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1 Introduction

The properties of elementary subatomic particles and interactions are well accounted for by

the Standard Model (SM) of particle physics. This rosy picture is spoiled due to the omis-

sion of gravity from the subatomic universe as treating gravity in a fully consistent quantum

field theory framework has, thus far, proven to be extremely difficult. Furthermore, a fun-

damental dichotomy exists between the contribution of the subatomic interactions to the

vacuum energy versus the constraint determined by gravitational observations. We may

anticipate that the resolution of this basic conflict may materialize only when a conju-

gal union of gravity and quantum field theories is accomplished. Alas, such a day is, for

now, unforeseeable. In the meantime, all we may strive for is to build inadequate models

that harbor some affinity to the gauge and gravitational phenomena as they are seen in

terrestrial and extra-terrestrial observatories.

Toward that end, we are guided by theoretical constraints, as well as by some prejudices

motivated by the observed data. On the theoretical front, experience suggests that ideating

elementary subatomic particles as points breaks down in the presence of gravitational

interactions. A logical extension is to consider elementary particles as extended objects,

with the one dimensional extension being the next step on the complexity ladder. On

the observational side, we may take account of the fact that the charges of elementary

particles strongly hint to the realization of unified structures in nature. Among those,

SO(10) Grand Unified Theories (GUTs) are particularly appealing as their spinorial 16

representation accommodates a complete SM family, vastly reducing the number of free

parameters needed to account for the Standard Model gauge charges. Heterotic string

theories give rise to spinorial representations in their perturbative spectrum, and therefore

reproduce the SO(10) GUT structures that underly the SM, while at the same time giving

rise to a perturbatively consistent framework for quantum gravity. Equipped with these

features, heterotic string theories provide a well motivated contemporary arena to explore

how the properties of the elementary subatomic particles arise from a fundamental synthesis

of gravity and quantum mechanics.

The era of string phenomenology started with the seminal paper [1]. By now a plethora

of methods have been devised to construct phenomenological string vacua. These, in

general, can be divided into target space constructions, in which the internal space of the

heterotic string is compactified on a six dimensional Calabi-Yau manifold, or on a toroidal

orbifold [2–5], and worldsheet constructions, in which all the degrees of freedom needed

to obtain a consistent string theory are represented as internal, two dimensional fields

propagating on the string worldsheet [6–10]. A variety of phenomenological string models

were constructed using target space and worldsheet techniques. The remarkable point,

however, is that these two seemingly distinct approaches are in fact intimately related.
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This has been most beautifully demonstrated in the case of compactifications on Calabi-

Yau manifolds with SU(n) holonomy, which were shown to be equivalent to the gluing of

interacting worldsheet conformal field theories with central charge c = 9 together [10]. This

observation led to a deep mathematical insight into the properties of complex manifolds,

and in particular to the development of mirror symmetry [11, 12], which provided useful

insight into the arithmetic properties of Calabi-Yau manifolds [13]. Among the most widely

explored heterotic string constructions are those that utilize free bosonic and fermionic

conformal field theories. These include the toroidal orbifold models [2, 3], that are viewed

as compactifications on an internal toroidal space [14, 15], divided by some symmetry group

of the internal tori. In the free fermionic models, all the extra degrees of freedom needed to

cancel the worldsheet conformal anomaly are realized as free fermions propagating on the

string worldsheet, at a specific point in the moduli space [6–8]. Deformations away from the

free fermionic point that correspond to exact marginal deformations can be incorporated

in the fermionic formalism in the form of worldsheet Thirring interactions [16, 17].

Phenomenological heterotic string models using orbifold tools [18, 19] have lead to var-

ious interesting models on a large number of orbifold geometries. Refs. [20–24] constructed

MSSM-like models on the toroidal Z6–II orbifold. Similar constructions were possible on

the Z2×Z4 orbifold [25], Z12–I orbifold [26, 27] and Z8 orbifolds [28]. (For a recent overview

see e.g. [29].) Using free fermionic techniques [6–8], many phenomenologically interesting

models [30–40] have been constructed since the mid-eighties.

Free fermionic models are expected to correspond to particular Z2 × Z2 orbifolds of

N = 4 toroidal Narain lattices, as established in quite a few particular cases [41–48]. How-

ever, even though this correspondence has been discussed in general for a long time, a

complete and detailed dictionary between the prominent orbifold constructions and the

free fermionic formalism is not available in the literature. The goal of this paper is to

cover precisely this gap: give a detailed mapping of the input data from one formulation

to the other and indicate where potential loopholes may appear. Such a dictionary is

important to enable the identification of equivalent vacua in the two representations and

facilitate the communication between the orbifold and free fermionic communities. More-

over, the development of methods to translate vacua from one approach to the other is

particularly worthwhile, because the two approaches may yield complementary insights

into phenomenological string model building.

Outline. We have organized this paper as follows: we begin in sections 2 and 3 with

brief but comprehensive reviews of model building using both symmetric orbifolds and

free fermionic constructions, respectively. In section 4 we describe how one can translate

any symmetric Z2 × Z2 orbifold model with arbitrary gauge shifts and discrete Wilson

lines into the free fermionic language. Section 5 describes the translation in the opposite

direction: we give conditions when this translation is essentially simply the inverse of the

description in the previous section and when one needs to use the Narain moduli space to

read off the bosonic data, and, particularly, the Wilson lines. In section 6 we illustrate these

procedures with various examples from both the orbifold and the free fermionic literature:

we provide an explicit correspondence between free fermionic models and the lattice vectors

– 3 –



J
H
E
P
0
4
(
2
0
1
6
)
0
3
8

Sector Label Description

SUSY Xi
R Bosonic internal coordinates

(holomorphic) ψµR, ψ
i
R Real superpartners of the bosonic coordinates xµ, X i

Non-SUSY Xi
L Bosonic internal coordinates

(anti-holomorphic) Y I
L Real bosons living on an internal torus T 16 that are re-

sponsible for the gauge degrees of freedom.

Table 1. This table gives the states that freely propagate on the string worldsheet: µ = 1, 2,

i = 1, . . . , 6 and I = 1, . . . , 16, are four dimensional light-cone, six dimensional internal and sixteen

left-moving bosonic indices, respectively. The right-moving sector, labeled by R, is supersymmetric,

while the left-moving sector, labeled by L, is not.

that determine the crystallographic classification of Z2×Z2 orbifolds which has never been

given before. To show that our procedures can also be applied to more complicated models,

we translate some phenomenologically interesting (MSSM-like) models constructed in the

past in one formulation to the other. Finally, in section 7 we summarize our most important

findings and give an outlook of possible extensions of this work.

2 Symmetric heterotic orbifolds

2.1 Geometrical lattices underlying symmetric orbifolds

One of the defining elements of any orbifold model is the underlying six-dimensional lattice

that is defined through the identification

Xi ∼ Xi + 2πεiini i = 1, . . . , 6 . (2.1)

where n is a vector of integers and the lattice,

Λ =
{
ε n = εi ni

∣∣ni ∈ Z} , (2.2)

is spanned by a set of basis vectors εi, i = 1, . . . , 6. The matrix ε, with these basis vectors

as its columns, can be thought of as a vielbein associated with the metric,

G = εT ε , (2.3)

on the six-torus. This metric carries all the information about the lengths and the angles

of the lattice basis vectors. We refer to the vectors εi as the lattice basis. The lattice basis

is in general not the standard orthogonal Euclidean basis; we reserve the notation ei to

denote the standard basis vectors of R6: (ei)j = δij and write e12 = e1 + e2, etc.

2.2 Orbifold actions

Let Γ = ZN1 × ZN2 × . . . be a finite Abelian group, often referred to as the point group.

The generators of this finite group on R6 are denoted θ1, θ2, . . ., i.e. the action of a generic
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element of Γ can be written as θk := θk11 θ
k2
2 . . . with k1 = 0, . . . N1 − 1, etc. The action of

the point group has to be compatible with the lattice Λ in the sense that

θk Λ = Λ : θk ε = ε ρk , ρk = ρk11 ρ
k2
2 . . . , ρs ∈ GL(n,Z) . (2.4)

The order of ρs is at most Ns, but may be lower. The elements θs generate the point group Γ

in the standard Euclidean basis. In the lattice basis, this group is generated by the matrices

ρs. We normally first specify the point group in the Euclidean basis. If one also has a com-

patible lattice basis then one simply determines the point group generators in the lattice ba-

sis via ρs = ε−1θsε. We denote the resulting symmetric orbifold with point group Γ as T 6/Γ.

The orbifold can be equivalently described as the quotient of R6/S where S is the

so-called space group. The space group S combines the elements of the lattice Λ and the

point group Γ. It acts on the coordinates X of the covering space R6 as

h = (θk, Lh) ∈ S : X 7→ h ◦X = θkX + 2π Lh , Lh = ` k + ε n . (2.5)

The vector ` = (`s) that appears in the last equation encodes the information about the

translation part of the space group element h. In particular, there is a vector `s ∈ R6

associated with each generator θs of the point group, and the vector associated with a

generic element θk will then be ` k = k1`1 + k2`2 + · · · . This realization induces the

following group multiplication of space group elements:

h′ h = (θk
′
, ` k′ + ε n′) (θk, ` k + ε n) = (θk

′+k, θk
′
(` k + ε n) + ` k′ + ε n′) . (2.6)

To ensure that the orbifold elements have finite order, we need Ns `s ∈ Λ. Depending on

the choice of θs and `s for a given ZNs factor, we distinguish between pure twist, pure shift

and roto-translational orbifold actions:

Orbifold action Characterization

pure twist θs 6= 1 , `s = 0

pure shift θs = 1 , `s /∈ Λ

roto-translation θs 6= 1 , `s /∈ Λ

true roto-translation `s /∈ Λ has components in directions

in which θs 6= 1 acts trivially.

In principle, for pure twist orbifolds we could allow for `s ∈ Λ, but this can be absorbed

by a redefinition of the vector n ∈ Z6. A pure shift orbifold can equivalently be thought

of as a torus compactification with a new lattice in which some of the basis vectors ei are

replaced by the `s corresponding to the pure shift actions.

The distinction between a twist and a roto-translation is not always a coordinate

independent statement: when the shift part of a roto-translation points only in directions

where it also acts as a rotation, then one can change the origin and this action can look like

a pure twist. On the other hand, when the shift of a roto-translation also has directions

which are left inert by the twist part, the shift in these directions cannot be removed. We

call this a true roto-translation. Note that even when a given roto-translation can be turned
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into a pure shift, it often happens that, at the same time, other pure twist actions become

roto-translations. In such cases the effects of the roto-translations are also physical; they

cannot be removed by a coordinate redefinition.

In the following we will also need the important concept of fixed points and fixed

tori, because this is where additional so-called twisted matter typically arises. An orbifold

fixed set arises as a solution to the fixed point equation g ◦X = X: pure twist and roto-

translations have fixed tori or points, depending on the twist action. A roto-translation,

that has the same twist action as a pure twist, has its fixed points/tori simply shifted

with respect to those of the pure twist. True roto-translations never leave any point inert,

hence have an empty fixed set. Two space groups S1 and S2 belong to the same Z-class if

generators ρs and ρ̃s of the corresponding point groups are related by

U−1ρsU = ρ̃s , (2.7)

with U ∈ GL(6,Z). Two orbifolds with the same Z-class means that they are defined on

the same lattice. The structure of fixed points and/or tori is highly dependent both on the

Z-class of the lattice as well as on the orbifold action under consideration.

2.3 Conditions for supersymmetry

In this work we focus on six dimensional orbifolds T 6/Γ which preserve (at least) N =

1 supersymmetry. Since the group Γ is Abelian, we can simultaneously diagonalize all

elements of Γ using a complex basis, labeled by α = 1, 2, 3, and write each element θ ∈ Γ

in terms of the twist vector v as

θk = e2πi vh , vh = ks vs , vs =
(
0, (vs)1, (vs)2, (vs)3

)
, etc. , (2.8)

(where the sum over s labels the different point group generators θs) for a space group

element h ∈ S with N1 (v1)α , N2 (v2)α , . . . = 0 mod 1 to ensure that θNss = 1.

A positive chiral target space spinor in ten dimensions can be represented by vectors

of the form 1
2(±14) (i.e. all four entries can either be +1/2 or −1/2) with an even number

of minus signs. The action of θ on a spinor state |s0, s1, s2, s3〉 reads

θk |s0, s1, s2, s3〉 = e2πi (vh)αsα |s0, s1, s2, s3〉 , (2.9)

(s0, . . . , s3 = ±1/2) where the sum is over the three complexified internal directions. There-

fore, if we assume that the components of the surviving four dimensional supersymmetry

are represented by ±1
2(14), we have to require that∑

α

(vs)α = 0 mod 2 . (2.10)

In the heterotic orbifold literature, mostly twists that make the sum strictly zero are used

in order to obtain a unique representation of the twist vectors.

The worldsheet supersymmetry generator is given by

TF = ψµ ∂x
µ + ψi ∂X i

R (2.11)

in terms of the four dimensional coordinate field xµ and the fields given in table 1.
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2.4 Shift embedding and discrete Wilson lines

In the bosonic orbifold description the gauge degrees of freedom are described by real left-

moving coordinate fields YL that live on a sixteen dimensional torus R16/2πΛgauge where

the lattice Λgauge is either the root lattice Λ8+8 = Λ8⊕Λ8 of E8×E8 or Λ16 of Spin(32)/Z2,

where

Λ8n =
⊕
t=0,1

{
ush = u+

t

2
18n

∣∣ u ∈ Z8n , 1T8nu = 0 mod 2

}
, (2.12)

with 1d = (1d) (the vector with d entries equal to 1) for n = 1, 2. It consists of the direct

sum of the root (t = 0) and spinorial (t = 1) lattices. In particular, Λ8n is even and

self-dual. We use αI to denote the simple roots of these algebras. In the E8×E8 case, we

label the two spin-structures ta for both Λ8 lattices by a = 1, 2. In most orbifold models

the action of the space group on these gauge degrees of freedom is assumed to be via the

so-called shift embedding:

YL 7→ h ◦ YL = YL + 2π Vh , Vh = ks Vs + niAi , (2.13)

for any space group element h defined in (2.5). The vectors Ai are called discrete Wilson

lines and compatibility with the group property (2.6) of the space group elements implies

that

Aρs ∼= A , (2.14)

where A ∼= A′ means that A − A′ ∈ Λgauge. These conditions often relate various discrete

Wilson lines to each other and strongly restrict the order Mi of the discrete Wilson lines Ai:

Ns Vs ∼= 0 , MiAi ∼= 0 , (2.15)

The gauge shift vectors Vs have the same order as the point group generators θs.

2.5 Narain moduli space

The untwisted sector of orbifold models corresponds to a torus compactification which can

conveniently be encoded in the Narain lattice description. This description starts from

a Narain lattice [14, 15] of dimensions (6, 22) with Minkowskian signature defined by the

metric

η =

−16 0

0 122

 . (2.16)

Points on the Narain lattice,

P =

PR
PL

 = EN , N ∈ Z28 , (2.17)

are the variables that appear in the untwisted sector partition function in the Hamilton

representation

ZNarain(τ, τ) =
1

η6η̄22

∑
P

q
1
2
P 2
R q̄

1
2
P 2
L , (2.18)
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where q = e2πiτ and the Dedekind-Eta function η = η(τ) are holomorphic functions of

the Teichmueller parameter of the worldsheet torus τ and q̄ = e−2πiτ̄ and η̄ = η̄(τ̄) of its

conjugate τ̄ . This is the combined partition function of the six-torus and gauge lattice

in the untwisted sector (with k = 0). A basis for these lattice vectors is encoded in the

columns of the so-called generalized vielbein

E =
1√
2


ε+ ε−TCT −ε−T ε−TATα

ε− ε−TCT ε−T −ε−TATα
√

2A 0
√

2α

 . (2.19)

The generalized vielbein contains the lattice vectors εi of the six-torus introduced in (2.2).

The continuous Wilson lines Ai get completely frozen to discrete ones when the combined

orbifold actions act on all six torus directions. Moreover, the anti-symmetric Kalb-Ramond

tensor B is contained inside the matrix:1 C = B + 1
2A

TA. Finally, α are the simple roots

of a sixteen dimensional even-self-dual lattice and g = αTα the corresponding metric. For

this, we can either choose the simple roots of E8×E8 or Spin(32)/Z2: the simple roots of

Spin(32)/Z2 and the corresponding Cartan matrix read

α16 =



1 0 · · · 0 1
2

−1 1 · · · 0 1
2

0 −1 · · · 0 1
2

...
...

. . .
...

...

0 0 · · · 1 1 1
2

0 0 · · · −1 1 1
2

0 0 · · · 0 0 1
2


16×16

, g16 =αT16α16 =



2 −1 0 · · · 0 0 0 0

−1 2 −1 · · · 0 0 0 0

0 −1 2 · · · 0 0 0 0

...
...

...
. . .

...
...

...
...

0 0 · · · 2 −1 −1 0

0 0 · · · −1 2 0 0

0 0 · · · −1 0 2 1

0 0 · · · 0 0 1 4


16×16

. (2.20)

The simple roots of E8×E8 and the corresponding Cartan matrix read

α8×8 =

(
α8 0

0 α8

)
, g8×8 =

(
g8 0

0 g8

)
, (2.21)

given here in terms of those of E8:

α8 =



1 0 0 0 0 0 − 1
2

0

−1 1 0 0 0 0 − 1
2

0

0 −1 1 0 0 0 − 1
2

0

0 0 −1 1 0 0 − 1
2

0

0 0 0 −1 1 0 − 1
2

0

0 0 0 0 −1 1 − 1
2

1

0 0 0 0 0 1 − 1
2
−1

0 0 0 0 0 0 − 1
2

0


8×8

, g8 =αT8 α8 =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 −1

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 0 0 −1 0 0 2


8×8

. (2.22)

1In the literature there are various forms of (2.19) and the definition of C as they crucially depend on

the string slope parameter α′; throughout this paper we set α′ = 1.
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It is possible to transform from the E8×E8 to the Spin(32)/Z2 description, see e.g. [49]; in

this work we will indicate explicitly which description we are using.

The partition function (2.18) is modular invariant by virtue of the following constraint

on the generalized vielbein

ET ηE = η̂ , where η̂ =


0 16 0

16 0 0

0 0 g

 : (2.23)

In particular, under the modular transformation τ → τ + 1 the partition function picks up

a phase expπi (P 2
R − P 2

L) which is trivial by virtue of

− P 2
R + P 2

L = P T ηP = NT η̂N = 2mTn+ pT g p ∈ 2Z , (2.24)

parameterizing NT = (mT , nT , pT ) where m,n ∈ Z6 and p ∈ Z16.

The associated Narain partition function (2.18) can be expressed in terms of the gen-

eralized vielbein,

ZNarain =
1

η6η̄22

∑
N∈Z28

q
1
4
NTET (1−η)EN q̄

1
4
NTET (1+η)EN . (2.25)

2.6 Orbifold partition functions

The general form of an orbifold one-loop partition function is given as a sum over com-

muting space group elements

Z(τ, τ) =
∑

[h,h′]=0

c[hh′ ]Z[hh′ ](τ, τ) , (2.26)

where c[hh′ ] are called generalized torsion phases and Z[hh′ ] defines the partition function for

a given sector, i.e. a set of boundary conditions, on the worldsheet torus, defined by the

space group elements h and h′. The elements h are often referred to as the constructing

elements. They define the different sectors in the theory and affect the q, q̄ expansions of

the partition function. The elements h′ are called projecting elements, as they only affect

phases, i.e. the projection conditions in the partition function. We have restricted the sum

to commuting constructing and projecting space group elements only; for non-commuting

elements the corresponding partition function is simply zero.

The full one-loop partition function is required to be modular invariant, i.e. Z(τ+1) =

Z(−1/τ) = Z(τ) (for brevity, we only indicate the τ dependence). The partition functions

in the various sectors transform modular covariantly into each other, in the sense that

Z[hh′ ](−1/τ) = Z[h
′
h ](τ) , Z[hh′ ](τ + 1) = Z[hh′h](τ) , (2.27)

without any additional phases (since we only sum over commuting elements the order of

h′ and h is irrelevant).
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The partition function in a given sector, (h;h′), splits as a product of partition functions

of the various worldsheet fields

Z[hh′ ](τ, τ) = Zx(τ, τ)ZX [hh′ ](τ, τ)Zψ[hh′ ](τ)ZY [hh′ ](τ) . (2.28)

Let us briefly discuss the various factors in turn: the partition function Zx(τ, τ) is the

partition function associated with the two non-compact coordinates xµ in four dimensions

in the light-cone gauge. The partition functions

ZX [hh′ ](τ, τ) = Z‖[
h
h′ ](τ, τ)Z⊥[hh′ ](τ, τ) (2.29)

correspond to the compactified internal directions parameterized by Xi: here we need to

distinguish between the directions in which the orbifold twist θk acts non-trivially and

those which are left inert. To project on these subspaces we can define the projections

Pk‖ =
1

Nk

Nk−1∑
r=0

(θk)r , Pk⊥ = 1− Pk‖ , (2.30)

where Nk is the order of θk (we will use similar notations to indicate other projected

quantities). The dimensions of the corresponding subspaces are Dk
‖ and Dk

⊥, respectively,

such that Dk
‖+D

k
⊥ = 6. The orbifold action θk has fixed points in the subspace on which Pk⊥

projects, hence, in these directions, we only get contributions from the twisted excitations

Z⊥[hh′ ](τ, τ) =

∣∣∣∣∣ ηD
k
⊥/2

ϑk⊥
[14/2−vh
14/2−vh′

]
∣∣∣∣∣
2

. (2.31)

Here the notation ϑk⊥[vv′ ] =
∏
ϑ[vαv′α

] signifies that we only take the product of the genus-one

Jacobi-theta function ϑ[aa′ ] = ϑ[aa′ ](z = 0; τ), defined as

ϑ[aa′ ](z; τ) =
∑
n∈Z

q
1
2

(n−a)2 e2πi (n−a)(z−a′) , (2.32)

in the complexified directions where θk or θk
′

act non-trivially, i.e. not in the α directions

where (vh)α = (vh′)α = 0. In the directions where the twist acts as the identity, we have

the usual lattice sums of the Narain partition function (2.18) restricted to the appropriate

lower dimensional sublattice. For a symmetric orbifold, no further phases are needed to

make these partition functions modular covariant.

The next partition function results from the superpartners ψ = (ψα) of the coordinate

fields xµ, X i in a complex basis: α = 0 corresponds to the four dimensional light-cone

coordinates xµ and α = 1, 2, 3 to the six internal directions in a complex basis. In a

bosonized description it takes the form

Zψ[hh′ ](τ) = e−2πi 1
2
vh
T vh′

1

η4

1

2
(−)s

′s+s′+s
∑
p∈Z4

q
1
2
p2sh e2πi s′νTR(p+s νR) e2πi vT

h′psh , (2.33)

where the vector psh = p+ s νR + vh has four entries. The vector νR = 1
2 14 generates the

right-moving spin structures labeled by s, s′ = 0, 1. The phase factor (−)s
′s+s′+s ensures
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that p+ s νR lives on the direct sum lattice of the four dimensional vectorial and spinorial

lattices:

Λ4 =
{
u
∣∣ u ∈ Z4 , 1T4 u = 1 mod 2

}
⊕
{
u+

1

2
14

∣∣ u ∈ Z4 , 1T4 u = 0 mod 2

}
. (2.34)

The next-to-last phase factor in (2.33) implements the appropriate projection on the so-

called right-moving lattice momentum p. The phase factor in front, often referred to as

the vacuum phase, ensures that these partitions are modular covariant.

Finally, the partition function associated with the left-moving gauge lattice is given by

ZY [hh′ ](τ) = e2πi 1
2
Vh
TVh′

1

η̄16

1

2

∑
P∈Z16

q̄
1
2
P 2
sh e−2πi t′uν

T
uL(P+tu νuL) e−2πi V T

h′Psh , (2.35)

with

Psh = P + tu νuL + Vh (2.36)

where for the Spin(32)/Z2 theory the index u is obsolete and νL = 1
2(116); while the

index u = 1, 2 is summed over and ν1L = 1
2(18, 08) and ν2L = 1

2(08, 18) for the E8×E8

theory. In the orbifold literature, the sums over the spin structures s′, s in (2.33) and t′u, tu
in (2.35) have often already been executed. One then writes psh = p+vh and Psh = P +Vh
with p ∈ Λ4, P ∈ Λ16 or Λ8 ⊕ Λ8. To facilitate the comparison with the free fermionic

formulation later, we choose to keep the sums over these spin structures explicit. The

final phase factor in (2.35) implements the orbifold projection. Again, the vacuum phase

factor ensures that these partition functions transform covariantly into each other. This

lattice partition function can be obtained by assuming boundary conditions (2.13) for the

left-moving coordinates YL in the sector h with spin structure(s) tu.

The inclusion of the vacuum phases in front of the partition functions (2.33) and (2.35)

makes them all modular covariant. However, it is not necessarily guaranteed that the full

resulting partition function (2.26) has the proper orbifold and Wilson line projections built

in, because of the factor of 1/2 in these phases. To ensure this, we need to require that:

gcd(Ns, Nt) (Vs
TVt−vsT vt) , gcd(Ns, Ni)Vs

TAi , gcd(Mi,Mj)Ai
TAj =0 mod 2 , (2.37)

(note there are no sums over repeated indices here). These conditions are commonly

referred to as the modular invariance conditions.

2.7 Generalized discrete torsion phases

To ensure that the full partition function is modular invariant, the generalized torsion

phases c[hh′ ] satisfy the following conditions

c[hh′ ] = c[h
′
h ] = c[hh′h] . (2.38)

In particular, simply setting c[hh′ ] = 1 is an allowed solution, which is the typical choice for

heterotic orbifolds unless otherwise stated. In general, we may parameterize these phases as

c[hh′ ] = canti[
h
h′ ] csym[hh′ ] (2.39)
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in terms of so-called generalized torsion phases. We distinguish between the symmetric

and anti-symmetric phase factors: the anti-symmetric generalized torsion phases can be

product expanded as

canti[
h
h′ ] = cst[

ks
k′t

] cij [
ni
n′j

]csi[
ks ni
k′s n

′
i
] , (2.40)

where appropriate products over different indices in the various factors are implied, e.g.

over t > s. The factors, defined, for example, as

cst[
ks
k′t

] = e2πi cst ksk′t , csi[
ksni
k′sn
′
i
] = e2π csi(ksn

′
i−k′sni) , (2.41)

are characterized by the generalized torsion matrices cst, csi, etc.; their entries are anti-

symmetric when they have two identical type indices, e.g. cst = −cts. The generalized

torsion matrices are subject to the quantization conditions to ensure that with these gen-

eralized torsion phases included one still has proper (orbifold) projections. They read, for

instance, as

gcd(Ns, Nt) cst , gcd(Ns,Mi) csi , gcd(Mi,Mj) cij = 0 mod 1 , (2.42)

(no sums implied) and are characterized by the order of the respective elements to which

the indices correspond. Here, and throughout this paper, we will use the indices of the

torsion matrices to indicate which torsion phases we are actually referring to: for example,

cuv refers to the possible torsion phase between the spin structure of the two E8 factors;

for the Spin(32)/Z2 theory, it is absent.

Furthemore, specifically for order-two elements we can admit additional symmetric

phases:

csym[hh′ ] = cs[
ks
k′s

] ci[
ni
n′i

] , where, for example: cs[
ks
k′s

] = (−)cs(ks+k
′
s+k

′
sks) , (2.43)

and the only allowed values are cs, ci, cu = 0, 1. These phases are symmetric under the

interchange of primed and non-primed quantities. The phases cs, cu effectively select the

spinorial lattice of the opposite chirality.

It should be emphasized that many of the generalized torsion phases introduced

in (2.40) and (2.43) are normally not considered in the orbifold literature. The discrete

torsion discussed by Vafa-Witten [50] only corresponds to the phase cst. In [51] no sym-

metric torsion phases were introduced, only the anti-symmetric ones and in the current

version of the orbifolder package [52] these symmetric torsion phases are not available.

Moreover, one can introduce many additional symmetric and anti-symmetric generalized

torsion phases that involve the spin structures νR and νuL:

cadd = cR[ss′ ] cu[tut′u
] cuv[

tu
t′v

] cRu[s tus′ t′u
] cRi[

s ni
s′ n′i

] csu[ks tuk′s t
′
u
] ciu[

ni tu
n′i t
′
u
] . (2.44)

Brother models. Having fixed the orbifold geometry, the gauge shift and discrete Wilson

lines, and the generalized torsion phases, one might hope that a heterotic orbifold model

is uniquely specified. Unfortunately, this specification is somewhat redundant: naively,
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one would think that by adding combinations of lattice vectors, ∆Vs,∆Ai ∈ Λgauge to the

defining gauge shifts V and discrete Wilson lines A:

Ṽ = V + ∆V , Ã = A+ ∆A , (2.45)

would not change the model at all, as, for example, the resulting gauge group is typically

unaffected by such changes. However, this is, in general, not true since adding such vectors

leads to a whole family of so-called brother models [51]. Consequently, two heterotic

orbifold brother models with gauge shift and Wilson lines satisfying (2.37) which are related

via (2.45), can be viewed as two versions of the same orbifold model but with different

generalized torsion phases [51]

c̃[hh′ ] = e−2πi 1
2

(
Vh′

T∆Vh−∆Vh′
TVh+∆Vh′

T∆Vh

)
c[hh′ ] . (2.46)

The first two terms in the exponential are manifestly anti-symmetric, while the last term

is not. To see that this term is in fact also anti-symmetric, one should realize that this

term is always integral because ∆Vs and ∆Ai are lattice vectors. In fact, for the diagonal

part, i.e. h′ = h, this term is even as Λgauge is even. For the off-diagonal parts, h′ 6= h,

we may flip the signs of the contributions because they are half-integral taking the factor

of 1/2 out front in the exponential into account. Finally, the conditions (2.37) ensure that

the phase satisfies the quantization conditions of the generalized torsion (2.42).

2.8 Massless spectrum

Using the expressions for the partition functions for the various worldsheet fields, we can

determine the complete spectrum of the orbifold theory. In the orbifold literature one often

restricts oneself to the massless spectrum only in a generic point of the moduli space. This

means that one considers the compactification on orbifolds with arbitrary radii (as long as

they are not set equal by the orbifold action). For such generic values of the orbifold radii,

there is no “accidental” gauge symmetry enhancement, i.e. the lattice sum in (2.29) can

be ignored as long as one is only interested in the massless spectrum.

The massless spectrum of an orbifold theory, in the sector h ∈ S at a generic point of

its moduli space, reads

M2
R =

1

2
p2

sh + δc− 1

2
, M2

L =
1

2
P 2

sh + δc− 1 +NL , (2.47)

where NL is the left-moving number operator and psh and Psh the shifted momenta, defined

below (2.33) and (2.35), respectively. The level matched massless states, of course, corre-

spond to M2
R = M2

L = 0 (for supersymmetric orbifolds right-moving oscillator excitations

will always lead to positive M2
R, hence never constitute massless states). Here we have

defined the shift δc in the zero point energy, given by

δc =
1

2
ωT (14 − ω) , (2.48)

where the entries of ωα = (vh)α mod 1 are such that 0 ≤ ωα < 1. The spectrum is subject

to the orbifold projection condition

vTh′R− V T
h′Psh =

1

2

(
vTh′vh − V T

h′ Vh

)
mod 1 (2.49)
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FRTV DW twists / roto- Hodge FRTV DW twists / roto- Hodge
label label translations numbers label label translations numbers

CARAT Z-class – 1 :
{
e1, e2, e3, e4, e5, e6

}
CARAT Z-class – 5 :

{
1
2
e135, e2, e3, e4, e5, e6

}
(1 - 1) (0 - 1)

(
θ1, 0

)
,
(
θ2, 0

)
(51, 3) (5 - 1) (1 - 1)

(
θ1, 0

)
,
(
θ2, 0

)
(27, 3)

(1 - 2) (0 - 2)
(
θ1,

1
2
e2
)
,
(
θ2, 0

)
(19, 19) (5 - 2) (1 - 3)

(
θ1,

1
2
e4
)
,
(
θ2, 0

)
(11, 11)

(1 - 3) (0 - 3)
(
θ1,

1
2
e26
)
,
(
θ2, 0

)
(11, 11) (5 - 3) (1 - 2)

(
θ1,

1
2
e23
)
,
(
θ2, 0

)
(15, 15)

(1 - 4) (0 - 4)
(
θ1,

1
2
e26
)
,
(
θ2,

1
2
e4
)

(3, 3) (5 - 4) (1 - 4)
(
θ1,

1
2
e4
)
,
(
θ2,

1
2
e5
)

(7, 7)

CARAT Z-class – 2 :
{

1
2
e15, e2, e3, e4, e5, e6

}
(5 - 5) (1 - 5)

(
θ1,

1
2
e46
)
,
(
θ2,

1
2
e5
)

(3, 3)

(2 - 1) (1 - 6)
(
θ1, 0

)
,
(
θ2, 0

)
(31, 7) CARAT Z-class – 7 :

{
1
2
e15,

1
2
e26,

1
2
e36, e4, e5, e6

}
(2 - 2) (1 - 8)

(
θ1,

1
2
e3
)
,
(
θ2, 0

)
(15, 15) (7 - 1) (3 - 3)

(
θ1, 0

)
,
(
θ2, 0

)
(17, 5)

(2 - 3) (1 - 10)
(
θ1,

1
2
e36
)
,
(
θ2, 0

)
(11, 11) (7 - 2) (3 - 4)

(
θ1, 0

)
,
(
θ2,

1
2
e6
)

(7, 7)

(2 - 4) (1 - 7)
(
θ1, 0

)
,
(
θ2,

1
2
e5
)

(11, 11) CARAT Z-class – 8 :
{

1
2
e15,

1
2
e26,

1
2
e35,

1
2
e46, e5, e6

}
(2 - 5) (1 - 9)

(
θ1,

1
2
e3
)
,
(
θ2,

1
2
e5
)

(7, 7) (8 - 1) (4 - 1)
(
θ1, 0

)
,
(
θ2, 0

)
(15, 3)

(2 - 6) (1 - 11)
(
θ1,

1
2
e36
)
,
(
θ2,

1
2
e5
)

(3, 3) CARAT Z-class – 9 :
{

1
2
e135,

1
2
e26, e3, e4, e5, e6

}
CARAT Z-class – 3 :

{
1
2
e15, e2,

1
2
e35, e4, e5, e6

}
(9 - 1) (2 - 3)

(
θ1, 0

)
,
(
θ2, 0

)
(17, 5)

(3 - 1) (2 - 9)
(
θ1, 0

)
,
(
θ2, 0

)
(27, 3) (9 - 2) (2 - 5)

(
θ1, 0

)
,
(
θ2,

1
2
e6
)

(7, 7)

(3 - 2) (2 - 10)
(
θ1,

1
2
e6
)
,
(
θ2, 0

)
(11, 11) (9 - 3) (2 - 4)

(
θ1,

1
2
e23
)
,
(
θ2, 0

)
(11, 11)

(3 - 3) (2 - 11)
(
θ1,

1
2
e6
)
,
(
θ2,

1
2
e5
)

(7, 7) CARAT Z-class – 10 :
{

1
2
e135,

1
2
e26, e3,

1
2
e46, e5, e6

}
(3 - 4) (2 - 12)

(
θ1,

1
2
e46
)
,
(
θ2,

1
2
e5
)

(3, 3) (10 - 1) (3 - 5)
(
θ1, 0

)
,
(
θ2, 0

)
(15, 3)

CARAT Z-class – 4 :
{

1
2
e15,

1
2
e26, e3, e4, e5, e6

}
(10 - 2) (3 - 6)

(
θ1,

1
2
e12
)
,
(
θ2, 0

)
(9, 9)

(4 - 1) (2 - 13)
(
θ1, 0

)
,
(
θ2, 0

)
(21, 9) CARAT Z-class – 11 :

{
1
2
e14,

1
2
e26,

1
2
e35, e4, e5, e6

}
(4 - 2) (2 - 14)

(
θ1, 0

)
,
(
θ2,

1
2
e4
)

(7, 7)
(11 - 1)

(3 - 1)

≡

(3 - 2)

(
θ1, 0

)
,
(
θ2, 0

)
(12,6)

CARAT Z-class – 6 :
{

1
2
e15,

1
2
e23, e3, e4, e5, e6

}
(6 - 1) (2 - 6)

(
θ1, 0

)
,
(
θ2, 0

)
(19, 7) CARAT Z-class – 12 :

{
1
2
e135,

1
2
e246, e3, e4, e5, e6

}
(6 - 2) (2 - 7)

(
θ1, 0

)
,
(
θ2,

1
2
e5
)

(9, 9) (12 - 1) (2 - 1)
(
θ1, 0

)
,
(
θ2, 0

)
(15, 3)

(6 - 3) (2 - 8)
(
θ1,

1
2
e6
)
,
(
θ2,

1
2
e5
)

(5, 5) (12 - 2) (2 - 2)
(
θ1,

1
2
e56
)
,
(
θ2, 0

)
(9, 9)

Table 2. Classification of all six-dimensional lattices that admit a Z2×Z2 orbifold action according

to [53] and [54] with the hodge numbers (h11, h21) indicated. We have grouped the geometries

according to their CARAT Z-classes and we give representative lattice choices for each of these Z-

classes. Here θ1 and θ2 denote the two Z2 reflections that leave the first and second two-torus fixed;

ei denotes the i-th standard Euclidean basis vector and eij = ei + ej , etc.

for all projecting elements h′ of the space group S that commute with the constructing

elements h (only the standard generalized torsion phase c[hh′ ] = 1 is considered here for

simplicity). Here we have defined

Rα = pαsh −Nα
L +Nα∗

L , (2.50)

which involves the shifted right-moving momentum and the number operators Nα
L and Nα∗

L

counting the bosonc oscillators, e.g. ∂Xα and ∂Xα∗. Note that the conditions (2.37) are

essential for the projection conditions (2.49) to be well-defined.

2.9 Special features of Z2 × Z2 orbifolds

So far our discussion has been for general orbifolds; in this section we make some statements

that are specific to Z2 × Z2 orbifolds which we will be using later.
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Standard form of the Z2 ×Z2 orbifold twists. First of all, in this paper we will use

the following conventions to represent Z2×Z2 orbifolds. All Z2×Z2 orbifolds contain two

twist elements combined with possible translations, i.e. roto-translations. The point group

parts of the orbifolding elements are taken to be

θ1 =


12

−12

−12

 , θ2 =


−12

12

−12

 , θ3 = θ1θ2 =


−12

−12

12

 . (2.51)

They define reflections in four of the six torus directions in the standard Euclidean basis,

leaving the first, second and third two-torus inert, respectively. Their actions on the

spinors (2.9) are defined by the vectors

v1 =

(
0, 0,

1

2
,−1

2

)
, v2 =

(
0,−1

2
, 0,

1

2

)
. (2.52)

Classification of Z2×Z2 orbifolds. The possible Z2×Z2 twist orbifolds were classified

by Donagi and Faraggi in [46]. The classification was extended to include roto-translations

by Donagi and Wendland in [54]. A full classification of all symmetric toroidal orbifolds

that preserve at least N = 1 supersymmetry in four dimensions has been performed in [53]:

this classification includes, but is not restricted to, Z2×Z2 or even Abelian orbifolds; most

orbifolds turn out to possess non-Abelian point groups.

All these classifications are ultimately inspired by crystallography: the orbifold

actions have to be compatible with a particular lattice; for given orbifold twists θs and

lattice vectors εi, one needs to be able to fix the matrices ρs ∈ GL(6;Z) such that (2.4)

is fulfilled. This, in turn, restricts the form of the metric G on the six-torus. Moreover,

this determines the number and positions of two-tori and points that the various orbifold

actions leave fixed. All Z2 × Z2 orbifolds only possess fixed two-tori, which are either

orbifolded by the second orbifold action or pairwise identified. All this information is

encoded in the Z-class (or arithmetic crystal class) of the six-dimensional lattice. The

possible Z2 × Z2 compatible lattices have been classified up to six dimensions [55]. The

required algorithms have been collected in the computer package CARAT [56]. This software

provides a complete catalog of the Z-classes.

The representations of both the lattice and the orbifold actions used in the classification

are far from unique: for example, by scaling or permuting the torus directions and by

shifting the origin on the six-torus, one obtains very different looking representations of

the same orbifold. Moreover, the same lattice can be described in infinitely many bases.

We have given a compact representation of the Z2 ×Z2 orbifolds in table 2. The data

in this table are as follows: the first two columns give Z2 × Z2 classifications following both

Donagi,Wendland [54] and Fischer et al. [53]. The various CARAT Z-classes following [56] are

given with a representative lattice for each. The third column indicates a representation

of the various orbifold actions on these lattices. The final column of this table displays the

Hodge numbers of the various Z2×Z2 orbifolds. They can be determined as the number of

generations and anti-generations when one uses the orbifold standard embedding, in which

the orbifold shifts Vs are taken to be equal to vs (completed with 13 zeros).
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Sector Label Description

SUSY ψµ, χi Real superpartners of the bosonic coordinate xµ and the six com-

pactified directions in the bosonic formulation

(holomorphic) yi, wi Real fermions that correspond to the bosons describing the six com-

pactified directions

Non-SUSY yi, wi Real fermions that correspond to the bosons describing the six com-

pactified dimensions in the orbifold formulation

(anti-holomorphic)

λI =


ψ1,...,5

η1,2,3

φ
1,...,8

Complex fermions that describe the visible gauge sector, corre-

sponding to eight of the internal directions in T 16

Complex fermions that describe the hidden gauge sector, corre-

sponding to the remaining eight internal directions in T 16

Table 3. This table gives the fermionic states that freely propagate on the string worldsheet:

µ = 1, 2, i = 1, . . . , 6 and I = 1, . . . , 16, are four dimensional light-cone, six real internal and sixteen

complex indices, respectively. The right-moving sector is supersymmetric, while the left-moving

sector is not.

3 Free fermionic models

Next we review the free fermionic formulation2 as first outlined in [6, 7]. In this formal-

ism, the internal sectors of the string are described by fermionic degrees of freedom. In

general, there are nf right-moving (or holomorphic) fermions f and nf left-moving (or anti-

holomorphic) fermions f . In the case of heterotic string theories with four non-compact

target space dimensions, again described by light-cone coordinates xµ with superpartner

ψµ, conformal invariance requires that we have

nf = 18 , nf = 44 . (3.1)

The holomorphic sector has worldsheet supersymmetry, which is non-linearly realised by

the supercurrent

TF = ψµ ∂x
µ − χiyiwi , (3.2)

on the internal fermions χi, yi, wi, i = 1, . . . , 6. The 44 real anti-holomorphic fermions are

conventionally separated into two sets of real fermions yi, wi and sixteen complex fermions

λI , I = 1, . . . , 16. Often these fermions are further divided into three classes as indicated

in table 3.

3.1 Basis vectors and the additive group

A 48-component vector α =
(
α(ψ), α(χ), α(y), α(w)

∣∣α(y), α(w);α(λ)
)

characterizes a sec-

tor in a free fermionic model by defining a set of boundary conditions

f 7→ −eiπα(f) f , f 7→ −e−iπ α(f) f , (3.3)

for all the fermions. The line | between the components of the vector α separates the

boundary conditions for holomorphic and anti-holomorphic fermions, f = ψµ, χi, yi, wi

2There exists an alternative fermionic description [8, 9]; a mapping between these formalisms may be

found in appendix A of [57].
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and f = yi, wi;λI , and the semi-colon distinguishes the latter between real fermions,

yi, wi, and complex fermions λI . This convention means that when an entry α(f) = 0,

the fermion is anti-periodic, i.e. with NS boundary conditions. The transformations (3.3)

imply that combining boundary conditions leads to the addition rule: (α,β) 7→ α+β− 1

with unit element: 1.

The reduced version [α] of a vector α has entries equal to those of α up to even integers

such that all entries of [α] lie within the range(
− 1,+1

]
. (3.4)

In particular, [α](f) is the entry of α for the fermion f , restricted to the above range for

complex fermions, and it is simply 0 or 1 for real fermions. Often the basis vectors are

chosen to lie within this restricted range. The difference between a vector and its reduced

representation is denoted by

2r(α) ≡ α− [α] . (3.5)

Moreover, it is conventional to only indicate the fermions with non-vanishing entries:

for illustration, in table 4 we have given a number of basis vectors that appear in many free

fermionic models. They are described either by the names of the fermions that appear in

them or equivalently by the values of all of their 48 entries. We represent any such vector

by αR and αL with components αR(f) and αL(f). The Lorentzian inner product between

two vectors, α and β is defined as

α · β = αTRβR −αTLβL =
1

2
α(f)Tβ(f)− 1

2
α(f)Tβ(f)− α(λ)Tβ(λ) , (3.6)

with half-weighting for the real fermionic components f = ψµ, χi, yi, wi and f = yi, wi.

The collection of all such vectors defines a finite additive group, Ξ ∼= ZN1 ⊕ · · ·⊕ZNK .

This group

Ξ = span {B1, . . . ,BK} (3.7)

is generated by the set B = {Ba} of basis vectors, which are linearly independent and

non-redundant, in the sense that each α ∈ Ξ can be written as α =
∑
ma Ba, ma ∈ R,

such that

ma Ba = 0 mod 2 ⇔ ma = 0 mod Na (3.8)

for all a = 1, . . . ,K, where the mod 2 for vectors is understood component wise. Here Na

is the smallest integer satisfying Na Ba = 0 mod 2 and is called the order of Ba.

Furthermore, any set of boundary conditions, α, has to be compatible with the

worldsheet supersymmetry current TF , i.e. all terms in (3.2) need to transform with the

same phase:

TF 7→ −δα TF , δα = eiπα(ψµ) . (3.9)

This is determined by the ψµ component of α, as it has been assumed that the non-compact

Minkowski coordinates, xµ, do not transform under any element of Ξ. Consequently, all

vectors in the additive group Ξ must satisfy:

α(χi) + α(yi) + α(wi) = α(ψµ) mod 2 , (3.10)
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Ba Basis vector Ba components in fermions

1
{
ψµ, χ1...6; y1...6, w1...6 | y1...6, w1...6, ψ1...5, η123, φ1...8

}
S

{
ψµ, χ1...6

}
ξ1

{
ψ1...5, η123

}
ξ2

{
φ
1...8}

ξ ξ1 + ξ2 =
{
ψ

1...5
, η123, φ1...8

}
ei

{
yi, wi | yi, wi

}
b1

{
χ3456; y3456 | ȳ3456; η23

}
b2

{
χ1256; y12, w56|ȳ12, w̄56; η13

}

Bb ·Ba 1 S ξ1 ξ2 ξ ei bs

1 -12 4 -8 -8 -16 0 0

S 4 4 0 0 0 0 2

ξ1 -8 0 -8 0 -8 0 -2

ξ2 -8 0 0 -8 - 8 0 0

ξ -16 0 -8 -8 -16 0 -2

ej 0 0 0 0 0 0 0

bt 0 2 -2 0 -2 0 0

Table 4. The left part of this table gives a number of important basis vectors that appear in

many free fermionic models. The vector 1 is necesarily part of the additive set Ξ. The vector S is

associated with target space supersymmetry. The right part gives their multiplication table using

the product defined in (3.6).

for all i = 1, . . . , 6. This implies that if α(ψµ) = 0 then, for each i, the fermions {χi, yi, wi}
may only appear in pairs in α; when α(ψµ) = 1, then, for each i, either just one fermion

or all three out of these sets have to be present in α.

In order to ensure that the resulting partition function for the fermions is modular

invariant, yet non-vanishing, it is crucial that all fermions can have both R and NS sectors.

This means that the collection of all vectors in the additive set Ξ should affect all fermions.

This is automatically guaranteed because the unit element 1 of the boundary condition

addition rule is part of the additive set [7].

3.2 The free fermionic partition function

The full partition function of a free fermionic model [7],

Z(τ, τ) =
∑

α′,α∈Ξ

C[αα′ ]Z[αα′ ](τ, τ) , (3.11)

is given by a sum over the additive set Ξ of partition functions defined by the boundary

conditions α and α′ when parallel transported around the non-contractible loops of the

torus amplitude,

Z[αα′ ](τ, τ) = Zx(τ, τ)

Θ[
α(y)
α′(y)]Θ[

α(w)
α′(w)]Θ[

α(ψ)
α′(ψ)]Θ[

α(χ)
α′(χ)]

η20
(τ)

 1
2
Θ[

α(ȳ)
α′(ȳ)]Θ[

α(w̄)
α′(w̄)]

η̄12
(τ̄)

 1
2

Θ[
α(λ)

α′(λ)
]

η16 (τ) ,

(3.12)

in terms of the Mumford theta functions Θ[αα′ ](τ) = Θ[αα′ ](0; τ):

Θ[αα′ ](z; τ) = e−πi
1
2
αTα′

∑
n∈Zd

q
1
2

(n+ 1
2
α)2 e2πi (n+ 1

2
α)T (z+ 1

2
α′) . (3.13)

The Zx(τ, τ) factor corresponds to the non-compact bosons xµ and is therefore the same

as in (2.28). The absolute value sign appears since we combine the contributions of the

right-moving fermions, y, w with those of their left-moving partners y, w and, as they are
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real fermions, this term is not squared. ψ and χ are also real fermions but cannot be

combined with any left-movers.

Modular invariance of the full partition function restricts both the choice of basis

vectors of the additive group, Ξ, as well as the generalized GSO phases. All pairs of basis

vectors Ba,Bb need to satisfy the following conditions (no sums implied here and the dot

product is defined in (3.6)):

lcm(Na, Nb) Ba ·Bb = 0 mod 4 , (3.14a)

hence in particular Na B2
a = 0 mod 4. Moreover, when Na is even, an even stronger

condition has to be imposed, namely,

Na B2
a = 0 mod 8 . (3.14b)

This means that for models with only basis elements of order 2, B2
a = 0 mod 4. Finally,

real fermions which are simultaneously periodic under any three boundary condition basis

vectors must come in pairs [9].

3.3 Conditions on generalized GSO phases

In addition, there are constraints on the generalized GSO phases coming from modular

invariance [7]:

C[αα′ ] = C∗[−αα′ ] , (3.15a)

C[αα′ ] = −e
1
4
iπα·αC[αα′−α+1] , (3.15b)

C[αα′ ] = e
1
2
iπα·α′ C∗[α

′
α ] , (3.15c)

C[αβ+γ ] = δαC[αβ ]C[αγ ] (3.15d)

C[αα′ ]C[β
β′

] = δα δβ e
− 1

2
iπα·β C[αα′+β]C[β

β′+α
] , (3.15e)

at the one- and two-loop level. The general solution to these conditions can be parameter-

ized as follows [7]:

C[αα′ ] =
(
δα
)∑

a n
′
a−1 (

δα′
)∑

a na−1
e−πi r(α)·α′

∏
a,b

C
[
Ba
Bb

]nan′b
, (3.16)

for two arbitrary vectors α =
∑
na Ba , α′ =

∑
n′b Bb ∈ Ξ, with r(α) defined in (3.5). It is

important to note that (3.16) gives C[00] = 1. This tells us that all generalized GSO phases

are fixed in terms of the phases C[BaBb
] for all the basis vectors generating the additive group

Ξ. The phases that can be chosen freely are those of the upper triangular part of the GSO

phase matrix C including the diagonal (b ≥ a); the phases in the lower triangular part

(b < a) are fixed by (3.15c).

It might sometimes happen that some vector α does not lie in the reduced range

defined in (3.4). One can bring it into this range by adding a vector δ with only even
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entries. The generalized GSO phases are, in general, not invariant under such changes, but

transform as

C[α+δ
α′+δ′

] = e
1
2
πi δ·α′ C[αα′ ] , (3.17)

provided that δ, δ′ have only even entries, as can be inferred from (3.11) and (3.13). This

means that two sets of basis vectors, which only differ in vectors with only even entries,

describe fully equivalent models provided that one transforms their generalized GSO phases

via (3.17). It also shows that there is no loss of generality when enforcing all basis vectors

to have entries that lie inside the range (3.4).

3.4 Massless spectrum

The spectrum in the α ∈ Ξ sector of a free fermionic model is built upon the left- and right-

moving vacua, |0〉αR ⊗ |0〉αL . When a fermion, f or f , is strictly periodic, i.e. α(f) = 1 or

α(f) = 1, then this fermion has a zero mode. In all models, properties of the fermions are al-

ways defined pairwise, hence we can use complex fermions from which we can construct spin

up/down generators. A single complex fermion zero mode leads to two degenerate vacua

represented as |±〉; when we have a collection of fermionic zero modes we write |±, . . . ,±〉.
Consequently, their vacua are associated with spinorial representations in target space. In

particular, when the fermions ψµ have periodic boundary conditions, their zero modes form

the light-cone version of the four dimensional Clifford algebra and hence define target space

fermions. Thus, whether the sector α corresponds to bosons or fermions in target space is

determined by the quantity δα defined in (3.9). Making use of (3.16) we then obtain

δ−1
α = C[0α] = C[α0 ] =

 1 spacetime bosons ,

−1 spacetime fermions .
(3.18)

Both bosonic and fermionic oscillator excitations may act on the vacuum of such sectors.

The oscillator modes associated with the boson xµ have always non-zero, integral

frequencies. The smallest non-zero fermionic frequencies are

ν(f) =
1

2

(
1 + αR(f)

)
, ν(f) =

1

2

(
1 + αL(f)

)
, (3.19)

for real fermions, f and f , while for the complex fermions, λ, and their complex conjugates

we have

ν(λ) =
1

2

(
1 + αL(λ)

)
, ν(λ

∗
) =

1

2

(
1− αL(λ)

)
. (3.20)

The left- and right-moving masses of such states are given by

M2
R =

1

8
α2
R −

1

2
+
∑
f

ν(f) +NR , M2
L =

1

8
α2
L − 1 +

∑
f

ν(f) +NL , (3.21)

where NR/L are the number operators associated with bosonic oscillators on the right-

/left-moving sides. Level-matching requires that these left- and right-moving masses

are equal. Moreover, if we are only interested in massless states, both the left- and
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right-moving masses in (3.21) need to vanish. Hence, only for the values α2
R ≤ 4 and

α2
L ≤ 8 are massless states possible.

On the states in each sector, α ∈ Ξ, the generalized GSO projections,

eiπBa·F |state〉α = δαC
∗[αBa ]|state〉α , (3.22)

are imposed for all basis elements Ba, where

Ba · F =
∑
f

Ba · F (f)−
∑
f

Ba · F (f) . (3.23)

Here we work in a complex basis for all fermions; the fermion number operator F is defined

such that F (f) = −F (f∗) = 1. F vanishes on any NS-vacuum as well as on the “true”

R-vacuum |+ 1n〉, which we define as f i∗0 |+ 1n〉 = 0 when it corresponds to n complexified

fermions with periodic boundary conditions; f1
0 |+1n〉 = |−1, 1n−1〉, etc. (Note that n = 10

for the right-moving Ramond vacuum and n = 28 for the left-moving Ramond vacuum.)

Only the states that survive the generalized GSO projections are physical, i.e. correspond

to states in the four dimensional target space.

3.5 Conditions for supersymmetry

The generator of target space supersymmetry is denoted by S; its explicit form can be

found in table 4. Different forms for S are, in principle, possible, but it was shown in [58]

that they never lead to models with less than N = 2 supersymmetry and will, therefore,

not be considered further here. To preserve modular invariance, fermions with identical

transformation properties always come in pairs, hence we can make use of a complex

notation for the fermions as well.

Whenever S is part of the set of basis vectors {Ba}, we know that associated with any

sector α there will be a sector α + S. Since (3.18) decides whether a sector corresponds

to target space bosons or fermions and S involves ψµ, it follows that if α is bosonic then

α+ S is fermionic and vice versa. The supersymmetry element S then leads, via (3.22), to

the projection, that imposes the following for the signs s:

∑
α

sα =

{
even

odd
for C[SS] = ∓1 . (3.24)

Either choice corresponds to N = 4 spacetime supersymmetry in four dimensions, but of

opposite chirality in ten dimensions; conventionally one takes for positive chirality that the

spinors’ sums are even, so that C[SS] = −1.

In order to break N = 4 down to N = 1 supersymmetry in four dimensions, the set

of basis vectors {Ba} must contain elements that overlap with the vector S = {ψµ, χi}. In

light of (3.14a), their overlaps always involve an even number of complexified combinations

of the fermions in S. To fix conventions, we choose the surviving four dimensional gravitino,

|s〉SR ⊗ ∂x
µ
-1|0〉

S
L, (3.25)
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to have components s = ±(14). This then requires that the generalized GSO phases

involving S have to be chosen such that

C[SBa ] = C[S1 ] = C[SS] = −1 , (3.26)

to preserve at least N = 1 supersymmetry. In particular, for basis vectors that do not

overlap with S the opposite sign for GSO phases would kill all gravitino states. The second

equality holds even when 1 is not part of the basis by (3.15b).

4 Converting symmetric Z2 × Z2 orbifolds to free-fermionic models

In this section, we describe how one can associate a free fermionic model with the input

data of a given symmetric orbifold model. This conversion takes an orbifold model, defined

at a generic point, to a specific point in the geometrical moduli space; namely a point that

actually admits a free fermionic description.

Heterotic symmetric orbifolds are defined as orbifolds of either the E8×E8 or the

Spin(32)/Z2 string. A generic Z2 × Z2 symmetric orbifold model is defined by the two

Z2 orbifold elements θs that can act as pure twists or as roto-translations on the geometry,

accompanied by specific embeddings in the gauge degrees of freedom as encoded by the

gauge shifts Vs. In addition, there are the Wilson lines Ai, associated with the translations

in the various lattice directions, εi, that define the underlying torus or lattice. Finally, the

model might possess some generalized torsion phases. This is the input data we need to

translate into a collection of free fermionic basis vectors B and generalized GSO phases.

To define such a set of basis vectors, we need to take into account both the Wilson

lines as well as the free fermionic requirement that the 1 is in the additive set. To this

end, we first observe that having an order Mi Wilson line, Ai, associated with a certain

translation εi, can be thought of as a ZMi pure shift orbifold: on a torus with a radius

Mi times that of the original one, we see that applying the translational element with the

Wilson line Mi times acts as standard periodicity of the bigger torus. For this reason, we

will take this bigger six-torus as our starting point and assume that it has an orthonormal

lattice with unit radius. Hence, we first define a standard set of basis vectors, B0, that

describes the E8×E8 or the Spin(32)/Z2 theory on this orthonormal unit six-torus:

B0 =
{
S, ξu, e1, . . . , e6

}
, (4.1)

with ξu = ξ (or ξ1, ξ2) for the Spin(32)/Z2 (or E8×E8) case, respectively.

Next we extend this set to include basis vectors b̃s and βi that correspond to the orb-

ifold elements, θs, and the Wilson lines, Ai, respectively. The resulting canonical basis set,

B = B0 ∪
{
b̃1, b̃2,β1, . . . ,β6

}
=
{
S, ξu, e1, . . . , e6, b̃1, b̃2,β1, . . . ,β6

}
, (4.2)

contains up to 16 (or 17) elements for the Spin(32)/Z2 (or E8×E8) case. Any element α

in the additive set Ξ, associated with a given orbifold model, can therefore be expanded as

α = sS + tu ξu +mi ei + ks b̃s + ni βi . (4.3)

For the set of basis vectors in (4.2), we need a prescription for a choice of the generalized

GSO phase matrix.
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4.1 Defining the free fermionic basis vectors

Choice of ten dimensional heterotic theory. Depending on whether the orbifolded

string theory is the Spin(32)/Z2 or the E8×E8 theory, the set of basis vectors B contains:

Spin(32)/Z2 : S, ξ ∈ B , or E8×E8 : S, ξ1, ξ2 ∈ B . (4.4)

Encoding Wilson lines. Next, we turn to an order Mi Wilson line, Ai associated with

a lattice translation εi. Any of the lattice translations can be decomposed in the standard

Euclidean basis ei as: εi = (ni)i ei/Mi, where we treat ni as integral vectors. The associated

fermionic basis vector, βi, can then be taken to be:

βi =

{
08;

ni
Mi

,
ni
Mi
|
ni
Mi

,
ni
Mi

}(
2Ai
)
. (4.5)

The notation here means that no ψµ, χi fermions are involved and only the pairs of fermions

yi, wi and ȳi, w̄i, in the Euclidean directions in which εi is pointing, appear. The lat-

ter part indicates that one completes the basis vector by two times the value of the

discrete Wilson line in the orbifold formulation. As an illustrative example, the order-

two Wilson lines, Ai = (07, 1)(08) in the εi = 1
2 ei direction in the E8×E8 theory, be-

come βi = {08; yi, wi | ȳi, w̄i}(07, 1, 08) . Also, the spin structure vector, say νL for the

Spin(32)/Z2 theory defined under (2.36), which is a shift only in the gauge lattice, can

be translated to a free fermionic basis vector using (4.5) to give ξ (similarly, ν1L and ν2L

correspond to ξ1 and ξ2, respectively). Note that we did not include an extra factor of 2

in the y, w and ȳ, w̄ parts of (4.5) since this element represents an order Mi vector w.r.t.

the orthonormal lattice that was already generated by e1, . . . , e6.

4.2 Orbifold elements in the free fermionic formulation

In the same way, we can associate the basis vectors b1 and b2 with the orbifold elements

θ1 and θ2. Here the following complication arises: as discussed in subsection 2.2 there are

different types of orbifold actions and their characterization is partially parameterization

dependent. As can be inferred from the bosonization relation:

− i yiwi ' i ∂X i
R , (4.6)

in order to represent twists or shifts, but not roto-translations, the fermionic basis vectors

can be chosen as

b̃1 =
{
χ34,−χ56; z34, z56 | z̄34, z̄56

}(
2V1

)
, b̃2 =

{
−χ12, χ56; z12, z56 | z̄12, z̄56

}(
2V2

)
, (4.7)

where the signs in front of the complexified fermions, e.g. χ12 = χ1 + iχ2, have been chosen

such that they are compatible with the sign choices for the Z2 × Z2 actions on the spinor

in the bosonic formulation in (2.52). (We use the same notation for the complexified z’s as

well.) The non-removable parts of the shifts in the true roto-translations can be taken into

account by including the corresponding fermion pairs yi, wi and ȳi, w̄i in their associated

fermionic basis vectors in the same fashion as we did for the Wilson line elements, as in (4.5).
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Furthermore, each zi, i = 1, . . . , 6, equals either yi or wi and z̄i either ȳi or w̄i. Thus, a

similar ambiguity is present in the fermionic description when defining the twist actions.

This seems to imply that there is also an ambiguity of how to associate definite

fermionic basis vectors with their corresponding orbifold twist actions. To shed light on this

issue, we compare the partition functions of the bosonic and fermionic descriptions of the

orbifold twisted sectors. When doing so one notices some seemingly unrelated differences:

• In the bosonic description only commuting, constructing and projecting, elements

give contributions to the partition function, while by definition all boundary condi-

tions encoded in the additive set Ξ are allowed. Hence, the number of sectors on the

worldsheet torus does not seem to be the same in both descriptions.

• Secondly, the bosonic twisted partition function, given in (2.28), involves ϑ-functions

in the denominator as can be seen from (2.31). In contrast, the fermionic partition

function (3.12) always has ϑ-functions in the numerator only. Moreover, for the

geometrical part, the fermionic description involves twice as many ϑ-functions as the

bosonic description, since each right-(left-)moving bosonic coordinate Xi
R corresponds

to two fermions yi, wi.

But these issues are closely related and can, in fact, help us understand whether the twist-

like Z2 elements are mutual twists or roto-translations: suppose the two twist-like elements

b̃1 and b̃2 both contain a specified yi or wi. The part of the partition function in which

one is the constructing and the other is the projecting element will vanish identically since

this overlap leads to a (square root of) ϑ[
1/2
1/2] = 0. This means that this sector does not

give any contribution to the partition function; precisely as if we have two non-commuting

space group elements. Hence, in the direction(s) where the overlapping yi or wi appear,

one of the elements corresponds to a pure twist while the other acts as a roto-translation.

Consequently, if the sector defined by one element is to have a proper projection from the

other, then there should not be any overlap of any of the ys and ws.

We can see the same effect when we reverse the process: for commuting constructing

and projecting space group elements, h and h′, the geometrical twisted partition function

is given in (2.31). Using the identity

η

ϑ

[
1−a
2

1−a′
2

]
=

ϑ
[a

2

0

]
ϑ
[

0
a′
2

]
2 η2

, (4.8)

for any a, a′ = 0, 1, excluding (a, a′) = (0, 0), we can rewrite this partition function with

twice the number of ϑ-functions in the numerator, just like one has in the fermionic for-

mulation, for the ϑ-functions associated with the fermions y and w. Moreover, precisely as

we noticed above, for elements that do not lead to a ϑ[
1/2
1/2] in the partition function, the

characteristics in these ϑ-functions do not overlap.

Using these considerations it is always possible to find the appropriate choice of ys and

ws (and their conjugates) in the two orbifold basis vectors b̃1, b̃2. In practice, figuring out

the correct choices for given orbifold geometries can be quite tricky. Therefore, in table 6
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in the example section, we provide specific choices of free fermionic basis vectors that can

represent all 35 Z2 × Z2 orbifold geometries of table 2.

Some properties of the resulting set of basis vectors. If we translate orbifold twists,

shifts and Wilson lines to basis vectors of the corresponding models, we will always obtain

basis vectors which will satisfy the modular invariance conditions (3.14) in the free fermionic

formulation, since the orbifold input satisfied (2.37). By adding appropriate multiples of 2

to some of the entries of these basis vectors, they can be brought to the specific range (3.4)

as long as one remembers to modify the generalized GSO phases accordingly, once they

have been determined.

It should be noted that the notion of order of the resulting basis vectors in the free

fermionic model will be two times that of the orbifold theory for those orbifold shifts

Vs or Wilson lines Ai that are built from spinorial roots. For example, A1 = (08)(1
4

8)

has order two in the orbifold language since 2A1 ∈ Λ8×8 while the corresponding

β1 = {y1, w1|ȳ1, w̄1; 1
2 φ̄

1...8} has order four. The reason for this difference is that in the free

fermionic construction the order of the vectors is counted with respect to the orthogonal lat-

tice while on the orbifold side it is counted with respect to the E8×E8 or Spin(32)/Z2 lattice.

We would also like to emphasize that when converting an orbifold to a free fermionic

model we are forcing the theory to move to a very particular point in the moduli space,

namely a free fermionic point. By the rules of the dictionary presented here this is automat-

ically guaranteed. In particular, the vector 1 is always in the additive set. Moreover, we

should mention that we can always find different lattice representations in the same Z-class

which are free fermionic points as well. Instead of starting from the basis vectors e1, . . . , e6

that define the standard Euclidean basis, we can also use more miminal (i.e. with less

basis vectors) to define other free fermionic realizations of the various orbifold geometries.

Examples, for the different Z2 ×Z2 orbifold geometries of table 2 are presented in table 6.

4.3 Determining the associated generalized GSO phases

The next step is to determine the generalized GSO phases from the partition function in

the bosonic formulation. To do so, it is crucial to take into account all phases that appear

in the partition functions on both the orbifold and the free fermionic sides. These phases

in the orbifold description of section 2 get contributions from the bosonized superpartners

of the coordinate fields (2.33), the gauge lattice (2.35), generalized torsion phases (2.40)

and, finally, the additional symmetric phases (2.43). These phases should be compared

with the generalized GSO phases in (3.11) taking into account the phases (3.13) included

in the ϑ-functions, Θ. An important fact here is that the projection phase structure in

both theories is not fully identical: in the free fermionic formulation, the projection phase,

i.e. the final phases in (3.13), are fully factorized in the exponential. On the orbifold side,

however, the phases in the exponential are not factorized: there are two projection phases

in both (2.33) and (2.35): the last implement the orbifold and Wilson line projections while

the next-to-last implement the various lattice constraints due to the spin structures.
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Taking these observations into account, while comparing the various phases, we con-

clude that

(−)s
′s+s′+s e−2πi 1

2

{
vh
T vh′−VhTVh′

}
c[hh′ ] = e−πi

1
2
α·α′ e2πi (s′νTRvh−t

′
uν
T
uLVh)C

[α
α′

]
, (4.9)

by simply setting the bosonic and fermionic phases equal, provided that we use the expan-

sion in (4.3) for the vectors α and α′. The second phase on the right-hand-side takes into

account the fact that on the orbifold side the fully factorized exponentials are not present.

Inserting the various definitions we find

C
[α
α′

]
= (−)s

′s+s′+s eπi (v
T
h v
′
h−V

T
h V
′
h) e−2πi tu νTuLV

′
h c[hh′ ] , (4.10)

where we have used that νTRvs = 0 strictly for all supersymmetric orbifolds.

If we make the identifications (4.3), we see that all the remaining phases also agree

identically, hence, we can read off the generalized GSO phases of the free fermionic formu-

lation from the orbifold input. For all phases involving S we find (3.26). For the remaining

phases involving ei, we conclude that they are simply

C[eiBa ] = 1 , (4.11a)

for all Ba 6= S. In addition, we find

C
[
b̃1

b̃2

]
=eπi (v

T
1 v2−V T1 V2) e2πi cst , C

[
βi
βj

]
=e−πiA

T
i Aj e2πi cij , C

[
b̃s
βi

]
=e−πi V

T
s Ai e2πi csi .

(4.11b)

As stressed in subsection 2.7, all other possible generalized discrete torsion phases are

(mostly implicitly) taken to be trivial, i.e. c = 0, in the orbifold literature. Since any free

fermionic construction is not complete without also specifying their values, we indicate the

remaining phases here. We obtain

C
[
b̃s
b̃s

]
= eπi (v

2
s−V 2

s ) (−)cs , C
[
βi
βi

]
= e−πiA

2
i (−)ci , C

[
ξu
ξu

]
= (−)cu , (4.11c)

for the symmetric phases and

C
[
ξ1
ξ2

]
= e2πi cuv , C

[
b̃s
ξu

]
= e2πi csu , C

[
βi
ξu

]
= e2πi ciu , (4.11d)

C
[
ξu
b̃s

]
= e−2πi νTuLVs e−2πi csu , C

[
ξu
βi

]
= e−2πi νTuLAi e−2πi ciu , (4.11e)

for the anti-symmetric phases.

5 Converting free fermionic models to symmetric orbifolds

In this section we describe explicitly how to convert a free fermionic model to a symmetric

orbifold model. In the proceeding subsection, the various steps are discussed in detail. In

section 6 we then go through a number of examples to illustrate the general procedure.

Since the task of converting models is –in its fine-print– rather involved, we first present

a brief, non-technical outline of the steps involved. The interested reader is encouraged to

read the general discussion here and the examples in section 6 in parallel and, whenever

necessary, consult the other subsections to find extensive explanations of the steps used.
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1. Convert to a basis that admits an orbifold interpretation

As considered and described in section 3, a free fermionic model is defined by a set

of basis vectors B = {Ba}, generating an additive set Ξ, together with generalized

GSO-phases that both satisfy a large set of consistency conditions.

The basis of a generic free fermionic model contains vectors whose role in the de-

scription of an orbifold geometry is rather obscure. For the subsequent identification

of the properties of the orbifold model, it is necessary to go to a set of basis vectors

that can be distinguished by the roles they play:

• supersymmetry vector S ,

• twist-like vectors b̃s , s = 1, 2 ,

• Narain-like vectors βx ,

• spin-structure vectors ξu .

The twist-like generators, b̃1, b̃2 , encode the two independent Z2 reflections, possibly

combined with simultaneous shifts, i.e. the orbifold twists or roto-translations. The

Narain-like basis vectors, βx , are characterized by the requirement that they do not

act on the fermions {ψµ, χi} . Often one can identify one or two spin-structure basis

vectors: either ξ or ξ1, ξ2.

2a. Directly determine the orbifold twists, shifts and Wilson lines

If the spin-structure vectors, ξ or both ξ1 and ξ2, can be identified, then one can

directly interpret the free fermionic model as an orbifold of the Spin(32)/Z2 or E8×E8

theories, respectively. From the remaining Narain-like vectors one can then directly

read off the orbifold shifts and Wilson lines.

2b. Identify the geometrical Narain data

Unfortunately, often the spin-structure vectors are not present in the additive set Ξ,

or only one of the two ξu’s is. In this case, we can only determine the orbifold data

by comparison with the Narain description. This is possible because the Narain-like

vectors, βx , define the untwisted sector of the orbifold. Their partition function

can be represented as a lattice sum and from this we can, in principle, read off the

geometrical parameters G,B,A that define a Narain torus compactification.

3. Determine the generalized discrete torsion phases

We read off which generalized torsion phases are switched on for given generalized

GSO phases. These relations are important since they affect the projection conditions

on the spectra.

4. Classify the orbifold geometry

Once the six-torus background is specified, we can identify the orbifold geometry

which the free fermionic model corresponds to. To this end, we need to identify

the space group associated with the two twist-like elements b̃s and the torus lattice
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identified above. The combination of these data fixes the Z-class of the bosonic

model. In particular, it determines whether b̃s should be thought of as Z2-twists

and/or roto-translations. This will affect the number and type of fixed points of the

orbifold and, consequently, the underlying geometry of the resolved manifold.

Before we go into the details, a couple of comments are in order:

when a complete set of spin-structure vector(s) can be identified, we suggest to use

the direct route 2a to identify the Wilson lines. Of course, in that case, one can still follow

the other route 2b: this gives more information as it does not only specify the topological

data of the orbifold theory, but it also determines the value of all free moduli at the free

fermionic point, where the free fermionic model is defined.

Especially via route 2b, one is confronted with the fact that the choice of twist-like

vectors and Narain-like vectors out of the additive set is not unique. The representation

of Wilson lines, or of the Narain lattice in general, is dependent on the choice of duality

frame. In addition, one could keep some shift orbifold actions explicit in the description or

absorb them, possibly including the associated generalized torsion phases, in a redefinition

of the Narain lattice. To make the matching of free fermionic models with orbifold models

as transparent as possible, it is often preferable to translate all generalized GSO phases of

a free fermionic model to generalized torsion phases in the corresponding orbifold model.

However, we will also encounter examples where this is simply not directly possible or

where it would lead to other complications. Different choices could lead to seemingly

different orbifold models that are associated with one and the same free fermionic model;

consequently, these different orbifold models are equivalent descriptions of the same physics.

Whether a basis vector is of type S, b̃s or βx is determined by how it acts on the

right-moving fermions only. Therefore, it is not automatically guaranteed that the twist-

like elements b̃s have identical action on a certain set of left-moving fermions such that a

symmetric orbifold interpretation is possible. Similarly, a Narain-like element might act as

a twist on the left-moving coordinates, hence such Narain-like elements do not characterize

the underlying Narain lattice of the construction. This is a subtle question because the

pairing of the left-moving fermions with the right-moving y’s and w’s that correspond

to the right-moving coordinates via (4.6) is, in fact, arbitrary; for different choices the

interpretation of the model might be very different.

Similarly, Step 3 might also be a show stopper for the matching: in principle, the free

fermionic description allows for more choice of generalized GSO phases than the orbifold

description. As stressed in section 2, it is conventional in the orbifold literature to fix certain

phases once and for all, even though not all these choices are strictly necessary. However,

we have included there additional generalized torsion phases that should correspond to the

additional freedom of generalized GSO phases on the free fermionic side.

5.1 Convert to a basis that admits an orbifold interpretation

The first step in identifying an orbifold model that corresponds to a given free fermionic

model is to bring the basis vectors into a form that makes interpreting them from the

bosonic side easier.
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Characterize different types of basis elements. As discussed in the previous section,

any free fermionic model under consideration in this paper possesses the supersymmetry

vector S defined in table 4 as an element of the additive set Ξ; conventionally, even as one of

the basis vectors. For such models we can find two independent vectors b̃1 and b̃2 such that

both of these vectors and their sum, b̃3 = b̃1 + b̃2, all act on some of the χi but not on ψµ:

S ∩ b̃s 6= ∅ , δ
b̃s

= 1 . (5.1)

These basis vectors, b̃s, are twist-like vectors since they act on the geometry at least

as reflections and hence correspond to the orbifold elements as can be inferred from

the bosonization relation (4.6). This can be obtained by comparing the supersymmetry

currents in the bosonic and fermionic descriptions, given in (2.11) and (3.2), respectively,

upon identifying the notation ψi = χi.

For the remaining generators of the additive set, we construct linear combinations, βx,

such that none of them acts on the fermions {ψµ, χi}, i.e.

βx ∩ S = ∅ . (5.2)

We refer to these vectors as Narain-like vectors. In this new basis,

α = sS +
∑
a 6=S

na Ba = sS + ks b̃s + nx βx , (5.3)

(with s, ks = 0, 1 and na up to the order of the various elements Ba) only the supersym-

metry generator S has δS = −1. Notice that the two basis vectors b̃s are not uniquely

defined because we can always combine them with arbitrary linear combinations of the

basis vectors βx. A useful choice is to pick these linear combinations such that the overlap

of the vectors b̃1 and b̃2 on the y’s and w’s is as small as possible.

Symmetric orbifold interpretation. Before we continue, we need to check that the

fermionic model admits an interpretation as a symmetric orbifold at all: the free fermionic

basis elements translated into the bosonic language should either act as a twist-like action

or as a shift action on both left- and right-moving coordinates. This is not guaranteed by

the definitions of the twist-like and Narain-like basis vectors above as their characterizations

involved their
{
ψµ, χi

}
-content only.

To understand the relation between fermionic and bosonic boundary conditions, it is

helpful to make use of the bosonization relation (4.6). Since the supercurrent (3.2) has to be

preserved by all basis elements of a free fermionic model, we infer that for any Narain-like

element βx the fermions yi, wi’s should always appear in pairs for any i = 1, . . . , 6: Narain-

like elements could act as translations on the coordinate fields but never as a twist, hence

we see from (4.6) that precisely in these cases XR does not change sign. For symmetric

orbifolds, admissible Narain-like basis vectors should also contain ȳj , w̄j pairwise.

Similarly, in any twist-like element, b̃s, either yi or wi is present (but never both at the

same time) whenever it contains χi; when it does not, the yi, wi’s should appear pairwise.

From (4.6) we see that, in this case, XR at least changes sign, and so the interpretation of
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a twist-like element is justified. We demand that for a symmetric orbifold interpretation

the same ȳi’s and w̄i’s should appear in the twist-like basis elements.

These criteria for having a symmetric orbifold interpretation are up to renaming of

the left-moving real and complex fermions, since splitting in real ȳ and w̄ and complex λ̄

fermions in table 3 is somewhat arbitrary. For a free fermionic model to admit a symmetric

orbifold interpretation, there should be some choice for this such that these statements all

hold.

By a reordering of the indices i we can ensure that we have chosen the twist-like

elements such that

b̃1 ⊃
{
χ3,4, χ5,6

}
, b̃2 ⊃

{
χ1,2, χ5,6

}
. (5.4)

Again, using the invariance of the supercurrent (3.2) this implies that b̃1 and b̃2 act as twist-

like actions on the bosonic coordinates with point group actions given by (2.51). In the fol-

lowing, we are considering only free fermionic models that admit a symmetric orbifold inter-

pretation and that the basis vectors bs and βx have been brought to the form defined here.

It is also possible to obtain some elements βx that do not involve any y and w fermions;

such elements may be associated with the gauge spin structures νuL in the bosonic language:

if the model includes ξ1 and ξ2 then we can think of it as an orbifold of the ten dimensional

heterotic E8×E8 theory, and when it only includes ξ, of the Spin(32)/Z2 theory. It can also

happen that there is no linear combination of the Narain-like basis vectors which equals ξ;

in particular it might be that only one of the two ξ1, ξ2 is present. Given that the moduli

space of Narain compactifications is connected, in such cases the free fermionic models

correspond to orbifold theories at points in the moduli space other than the E8×E8 or

Spin(32)/Z2 points. Some examples are given in table 5 in section 6.

If the additive set Ξ includes a set of spin-structure vectors, i.e. either ξ or both ξ1

and ξ2, and some further requirements are met, see below, we can continue either via route

2a or 2b. If this is not the case, only route 2b is available to us.

5.2 Directly determine the orbifold twists, shifts and Wilson lines

In this subsection we assume that we have a set of basis vectors

B =
{
Ba

}
=
{
S, b̃s, ξu,βx

}
, (5.5)

that admit a symmetric orbifold interpretation and has at most six remaining Narain-like

basis vectors βx. In addition, we demand that they are strictly symmetric, i.e. each of

them contains the same yi, wi as ȳi, w̄i-pairs. Finally, we require that they remain linearly

independent when we restrict them to their geometrical action, characterized by the y, w-

pairs only.

If these conditions are not satisfied by the basis vectors in question, then the methods

described in this subsection cannot be applied. One could try to modify the input data of

the free fermionic model, such that the new set of basis vectors do satisfy these conditions.

Of course, alternatively, one can use the more general procedures of the next subsection

corresponding to route 2b.

– 30 –



J
H
E
P
0
4
(
2
0
1
6
)
0
3
8

Free fermionic basis vectors and even lattice constraints. The defining data of

an orbifold model, in particular the orbifold twists, shifts and Wilson lines, are assumed

to satisfy some additional conventions: the gauge shifts and Wilson lines multiplied by

their order should be lattice vectors in the appropriate gauge lattices. The orbifold twists

were chosen to leave a standard choice for the four dimensional supersymmetry generators

invariant. These conditions are technically enforced by requiring that the twists vs sat-

isfy (2.10) and the shifts Vs and the Wilson lines Ax multiplied by their orders are Λgauge

lattice vectors (see the requirements (2.15)). In addition, the orbifold input data needs to

satisfy the generalized modular invariant conditions (2.37). The conventions on the free

fermionic basis vectors Ba are slightly different: their entries have to fulfill (3.8) and are

conventionally chosen to lie in the range (3.4).

The additional specific lattice conditions on the orbifold input data translate in the

free fermionic language as follows: the standard choice for supersymmetry under (2.10)

requires that:

S · b̃s = 0 , (5.6)

(the conditions (2.15) are automatically fulfilled by (3.14)). If we have basis vectors that

do not satisfy (5.6), then we can modify them as

b̃orbi
s = b̃s + δs , (5.7)

where δs are vectors with only even entries in the χi-directions, such that some signs in

χi-entries of b̃orbi
s are flipped to satisfy (5.6): for example, we can take δ1 = {−2χ34} and

δ2 = {−2χ12} so that b̃orbi
1 ⊃ {−χ34, χ56} and b̃orbi

2 ⊃ {−χ12, χ56}. This does not modify

the free fermionic model at all, provided that one modifies the generalized GSO phases

accordingly using (3.17). In the orbifold language, this corresponds to the twists

v1 =

(
0, 0,−1

2
,
1

2

)
, v2 =

(
0,−1

2
, 0,

1

2

)
. (5.8)

Up to possible brother phases (2.46) this corresponds to the most common choice (2.52) in

the orbifold literature.

Characterizing the symmetric orbifold input data. We can now immediately read

off the orbifold input: the orbifold twists and shifts are given by

vs =
1

2
b̃orbi
s (χ) , Vs =

1

2
b̃s(λ̄) , (5.9a)

taking care when going from a real to a complex basis for the fermions χi. Moreover, we

can identify the Wilson lines

Ax =
1

2
βx(λ̄) , (5.9b)

associated with translations in the directions εx = 1
2 βx(y) = 1

2 βx(w).
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5.3 Identify the geometrical Narain data

The Narain lattice corresponding to a free fermionic model can be determined in the fol-

lowing fashion. Not the whole fermionic partition function (3.12) admits a Narain lattice

interpretation, therefore we only focus on the part of this partition function generated by

the fermions yi, wi, ȳi, w̄i, λ̄I . Moreover, only the non-twist part of the fermionic partition

function (3.12) should be considered, since the Narain description applies to torus com-

pactifications. Hence, we further restrict to the basis vectors with β = nx βx (i.e. setting

s = ks = 0):

ZNarain =
1

N

∑
n,n′

Θ[
β(y)
β′(y)]

η6

Θ[
β(y)
β′(y)] Θ[

β(λ)

β′(λ)
]

η22 , (5.10)

where N is the product of the orders of the elements βx. Here, we used that, for the

non-twist elements, β(w) = β(y) and similarly for their conjugates. Using the sum rep-

resentation (3.13), this is immediately written in the form of a Narain lattice sum (2.25)

and hence one can read off a basis for the Narain lattice. An example illustrating this

procedure in detail is given in subsection 6.1.

Narain standard form. With either of the above methods, one obtains a basis for the

Narain lattice. The collection of basis vectors may be interpreted as the generalized vielbein

E′. However, when we compute

E′T ηE′ = η̂′ , (5.11)

we generically do not find the metric η̂ generated in (2.23), but a matrix η̂′ that is related

to this via a transformation M ∈ GL(28;Z):

η̂ = MT η̂′M . (5.12)

It is important to realize that the determination of the Narain moduli strongly depends

on the form of η̂′. Hence, it is not sufficient to know the generalized vielbein E′ in

some arbitrary basis, but it is crucial to find a matrix M that brings it to a standard

form. Unfortunately, as far as we are aware, no generic algorithm is known about how

to determine such a transformation. However, this is not a problem of encoding a free

fermionic model in the orbifold description, but rather an issue of how to practically work

with Narain moduli spaces.

5.4 Determine the generalized torsion phases

We have seen in the previous subsections that we can distinguish two types of free fermionic

constructions: those that can be thought of as orbifolds of the Spin(32)/Z2 or E8×E8

theories and the others. This distinction is also important for how concretely one can

describe the translation of the generalized GSO phases to the generalized torsion phases

on the bosonic side.
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Orbifolds of the Spin(32)/Z2 or E8×E8 theories. Modulo the fact that one, in

general, needs to add even entries to some of the basis vectors, i.e. (5.7), we see that the

translation of the free fermionic to the orbifold data in (5.9) is essentially identical to that

in the opposite direction, see (4.5) and (4.7) (up to a factor of 1/2 in (4.5), which we

included since all vectors ei were taken to be in the basis vector set. Substituting the

translations into each other, one gets the original input data back). Hence, to determine

translation of the phases, we can also simply invert the phase relations (4.11).

Since free fermionic data do not necessarily satisfy (5.6), we may need some sign flips

in b̃s. Via (3.17), we have

e2πi cst = e−
1
4
πi (b̃1−δ1)·(b̃2+δ2)C

[
b̃1

b̃2

]
. (5.13a)

In addition, we obtain:

e2πi cij = e
− 1

4
πiβi·βj C

[
βi
βj

]
, e2πi csi = e−

1
4
πi b̃s·βi C

[
b̃s
βi

]
, (5.13b)

(−)cs = e−
1
4
πi b̃2

s C
[
b̃s
b̃s

]
, (−)ci = e−

1
4
πiβ2

i C
[
βi
βi

]
, (−)cu = C

[
ξu
ξu

]
, (5.13c)

e2πi cuv = C
[
ξ1
ξ2

]
, e2πi csu = C

[
b̃s
ξu

]
, e2πi ciu = C

[
βi
ξu

]
. (5.13d)

General Narain orbifolds. If one has determined the Narain lattice associated with

the Narain-like elements following route 2b, then one has absorbed some of the original

generalized GSO phases into the Narain lattice. This will typically mean that the geo-

metrical part of the lattice has changed, i.e. the ε in the generalized vielbein (2.19) is not

the same as the one we started with. Therefore, the Wilson lines that are read off from

it, are related, in a complicated way, to the original ones, hence unfortunately, it is very

difficult to describe the relation between the original phases of the free fermionic model

and the remaining ones after rewriting the underlying torus compactification in the Narain

form. In light of this, the most systematic approach seems to be to simply scan a variety

of generalized torsions for the translated orbifold model.

5.5 Identifying the orbifold geometry

Above, we obtained a basis of generators of the additive set which are divided into Narain-

like and twist-like elements. The twist-like elements, b1 and b2, can either be interpreted

as pure twists or roto-translations. However, reversing the logic presented in subsection 4.2,

we are able to determine how to interpret their actions geometrically.

Consequently, any free fermionic model that admits an interpretation as a symmetric

Z2×Z2 orbifold model should correspond to one of the geometries given in table 2. When

the orbifold actions and the six-torus lattice ε have been identified, the corresponding

Z2×Z2 orbifold can be determined by referring to the program CARAT. In particular, using

this code, one determines the Z-class of the lattice, simply by calculating the matrices

ε−1θ1ε and ε−1θ2ε and using the CARAT command: Name.
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6 Examples

6.1 Narain torus compactification models

The SO(12)×SO(32) model. Our review of free fermionic models in section 3

indicated that all free fermionic models contain at least the vectors:
{
1,S

}
. For simplicity,

the first example we consider here is the free fermionic model obtained from this set

augmented with the vector ξ given in table 4, i.e. is defined by the set of basis vectors{
1,S, ξ

}
. The resulting model possesses N = 4 supersymmetry in four dimensions and

has an SO(12)×SO(32) gauge group.

To translate this free fermionic model to the bosonic description, the first step is to

define the orbifold interpretable basis. To this end, we make a change of basis such that

the new basis vectors do not have any overlap:
{
S, e123456, ξ

}
: ξ is already a Narain-like

basis vector. Since we have the basis vector S explicitly, the other element which does not

contain ψµ and has no overlap with ξ is

e123456 = 1− S− ξ =
(
08, 112 | 112; 016

)
. (6.1)

As there is no overlap with S, this is also a Narain-like basis vector. In addition, due to

there being no overlap between the basis vectors e123456 and ξ, the resulting Narain part

of the partition function (5.10) factorizes as

ZNarain =
1

4 η6η̄22

∑
s′,s=0,1

Θ[ss′ ]
6Θ[ss′ ]

6
∑

t′,t=0,1

Θ[tt′ ]
16 (6.2)

Using the sum representation of the Θ function (3.13), we can read off the projection

conditions on the summation variables, m′′, n′′ ∈ Z6 and p′′ ∈ Z16, to obtain

ZNarain =
1

4 η6η̄22

∑
s=0,1, m′′,n′′∈Z6,∑
(m′′i +n′′i )=0 mod 2

q̄
1
2

∑
i(m
′′
i + s

2
)2 q

1
2

∑
j(n
′′
j + s

2
)2

∑
t=0,1, p′′∈Z16∑
p′′k=0 mod 2

q
1
2

∑
k(p′′k+ t

2
)2 .

(6.3)

We define new variables m′, n′ and p′ as

m′i = m′′i +
s

2
, n′i = n′′i +

s

2
, p′k = p′′k +

t

2
. (6.4)

Note that for s = 0 or 1 variables m′i’s and n′i’s are all integral or all half-integral. The

same holds for the new variables p′k’s. Furthermore, the sum restrictions imply that∑
(m′′i + n′′i ) = even ,

∑
p′′i = even . (6.5)

These conditions together tell us that (m′, n′) ∈ D12 and p ∈ D16. Here the lattice DD in

D dimensions is defined as

DD = RD + SD , (6.6)

where we introduced the SO(2D) root and spinor lattices

RD =

{
n ∈ ZD

∣∣∣∣ ∑n = even

}
, SD =

{
n+

1

2
1D

∣∣∣∣ ∑n = even

}
. (6.7a)
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Basis vectors Gauge group Six-torus lattice Narain moduli{
S, e1...6 + ξ

}
SO(44) {

1
2e1...6, e2 . . . , e6

} ε1, B1, A16, α16{
S, e1...6, ξ

}
SO(12)× SO(32) εso, BG, A = 0, α16{

S, e1...6 + ξ1, ξ2

}
SO(24)× E8 ε1, B1, A8, α8×8{

S, e1...6, ξ1, ξ2

}
SO(12)× E8 × E8 εso, BG, A = 0, α8×8{

S, e1, . . . , e6, ξ
}

U(1)6 × SO(32) {
1
2e1, . . . ,

1
2e6

} ε1, B = 0, A = 0, α16{
S, e1, . . . , e6, ξ1, ξ2

}
U(1)6 × E8 × E8 ε1, B = 0, A = 0, α8×8

Table 5. This table summarizes the most prominent free fermionic models that can be interpreted

as Narain compactifications. The explicit moduli were derived for the standard choice of the GSO

phases (6.13). The notation for the Narain moduli fields is defined in subsection 6.1.

VD =

{
n ∈ ZD

∣∣∣∣ ∑n = odd

}
, CD =

{
n+

1

2
1D

∣∣∣∣ ∑n = odd

}
. (6.7b)

In particular, D8 is the E8 root lattice. Hence, we can write the lattice sum as

ZNarain =
1

4 η6η̄22

∑
(m′,n′)∈D12

q̄
1
2
m′2 q

1
2
n′2

∑
p ′∈D16

q
1
2
p′2 . (6.8)

To identify this partition function (6.8) with the Narain partition function given in (2.18),

one needs to find a change of variables, N ′ = (m′, n′, p′) = EN , that solves the constraints

and allows us to write the sum over all of Z28 instead of the restricted set D12⊕D16. This

change of variables is precisely of the form of the Narain momentum vector (2.17), hence

the matrix E can be taken in the form of the generalized vielbein (2.19). For the case at

hand, a possible choice for this is given by

ε = εso , G = εT ε , B = BG , A = 016×6 , α = α16 (6.9)

using the notation defined below.

Other toroidal Narain models. To describe the previous and some other free fermionic

models which correspond to purely Narain compactifications, we define: the six dimensional

vielbeins,

ε1 =
1√
2
16, εso =

1√
2



1 0 0 0 0 0

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 1

0 0 0 0 −1 1


6×6

; (6.10)
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Kalb-Ramond B-fields,

B1 =
1√
2


0 −1 · · · −1

1
. . .

. . .
...

...
. . . −1

1 · · · 1 0


6×6

, BG =


Gij if i < j

0 if i = j

−Gij if i > j

; (6.11)

and Wilson lines,

Ai =


0

1 1 1 1 1 1

0


16×6

← i-th row . (6.12)

Using these definitions, we can express the moduli of a number of pure Narain free fermionic

models given in table 5. They have been derived following the procedure in the previous

subsection. For all of them we have made the standard choice of GSO phases, given by

C[SS] = C[SBa ] = −1 , C[BaBb
] = 1 , (6.13)

for all basis vectors Ba,Bb 6= S. Certain phases do not change the gauge group, but only

the lattices. A simple example of this effect is to set C[
ξ2
ξ2

] = −1 leading to a change of the

spinor lattice to the co-spinor lattice D8 in (6.7) for the second E8 factor.

6.2 A simple free fermionic Z2 × Z2 model

We will start our analysis of free fermionic models that include orbifold twists by considering

the free fermionic model with basis vectors{
S,b1,b2, e1...6, ξ1, ξ2

}
, (6.14)

introduced in table 4. The upper triangular part of the generalized GSO phase matrix,

including the diagonal is taken to be:

C[BaBb
] =

Ba\Bb S b1 b2 ξ1 ξ2 e1...6



S −1 −1 −1 −1 −1 −1

b1 1 −1 1 1 1 1

b2 1 1 −1 1 1 1

ξ1 1 −1 −1 1 1 1

ξ2 1 1 1 1 1 1

e1...6 −1 1 1 1 1 1

. (6.15)

To emphasize that the entries in the lower triangular part cannot be chosen arbitrarily, but

are fixed via (3.15c), we have drawn these entries in a grey colour.
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In this model, the interpretation of the basis vector elements is immediate: S is the tar-

get space supersymmetry element; b1,b2, the twist-like elements; and ξ1, ξ2, e1...6, Narain-

like elements. Since the twist-like elements involve the fermions χi as dictated in (5.4), we

can associate bs with the orbifold twists θs defined in (2.51). Moreover, since these twists

do not have any y or w overlap, we know we can interpret them both as generating pure

twists, as discussed in subsection 5.5.

In more detail, by the multiplication in table 4 we notice that the inner products

bs · S = 2 mod 4 . (6.16)

Hence, the twist-like elements do not satisfy (5.6). Therefore, when we want to read off

the associated orbifold twists and gauge shifts according to (5.9a), we need to flip some

signs (see (5.7)):

b1 : v1 =
1

2

(
0,−1, 1

)
, V SE

1 =
1

2

(
05, 0, 1, 1

)(
08
)
, (6.17a)

b2 : v2 =
1

2

(
−1, 0, 1

)
, V SE

2 =
1

2

(
05, 1, 0, 1

)(
08
)
, (6.17b)

which we can see with the help of (3.17), do not modify the phases. Hence, we can keep

using (6.15) in its current form. Since the model includes the basis vectors ξ1, ξ2, we can

interpret it as an orbifold of the E8×E8 theory. Moreover, since V SE
s contains vs, this model

corresponds to the standard embedding. Consequently, we can use the number of 16-plet

generations and anti-generations to determine the Hodge numbers of the orbifold geometry.

The orbifold phases can be read from the matrix in (6.15) using (5.13). We find that

all the orbifold torsion phases are trivial, i.e.

cs = ci = cu = 0 , cst = cij = csi = cuv = csu = ciu = 0 . (6.18)

In particular, the spin-structure projections are the standard ones used in the orbifold

literature. Since, all the other possible generalized torsion phases (2.39) are also zero, this

model can be directly understood as a standard orbifold model. Furthermore, the non-

twist-like basis vectors,
{
S, e1...6, ξ1, ξ2

}
, are the same as the set of basis vectors on the

fourth row of table 5. Hence, given that the relevant phases are also chosen identically, we

can immediately read off the moduli from that row of the table.

To summarize, we have found that this simple free fermionic model corresponds to the

standard Z2 × Z2 pure twist orbifold on the SO(12) lattice with the standard embedding.

This corresponds to the DW(1 - 1) geometry.

6.3 Free fermionic realizations of the Z2 × Z2 orbifold geometries

In this subsection, we would like to give explicit examples of free fermionic models corre-

sponding to each of the Z2×Z2 orbifold geometries. The results of this analysis have been

collected in table 6. (They are independent of the gauge structure and therefore apply to

both the E8×E8 and the Spin(32)/Z2 cases.) In principle, we can directly use the results of

section 4 to translate each of these geometries in the free fermionic language. This way one
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obtains a large set of basis vectors which can be computationally inconvenient. In table 6

we give free fermionic realizations of each of the Z2 × Z2 geometries that are minimal in

their number of basis vectors.

To determine these results we started from the explicit parameterization of the orbifold

geometries given in [54]: in particular, the periodicity of the target space two-tori in terms

of a modular parameter is taken to be 2τ (not to be confused with the Teichmueller

parameter of the worldsheet torus defined under (2.18)). Whenever possible, we modified

the shift elements indicated there such that they can be represented by free fermionic

translational elements ei, eij , etc., so that the sum of all these elements is identical to

e123456 (combined with S, ξ1 and ξ2, this ensures that 1 is part of the additive set). To

that effect, we sometimes change 1 or τ to 1 + τ throughout an orbifold geometry: i.e.

both in the shift elements as well as in the twists/roto-translations. For all geometries, we

extend the resulting elements such that we get a set of shift elements that sum to e123456.

We took the standard Z2 × Z2 action to be the one that leads to chirality in the

standard embedding in the first E8 of the E8×E8 theory. This means that the twist-

like elements in this case are simply b1 and b2, given in table 4. The related non-chiral

geometries in the same class have one or both twist elements replaced by roto-translations.

These roto-translations can be represented in the fermionic language by combining the

twist elements with the appropriate translational basis vectors ei. We have tried to choose

the free fermionic representations of the lattice and the twists/roto-translations such that

they are all manifestly order two free fermionic elements. It was only for the DW geometry

(2 - 12) that we were unable to find such a representation and resorted to a seemingly order

four twist b1 + 1
2 e2.

The standard choice of generalized GSO phases we use in table 6 is given by:

C[BaBb
] =

Ba\Bb S B1 B2 βx


S −1 −1 −1 −1

B1 1 −1 1 1

B2 1 1 −1 1

βy −1 δy δy 1

. (6.19)

Here we define

δy =

−1 βy = ξ1 ,

+1 otherwise .
(6.20)

Moreover, Bs, s = 1, 2, stands for the twist elements given in the next-to-last column of

table 6, βx,βy for ξ1, ξ2 and the shift elements given in the last column of that table.

6.4 The NAHE set

Maybe the most famous free fermionic construction is the so-called NAHE set, which

was first introduced in [59–61]. This set has been the basis for many phenomenological
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DW Hodge
Twists / roto-translations Shifts elements

Free fermionic basis vector realization

Label # in the standard embedding: S, ξ1, ξ2 and

(0 - 1) (51, 3) (0+, 0−, 0−) , (0−, 0+, 0−) none b1,b2, e12, e34, e56

(0 - 2) (19, 19) (0+, 0−, 0−) , (0−, 0+, 1−) none b1,b2 + e5, e12, e34, e56

(0 - 3) (11, 11) (0+, 0−, 0−) , (0−, 1+, 1−) none b1,b2 + e35, e12, e34, e56

(0 - 4) (3, 3) (1+, 0−, 0−) , (0−, 1+, 1−) none b1 + e1,b2 + e35, e12, e34, e56

(1 - 1) (27, 3) (0+, 0−, 0−) , (0−, 0+, 0−) (τ, τ, τ) b1,b2, e123456

(1 - 2) (15, 15) (0+, 0−, 0−) , (0−, 0+, τ−) (τ, τ, τ) b1,b2 + e56, e123456

(1 - 3) (11, 11) (0+, 0−, 0−) , (0−, 0+, 1−) (τ, τ, τ) b1,b2 + e5, e123456

(1 - 4) (7, 7) (0+, 0−, 0−) , (0−, 1+, 1−) (τ, τ, τ) b1,b2 + e35, e123456

(1 - 5) (3, 3) (1+, 0−, 0−) , (0−, 1+, 1−) (τ, τ, τ) b1 + e1,b2 + e35, e123456

(1 - 6) (31, 7) (0+, 0−, 0−) , (0−, 0+, 0−) (τ, τ, 0) b1,b2, e1234, e56

(1 - 7) (11, 11) (0+, 0−, 0−) , (0−, 0+, 1−) (τ, τ, 0) b1,b2 + e5, e1234, e56

(1 - 8) (15, 15) (0+, 0−, 0−) , (0−, 1+, 0−) (τ, τ, 0) b1,b2 + e3, e1234, e56

(1 - 9) (7, 7) (0+, 0−, 0−) , (0−, 1+, 1−) (τ, τ, 0) b1,b2 + e35, e1234, e56

(1 - 10) (11, 11) (1+, 0−, 0−) , (0−, 1+, 0−) (τ, τ, 0) b1 + e1,b2 + e3, e1234, e56

(1 - 11) (3, 3) (1+, 0−, 0−) , (0−, 1+, 1−) (τ, τ, 0) b1 + e1,b2 + e35, e1234, e56

(2 - 1) (15, 3) (0+, 0−, 0−) , (0−, 0+, 0−) (1, 1, 1) , (τ, τ, τ) b1,b2, e135, e246

(2 - 2) (9, 9) (0+, 0−, 0−) , (0−, 0+, 1−) (1, 1, 1) , (τ, τ, τ) b1,b2 + e5, e135, e246

(2 - 3) (17, 5) (0+, 0−, 0−) , (0−, 0+, 0−) (1, 1, 1) , (τ, τ, 0) b1,b2, e1356, e24

(2 - 4) (11, 11) (0+, 0−, 0−) , (0−, 0+, 1−) (1, 1, 1) , (τ, τ, 0) b1,b2 + e56, e1356, e24

(2 - 5) (7, 7) (0+, 0−, 0−) , (0−, 0+, τ−) (1, 1, 1) , (τ, τ, 0) b1,b2 + e6, e1356, e24

(2 - 6) (19, 7) (0+, 0−, 0−) , (0−, 0+, 0−) (1, 1, 1) , (τ, 1, 0) b1,b2, e156, e234

(2 - 7) (9, 9) (0+, 0−, 0−) , (0−, 0+, τ−) (1, 1, 1) , (τ, 1, 0) b1,b2 + e6, e156, e234

(2 - 8) (5, 5) (0+, 0−, 0−) , (0−, τ+, τ−) (1, 1, 1) , (τ, 1, 0) b1,b2 + e46, e156, e234

(2 - 9) (27, 3) (0+, 0−, 0−) , (0−, 0+, 0−) (0, 1, 1) , (1, 0, 1) b1,b2, e12, e134, e156

(2 - 10) (11, 11) (0+, 0−, 0−) , (0−, 0+, τ−) (0, 1, 1) , (1, 0, 1) b1,b2 + e6, e12, e134, e156

(2 - 11) (7, 7) (0+, 0−, 0−) , (0−, τ+, τ−) (0, 1, 1) , (1, 0, 1) b1,b2 + e46, e12, e134, e156

(2 - 12) (3, 3) (τ+, 0−, 0−) , (0−, τ+, τ−) (0, 1, 1) , (1, 0, 1) b1 + 1
2
e2,b2 + e46, e12, e134, e156

(2 - 13) (21, 9) (0+, 0−, 0−) , (0−, 0+, 0−) (1, 1, 0) , (τ, τ, 0) b1,b2, e13, e24, e56

(2 - 14) (7, 7) (0+, 0−, 0−) , (0−, 0+, 1−) (1, 1, 0) , (τ, τ, 0) b1,b2 + e5, e13, e24, e56

(3 - 1) (12, 6) (0+, 0−, 0−) , (0−, 0+, 0−) (0, τ, 1), (τ, 1, 0) , (1, 0, τ) b1,b2, e45, e23, e16

(3 - 3) (17, 5) (0+, 0−, 0−) , (0−, 0+, 0−) (1, 1, 0), (τ, τ, 0) , (1, τ, 1) b1,b2, e134, e124, e1456

(3 - 4) (7, 7) (0+, 0−, 0−) , (0−, 0+, τ−) (1, 1, 0), (τ, τ, 0) , (1, τ, 1) b1,b2 + e6, e134, e124, e1456

(3 - 5) (15, 3) (0+, 0−, 0−) , (0−, 0+, 0−) (0, 1, 1), (1, 0, 1) , (τ, τ, τ) b1,b2, e35, e15, e246

(3 - 6) (9, 9) (0+, 0−, 0−) , (0−, 0+, τ−) (0, 1, 1), (1, 0, 1) , (τ, τ, τ) b1,b2 + e56, e35, e15, e246

(4 - 1) (15, 3) (0+, 0−, 0−) , (0−, 0+, 0−) (0, τ, 1), (τ, 1, 0) , (1, 0, τ) , (1, 1, 1) b1,b2, e45, e23, e16, e135

Table 6. Free fermionic realizations of all inequivalent Z2 × Z2 orbifold geometries [54] are sug-

gested.

explorations of free fermionic models. It reads:{
1,S,b′1,b

′
2,b
′
3

}
, (6.21)

The vectors 1 and S were defined in table 4; the vectors b′s are given by:

b′1 =
{
ψµ, χ1,2, y3,...,6 | y3,...,6, ψ

1,...,5
, η1
}
, (6.22a)

b′2 =
{
ψµ, χ3,4, y1,2, w5,6 | y1,2, w5,6, ψ

1,...,5
, η2
}
, (6.22b)
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b′3 =
{
ψµ, χ5,6, w1,...,4 |w1,...,4, ψ

1,...,5
, η3
}
. (6.22c)

These can be expanded as

b′1 = b1 + S + ξ1 , b′2 = b2 + S + ξ1 , b′3 = b1 + b2 + e1...6 + S + ξ1 , (6.23)

in terms of the basis vectors given in table 4. In accordance with (3.26) the generalized

GSO projection phases are chosen such that

C[BaBb
] =

Ba\Bb 1 S b′1 b′2 b′3



1 1 −1 −1 −1 −1

S −1 −1 −1 −1 −1

b′1 −1 −1 −1 −1 −1

b′2 −1 −1 −1 −1 −1

b′3 −1 −1 −1 −1 −1

. (6.24)

With these input parameters, the gauge group is SO(10)×SO(6)3×E8: in particular, the

SO(16) gauge fields correspond to the states φ
A
φ
B |0〉NS

L ⊗ ψµ|0〉NS
R . Additional gauge

bosons arise in the ξ2 = 1 + b′1 + b′2 + b′3 sector; transforming in the 128 representation

of SO(16). This enhances the gauge group to E8. The charged matter consists of 48

generations of 16-plets of SO(10); 16 originating in each of the b′i.

Since

b′1 ∩ S =
{
ψµ, χ1,2

}
, b′2 ∩ S =

{
ψµ, χ3,4

}
, (6.25)

the N = 4 spacetime SUSY generated by S is indeed reduced to N = 1. The phases

C[Sb′s ] = −1 are chosen such that the remaining gravitino is not projected out.

We begin the translation of this NAHE model to the orbifold language by taking linear

combinations of the basis vectors, so that it is clear which basis vectors are Narain-like and

which impose the Z2 orbifold actions. We can identify two Narain-like vectors via

β = b′1 + b′2 + b′3 − S = e1...6 + ξ1 , ξ2 = 1− b′1 − b′2 − b′3 . (6.26)

In addition, we define the twist-like elements

B1 = S + b′1 =
{
χ3,4,5,6, y3,...,6 | y3,...,6, ψ

1,...,5
, η1
}
, (6.27a)

B2 = S + b′2 =
{
χ1,2,5,6, y1,2, w5,6 | y1,2, w5,6, ψ

1,...,5
, η2
}
, (6.27b)

which are associated with the twists θ1 and θ2, respectively. Since they do not involve pairs

of y’s and w’s and they do not overlap, they can be thought of as pure twist elements with

the shift gauge embeddings:

V1 =
1

2
(15, 1, 2, 0)(08) , V2 =

1

2
(15, 0, 1, 2)(08) , (6.28)
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where we have taken into account that Bs do not fulfill (5.6). We arrive at this form by

flipping signs and adding lattice vectors. Notice that these elements are related to the

standard embedding choices (6.17) as Vs = V SE
s + 1

2 (18)(08).

The separation of the twists in two bunches of eight entries is possible because we have

the element ξ2 which distinguishes the second eight entries from the first eight. Notice

that in this case, the gauge shifts are not in the standard embedding, hence, the number

of SO(10) generations does not necessarily correspond to the Hodge numbers.

In the new basis,
{
S,B1,B2,β, ξ2

}
, the generalized GSO matrix (6.24) takes the form

C[BaBb
] =

Ba\Bb S B1 B2 β ξ2



S −1 −1 −1 −1 −1

B1 1 −1 −1 −1 1

B2 1 −1 −1 −1 1

β 1 −1 −1 −1 1

ξ2 1 −1 −1 −1 1

(6.29)

from which all the orbifold phases can be read using (4.11).

The final step is to identify the Narain moduli, which are given in the third row

of table 5. Note that even though the vectors ξ1 and ξ2 do not both appear, we can

still consider the E8×E8 model as the starting point of the construction because of the

appearance of α8×8. The particular values of the rest of the moduli then place this model

at a point of enhanced symmetry in the moduli space, where the lattice between the 6d

and the gauge degrees of freedom is not fully factorized anymore.

6.5 Semi-realistic free fermionic classification of Z2 × Z2 fermionic models

In [62] a class of free fermionic models is considered. The twelve defining basis vectors are{
1,S, e1, . . . , e6,B1,B2, z1, z2

}
(6.30)

where the first eight were defined in table 4; the remaining read

B1 = b1 + ξ1 , B2 = b2 + e56 + ξ1 , z2 = ξ2 − z , z1 = z =
{
φ

1...4}
. (6.31)

This set spans the same additive set as our standard choice{
S,b1,b2, e1, . . . , e6, ξ1, ξ2, z

}
. (6.32)

Since we have all the elements ei separately, we know that we have moved away from the

special free fermionic point with enhanced gauge symmetry. Since we have the basis vectors

bs, these models can be interpreted as the (0-1) orbifold for the standard choice of phases,

like in (6.19).

The new ingredient in this model is the basis vector z. Note that it can be combined

with any of the ei’s of the model to be interpreted as a Wilson line. Its effect does indeed

reduce the gauge symmetry of the model.
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6.6 Free fermonic MSSM-like constructions

In this subsection, we consider some more complicated free fermionic models that were

constructed in the past, and have a rich phenomenology.

An MSSM model with a symmetric orbifold interpretation. One of the earliest

MSSM-like constructions in string theory was the model constructed in [31] (closely related

MSSM-like models were constructed in [33]). This free fermionic model is an extension of

the NAHE model discussed in subsection 6.4 with three additional basis elements:

b′4 =
{
ψµ, χ12, y36, w45 | ȳ36, w̄45; ψ̄1...5, η̄1

}
, (6.33a)

α =
{
ψµ, χ56, y2, w134 | ȳ1236, w̄46; ψ̄123, η̄12, φ̄1...4

}
, (6.33b)

β =

{
ψµ, χ34, y15, w26 | ȳ15, w̄26;

1

2
ψ̄1...5,

1

2
η̄123, φ̄34,

1

2
φ̄1567

}
. (6.33c)

We notice that these three elements can be modified to e45 = b′4 − b′1 and

α′ = α+ b′3 =
{
y2w2 | ȳ1236, w̄1236; ψ̄45, η̄123, φ̄1...4

}
, (6.34a)

β′ = β + b′2 =

{
y25, w25 | ȳ25, w̄25;

3

2
ψ̄1...5,

1

2
η̄13,

3

2
η̄2, φ̄34,

1

2
φ̄1567

}
, (6.34b)

which all are Narain-like elements. Hence we see that this model admits a symmetric

orbifold interpretation, in the sense that the orbifold actions act symmetrically. On the

other hand, we see that the basis vectors α′ and β′ are asymmetric shifts, accompanied

by Wilson lines. The machinery we have developed should also apply to such models.

Nevertheless, even though we can use the basis vectors above to read off the generalized

vielbein E, this is one of the cases discussed in section 5.3 for which it is not straightforward

to bring it to a basis in which it will have the form (2.19).

A non-geometric MSSM model. Another free fermionic MSSM-like realization was

constructed in [32]. This model also starts from the NAHE set and adds

α =
{
y36, w36 | ȳ1, w̄23456; ψ̄123, φ̄1...4

}
, (6.35a)

β =

{
y15, w15 | ȳ356, w̄124; ψ̄123,

1

2
η̄123, φ̄1...4

}
, (6.35b)

γ =

{
y24, w24 | ȳ12346, w̄4;

1

2
ψ̄1...5,

1

2
η̄123,

1

2
φ̄1567, φ̄34

}
. (6.35c)

All three elements are shift elements on the right-moving side: the fermions yi and wi

appear in pairs. From the left-moving side these elements act as twists and roto-translations

with twist parts that act in all six torus directions: all three elements either have only ȳi

or only w̄i for each of the six directions. In fact, the differences β − α and γ − α are

ordinary Narain-like elements. They can be understood as modifying the Narain moduli

of the underlying torus compactification. Hence, there is really only one element, say α,

that does not admit a symmetric orbifold interpretation; this model corresponds to an

asymmetric orbifold and is therefore beyond the scope of this paper.
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6.7 The Blaszczyk model at the free fermionic point

Our final example considers an interesting MSSM-like model construction on a Z2 × Z2

orbifold of the E8×E8 string, the so-called Blaszczyk model [63]. This model was defined

in two steps:

1. A six generation GUT model was constructed on the standard Z2×Z2 orbifold with

a specific choice of gauge shifts Vs and discrete Wilson lines Ai in the six torus

directions.

2. By a freely acting Z2 shift, in all three two-tori simultaneously, with an accompanying

Wilson line A, the GUT group was broken to the SM group and the number of

generations halved.

Upstairs model matching. In detail, the upstairs model was defined by the gauge

shifts

V1 =

(
5

4
,−3

4
,−7

4
,

1

4
,

1

4
,−3

4
,−3

4
,

1

4

)(
0, 1, 1, 0, 1, 0, 0,−1

)
, (6.36a)

V2 =

(
− 1

2
,−1

2
,−1

2
,
1

2
,−1

2
,−1

2
,−1

2
,−1

2

)(
1

2
,

1

2
, 0, 0, 0, 0, 0, 4

)
, (6.36b)

and the discrete Wilson lines

A1 =
(
08
)(

08
)
, (6.37a)

A2k =

(
5

4
,

1

4
,

3

4
,−1

4
,−1

4
,

3

4
,

3

4
,

3

4

)(
− 1

4
,
3

4
,

5

4
,

5

4
,

1

4
,

1

4
,

1

4
,

1

4

)
, (6.37b)

A3 =

(
− 3

4
,−1

4
,

1

4
,

7

4
,−1

4
,−1

4
,−1

4
,−1

4

)(
1

4
,
1

4
,
1

4
,
5

4
,−3

4
,

1

4
,−3

4
,
1

4

)
, (6.37c)

A5 =

(
− 1

2
,−1

2
,

1

2
,−1

2
,
1

2
,−1

2
,

1

2
,

1

2

)(
1

2
,
1

2
, 0, 0, 0, 0,−1

2
,−1

2

)
, (6.37d)

with k = 1, 2, 3.

To translate this model into the free fermionic language, we begin by observing that

it is an orbifold of the E8×E8 theory on the standard orthogonal lattice, hence the free

fermionic analogue has to have the basis vectors: {S, e1, . . . , e6, ξ1, ξ2} . Since the Z2 ×Z2

orbifold actions do not involve any roto-translations, we augment the standard pure twist

basis vectors b1 and b2 of table 4 with 2V1 and 2V2:

b̃1 =
{
χ34,−χ56; y34, y56 | ȳ34, ȳ56

}(
2V1

)
, (6.38a)

b̃2 =
{
− χ12, χ56; y12, w56 | ȳ12, w̄56

}(
2V2

)
, (6.38b)

βi =

{
1

2
yi,

1

2
wi
∣∣∣∣ 1

2
ȳi,

1

2
w̄i
}(

2Ai
)
, i = 1, . . . , 6 . (6.38c)
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Note that we have included some minus signs in front of some of the χi to ensure that we

satisfy the conditions (3.14), as they then precisely correspond to the orbifold consistency

conditions (2.37).

There are no discrete torsion phases turned on in the orbifold description of this model,

so we can make the standard choice (6.19) for the resulting free fermionic model. The only

subtlety here is that in the free fermionic language not all of the above basis vectors are

independent (mod 2), because 2b̃1 = ξ1. This is easily rectified by removing ξ1 from the

set of basis vectors, to get a minimal set.

Downstairs model matching. The downstairs model is obtained by modding out a

freely acting Wilson line, which acts in the 1
2(e2 + e4 + e6) direction with

A =
1

2

(
A2 +A4 +A6

)
. (6.39)

Before the freely acting shift, the model lives on the (0 - 1) geometry; after the freely acting

element is applied, the underlying geometry is (1 - 1). Similarly, in the free fermionic

language we have to include the element

β =
1

2

(
β2 + β4 + β6

)
, (6.40)

and then select an appropriate minimal set of independent vectors.

7 Conclusion

Summary. In this paper we developed a detailed dictionary between the free fermionic

models and symmetric Z2 ×Z2 orbifold models. To this end, we first gave a detailed sum-

mary of the heterotic string constructions in both formulations: a free fermionic model is

fully specified by a set of basis vectors and a choice of generalized GSO phases. An orbifold

model is characterized by a torus lattice on which an orbifold acts. The orbifold action

may be simple twists or composite roto-translations. In addition, the orbifold elements may

act on the gauge degrees of freedom of the E8×E8 or Spin(32)/Z2 theories; we assumed

that this action can always be described by gauge shift vectors. Moreover, the translations

that define this lattice can have accompanying actions in the form of discrete Wilson lines.

The geometry, background B-field and the Wilson lines can be conveniently combined in

the Narain description of heterotic toroidal orbifolds. Finally, it is possible to switch on

generalized discrete torsion phases in heterotic orbifold constructions.

To translate the input data for a free fermionic model to the orbifold language, we

first determine linear combinations of the basis vectors to facilitate their interpretations.

We distinguished between the following types of basis vectors: the target space super-

symmetry generator; the twist-like elements; and the Narain-like elements. If there are

Narain-like elements that do not act on the geometry, then we can often decide whether

the free fermionic theory can be most naturally thought of as an orbifold of the E8×E8 or

of the Spin(32)/Z2 theory. In any case, we can extract from the Narain-like basis elements

the corresponding Narain torus compactification up to discrete O(6,22;Z) T-duality trans-

formations. We gave a criterion to decide whether the twist-like elements are associated
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with twist and/or roto-translations and described how to read off the gauge shift vectors.

Finally, we derived formulae that associate most generalized GSO phases with the sym-

metric and asymmetric generalized discrete torsion phases. For certain generalized GSO

phases this was not possible, because in the orbifold literature, standard choices for the

corresponding phases are always assumed.

Outlook. The main application of our detailed dictionary between orbifold and free

fermionic models is that it allows the study of the same theory in different regimes of its

moduli space. For example, this dictionary allows us to study Z2 × Z2 orbifold models

at special points of enhanced symmetry with radii at the order of the string scale and

investigate consequences of special choices for the B-field.

The connection between singular orbifolds and the models that result on their reso-

lutions has been studied in great detail in the past [64–69]. By establishing a dictionary

between free fermionic and Z2×Z2 orbifolds, one may also study what happens if vacuum

expectation values of various scalars in free fermionic models are switched on that deform

the theory away from the free fermionic point, as well as the orbifold locus.

Moreover, the phenomenological studies of string constructions do not stop at the

construction of interesting string vacua, they begin there: for example, one can look for

stringy doublet-triplet splitting mechanisms [70, 71] and study Yukawa coupling selection

rules. In particular, for the latter, there has been quite some controversy in recent

literature [72–74], thus, perhaps studying selection rules in the free fermionic context [75]

could help settle this debate.

In this paper, we have focused on finding a dictionary between free fermionic mod-

els and bosonic constructions that can be interpreted as symmetric orbifolds. Recently

there has been a revived interest in asymmetric orbifolds [76, 77] and their connection to

non-geometry and non-geometric fluxes [78, 79]. It would, therefore, be very interesting

to extend our dictionary to include asymmetric cases in both the fermionic and bosonic

language. Moreover, as we have seen in this work it is very natural and useful to formulate

the underlying lattice properties of symmetric and asymmetric orbifolds using the Narain

formulation. Thus, it would be very useful to have a formulation of (a)symmetric orbifolds

as Narain orbifolds. Work in this direction is underway in [80].

Moreover, in light of the absence of a signal for supersymmetry, there has been some

recent effort in constructing non-supersymmetric models directly in string theory. These

investigations have been done both in the context of orbifold theories [81, 82] and free

fermionic models [83, 84]. Furthermore, there have been some interesting studies of some

of their properties, like threshold corrections [85–87]. It would certainly be useful if the

dictionary that is presented here for supersymmetric string vacua can also be extended

to incorporate non-supersymmetric constructions. Given that in both formulations some

generalized GSO or torsion phases need to be chosen very carefully in order to preserve

supersymmetry, it is very likely that also a dictionary between various non-supersymmetric

orbifold and free fermionic constructions can be established.
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