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1 Introduction

Since the announcement of the discovery of the Higgs boson [1, 2], a dynamic research

programme has come into place to measure and constrain its properties. The precision of

the measurements is already such that the interpretation of data is sometimes limited by

theoretical uncertainties (see e.g. refs. [3, 4]). Experimental errors will decrease in Run II,

because of the higher luminosity and of the higher energy. Experimental analyses will also

benefit from the experience gained in Run I, which will result in optimised Higgs analyses

already from the early stages of Run II.

The dominant Higgs-production mode at the LHC is gluon-gluon fusion. The most fun-

damental quantity is the total Higgs production cross-section, which allows one to compute

the total number of Higgs bosons produced at the LHC for a given energy and luminosity.

In some Higgs boson decay modes (most notably WW ∗ and ττ), it is standard to perform

different analyses depending on the number of accompanying jets. This is because different

jet multiplicities have different dominant backgrounds. Of particular importance for the

WW decay is the zero-jet case, where the dominant top-quark decay background is dra-

matically reduced. For precision studies it is important to predict accurately the fraction

of signal events that survive the zero-jet constraint, and to assess the associated theory

uncertainty. Jet-veto transverse momentum thresholds used by ATLAS and CMS are rel-

atively soft (∼ 25–30 GeV), hence QCD real radiation is severely constrained by the cut

and the imbalance between virtual and real corrections results in logarithms of the form

ln(pt,veto/mH) that should be resummed to all orders in the coupling constant. This resum-

mation has been carried out to next-to-next-to-leading logarithmic accuracy (NNLL, i.e.
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including all terms αns lnk(pt,veto/mH) with k ≥ n− 1 in the logarithm of the cross section)

and matched to next-to-next-to-leading order (NNLO) in refs. [5–7] (some of the calcula-

tions also included partial N3LL contributions). At this order one finds that the effect of

the resummation is to shift central predictions only moderately, and to reduce somewhat

the theoretical uncertainties. Yet, the residual theoretical uncertainty remains sizeable,

roughly 10% [5], and the impact of higher-order effects could therefore be significant.

Since the first NNLO+NNLL predictions for the jet-veto, three important theoretical

advances happened: firstly, the N3LO calculation of the total gluon-fusion cross section [8];

secondly the calculation of the NNLO corrections to the Higgs plus one-jet cross-section [9–

11]; and finally the LL resummation of logarithms of the jet-radius R [12]. Given these

recent advances, we are now in a position to improve on the previous prediction by extend-

ing the matching of the jet-veto cross-section to N3LO+NNLL+LLR. In order to perform

the matching and to estimate the uncertainties one needs to extend the matching schemes

introduced in ref. [5] to one order higher. In doing so, we will also revisit the formulation

of the “jet-veto efficiency” (JVE) approach that was introduced in ref. [13].

For accurate predictions it is also important to investigate the impact of finite quark

masses, a subject extensively discussed in the literature. Finite quark-mass effects are

known exactly only up to NLO [14–19]. The impact of top quark effects on the lead-

ing jet’s transverse momentum at NLO has been studied through a 1/mt expansion [20].

Different prescriptions have been proposed to include top and bottom effects in analytic

resummations [21–23] as well as parton-shower simulations, e.g. in (N)NLO+PS genera-

tors [24–26]. Here, we include exact mass effects up to NNLL+NLO and study the impact

of the resummation scale associated with the bottom and top-bottom-interference contri-

butions. Mass effects at NNLO and N3LO are currently unknown, so we use the large-mt

limit (without any rescaling) at these orders.

This paper is organised as follows. In section 2.1 we recall the Jet Veto Efficiency

(JVE) method, and we give a new prescription for the uncertainty estimate. This differs

from the one given in ref. [5], and we believe is more appropriate now that the Higgs total

production and Higgs plus one-jet cross sections are known respectively known through

N3LO and NNLO. In the rest of section 2, we introduce the various ingredients of the

calculation, and we discuss how they are combined together. In section 3 we present our

new results at 13 TeV centre-of-mass energy, while section 4 contains our conclusions. In

appendix A we further motivate the introduction of the new JVE uncertainty prescription.

In appendix B we compare our final predictions obtained with central scale mH/2 to

predictions obtained with central scale mH . Finally, in appendix C we give some technical

details about the small-R resummation.

2 Outline of the formalism

2.1 Updated jet-veto efficiency method at fixed order

The core element of our estimate of uncertainty in the jet-vetoed cross section is the JVE

method [23]. The premise of the method is that the zero-jet cross section is given by

the product of the total cross section and jet-veto efficiency and that the uncertainties in
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the two quantities are largely uncorrelated. The argument that motivates this working

assumption is that, at small pt, uncertainties in the efficiency are due to non-cancellation

of real and virtual contributions, while those in the total cross section are connected with

the large K-factor that is observed in going from leading order to higher orders.

The JVE method can be applied both at fixed order and with resummation.1 It is

useful to first extract the jet-veto efficiency from the total Higgs cross section σtot and

the cross section Σ(pt,veto) for Higgs production with a jet veto (i.e. without any jets with

pt > pt,veto). We define the expansion of the total cross section and of the jet-veto cross-

section up to perturbative order O(α2+n
s ) as

σtot,n =

n∑
i=0

σ(i) , Σ(pt,veto) = σ(0) +

n∑
i=1

Σ(i)(pt,veto) . (2.1)

Furthermore we use Σ̄(pt,veto) to denote (minus) the cross section to have at least one jet

above a scale pt,veto. Its order α2+i
s component is given by

Σ̄(i)(pt,veto) = −
∫ ∞
pt,veto

dpt
dΣ(i)(pt)

dpt
. (2.2)

This is related to Σ(i)(pt,veto) via

Σ(i)(pt,veto) = σ(i) + Σ̄(i)(pt,veto) . (2.3)

From the above equations it is evident that one can obtain Σ(i)(pt,veto) at a given order in

αs by combining the inclusive cross-section and the H+1 jet cross-section, both computed

at the same order in αs. Recently the i = 3 coefficient was computed both for σtot [8] and

for Σ̄(i)(pt,veto) [9–11].

The most obvious definition for the jet-veto efficiency ε(pt,veto) is to write it as a ratio

Σ(pt,veto)/σtot using the highest order available in each case. We call this prescription “(a)”

and at N3LO it reads

ε(a)(pt,veto) = 1 +
1

σtot,3

3∑
i=1

Σ̄(i)(pt,veto) . (2.4a)

In earlier work [5, 13], it had been argued that in order to estimate perturbative uncer-

tainties, one should explore all possible ways of writing the series for ε(pt,veto) that retain

the desired perturbative accuracy. For example at N3LO one can introduce scheme (b), as

ε(b)(pt,veto) = 1 +
1

σtot,2

3∑
i=1

Σ̄(i)(pt,veto) , (2.4b)

which is equivalent to scheme (a) up to O(α4
s) corrections. Three further schemes are

possible at N3LO, where one progressively expands σtot in the denominator while ensuring

1In this respect it differs from the Stewart-Tackmann method [27], which has so far been applied only

to fixed-order calculations. An alternative way to estimate the theoretical uncertainties in the resummed

case was proposed in [6].
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the correctness of the full expression at N3LO (see appendix A). This in effect corresponds

to using the degree of convergence for each and every one of the previous orders as an

input to determining the possible size of unknown N4LO corrections. In the case at hand,

however, the early terms of the series show extremely poor convergence, especially at

higher energies and when including quark-mass effects. As a result, taking an envelope of

all possible schemes leads to uncertainty estimates that grow very large, and contrast with

the good convergence observed in practice for the last known order of both the numerator

and the denominator. A careful study of this question, summarised in appendix A, has led

us to conclude that it is more appropriate to limit oneself to schemes that give sensitivity

to the convergence of just the last order of the perturbative series. This implies that we

should take just the two schemes (a) and (b) defined in (2.4).2

Specifically, to estimate our uncertainty for a fixed-order prediction, we will take the

envelope of scheme (a) with a 7-point scale variation around a central scale µ0 (µR,F /µ0 =

{1
2 , 1, 2} with 1

2 ≤ µR/µF ≤ 2), together with scheme (b) evaluated at µR,F = µ0. The

justification for not having scale variations in scheme (b) is that to include them might

effectively correspond to double counting, i.e. summing two sources of uncertainty that

may at some level have shared origins.

In the results that follow (unless otherwise specified) we will consider 13 TeV proton-

proton collisions, with R = 0.4 anti-kt jets [28] as implemented in FastJet v. 3.1.2 [29],

and use PDF4LHC15 parton distribution functions (PDFs) at NNLO [30], accessed through

LHAPDF6 [31], with a strong coupling at the Z-boson mass of αs(MZ) = 0.118. We choose

µ0 = mH/2 as the default renormalisation and factorisation scale. No rapidity cuts are

applied to the jets.

A comparison of NNLO and N3LO results with this prescription, in the effective theory

with a large top mass and no bottom mass, is shown in figure 1, for both the jet-veto

efficiency (left) and the jet-veto cross section (right). One observes a very considerable

decrease in the uncertainties in going from NNLO to N3LO with only a modest change in

the central values, associated with a small increase in the total cross section from the N3LO

corrections [8] and a slight decrease in the low-pt efficiency associated with an increase in

the 1-jet cross section at NNLO [9–11].

2.2 Resummation

Next let us recall the structure of the NNLL resummed jet-veto cross section [5],

ΣNNLL(pt,veto) =
(
L(0)(L) + L(1)(L)

)
×
(

1 + Fclust(R) + Fcorrel(R)
)
× eLg1(αsL)+g2(αsL)+αs

π
g3(αsL) , (2.5)

where we have split the factors involving the parton luminosities into two terms L(0)(L)

2When the prescription of refs. [5, 13] was originally introduced, only NNLO results were available.

Their last order displayed still rather poor convergence, which justified a more conservative approach.
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Figure 1. Comparison of NNLO and N3LO results for the jet-veto efficiency (left) and the jet-veto

cross section (right), using the updated jet-veto efficiency prescription described in section 2.1.

The notation “JVE a(7 scl.),b” indicates the use of the jet efficiency methods with an uncertainty

coming from the envelope of 7-point renormalisation and factorisation scale variation in scheme (a)

and additionally scheme (b) with central scales.

and L(1)(L), which start at order α2
s and α3

s respectively:

L(0)(L)=
∑
i,j

∫
dx1dx2|MB,ij |2δ(x1x2s−M2)fi

(
x1,e

−LµF
)
fj
(
x2,e

−LµF
)
, (2.6)

L(1)(L)=
αs
2π

∑
i,j

∫
dx1dx2|MB,ij |2δ(x1x2s−M2)

[
fi
(
x1,e

−LµF
)
fj
(
x2,e

−LµF
)
H(1)

+
1

1−2αsβ0L

∑
k

(∫ 1

x1

dz

z
C

(1)
ik (z)fk

(x1

z
,e−LµF

)
fj
(
x2,e

−LµF
)
+{(x1,i)↔(x2,j)}

)]
.

(2.7)

Here |M2
B,ij | is the squared Born matrix element for the partonic scattering channel ij → H,

L ≡ lnQ/pt,veto is the logarithm we resum, where typically we choose the resummation

scale Q of the order of mH/2. H(1) is a hard NLO correction, C
(1)
ik (z) is a NLO coefficient

function and fi(x, µF ) is the parton distribution function for flavour i at factorisation

scale µF . The strong coupling αs is always understood to be evaluated at a hard scale

µR ∼ mH/2, β0 = (11CA − 2nf )/(12π), and the factorisation scale µF is also to be chosen

of the order of mH/2. The gi(αsL) functions encode the bulk of the LL, NLL and NNLL

resummation (for i = 1, 2, 3 respectively). The g2 and g3 functions, as well as the H(1) and

C(1) coefficients all depend on the choice of Q. The quantities Fclust and Fcorrel [13] account

for the NNLL dependence of the result on the jet definition and are further discussed below

in section 2.4. Explicit expressions for the above terms are to be found in the supplementary

material of ref. [5], and a number of the elements are closely related to those derived for

pt resummation [32, 33].
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2.3 Matching

To put together the fixed-order and resummed results, we use matching schemes that extend

those presented in ref. [5] to one order higher. We refer the reader to that publication

for a detailed explanation of the matching procedure. The matching schemes essentially

correspond to the two schemes for the fixed-order efficiency given in eqs. (2.4).

To understand our prescriptions for matching, it is first instructive to rewrite the

fixed-order schemes for jet-veto efficiencies as ratios of two cross sections:

ε(x)(pt,veto) ≡ Σ(x)(pt,veto)

Σ(x)(∞)
, (2.8)

where Σ(x) admits a different perturbative expansion for each scheme (x). Specifically, each

of the two fixed-order schemes of eq. (2.4) can be obtained by combining eq. (2.8) with one

of the following prescriptions for Σ:

Σ(a)(pt,veto) = σ(0) + Σ(1) + Σ(2) + Σ(3) , (2.9a)

Σ(b)(pt,veto) = σ(0) + Σ(1) + Σ(2) + Σ̄(3) . (2.9b)

Scheme (a) is the exact expansion for Σ and it trivially gives ε(a)(pt,veto). For scheme (b),

observe that it is simply obtained by multiplying ε(b) by σtot,2.3

A further standard element that we need is a modification of the resummation so that

its effect switches off for pt,veto & mH . We do this by replacing L→ L̃, defined as

L̃ =
1

p
ln

((
Q

pt,veto

)p
+ 1

)
. (2.10)

The choice of p is somewhat arbitrary and as in earlier work [13] we take a fairly large

value, p = 5, to reduce the residual contribution from resummation at high pt.

For the matched cross-sections we obtain the following results:

Σ
(a)
matched(pt,veto) =

ΣNNLL(pt,veto)

σ(0)(1 + δL(L̃))

[
σ(0)

(
1 + δL(L̃)

)
+ Σ(1)(pt,veto)− Σ

(1)
NNLL(pt,veto)

+ Σ(2)(pt,veto)− Σ
(2)
NNLL(pt,veto) + Σ(3)(pt,veto)− Σ

(3)
NNLL(pt,veto)

+

(
δL(1)(L̃)−

Σ
(1)
NNLL(pt,veto)

σ(0)
+ δL(2)(L̃)−

Σ
(2)
NNLL(pt,veto)

σ(0)

)

×
(

Σ(1)(pt,veto)− Σ
(1)
NNLL(pt,veto)

)
+

(
δL(1)(L̃)−

Σ
(1)
NNLL(pt,veto)

σ(0)

)

3One could instead arrange for each of the Σ(x) to have the property that it tends to σtot,3 for pt,veto →∞,

however this would complicate the expressions without bringing any actual change in the final results for

the jet-veto efficiency and cross section.
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×
(

Σ(2)(pt,veto)− Σ
(2)
NNLL(pt,veto)

)
−

Σ
(1)
NNLL(pt,veto)

σ(0)

×

(
δL(1)(L̃)−

Σ
(1)
NNLL(pt,veto)

σ(0)

)(
Σ(1)(pt,veto)− Σ

(1)
NNLL(pt,veto)

)]
,

(2.11a)

Σ
(b)
matched(pt,veto) = Σ

(a)
matched(pt,veto)− σ(3) ΣNNLL(pt,veto)

σ(0)(1 + δL(L̃))
. (2.11b)

In the above expressions, Σ
(n)
NNLL(pt,veto) denotes the O(αns ) contribution to the NNLL

resummed result. The resummed cross section and its expansion are defined in terms of

the modified logarithms L̃ as defined in eq. (2.10). We have also introduced δL = L(1)/L(0).

This quantity admits a perturbative expansion in powers of αs, starting at order αs. We

denote this expansion as δL = δL(1) +δL(2) +. . . . Note that δL(1) does not actually depend

on L̃. Note also that, as for the fixed-order schemes, the normalisation at pt,veto → ∞ is

different for each matching scheme, in particular Σ
(x)
matched(∞) = σtot,i with i = 3, 2 for

x = a, b. Using eq. (2.8), one always recovers the correct normalisation ε(pt,veto) → 1

for pt,veto →∞.

Since the matching schemes above are multiplicative, for small pt,veto, any finite re-

mainder in the square brackets is multiplied by a Sudakov form factor, ensuring that the

cross section and efficiency vanish in the limit pt,veto → 0, since ΣNNLL(pt,veto) vanishes in

this limit.4

For matched results, in addition to varying µR and µF for scheme (a) and keeping a

central choice for scheme (b) (as done in the fixed-order calculations), we also vary Q in

scheme (a) around its default choice of Q0 = mH/2. However, in this work we change our

convention for the range of Q variation relative to earlier studies by some of us [5, 13],

which had 1
2 ≤ Q/Q0 ≤ 2. We instead choose the range of 2

3 ≤ Q/Q0 ≤ 3
2 that had been

originally proposed when Q variation was first introduced [34, 35]. The motivation for

returning to this earlier, narrower range comes from the observation of the uncertainties at

NNLO+NNLL: with the wider range, the NNLO+NNLL uncertainties come out as unduly

large relative the actual changes observed when including N3LO corrections. Moreover,

the old variation range gives rise to overly large uncertainties in the tail of the leading jet’s

transverse momentum differential spectrum. For a more detailed discussion of this we refer

the reader to appendix A.

Figure 2 shows the impact of matching the NNLL resummed results with the N3LO

result, compared to NNLO+NNLL results (left) and to pure N3LO results (right). In the

left-hand plot, one sees a clear reduction in uncertainties in going from NNLO+NNLL to

N3LO+NNLL, as expected given the impact of the N3LO results shown in figure 1. While

the NNLO+NNLL results had a substantially smaller uncertainty band than pure NNLO,

once one includes one additional order in αs, resummation brings essentially no further

4Note that this behaviour of ΣNNLL can be altered when including the small-R resummation. This only

happens for rather small R values, and it is therefore not present for phenomenologically relevant values of

the jet radius.
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Figure 2. Comparison of matched N3LO+NNLO results for the jet veto efficiency to NNLO+NNLL

results (left) and to pure N3LO predictions (right).

reduction, as is visible in the right-hand plot. It does, however, induce a small shift in

the central value (and uncertainty band), whose magnitude is slightly smaller than the

uncertainty itself.

2.4 Jet-radius dependence and small-R effects

Two terms in eq. (2.5) are connected with the choice of jet definition and in particular

depend on the jet radius R. Fclust(R) accounts for clustering of independent soft emissions

and for commonly used values of R is given by [5, 13]

Fclust(R) =
4α2

s(pt,veto)C2
AL

π2

(
− π2R2

12
+
R4

16

)
. (2.12)

Fcorrel(R) [13] comes from the correlated part of the matrix element for the emission of

two soft partons. For our purposes it is useful to further split it into two parts,

Fcorrel(R) =
4α2

s(pt,veto)CAL

π2

(
f1 ln

1

R
+ freg(R)

)
, (2.13)

where the coefficient of the logarithm of R is

f1 =
−131 + 12π2 + 132 ln 2

72
CA +

23− 24 ln 2

72
nf , (2.14)

while the finite (regular) remainder is

freg(R) ' 0.6106CA − 0.0155nf +O(R2) . (2.15)

This was originally derived including terms up to R6 in ref. [13] with a numerically-

determined constant term, while an analytic form for the constant term and an expansion

up to order R10 were given in ref. [7].
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Ref. [36] advocated resummation of the terms enhanced by powers of ln 1/R. Ref. [12]

showed that LL small-R terms could be incorporated into the jet-veto cross section by

replacing Fcorrel(R) with

Fcorrel
LLR

(R) = exp

[
−4αs(pt,veto)CA

π
LZ(t(R0, R, pt,veto))

]
− 1

+
4α2

s(pt,veto)CA
π2

L

(
f1 ln

1

R0
+ freg(R)

)
, (2.16)

where Z(t) (denoted 〈ln z〉hardest
g (t) in ref. [12]) is the LLR resummed result for the first

logarithmic moment of the momentum fraction carried by the hardest small-R jet resulting

from the fragmentation of a gluon. A detailed, partially parametrised, expression for Z(t)

is given in eq. (C.1), with tabulated coefficients for nf = 4, 5 in table 7 (the second order

coefficient was also calculated in ref. [37]). The quantity t(R0, R, pt) is an integral of the

coupling over scales related to the allowed emission angles, defined specifically as

t(R0, R, pt,veto) =

∫ R2
0

R2

dθ2

θ2

αs(pt,vetoθ)

2π
. (2.17)

The nominally free parameter R0 can be understood as a resummation scale for the LLR
resummation, or, more physically, the largest allowed emission angle. By default we will

take R0 = 1 and vary it in the range 0.5 ≤ R0 ≤ 2.

In practice, in eq. (2.16) we will make the replacements

αs(pt,veto) =
αs

1− 2λ
, (2.18a)

t(R0, R, pt,veto) =
1

2πβ0
ln

1− 2λ

1− 2λ− αsβ0 ln
R2

0
R2

, (2.18b)

where αs ≡ αs(µR), λ ≡ αs L̃ β0. One sees explicitly from eq. (2.18b) that logarithms of

pt,veto (in λ) and R are being treated on the same footing, i.e. one is including all terms

(αs ln pt,veto)m(αs lnR)n for any m and n. The expression includes just the logarithms

needed to obtain joint NNLL+LLR resummation, without terms that are subleading in

this hierarchy (except for those explicitly included as part of a NNLL resummation).5

The impact of the small-R resummation is shown in figure 3, where one sees that it

increases the central value of the efficiency by about 1% at pt,veto = 20 GeV, with a slight

increase also in the size of the uncertainty band. While it makes sense to include the LLR
resummation with a view to providing the most complete prediction possible, for current

phenomenological choices of R it does not bring a large effect.6

5This “minimal” prescription is standard in resummations, however in the limit of sufficiently small R and

small pt,veto we have observed certain artefacts that, as far as we understand, can only be cured by including

subleading terms. Furthermore, inspecting the formulae, one immediately sees that the combination of

small-R and small-pt,veto resummation may cause difficulties, since the smallest physical scale in the problem

is now Rpt,veto, which for sufficiently small R can approach non-perturbative values even when pt,veto �
ΛQCD. For commonly-used values of the jet radius R and pt,veto the resummed cross section does not

feature this issue, which is irrelevant for the phenomenology shown here. Hence we leave the further study

of this question to future work. We thank especially Mrinal Dasgupta for collaboration on this and related

aspects.
6Ref. [37], using a second order calculation of Z, had also found small-R effects that were small.
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Figure 3. Impact of small-R resummation on the jet-veto efficiency, comparing N3LO+NNLL+

LLR to N3LO+NNLL results.

2.5 Quark-mass corrections

So far we have considered Higgs production in the heavy-top approximation. In this section

we study the corrections due to finite top and bottom masses in the loop. Following

the procedure of ref. [23], the effect of heavy-quark masses at NNLL amounts to simply

replacing both the Born squared matrix element |MB,ij |2 and the corresponding one-loop

virtual correction H(1) with the ones accounting for the correct quark-masses dependence

(cf. section 4.1 of ref. [23]).

We match the NNLL prediction so defined to the N3LO fixed-order cross section where

we use the exact mass dependence up to NLO, while keeping the heavy-top approximation

for both NNLO and N3LO corrections. We use this as our default prescription for the

results presented below. Moreover, we allow for different resummation scales for top and

bottom-induced effects. Therefore, we associate to bottom-induced effects (mainly top-

bottom interference) an additional resummation scale Qb. The matched cross section,

including quark-mass effects then reads

Σmatched(pt,veto) = Σt
matched(pt,veto, Q)+Σt,b

matched(pt,veto, Qb)−Σt
matched(pt,veto, Qb) . (2.19)

We set Q to Q0 = mH/2, and vary it as described in section 2.3 (2
3 ≤ Q/Q0 ≤ 3

2) to

estimate the associated uncertainty. As far as Qb is concerned, one could either set Qb = Q

in the jet-veto efficiency (as done in ref. [23]) or set it to small scales of the order of mb,

as advocated in ref. [22]. As shown in [23], if the resummation is matched to (at least)

NNLO, the impact of changing Qb is very moderate. We show this feature in the left plot

of figure 4 where we compare the jet-veto efficiency obtained with a central Qb = 2mb to

the one obtained with Qb = Q. In order to be more conservative in our test, we vary Qb by

a factor of two in either direction in the prediction obtained with Qb = 2mb, while varying

it in the nominal range 2
3 ≤ Q/Q0 = Qb/Q0 ≤ 3

2 in the latter case. To this order, the
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Figure 4. Left: the plot shows the impact of a different resummation scale for the bottom-induced

contributions. Our default choice Qb = Q (in blue/hatched), and it is compared to the result with

Qb = 2mb (in red/solid). See the text for description. Right: in the plot we compare two different

ways of implementing finite quark-mass effects, as discussed in the text.

difference between the two prescriptions is minimal. We therefore decide to set Qb = Q as

our central resummation scales and vary them in a correlated way by a factor 3/2 up and

down. With this choice the first and third term in the r.h.s. of eq. (2.19) cancel exactly.

In the context of top-mass corrections only, we note that one could alternatively rescale

the NNLO and N3LO corrections by the ratio of the Born cross section with exact top-

mass dependence to the corresponding heavy-top result. This rescaling is well justified in

the limit of emissions with a transverse momentum much smaller than the top mass. In

this region of the spectrum, the corrections to the heavy-top approximation amount to a

constant shift up to moderately large pt,veto. This is indeed the region that contributes the

most to the total cross section, even more so when a jet veto is applied. However, it is well

known that this is not the case for bottom-quark effects since the region where emissions

are softer than the bottom mass is strongly Sudakov-suppressed. This is reflected in the

non-trivial shape distortion of the spectrum at normal pt,veto values [22–24]. Hence, in the

small pt,veto region the above rescaling does not provide a reliable assessment of finite-mass

effects.

While it is beyond the scope of this article to give a precise assessment of higher-order

mass effects, one can get a rough estimate of their possible impact by comparing our default

prescription to the one where one rescales both NNLO and N3LO corrections as discussed

above to include finite top-mass effects. We show this in the right-hand plot of figure 4. We

observe very moderate effects of the rescaling down to pt,veto = 20 GeV. This statement is

clearly not conclusive, and a more careful study is necessary. Eventually, the issues related

to quark-mass effects can only be fixed once a NNLO calculation of mass-effects will be

available.
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3 N3LO+NNLL+LLR cross section and 0-jet efficiency at 13 TeV

In this section we report our best predictions for the jet-veto efficiency and cross section at

the LHC. The various ingredients that we use were discussed in the previous section, but

for ease of reference we summarise them here:

• The total N3LO cross section for Higgs production in gluon fusion [8], obtained in

the heavy-top limit.7

• The inclusive one-jet cross section at NNLO taken from the code of ref. [11], in the

heavy-top limit. In this computation the qq channel is included only up to NLO, and

missing NNLO effects are estimated to be well below scale variation uncertainties [10].

• Exact top- and bottom-mass effects up to NLO in the jet-veto efficiency and cross

section [14]. Beyond NLO, we use the heavy-top result, as explained in section 2.5.

• Large logarithms ln(Q/pt,veto) resummed to NNLL accuracy following the procedure

of [5], with the treatment of quark-mass effects as described in ref. [23].

• Logarithms of the jet radius resummed to LL accuracy, following the approach of

ref. [12].

We consider 13 TeV LHC collisions with a Higgs-boson mass of mH = 125 GeV, com-

patible with the current experimental measurement [38]. For the top and bottom pole quark

masses, we use mt = 172.5 GeV and mb = 4.75 GeV. Jets are defined using the anti-kt
algorithm [28], as implemented in FastJet v3.1.2 [29], with radius parameter R = 0.4,

and perform the momentum recombination in the standard E scheme (i.e. summing the

four-momenta of the pseudo-particles). We use PDF4LHC15 parton distribution functions

at NNLO with αs(mZ) = 0.118 (PDF4LHC15 nnlo mc) [30]. In our central prediction for the

jet-veto efficiency we set renormalisation and factorisation scales to µR = µF = mH/2. The

resummation scales are set to Q = Qb = mH/2,8 and we use matching scheme (a) (2.11a)

as default. In this analysis, we do not include electro-weak corrections [39–41].

To determine the perturbative uncertainties for the jet-veto efficiency we follow the

procedure described in section 2.3 and which we summarise here. We vary µR, µF by

a factor of 2 in either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintaining central µR,F
values, we also vary Q = Qb in the range 2

3 ≤ Q/Q0 = Qb/Q0 ≤ 3
2 . As far as the small-R

effects are concerned, we choose the default value for initial radius for the evolution to

be R0 = 1.0,9 and vary it conservatively by a factor of two in either direction. Finally,

keeping all scales at their respective central values, we replace the default matching scheme

(a) (2.11a) with scheme (b) (2.11b). The final uncertainty band is obtained as the envelope

7The Wilson coefficient is expanded out consistently both in the computation of the total and the

inclusive one jet cross section.
8Qb applies when including top-bottom interference and bottom contributions, which we do by default

here. As shown in section 2.5, switching to the alternative choice Qb = 2mb makes less than 0.5% difference.
9Note that it acts as a resummation scale for the resummation of logarithms of the jet radius. The initial

radius for the small-R evolution differs from the jet radius used in the definition of jets, which is R = 0.4.
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Figure 5. N3LO+NNLL+LLR best prediction for the jet-veto efficiency (blue/hatched) compared

to NNLO+NNLL (left) and fixed-order at N3LO (right).

LHC 13 TeV [pb] σtot,2 σtot,3 σNLO
1j≥25GeV σNNLO

1j≥25GeV σNLO
1j≥30GeV σNNLO

1j≥30GeV

EFT 43.7+3.9
−4.4 45.1+0.0

−1.7 19.8+3.5
−3.3 21.0+0.3

−1.3 16.8+3.0
−2.8 17.7+0.2

−1.1

t-only 45.4+4.2
−4.7 46.9+0.2

−1.9 20.2+3.5
−3.4 21.4+0.2

−1.4 17.2+3.0
−2.9 18.0+0.1

−1.1

t, b 43.4+4.1
−4.5 44.8+0.2

−1.8 20.1+3.5
−3.3 21.2+0.2

−1.3 17.1+3.1
−2.9 18.0+0.1

−1.1

Table 1. Total cross section at NNLO (σtot,2) and at N3LO (σtot,3), and the one-jet cross-section

σ1j at NLO and NNLO for central scales µ0 = mH/2, with and without mass effects, as explained in

the text. Uncertainties are obtained with a 7-point renormalisation and factorisation scale variation.

Numbers are determined from the computations of refs. [8, 9, 11].

of all the above variations. We do not consider here the uncertainties associated with the

parton distributions (which mostly affect the cross section, but not the jet-veto efficiency),

the value of the strong coupling or the impact of finite quark masses on terms beyond NLO

(which was discussed in section 2.5).

We report the numerical values for our input total and one-jet cross section in table 1,

with and without mass effects up to O(α3
s), with uncertainties obtained through scale

variation and using always NNLO PDFs and αs.

Figure 5 (left) shows the comparison between our best prediction for the jet-veto

efficiency (N3LO+NNLL+LLR) and the previous NNLO+NNLL accurate prediction, both

including mass effects. We see that the impact of the N3LO correction on the central

value is in the range 1–2% at relevant jet-veto scales. The uncertainty band is significantly

reduced when the N3LO corrections are included, going from about 10% at NNLO down to

a few percent at N3LO. Figure 5 (right) shows the comparison between the N3LO+NNLL

+LLR prediction and the pure N3LO result. We observe a shift of the central value of the

order of 2% for pt,veto > 25 GeV when the resummation is turned on. In that same pt,veto
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Figure 6. N3LO+NNLL+LLR best prediction for the jet-veto cross section (blue/hatched) com-

pared to NNLO+NNLL (left) and fixed-order at N3LO (right).

region, the uncertainty associated with the N3LO prediction is at the 3% level, comparable

with that of the N3LO+NNLL +LLR prediction. The fact that resummation effects are

nearly of the same order as the uncertainties of the fixed order calculation suggests that the

latter might be accidentally small. This situation is peculiar to our central renormalisation

and factorisation scale choice, µR = µF = mH/2, and does not occur at, for instance,

µR = µF = mH (see appendix B for details).

The zero-jet cross section is obtained as Σ0-jet(pt,veto) = σtot ε(pt,veto), and the inclusive

one-jet cross section is obtained as Σ≥1-jet(pt,min) = σtot (1− ε(pt,min)). The associated

uncertainties are obtained by combining in quadrature the uncertainty on the efficiency

obtained as explained above and that on the total cross section, for which we use plain

scales variations. The corresponding results are shown in figure 6. For this scale choice,

we observe that the effect of including higher-order corrections in the zero-jet cross section

is quite moderate at relevant pt,veto scales. This is because the small K factor in the total

cross section compensates for the suppression in the jet-veto efficiency. The corresponding

theoretical uncertainty is reduced by more than a factor of two.

The predictions for jet-veto efficiency and the zero-jet cross section are summarised

in table 2, for two experimentally relevant pt,veto choices. Results are reported both at

fixed-order, and including the various resummation effects.

Figure 7 shows the inclusive one-jet cross section Σ≥1-jet, for which the state-of-the-art

fixed-order prediction is NNLO [9–11]. The left-hand plot shows the comparison between

the best prediction at NNLO+NNLL+LLR, and the fixed-order at NNLO. Both uncertainty

bands are obtained with the JVE method outlined in section 2.3. We observe that the

effect of the resummation on the central value at moderately small values of pt,veto is at

the percent level. Moreover, the inclusion of the resummation leads to a slight increase of

the theory uncertainty in the small transverse momentum region.

The right-hand plot of figure 7 shows our best prediction with uncertainty obtained

with the JVE method, compared to the case of just scale (i.e. µR, µF , Q) variations. We
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Figure 7. Matched NNLO+NNLL+LLR prediction for the inclusive one-jet cross section (blue/

hatched) compared to fixed-order at NNLO (left) and to the matched result with direct scale

variation for the uncertainty (right), as explained in the text.

LHC 13 TeV εN
3LO+NNLL+LLR ΣN3LO+NNLL+LLR

0-jet [pb] ΣN3LO
0-jet ΣNNLO+NNLL

0-jet

pt,veto = 25 GeV 0.534+0.017
−0.008 24.0+0.8

−1.0 23.6+0.5
−1.2 23.6+2.5

−3.6

pt,veto = 30 GeV 0.607+0.016
−0.008 27.2+0.7

−1.1 26.9+0.4
−1.2 26.6+2.8

−3.9

Table 2. Predictions for the jet-veto efficiency and cross section at N3LO+NNLL+LLR, compared

to the N3LO and NNLO+NNLL cross sections. The uncertainty in the fixed-order prediction is

obtained using the JVE method. All numbers include the effect of top and bottom quark masses,

treated as described in the text, and are for a central scale µ0 = mH/2.

LHC 13 TeV ΣNNLO+NNLL+LLR
≥1-jet [pb] ΣNNLO

≥ 1-jet [pb]

pt,min = 25 GeV 20.9+0.4
−1.1 21.2+0.7

−1.0

pt,min = 30 GeV 17.6+0.4
−1.0 17.9+0.6

−0.8

Table 3. Predictions for the inclusive one-jet cross section at NNLO+NNLL+LLR and NNLO. The

uncertainty in the fixed-order prediction is obtained using the JVE method. All numbers include

the effect of top and bottom quark masses, treated as described in the text, and are for a central

scale µ0 = mH/2.

observe a comparable uncertainty both at small and at large transverse momentum, which

indicates that the JVE method is not overly conservative in the tail of the distribution. We

have observed that the same features persist for the corresponding differential distribution.

Table 3 contains the predictions for the inclusive one-jet cross section for two characteristic

pt,min choices.
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4 Conclusions

In this article we have presented new state-of-the-art, N3LO+NNLL+LLR, predictions for

the jet-veto efficiency and the zero-jet cross section in gluon-fusion induced Higgs produc-

tion, as well as NNLO+NNLL+LLR results for the inclusive one-jet cross section. The

results, shown for 13 TeV LHC collisions, incorporate recent advances in the fixed-order

calculation of the total cross section [8], the fixed-order calculation of the one-jet cross

section [9–11] and the resummation of small-R effects [12]. They also include the earlier

NNLL jet pt resummation [5] including finite quark mass effects [23]. Uncertainties have

been determined using the jet-veto efficiency method, which has been updated here to

take into account the good perturbative convergence observed with the new fixed-order

calculations.

Results for the jet-veto efficiency and zero-jet cross section for central scale choices of

µ0 = mH/2 and µ0 = mH are reported in tables 2 and 5, respectively. With our central

scale choice, µ0 = mH/2, we find that the inclusion of the new calculations decreases

the jet-veto efficiency by 2% with respect to the NNLO+NNLL prediction, and it has a

substantially smaller uncertainty, reduced from about 10% to about 3–4%.

In the zero-jet cross section, the reduction in the jet-veto efficiency is compensated

by a similar increase in the total cross section due to the N3LO correction, resulting in a

1–2% effect. In comparison to the N3LO result, the matched N3LO+NNLL+LLR jet-veto

efficiency and zero-jet cross section are about 2% larger, and have comparable (∼ 4%)

theoretical errors. The picture is different for a central scale µ0 = mH , as discussed in

appendix B. In this case the jet-veto efficiency at N3LO+NNLL+LLR decreases by about

5% with respect to the NNLO+NNLL result, while it is in perfect agreement with the pure

N3LO prediction. Perturbative uncertainties are considerably (moderately) reduced with

respect to the NNLO+NNLL (N3LO) prediction. For the inclusive one-jet cross section,

we find a similar impact of the resummation in the small pt,veto region, and agreement with

the fixed-order scale variation at large transverse momentum values.

We stress that other corrections are of the same order as the theoretical uncertainties

obtained here. These involve electro-weak effects, exact quark-mass treatment beyond the

orders currently known, and non-perturbative effects. Furthermore, we stress that the

results quoted here do not account for PDF and strong coupling uncertainties, which are

also at the few-percent level.

Code for performing the resummation and matching with fixed order predictions is

publicly available in version 3 of the JetVHeto program [42].
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A Revisited JVE uncertainty prescription

In this paper we argued that the JVE method of refs. [5, 13] used to estimate uncertainties

should be modified. In this appendix we wish to motivate why we revisited the JVE

prescription. We will argue that, while the original JVE method was appropriate when

it was proposed (i.e. when only the NNLO correction to the 0-jet cross section in Higgs

production was known), now that the N3LO correction is available it would give rise to

excessively conservative uncertainties.

It is useful to first recall the original JVE method. In refs. [5, 13], to determine

uncertainties in the NNLO+NNLL prediction, µR and µF were varied by a factor of 2 in

either direction, requiring 1/2 ≤ µR/µF ≤ 2. Maintaining central µR,F values, Q was also

varied by a factor of 2 and changed the matching scheme, from the scheme (a) to schemes

(b) and (c) as defined in [5]. The final uncertainty band was the envelope of these variations

(cf. [13]). Our new prescription differs from the old one in two important points:

• only schemes (a) and (b) are used to probe the sensitivity to the matching scheme;

• the range for the resummation scale variation is 2/3 ≤ Q/Q0 ≤ 3/2, as suggested

originally in ref. [34].

In the rest of this appendix we comment on both of these aspects.

The reason for having different schemes is that the efficiency is a ratio of the jet-vetoed

cross section to the total cross section. Even at fixed order there is some freedom as to

which perturbative terms one chooses to keep in the denominator, or alternatively expand

out. Different matching formulae can then be constructed that reproduce the corresponding

fixed-order expansions for the JVE efficiency. At N3LO, in addition to schemes (a) and (b)

defined in eqs. (2.4), one can introduce three further schemes:

ε(c)(pt,veto) = 1 +
1

σtot,1

[
3∑
i=1

Σ̄(i)(pt,veto)− σ(2)

σtot,0
Σ̄(1)(pt,veto)

]
, (A.1a)

ε(c
′)(pt,veto) = 1 +

1

σtot,1

[
3∑
i=1

Σ̄(i)(pt,veto)− σ(2)

σtot,1
Σ̄(1)(pt,veto)

]
, (A.1b)
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ε(d)(pt,veto) = 1 +
1

σtot,0

[
3∑
i=1

Σ̄(i)(pt,veto)− σ(1)

σtot,0

(
Σ̄(1)(pt,veto) + Σ̄(2)(pt,veto)

)

+
σ(1)σ(1) − σ(0)σ(2)

(σtot,0)2
Σ̄(1)(pt,veto)

]
. (A.1c)

The schemes differ only by terms beyond N3LO.10 At NNLO there are just three schemes,

(a), (b) and (c), which respectively have σtot,2, σtot,1 and σtot,0 in the denominator:

ε
(a)
NNLO(pt,veto) = 1 +

1

σtot,2

2∑
i=1

Σ̄(i)(pt,veto) , (A.2a)

ε
(b)
NNLO(pt,veto) = 1 +

1

σtot,1

2∑
i=1

Σ̄(i)(pt,veto) , (A.2b)

ε
(c)
NNLO(pt,veto) = 1 +

1

σtot,0

[
2∑
i=1

Σ̄(i)(pt,veto)− σ(1)

σtot,0
Σ̄(1)(pt,veto)

]
, (A.2c)

where, to avoid confusion, here we have explicitly added a “NNLO” label. In what follows,

we will drop this label.11

To understand why we now restrict the scheme variation to schemes (a) and (b), we

first show in figure 8 a comparison between the NNLO jet-veto efficiency at 8 TeV and

13 TeV, where we plot the three different possible matching schemes at this order (for the

central scale choice). Concentrating first on the absolute values of the efficiency, one sees

that in schemes (a) and (b) there is a reduction in going from 8 to 13 TeV. This is consistent

with the expectation of an increase in the fraction of events containing a jet when one goes

to higher centre-of-mass energy. In contrast, the efficiency increases in scheme (c). This

seems unphysical. The combination of the different behaviours of schemes (a) and (c)

has the consequence of a very substantial increase in apparent uncertainty. Moreover, at

sufficiently high pt,veto scheme (c) returns an unphysical efficiency ε(c) > 1.

The issues with scheme (c) are to some extent understood, since scheme (c) at NNLO

is very sensitive to the convergence of the first correction in the perturbative expansion.

It is well-known that the first terms for the Higgs cross section converge very poorly. In

particular, the ratio of NLO to LO cross section contributions, σ(1)/σ(0), goes from about

1.23 to 1.30 between 8 and 13 TeV.12 The difference between schemes (a) and (b), on the

other hand, is only sensitive to the size of the last perturbative order, hence we believe it

provides useful, but not overly conservative, information on the uncertainty.

In order to study the impact of the new prescription for the efficiency scheme varia-

tion, in figure 9 we show the fixed-order efficiency at NNLO and N3LO, concentrating on

the 13 TeV case, where the impact of scheme (c) (at NNLO) and (d) (at N3LO) is more

pronounced. Figure 9 shows the various efficiency schemes contributing at a given order

10Corresponding formulae for the matching schemes can be found in the documentation of JetVHeto-

v3 [42].
11Note that there is a natural correspondence between N3LO and NNLO schemes (a) and (b).
12The σ(1)/σ(0) ratio is further enhanced when mass effects are included.
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Figure 8. Comparison of the NNLO prediction for the jet-veto efficiency at 8 TeV (left) and 13 TeV

(right). The plots show the three efficiency schemes contributing to the uncertainty band in the old

formulation of the JVE method.
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Figure 9. Jet-veto efficiency at 13 TeV. The plots show the various efficiency schemes at NNLO

(left) and N3LO (right). The lower panels show the ratio to the N3LO central prediction

(scheme (a)).

according to the old JVE prescription. We see that at N3LO the spread between schemes

(a) and (b) is comparable with the change in the efficiency from NNLO to N3LO, while

the inclusion of additional schemes (c), (c′) and (d) gives rise to a much larger uncertainty.

This suggests that the old JVE prescription is overestimating uncertainties at this c.o.m.

energy. This is even more true when including finite quark-mass effects (not shown here).

It is however also clear that, since the (b) scheme prediction is obtained by computing

the jet-veto efficiency at the central scale only, if the N3LO correction to the total cross
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section is accidentally very small at that scale, schemes (a) and (b) will return nearly iden-

tical values. Therefore, the corresponding scheme uncertainty will be very small. For our

central scale µ0 = mH/2 the N3LO correction is in fact small (3.2%) and, accordingly, the

corresponding scheme spread in the right-hand plot of figure 9 is also small. To investigate

whether this is a general feature of the new scheme prescription, one can examine the

uncertainty band at a different central scale. We have done this in appendix B, where it

shown that in that case the scheme variation contributes significantly to the size of the

theoretical uncertainty.

An alternative way to address the issue of accidentally small scheme (b) variation is

to introduce a prescription that probes the scheme variation at different scales (where the

size of the N3LO corrections may be more sizeable). For instance, one could determine the

scheme uncertainty by adding to the usual envelope the spread between schemes (a) and

(b) at different scales. We therefore investigate the following (b :a) prescription: to define

the uncertainty band, we take the envelope of scheme (a) with its set of 7 scale variations

(and Q and R0 variations) and additionally the 7 scale variations of

ε(a)
µ0,µ0(pt,veto) + ε(b)µR,µF (pt,veto)− ε(a)

µR,µF
(pt,veto) , (A.3)

where we have included explicit subscript labels for the renormalisation and factorisation

scales. By sampling eq. (A.3) over 7 scale choices, one explores the maximum difference

between schemes (a) and (b) (with identical scale choices for the two schemes) and applies

that difference as an additional uncertainty relative to the result of scheme (a) for its

central scale choice µR = µF = µ0. In this way one avoids the problem that the difference

between schemes (b) and (a) may be accidentally small for the central scale choice. This

approach also avoids the potential risk of double counting of uncertainties that would come

were one simply to take the envelope of schemes (a) and (b), each with 7 scale variations.

The comparison between the new JVE prescription to the (b : a) procedure is shown

in figure 10. We see that the (b : a) prescription gives rise to only marginally larger

uncertainties. Moreover, we have found that the (b : a) prescription gives rise to enlarged

uncertainties in the tail of the leading jet pt distribution. For these reasons, and due the

fact that this procedure is more cumbersome and relies on a non-standard method to assess

the error, we do not adopt it as our default prescription.

Besides the different efficiency scheme variation, another important difference between

our new JVE prescription and the original one [13] is the range of variation for the resum-

mation scale Q. Instead of varying it in the range {mH/4,mH} as done originally, we now

restrict ourselves to the smaller range {mH/3, 3/4mH}. The main reason for this is that

one wants the one-jet cross section at large pt to be insensitive to the resummation, there-

fore one should ensure that the resummation is correctly turned off at large pt,veto values.

The scale at which the resummation is turned off is determined by the resummation scale

Q. Making the choice Q = mH has the effect of starting the resummation in a region

of relatively high pt, where the underlying soft and collinear approximations are far from

being valid.

In the left-hand plot of figure 11 we show the one-jet cross section at NNLO+NNLL

+LLR with uncertainties obtained with the new formulation of the JVE method both
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Figure 10. Jet-veto efficiency with uncertainty band obtained with our nominal JVE method and

with the (b :a) prescription as described in the text at central scales µ0 = mH/2 (left) and µ0 = mH

(right).

with a Q variation range of {mH/4,mH} (green/hatched band) and {mH/3, 3/4mH}
(blue/hatched). The fixed order result (red/solid) is also shown for comparison. We observe

that while the effect of resummation on the central value is very moderate, the band ob-

tained with the old Q variation range is substantially larger all the way up to pt ∼ 100 GeV.

The right-hand plot of figure 11 shows the jet-veto efficiency at N3LO+NNLL+LLR for

the values of the resummation scale Q used in the old (Q = mH/4, Q = mH) and in

the new (Q = mH/3, Q = 3/4mH) prescription for the JVE method. While the curve

corresponding to the upper variation changes significantly when reducing Q from mH to

3/4mH , the curve corresponding to the lower edge is largely unaffected by the change in

the variation range. The insensitivity to the choice of the lower end of the range for Q

motivates a simple symmetric choice for the resummation scale range.

Finally, it is interesting to see how the original prediction of ref. [5] changes with the

new prescription for the JVE uncertainty. Figure 12 shows the comparison between the

old and new JVE methods for the NNLO+NNLL efficiency at 8 TeV. We observe that

the new prescription leads to a reduction of the upper part of the uncertainty band. At

low values of pt,veto this reduction is mainly driven by the reduction in the Q variation

range (cf. figure 11), while at large pt,veto scheme (c) gives a significant contribution to the

theoretical uncertainty (cf. figure 8). For the vetoed cross section, the difference between

the old and new JVE prescriptions is smaller than in the case of the efficiency. This is

because of the combination with the uncertainty in the total NNLO cross section.

To conclude this section, we remark that when the original formulation of the JVE

method was proposed, the NNLO corrections showed a somewhat problematic convergence,

therefore a more conservative approach to the uncertainty estimate seemed appropriate.

Now that the computation of the N3LO correction shows a much better convergence of the

perturbative series, extensive study has led us to believe that the new formulation of the

JVE method is more appropriate.
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Figure 11. Left: one-jet cross section at NNLO (red/solid band) and NNLO+NNLL+LLR (blue/

hatched band), with uncertainty obtained with the new JVE method as described in the text, com-

pared to the NNLO+NNLL+LLR with a Q variation in the range {mH/4,mH} (green/hatched).

Right: jet-veto efficiency at N3LO+NNLL+LLR for different values of the resummation scale Q, as

used in the old (Q/Q0 = 1/2, Q/Q0 = 2) and new (Q/Q0 = 2/3, Q/Q0 = 3/2) formulations of the

JVE method, where Q0 = mH/2.

B Choice of the central scale

Results presented in the main text are obtained using mH/2 as a central scale choice.

This choice, rather than mH , is motivated by the better convergence of the perturbative

expansion and by the fact that soft emissions and virtual corrections that contribute sub-

stantially to the cross-section tend to have scales that are typically lower than mH . It is

similar also to the choice of HT /2 or pt,jet that is often used in processes with more complex

final states. Nevertheless it is interesting to examine how much our central results and the

uncertainties change when mH is adopted as a central scale.

Table 4 shows the input numerical values for the total and one-jet cross section, with

and without mass effects, up to O(α3
s), with uncertainties obtained through scale variation

and using NNLO PDFs and αs using a central scale mH . These numbers are to be compared

to those at scale mH/2, table 1.

In figure 13 we show a comparison of the N3LO+NNLL+LLR results to NNLO+NNLL

results (left) and to N3LO (right) at central scale mH . This figure is to be compared to

the similar one at central scale mH/2, figure 5. It is clear that at scale mH uncertainties

are somehow larger, this is particularly the case for the N3LO prediction. Accordingly,

uncertainty bands overlap slightly better at scale mH . Still, the change in the central value

at N3LO+NNLL+LLR is very small when using mH rather than mH/2. The corresponding

plots for the 0-jet cross section are shown in figure 14. Results for the efficiency and 0-jet

cross section are reported in table 5.

To gain insight into the differences between the two scale choices, figure 15 shows the

breakdown into different sources of uncertainty using mH/2 (left) and mH (right) as a
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Figure 12. The left (right) plot shows the jet-veto efficiency (cross section) at NNLO+NNLL

at 8 TeV with uncertainty bands obtained with the original formulation of the JVE method [5]

(red/solid) compared to the predictions obtained with the new JVE method as defined in the text

(blue/hatched).

LHC 13 TeV [pb] σtot,2 σtot,3 σNLO
1j≥25GeV σNNLO

1j≥25GeV σNLO
1j≥30GeV σNNLO

1j≥30GeV

EFT 39.8+4.3
−4.1 43.6+1.4

−2.4 16.5+3.4
−2.9 19.8+1.4

−1.9 14.1+2.9
−2.4 16.7+1.1

−1.6

t-only 41.5+4.6
−4.4 45.3+1.7

−2.6 16.9+3.4
−2.9 20.2+1.4

−1.9 14.3+2.9
−2.5 17.0+1.1

−1.6

t, b 39.4+4.4
−4.2 43.3+1.5

−2.4 16.8+3.4
−2.9 20.0+1.4

−1.9 14.3+2.9
−2.5 16.9+1.1

−1.6

Table 4. Total cross section at NNLO (σtot,2) and at N3LO (σtot,3), and the one-jet cross-section

σ1j at NLO and NNLO for central scale µ0 = mH , with and without mass effects as explained in the

text. Uncertainties are obtained with a 7-point renormalisation and factorisation scale variation.

LHC 13 TeV εN
3LO+NNLL+LLR ΣN3LO+NNLL+LLR

0-jet [pb] ΣN3LO
0-jet ΣNNLO+NNLL

0-jet

pt,veto = 25 GeV 0.537+0.014
−0.025 23.2+1.0

−1.7 23.2+1.3
−2.3 22.1+2.6

−3.9

pt,veto = 30 GeV 0.610+0.012
−0.025 26.4+1.1

−1.8 26.3+1.2
−2.2 24.9+2.9

−4.1

Table 5. Predictions for the jet-veto efficiency and cross section at N3LO+NNLL+LLR, compared

to the N3LO and NNLO+NNLL cross sections. The uncertainty in the fixed-order prediction is

obtained using the JVE method. All numbers include the effect of top and bottom quark masses,

treated as described in the text, and are for a central scale µ0 = mH .

central scale choice. For the central scale mH/2, the upper edge of the uncertainty band

is determined by scale variation (both Q and µR, µF ), while the lower edge is determined

equally by scale and scheme variation. For the central scale mH , the upper edge is still

set by scale variation, but the lower edge is now dominated by scheme variation. In both
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Figure 13. N3LO+NNLL+LLR best prediction for the jet-veto efficiency (blue/hatched) compared

to NNLO+NNLL (left) and fixed-order at N3LO (right) at µ0 = mH . The lower panel shows the

ratio to the µ0 = mH/2 result.
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Figure 14. N3LO+NNLL+LLR best prediction for the jet-veto cross section (blue/hatched) com-

pared to NNLO+NNLL (left) and fixed-order at N3LO (right) at µ0 = mH . The lower panel shows

the ratio to the µ0 = mH/2 result.

cases, the R0 variation has no impact on the final uncertainty band. The difference in the

impact of the scheme variation at the two different scales is a consequence two facts: (a) at

scale mH/2 the N3LO correction is only a 3% correction, while it amounts to about 10%

at scale mH ; and (b) in our updated JVE approach, the scheme-variation is now sensitive

only to the ambiguity of including (or not) the N3LO correction to the total cross section

in the efficiency.

Next, in figure 16 we show the inclusive one-jet cross section (blue/hatched) compared

to fixed-order at NNLO (left) and to the matched result with direct scale variation for the
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Figure 15. N3LO+NNLL+LLR best prediction for the jet-veto efficiency (red band), with a

breakdown (lower panels) comparing the overall relative uncertainty envelope to the different con-

tributions from which it is built up. The left and right-hand plots show results respectively for

scale choices µ0 = mH/2 and mH . In both plots, ratios are taken with respect to a reference result

determined with µ0 = mH/2.

LHC 13 TeV ΣNNLO+NNLL+LLR
≥1-jet [pb] ΣNNLO

≥ 1-jet [pb]

pt,min = 25 GeV 20.0+1.3
−1.3 20.0+2.1

−1.5

pt,min = 30 GeV 16.9+1.2
−1.1 16.9+1.8

−1.2

Table 6. Predictions for the inclusive one-jet cross section at NNLO+NNLL+LLR and NNLO. The

uncertainty in the fixed-order prediction is obtained using the JVE method. All numbers include

the effect of top and bottom quark masses, treated as described in the text, and are for a central

scale µ0 = mH .

uncertainty as explained in the text (right) at central scale mH . Corresponding numerical

values for the one-jet cross section are reported in table 6. From the right-hand plot of

figure 16, one notices that the JVE uncertainty band, especially its upper edge, is larger

than scale variation even at transverse momenta of the order of mH . This larger uncertainty

for the JVE result appears to be associated with the variation between schemes (a) and (b),
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Figure 16. Best prediction for the inclusive one-jet cross section (blue/hatched) compared to

fixed-order at NNLO (left) and to the matched result with direct scale variation for the uncertainty

as explained in the text (right). The central renormalisation and factorisation scales are set to

µ0 = mH . The lower panel shows the ratio to the central value at µ0 = mH .

which differ by about 10% over a range of pt,min, a consequence of the nearly 10% difference

between σtot,2 and σtot,3 that is visible in table 4. This effect is not present for the results

with central scale µ0 = mH/2, figure 7, where the difference between the two schemes is

much smaller. However, for large values of pt,min the uncertainty on the µ0 = mH/2 results

grows more rapidly, perhaps a consequence of the fact such a scale choice is not appropriate

at high pt.

C Small-R correction factor

In ref. [12], small-R effects for jet vetoes were resummed through the introduction of a

“fragmentation” function fhardest(z, t) for the distribution of the momentum fraction z

carried by the hardest subjet resulting from the fragmentation of a gluon. The quantity

Z(t) used in eq. (2.16) is the first logarithmic moment of this fragmentation function,

Z(t) ≡
∫ 1

0
dzfhardest(z, t) ln z

' t
[

1

72
CA
(
131− 12π2 − 132 ln 2

)
+

1

36
nfTR(−23 + 24 ln 2)

]
+
t2

2!

(
0.206672C2

A + 0.771751CAnfTR

− 0.739641CFnfTR + 0.117861n2
fT

2
R

)
+
t3

3!

(
− 0.20228(4)C3

A − 0.53612(2)C2
AnfTR − 0.062679(8)CACFnfTR
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cfit
4 cfit

5 cfit
6 cfit

7 cfit
8

nf = 5 133.55 −478.55 −1226.87 22549.99 −77020.08

nf = 4 100.69 −352.10 −858.44 15819.97 −53597.50

Table 7. Results of a fit to parametrise the all-order result of the integral in eq. (C.1). Values are

given for nf = 4 and nf = 5. The fitted curve is accurate to 0.1% in the t ∈ [0, 1] range.

+ 0.54199(2)C2
FnfTR − 0.577215(3)CAn

2
fT

2
R

+ 0.431055(4)CFn
2
fT

2
R − 0.0785743(5)n3

fT
3
R

)
+
t4

4!
cfit

4 +
t5

5!
cfit

5 +
t6

6!
cfit

6 +
t7

7!
cfit

7 +
t8

8!
cfit

8 , (C.1)

where the coefficients up to t3 are the actual terms of the full Taylor expansion of Z(t),

while those from t4 to t8, given in table 7, are chosen so as to provide a good fit to the

full numerical form for Z(t) as calculated in ref. [12]. Coefficients are tabulated both for

nf = 4 and nf = 5.13 As such, these higher order coefficients are not the actual values

of the coefficients of the Taylor series for Z(t), since yet higher-order contributions might

be partly absorbed in the fit. Eq. (C.1) reproduces the full all-order result at the per mil

level in the range 0 < t < 1, which should be more than adequate for phenomenological

applications.

For the purposes of matching, it is useful to have the αs expansion of Fcorrel
LLR

(R) up

to α3
s. The α2

sL and α3
sL

2 terms are known from previous work. Once one includes LLR
resummation there is an additional α3

sL ln2R term, which receives contributions from both

the order t and t2 terms in eq. (C.1), because t itself has an all-order expansion in powers

of αs lnR. It is given by

Fcorrel
LLR,31(R) =

(αs
2π

)3
L · 16CA ln2 R

R0

[
1.803136C2

A − 0.589237nf2TRCA

+ 0.36982CFnf2TR − 0.05893n2
f4T 2

R

]
. (C.2)
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