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1 Introduction

It is well known that in presence of an electric field, the vacuum is unstable and particle-

antiparticle pair production occurs spontaneously [1]. In flat Minkowski space, the proba-

blity of this event occuring is given by

Γ ∼ e
−πM

2

eE (1.1)

where e is the particle charge and E is the constant external electric field. This probability

is non-perturbative in the coupling “e” as can be seen from (1.1). This effect, due to

Schwinger, has been extensively explored in various contexts — especially in non-trivial

backgrounds to understand the effects of temperature and/or spacetime curvature on the

Schwinger mechanism [2, 3]. For instance, the Schwinger mechanism has been applied to

particle production and false vacuum decay in de Sitter space [3, 4]. The de Sitter case

is interesting from the cosmological perspective, and the computation essentially revolves

around finding the one-loop effective action, formally via the heat kernel method. The

Schwinger mechanism has also been investigated in Anti de Sitter backgrounds, in the

context of charged Reissner-Nordström (RN) black holes. RN black holes emit particles

via Hawking radiation and since the near horizon geometry is AdS2 × S2, there is an

inevitable interplay between the Hawking process and Schwinger effect [5, 6].

In addition to the Schwinger effect, quantum field theory predicts another remarkable

and far reaching result — the Davies-Unruh effect [7]. Stated simply, according to this effect

an uniformly accelerating observer perceives a thermal bath with temperature proportional

to its acceleration. Besides the fact that under the influence of a constant electric field,

charged particles move with constant acceleration a = eE
M

, there does not seem to be

any relation between the Schwinger and Davies-Unruh effects. However, the first hint

of a relation between the two effects surfaces while studying Euclidean instantons in the

context of Schwinger pair production. The instanton is characterized as a solution to

the classical equations of motion, albeit in Euclidean time. Such a solution describes a

closed circular orbit in flat Minkowski space. The corresponding action for an instanton

in the presence of a constant electric field in flat space is given by SEuc = πM2

eE
, and the
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proper Euclidean time to complete this closed orbit is given by Hamilton-Jacobi relation

τEuc = ∂MSEuc =
2π
a

= 1
TDU

, where TDU is the Davies-Unruh temperature. This points to

a possible connection between Schwinger and the Davies-Unruh effect, and in this paper

we advance this connection in both de Sitter and Anti de Sitter spacetimes. By working

in the embedding space, we shall present a coordinate independent and unified treatment

of deriving Schwinger effect in these spacetimes.

We shall work in the semiclassical approximation using instanton methods. Addition-

ally, we restrict ourselves to 1 + 1 dimensions for simplicity. The qualitative picture for

the Schwinger mechanism is as follows. Initially, there is just vacuum and the electric field

is Eout everywhere. Suddenly a particle-antiparticle pair is spontaneously created and the

electric field drops to Ein between the particles. Subsequently the pair accelerate apart,

converting the electric field value to Ein as they move away. The closed Euclidean world-

line divides the space into “inside” and “outside” regions. On the worldline, the electric

field is defined as the average sum of Eout and Ein. In the instanton method, the charged

particle couples to the electromagnetic field and by complexifying the time coordinate, the

on-shell action (the coupling term and the surface term cancel each other on-shell) for the

particle-field system is given by [8]

SE = M

∫

Σ
ds+

1

4

∫

Vol
FµνFµν (1.2)

We assume a constant external electric field. Following the work of Brown and Teitel-

boim [9], we define the following quantities.

Eout − Ein = +e

Eout + Ein = 2Eon (1.3)

Using equations (1.2) and (1.3), the relevant instanton action is therefore given by

SE [instanton] = Sin
E − Sout

E

= M

∫

Σ
ds+

1

2
(E2

in − E2
out)

∫

Vol

= M

∫

Σ
ds− eEon

∫

Vol
(1.4)

Now consider a constant external electric field in dS2/AdS2 space given by

Fµν = −Eout
√
−gǫµν (1.5)

where ǫ01 = −ǫ10 = 1. Under the action of the above field, charged particles trace out

worldlines according to the equations of motion

ai2 =
eF ij

onuj
M

(1.6)

where ai2 is the 2-acceleration of the particle, F ij
on the field strength defined on the worldline,

and ui the usual 2-velocity. Using (1.5) and (1.6), and considering the fact that uiui = −1,
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the magnitude of 2-acceleration is given by

a22 = giju
iuj =

e2E2
on

M2
(1.7)

As defined before, Eon is the electric field on the worldline.

2 Schwinger effect in dS2

Consider de Sitter space with scale R defined by the hyperboloid

−X2
0 +X2

1 +X2
2 = R2 (2.1)

From the perspective of embedding space, this hyperboloid exists in 2+1 dimensional flat

Minkowski space. Consider a constant electric field along the direction X1. The charged

particle then accelerates along this direction keeping the coordinate X2 = Xc = constant.

Therefore, the trajectory in embedding space is given by

−X2
0 +X2

1 = R2 −X2
c (2.2)

suggesting that in embedding space the particle has an accelerating trajectory with “3-

acceleration” given by

a23 = 1/(R2 −X2
c ) (2.3)

In an elegant paper by Deser and Levin [10], it was shown that acceleration in embedding

space is what determines the Davies-Unruh temperature in the target space as well. This

equivalence of temperature is the key step. Therefore, in our case of dS2, the Davies-Unruh

temperature in terms of acceleration is given by

a3 =

√

1

R2
+ a22

= 2πTUnruh (2.4)

Therefore, from equations (1.7), (2.3) and (2.4), we have

Xc =
eEonR

2

√

M2 + e2E2
onR

2
(2.5)

We can now compute the instanton action (1.4) in the embedding space. We first complexify

the time coordinate as X0 → iX0E , and thus from eq. (2.2) the worldline radius becomes

R0 =
√

R2 −X2
c = MR√

M2+e2E2
onR

2
. The instanton action (1.4) for dS2 can be calculated as

SE [instanton] = 2πMR0 − eEon

∫∫∫

D

δ

(

√

X2
0E +X2

1 +X2
2 −R

)

dX2dX1dX0E

= 2πR
[

√

M2 + e2E2
onR

2 − eEonR
]

(2.6)
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where the domain of integration D :−
√

R2−X2
c ≤X0E ≤

√

R2−X2
c ; −

√

R2−X2
c −X2

0E ≤

X1 ≤
√

R2 −X2
c −X2

0E ; 0 ≤ X2 ≤
√

R2 −X2
1 −X2

0E . Using (2.6), the Schwinger pair

creation rate is given by

ΓdS2 ∼ e−2πR[
√

M2+e2E2
onR

2
−eEonR] (2.7)

We observe that even in the absence of any electric field, pair production occurs with rate

ΓdS2 ∼ e−2πMR. This feature is the well known cosmological particle production of heavy

fields in de Sitter space [3, 4, 8].

3 Schwinger effect in AdS2

We now turn to Anti de Sitter space. Consider AdS2 with scale R defined by

−X2
0 +X2

1 −X2
2 = −R2 (3.1)

From the perspective of embedding space, this hyperboloid exists in 1+2 dimensional flat

Minkowski space. This immediately raises a concern regarding closed time-like curves since

bothX0 andX2 behave like time coordinates. However, in our present work we sidestep this

issue by taking X0 as the “relevant” time coordinate. We now consider a constant electric

field along the direction X1. The charged particle then accelerates along this direction

keeping the coordinate X2 = Xc = constant. Therefore, the trajectory is given by

−X2
0 +X2

1 = X2
c −R2 (3.2)

This implies that in embedding space the particle has an accelerating trajectory with “3-

acceleration” given by

a23 = 1/(X2
c −R2) (3.3)

Again following [10], the Davies-Unruh temperature in AdS2 in terms of acceleration is

given by

a3 =

√

−1

R2
+ a22

= 2πTUnruh (3.4)

Therefore, from equations (1.7), (3.3) and (3.4), we have

Xc =
eEonR

2

√

e2E2
onR

2 −M2
(3.5)

The instanton action can now be computed as follows. As in the case of dS2, the time

coordinate is complexified as X0 → iX0E , and thus from eq. (3.2) the worldline radius

becomes R0 =
√

X2
c −R2 = MR√

e2E2
onR

2
−M2

. Therefore the instanton action (1.4) for AdS2

can be calculated in the embedding space as

SE [instanton] = 2πMR0 − eEon

∫∫∫

D

δ

(

√

X2
2 −X2

1 −X2
0E −R

)

dX2dX1dX0E (3.6)
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where now the domain of integration is D : −
√

X2
c −R2 ≤ X0E ≤

√

X2
c −R2;

√

X2
c −X2

0E −R2 ≤ X1 ≤
√

X2
c −X2

0E −R2; 0 ≤ X2 ≤
√

X2
1 +X2

0E +R2.

Evaluating the above integral near the neighborhood eEonR√
e2E2

onR
2
−M2

≈ 1, we get

SE [instanton] ≈ 2πR
[

eEonR−
√

e2E2
onR

2 −M2
]

(3.7)

Therefore, the Schwinger pair creation rate is given by

ΓAdS2 ∼ e
−2πR

[

eEonR−

√
e2E2

onR
2
−M2

]

(3.8)

However, unlike in the case of dS2, there exists a critical threshold electric field E2
cr =

M2

e2R2

in AdS2, below which there is no pair creation [5, 6]. This is due to the confining

effects of AdS.

4 Conclusion

The derivation presented here is self-contained but a few concluding remarks are in or-

der. In our calculation, we have ignored the gravitational backreaction, and have also

implicitly assumed that mass of the instanton is much greater than curvature scales, i.e.

M2 ≫ 1
R2 . If one relaxes this assumption, the instanton actions and pair production

rates (2.6), (2.7), (3.7) and (3.8) will be modified by simply shifting the mass squared term

to M2 → M2 ∓ 1
4R2 for de Sitter and Anti de Sitter spaces respectively. This shift can be

understood by looking at the quadratic Casimirs for de Sitter and Anti de Sitter groups,

SO(1,2) and Sl(2,R), respectively.

Though operationally we have used the kinematic equalities in eqs. (2.4) and (3.4) to

derive our results, it is noteworthy to belabor on their interpretation. The first equality in

both these equations is a classical relation, and in fact, the relation between accelerations in

any embedding space and a submanifold of it (aD and aD−1) is a purely differential geomet-

ric result (see [11] for a pedagogical discussion). However, the appearance of temperature,

which has its origins in quantum statistics, presents a conceptually different interpretation

of eqs. (2.4) and (3.4). There is no general theorem that establishes the equivalence of

Unruh temperature for a general embedding space and its submanifold. Such an equiv-

alence has only been established for (Anti) de Sitter spacetimes [10], where the detector

response for target spaces as well as their corresponding embedding spaces was explicitly

calculated using quantum field theory. We therefore posit that eqs. (2.4) and (3.4) also

hold true at the quantum level, thereby latently encapsulating the Davies-Unruh effect in

our derivation.

The connection with the Davies-Unruh effect also manifests itself in the following

way. Pair creation rates in (A)dS2 obtained previously by various authors used specific

coordinate systems for simplification. Inflationary coordinates for de Sitter, and Poincare

coordinates for Anti de Sitter spacetime were the usual choices. However, the exact pair

creation rates being reproduced in our coordinate independent framework points to a unique

vacuum choice for the Schwinger process in these spacetimes. To elucidate, consider dS2
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in eq. (2.1) with the isometry group SO(1,2). In the embedding space, choosing a constant

electric field along “X1” direction breaks the SO(1,2) isometry, and this points to a choice of

vacuum different from the Minkowskian one annihilated by i ∂
∂X0

. As noted from eq. (2.2),

the charged quanta follow hyperbolas in the (X0, X1) embedding plane. Therefore, foliating

our 2+1 dimensional flat Minkowskian space by (i) surfaces of constant −X2
0 +X2

1 +X2
2 =

γ2, and (ii) surfaces of constant −X2
0 +X2

1 = ξ2 > 0, gives

ds2 =
dγ2

1− ξ2

γ2

−
2γξdγdξ

γ2 − ξ2
+



−κ2ξ2dt2 +
dξ2

1− ξ2

γ2



 (4.1)

where κ is a constant introduced for dimensional reasons. The induced metric on γ = R =

constant surface is

ds2ind = −κ2ξ2dt2 +
dξ2

1− ξ2

R2

(4.2)

which is just 1+1 dimensional de Sitter space expressed in static coordinates (describing

an accelerating observer in global de Sitter space). Tangentially, had we foliated our flat

space by surfaces of constant −X2
0 + X2

1 = ξ2 < 0, we would have got Rindler-AdS2 [12]

as the induced metric, i.e.

ds2 =
dγ2

1 + ξ2

γ2

+
2γξdγdξ

γ2 + ξ2
+



−κ2ξ2dt2 +
dξ2

1 + ξ2

γ2



 (4.3)

Therefore, the Klein-Gordon equation written in 2+1 dimensional flat metric (4.1) picks

i ∂
∂t

= i
(

X1
∂

∂X0
+X0

∂
∂X1

)

as the Hamiltonian which annihilates the vacuum. Coupled

with the fact that acceleration in embedding space is in one-to-one correspondence with

acceleration in the physical/target space, this is indeed the natural vacuum choice for

quantization — the Davies-Unruh vacuum for de Sitter space. It can be shown that similar

arguments go through for Anti de Sitter space as well, where the induced metric turns out

to be 1+1 dimensional Rindler-AdS spacetime describing accelerating observers in global

Anti de Sitter space. These ideas will be explored in future work [13].

Summarizing, our present derivation of the Schwinger pair creation rate rests on two

ingredients — 1) Equivalence of Euclidean action at the level of both embedding as well as

target space. 2) The equivalence of temperature at the level of both embedding as well as

target space. This strongly suggests that instead of working in target space, it should be

possible to demonstrate Schwinger pair creation in AdS/dS by employing a quantum field

theoretic approach in their flat embedding spaces. However, unlike in the case of de Sitter,

one may run into technical difficulties while attempting a field theoretic derivation in Anti

de Sitter spacetime. This is due to the presence of two time-like coordinates. Therefore,

additional assumptions and boundary conditions must be specified for the derivation to

go through [13]. Additionally, while the Davies-Unruh effect is essentially thermodynamic

in nature, the Schwinger effect is not. Though the possible connection between these two

phenomena has been touched upon previously in the literature [3, 5, 14–17], we believe our

present derivation of Schwinger pair creation mechanism to be the most concrete realization

of this connection.
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