3.8) should be (3− 2wS , 3− 2wS).

If one associates S to one of the fields XI/X0 in the usual conformal approach, then

wS = 0.

– 13 –



J
H
E
P
0
4
(
2
0
1
6
)
0
6
5

9.1 The Lagrange multiplier [VSB]D

We take V to be a complex multiplet, S to be a (nilpotent) chiral multiplet and B =
1
2i(Φ− Φ̄) to be a real multiplet. We use the notation

V = { C, Z, H, K, Bµ, Λ, D } ,
S = { s, −i

√
2PLΩ

S , −2FS , 0, iDµs, 0, 0 } ,
Φ = { ϕ+ ib, −i

√
2PLΩ

Φ, −2FΦ, 0, iDµ(ϕ+ ib), 0, 0 } ,
Φ̄ = { ϕ− ib, i

√
2PRΩ

Φ, 0, −2FΦ∗, −iDµ(ϕ− ib), 0, 0 } ,
B = { b, − 1√

2
ΩΦ, iFΦ, −iFΦ∗, Dµϕ, 0, 0 } ,

(9.1)

where b and ϕ are real and all other quantities are complex. Using the multiplication

formulas, we find the following components for SΦ̄

CSΦ̄ = s(ϕ− ib) ,

ZSΦ̄ = −i
√
2(ϕ− ib)PLΩ

S + i
√
2sPRΩ

Φ ,

HSΦ̄ = −2FS(ϕ− ib) ,

KSΦ̄ = −2sFΦ∗ ,

BSΦ̄
µ = i(ϕ− ib)Dµs− isDµ(ϕ− ib) + iΩ̄SPLγµΩ

Φ ,

ΛSΦ̄ = −i
√
2
(

FS + /Ds
)

PRΩ
Φ + i

√
2
(

FΦ∗ + /D(ϕ− ib)
)

PLΩ
S ,

DSΦ̄ = 2FSFΦ∗ − 2(Dµ(ϕ− ib))(Dµs)− Ω̄SPL /DΩΦ − Ω̄Φ /DPLΩ
S . (9.2)

We can also calculate the components of SB

CSB = sb ,

ZSB = −ib
√
2PLΩ

S − 1√
2
sΩΦ ,

HSB = −2FSb+ isFΦ − iΩ̄SPLΩ
Φ ,

KSB = −isFΦ∗ ,

BSB
µ = ibDµs+ sDµϕ− 1

2
Ω̄SPLγµΩ

Φ ,

ΛSB =
1√
2

(

FS + (/Ds)
)

PRΩ
Φ − 1√

2

(

/D(ϕ− ib) + FΦ∗)PLΩ
S ,

DSB = iFSFΦ∗ − i(Dµ(ϕ− ib))(Dµs)−
i

2
Ω̄SPL /DΩΦ − i

2
Ω̄Φ /DPLΩ

S . (9.3)

Similarly, we find the following components for C̃ = VSB

C̃ = Csb ,
Z̃ = Zsb− i

√
2CbPLΩ

S − 1√
2
CsΩΦ ,

H̃ = Hsb− 2CFSb+ iCsFΦ + i
√
2bΩ̄SPLZ +

1√
2
sΩ̄ΦPLZ − iCΩ̄SPLΩ

Φ ,

K̃ = Ksb− iCsFΦ∗ +
1√
2
sΩ̄ΦPRZ ,

B̃µ = Bµsb+ iCbDµs+ CsDµϕ+
1√
2
bΩ̄SPLγµZ +

i

2
√
2
sΩ̄Φγµγ∗Z − 1

2
CΩ̄SPLγµΩ

Φ ,
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Λ̃ = Λsb− i√
2
b
(

iγ∗/B +K − /DC
)

PLΩ
S − 1

2
√
2
s
(

iγ∗/B +KPL +HPR − /DC
)

ΩΦ

−b
(

/Ds+ FS
)

PRZ − i

2
s
(

/D(ϕγ∗ − ib) + FΦ∗PL − FΦPR

)

Z

− 1√
2
C
(

/D(ϕ− ib) + FΦ∗)PLΩ
S +

1√
2
C
(

/Ds+ FS
)

PRΩ
Φ

− i

2
Z Ω̄ΦPLΩ

S − i

2
PLΩ

SΩ̄ΦZ − i

2
ΩΦΩ̄SPLZ ,

D̃ = Dsb

+b

(

−KFS − iBµ(Dµs)− (DµC)(Dµs)

+i
√
2Ω̄SPLΛ +

i√
2
Z /DPLΩ

S +
i√
2
Ω̄SPL /DZ

)

+
s

2

(

iFΦK − iFΦ∗H− 2BµDµϕ− 2(DµC)(Dµb) +
√
2Ω̄ΦΛ

+
1√
2
Z̄ /DΩΦ +

1√
2
Ω̄Φ /DZ

)

(9.4)

+C
(

iFSFΦ∗ − i(Dµ(ϕ− ib))(Dµs)−
i

2
Ω̄Φ /DPLΩ

S − i

2
Ω̄SPL /DΩΦ

)

+
1

2
√
2
Ω̄Φ( /Dsγ∗ − 2FSPR)Z − 1√

2
Ω̄SPL(/Dϕ − FΦ∗)Z +

1

2
Ω̄SPL(/B − iK)ΩΦ .

Using the result for SB in (9.3) we can rewrite this as

C̃ = CCSB ,

Z̃ = ZCSB + CZSB ,

H̃ = HCSB − Z̄SBPLZ + CHSB ,

K̃ = KCSB − Z̄SBPRZ + CKSB ,

B̃µ = BµCSB − i

2
Z̄SBγµγ∗Z + CBSB

µ ,

Λ̃ = ΛCSB +
1

2

(

iγ∗/B +KPL +HPR − /DC
)

ZSB

+
1

2

(

iγ∗/BSB
+KSBPL +HSBPR − /DCSB

)

Z + CΛSB ,

D̃ = DCSB − Z̄SBΛ +
1

2
KHSB +

1

2
HKSB − BSB

µ Bµ − Λ̄SBZ + CDSB − (DµC)(DµCSB)

−1

2
Z /DZSB − 1

2
ZSB /DZ . (9.5)

This example illustrates the general point of section 8 and demonstrates that once we solve

the equations of motion for the components of the general complex superfield V we find

that all components of the superfield SB must vanish.

10 Constraint that a multiplet is chiral, ‘relaxed constraint’

Another constraint that has been considered is imposing that a multiplet is chiral or for

the real case: that it is the sum of a chiral multiplet and its antichiral complex conjugate.

We will consider now this real case. We have a real multiplet (4.9) and want to impose
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that it is the sum of a chiral and antichiral multiplet as given in (4.11) and (4.12). Defining

X =
1√
2
(A+ iB) , (10.1)

the multiplet should thus be of the form

{√
2A, −i

√
2γ∗Ω, −2F,−2F ∗,−

√
2DµB, 0, 0

}

, DµB = ∂µB + 1
2 iψ̄µγ∗Ω , (10.2)

and it should have weights (0, 0) to be consistent with chiral + antichiral. Comparing to

a general form of such a real multiplet, (4.9), the main constraint is λ = 0. Then the form

of (10.2) can be shown to follow by supersymmetry.

A direct approach to describing the models with ‘relaxed constraint’ is to use the linear

multiplet L for the LM superfield: it is a real multiplet that satisfies

linear multiplet: T (L) = 0 . (10.3)

Hence, in order to be well defined, L should have weights (2,0) [46]. Putting (6.4) to zero,

leads to a multiplet with components {L, χ, Eµν} where L is real, χ is Majorana, and Eµν

is a gauge antisymmetric tensor. It is embedded in the complex multiplet in the form [27]

{

L, χ, 0, 0, Ea ,− /Dχ,−✷
CL

}

, DaE
a = 0 , (10.4)

where the last equation implies that Ea is a covariant field strength of an antisymmetric

tensor, Eµν [46]:

Eµ = e−1εµνρσ
(

∂νEρσ − 1
4 ψ̄νγρψσL

)

+ χ̄γµνψν . (10.5)

The multiplet can also be written in terms of a chiral spinor prepotential Lα:

L = DαLα +Dα̇
Lα̇ . (10.6)

The weight requirements on spinor multiplets are discussed in appendix B. They imply here

that Lα has weights
(

3
2 ,

3
2 ,

1
2 , 0

)

. The expression in (10.6) satisfies (10.3) using ([29] (3.22))

and ([29] (3.9)).

We will now prove the following result, already mentioned in ([47] (3.18)). If there is

a linear multiplet L that is used as a Lagrange multiplier with a term in the action of the

form [LU ]D, where U is real (and has Weyl weight 0), then the equations of motion of L

imply that U is of the form (10.2), i.e. a chiral + antichiral multiplet.

First, we prove that if L is linear and U = X+X∗, where X is chiral, then [LU ]D = 0.

Indeed, starting with (7.2):

2 [(X +X∗)L]D = [T ((X +X∗)L)]F = 2 [T (X L)]F = 2 [X T (L)]F = 0 , (10.7)

using in the different steps (7.3), (7.6) and (10.3).

Using the prepotential formulation we can also write

[LU ]D =
[

U
(

DαLα +Dα̇
Lα̇

)]

D
. (10.8)
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If Lα is chiral, then its field equation is TDαV = 0. In order to work with primaries we

should have

Lα :
(

3
2 ,

3
2 ,

1
2 , 0

)

, U : (0, 0, 0, 0) , DαLα : (2, 0, 0, 0) , DαU :
(

1
2 ,−3

2 ,
1
2 , 0

)

. (10.9)

The main step will be to prove that

[UDαLα]D = [LαDαU ]D . (10.10)

This follows from the fact that Dα by its definition is distributive and

[DαV
α]D = 0 . (10.11)

Then we write

[LU ]D = 2 [(DαLα)U ]D = 2 [LαDαU ]D = [T (LαDαU)]F . (10.12)

Then, using that (7.6) also holds for spinor multiplets, the field equations of Lα imply that

T (DαU) = 0. Indeed, in the multiplication of chiral multiplets, nor in the action formula

appear derivatives on the fields, and the field equations are thus linear. T (DαU) = 0 is the

multiplet that starts with λ. Thus this is the condition that U is of the form (10.2): chiral

+ antichiral.

One more possibility to describe the models with ‘relaxed constraints’ is the following.

In [46] the action for the product of the linear multiplet and another real multiplet,

U = {C, ζ,H,K, Ba, λ,D} , (10.13)

has been obtained:

[LU ]D = 1
2

∫

d4x e
[

LD − χ̄λ− 1
2 iL ψ̄µγ

µγ∗λ
]

−εµνρσVµ∂νEρσ , Vµ = Bµ− 1
2 ψ̄µζ . (10.14)

This is in agreement with the calculation in (10.7): it says that the only components of

the real multiplet that appear are those that are invariant under C → C + Λ + Λ̄. Here

one can see immediately that the field equations are

D = λ = 0 , Vµ = ∂µB → Bµ = −
√
2∂µB − 1

2 ψ̄µζ = −
√
2DµB , (10.15)

where B is a priori an arbitrary field, which can be identified with the one in (10.2), where

ζ = −i
√
2γ∗Ω.

11 Summary

The action (1.7) has a linearly realized supersymmetry and in addition to the physical

superfields there are Lagrange multiplier superfields Λk and Vℓ, all superfields are un-

constrained. Integrating the LM’s out from the action (1.7) we derive the action with

constraints imposed and a non-linearly realized supersymmetry. This is a property of the

action (1.7) after the equations of motion for all LM are solved:

Lnon−lin = [N(X, X̄)]D + [W(X)]F + [fAB(X)λ̄APLλ
B]F +

[

∑

k

ΛkAk(X)

]

F

+

[

∑

ℓ

VℓBℓ(X, X̄, λA, · · · )
]

D

∣

∣

∣

∣

δLlin

δΛk
=0, δLlin

δVℓ
=0

. (11.1)
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But since we also have an underlying model with linear supersymmetry (1.7) where the LM

superfields are off shell, our non-linear action (11.1) follows from the linear one. Likewise

the corresponding non-linear supersymmetry transformations can be deduced from the

linear ones. A clear example of this was given in the case of one nilpotent superfield

and one chiral LM superfield in [16] which led to the explicit action of ‘pure de Sitter

supergravity’ in [19, 20].

Now we have a general understanding of the relation between linear and non-linear

models with LM superfields in F-terms and in D-terms: the non-linear models arise in

our approach as models where the equations of motion for the LM superfields have been

solved. This explains why they are consistent and how the non-linear supersymmetry

transformations rules follow from the linear ones. Since now our LM’s are of a general

nature, not constrained to be chiral, our new analysis includes the constrained superfields,

like the orthogonal nilpotent superfields and the relaxed version of it, studied in the global

supersymmetry case in [13, 25] and developed to a local supersymmetry in [3, 26]. Here

we presented the underlying linear superconformal models for the constrained non-linear

models, which are of a particular interest to cosmology [4].
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A Translation to superspace

The recent work on component versus superspace approaches to conformal supergravity is

in [48]. Here we will use the translations to superspace as in ([30], appendix 14A). We use

the shortcuts

D2 = −D̄PLD , D̄2 = −D̄PRD , (A.1)

where the bar in the right-hand sides is the Majorana bar. With spinor indices, D2 =

−Dα(PL)α
βDβ for α = 1, . . . , 4 or in the 2-component notation: D2 = −DαDα = DαD

α.

It satisfies

D2θ̄PLθ
∣

∣

θ=0
= −4 . (A.2)

Comparing with (7.1) and (7.4), we have

[C]D =

∫

d4xD2D̄2C , [X]F =

∫

d4xD2X + h.c. . (A.3)
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To facilitate the writing we will define
∫

d2θ and
∫

d4θ as

∫

d2θ = D2 ,

∫

d4θ =

∫

d2θ d2θ̄ = D2D̄2 , (A.4)

such that (identifying superfields by their first components)

[C]D =

∫

d4x d4θC , [X]F =

∫

d4x d2θ X + h.c. . (A.5)

For global supersymmetry, the complex superfield is of the form

Φ = C + 1
2 iθ̄γ∗Z − 1

8 θ̄PLθH− 1
8 θ̄PRθK + . . . . (A.6)

B General multiplets

Now we consider general multiplets that have spin. We denote the spin as (J1, J2), where

e.g. a scalar multiplet has (0, 0), and a multiplet like Wα has (12 , 0). We use here the indices

α for left-handed projections, and α̇ for right-handed projections of spinors.

There are a few ways to constrain multiplets and to build multiplets from other mul-

tiplets. The Dα operation consists in taking the PLZ component of the multiplet C as

first component, while Dα̇ takes the PRZ component. The T operation is defined in (6.1)

from the K component. However, we require then that these do not transform under S-

supersymmetry, i.e. they are primary superconformal fields. Here is a table of requirements

on the weights in order that these objects are primary [29]:

Primary superconformal fields weights of C relations

Cα1...αmα̇1...α̇n
(w, c, J1, J2) m = 2J1, n = 2J2

real Cα1...αmα̇1...α̇n
(w, 0, J, J) C = C = C∗, m = 2J

DαCαβ1...βmα̇1...α̇n
(w, c, 12(w + c)− 1, J2) m = 2J1 − 1, n = 2J2

D(α1
Cα2...αm)α̇1...αn

(w, c,−1
2(w + c), J2) m = 2J1 + 1, n = 2J2

T (Cα1...αm
) (w,w − 2, J, 0) m = 2J

(B.1)

The weights of the operations are

Dα :
(

1
2 ,−3

2 ,
1
2 , 0

)

, Dα̇ :
(

1
2 ,

3
2 , 0,

1
2

)

, T : (1, 3, 0, 0) , T̄ : (1,−3, 0, 0) . (B.2)

Therefore the final weights of some of the expressions in (B.1) are

DαCαβ1...βmα̇1...α̇n

(

w + 1
2 , c− 3

2 ,
1
2(w + c− 3), J2

)

,

D(α1
Cα2...αm)α̇1...αn

(

w + 1
2 , c− 3

2 ,−1
2(w + c− 1), J2

)

,

T (Cα1...αm
) (w + 1, w + 1, J, 0) .

(B.3)

Note that the conditions for the operations DαCαβ1...βmα̇1...α̇n
and D(α1

Cα2...αm)α̇1...αn

are never compatible. This means that DαC only exist if J1 = 0 in which case the first

condition is not applicable. Thus

DαCα̇1...α̇m
exists for V (w,−w, 0, J2) and has

(

w + 1
2 ,−w − 3

2 ,
1
2 , J2

)

, m = 2J2 . (B.4)
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If we further want to apply T on DαC, we need J2 = 0 and w = 0. Thus

T (DαC) exists for C(0, 0, 0, 0) and has
(

3
2 ,

3
2 ,

1
2 , 0

)

. (B.5)

These restrictions define also which multiplets exist. The first example of this is the

(anti)chiral multiplet, which is defined by the vanishing of (B.4), which determines the

conditions when this exist. Similarly, a linear multiplet is defined from the condition that

T (L) = 0. In order that this is well defined, L should thus have weights (w,w− 2, J, 0). A

real linear multiplet is thus only possible for (2, 0, 0, 0). This gives the following table of

multiplets defined by restrictions on a general C

Multiplet weights

real (w, 0, J, J)

chiral (w,w, J, 0)

antichiral (w,−w, 0, J)

linear (w,w − 2, J, 0)

real linear (2, 0, 0, 0) .

(B.6)

Densities in the Lagrangian should have weights (4, 0, 0, 0). Therefore the formulas for

densities apply for multiplets with weights

[X]F : X has (3, 3, 0, 0), [C]D : C has (2, 0, 0, 0) . (B.7)

Some further examples of these rules are the following:

1. The T operation cannot be applied on a chiral multiplet. On an antichiral multiplet

it requires that the latter has (1,−1, 0, 0).

2. For a supercurrent we demand that DαVαβ1... exists and that V is real. Then V

should have
(

w, 0, 12w − 1, 12w − 1
)

. One can e.g. have J1 = J2 =
1
2 and w = 3.

3. In order that Dαψα exists for a chiral ψα we need that ψα has weights
(

3
2 ,

3
2 ,

1
2 , 0

)

,

such that Dαψα has (2, 0, 0, 0), which are the weights of a real linear multiplet.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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