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Abstract: We consider Euclidean Conformal Field Theories perturbed by quenched dis-

order, namely by random fluctuations in their couplings. Such theories are relevant for

second-order phase transitions in the presence of impurities or other forms of disorder.

Theories with quenched disorder often flow to new fixed points of the renormalization

group. We begin with disorder in free field theories. Imry and Ma showed that disordered

free fields can only exist for d > 4. For d > 4 we show that disorder leads to new fixed

points which are not scale-invariant. We then move on to large-N theories (vector models

or gauge theories in the ‘t Hooft limit). We compute exactly the beta function for the

disorder, and the correlation functions of the disordered theory. We generalize the results

of Imry and Ma by showing that such disordered theories exist only when disorder cou-

ples to operators of dimension ∆ > d/4. Sometimes the disordered fixed points are not

scale-invariant, and in other cases they have unconventional dependence on the disorder,

including non-trivial effects due to irrelevant operators. Holography maps disorder in con-

formal theories to stochastic differential equations in a higher dimensional space. We use

this dictionary to reproduce our field theory results. We also study the leading 1/N correc-

tions, both by field theory methods and by holography. These corrections are particularly

important when disorder scales with the number of degrees of freedom.
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1 Introduction and review

It is of considerable theoretical and experimental interest to consider Quantum Field The-

ory (QFT) with random couplings. By “random couplings” or “quenched disorder” we

mean that we have some specified probability distribution in the space of couplings con-

stants. In the simplest case one can let the couplings vary independently at every point in

Euclidean space (though the ensemble should still consist of reasonably smooth functions).

This probability distribution is independent of the quantum fields, which is why this type

of disorder is called “quenched.” We imagine first solving the theory for all values of the

couplings, and then averaging over the couplings.

Experimentally, this situation arises (in some cases) for the conformal field theories

that describe the critical points of second-order phase transitions, in the presence of disor-

der. Such disorder is often present, due to impurities or to random external fields. Upon

– 1 –



J
H
E
P
0
4
(
2
0
1
6
)
0
1
3

adding disorder, the phase transition point may be modified (i.e. the critical exponents

may change), it can disappear altogether, or it can be unaltered.1

Let us first define the problem (see, for instance, [1–3]). Consider a Euclidean QFT

in d dimensions, in which all the operators appear in the action with couplings gi that

are allowed to depend on space, S = S0 +
∑

i

∫
ddxgi(x)Oi(x). We can then define the

generating functional W [gi] for connected diagrams (i.e. minus the free energy)

eW [gi] ≡ Z[gi] ≡
∫

[Dµ]e−S0−
∑
i

∫
ddxgi(x)Oi(x) , (1.1)

where [Dµ] stands for the path integral measure. In this paper we focus on the case where

the theory with gi = 0 is a Conformal Field Theory (CFT). Functional derivatives of W [gi]

evaluated at gi(x) = 0 give connected correlation functions in the CFT.

Now, suppose that one of the couplings associated to a scalar operator, h ≡ g0, is

random, with a Gaussian probability distribution2

h(x) = 0 , h(x)h(y) = c2δ(d)(x− y) , (1.2)

where we denote by X the average of X over the disorder. The disorder average of higher

products of h(xi) is given by a sum over all the two-point functions as in Wick’s theorem.

We can then define the disordered free-energy WD as an average over the ordinary

free-energy

WD[g1, g2, . . .] ≡
∫
Dh W [h, g1, g2 . . .]e−

1
2c2

∫
ddxh2(x) , (1.3)

and the disorder-averaged vacuum-normalized correlation functions are given by

〈O1(x1) . . .On(xn)〉 ≡
∫
Dh e−

1
2c2

∫
ddxh2(x)〈O1(x1) . . .On(xn)〉h , (1.4)

where 〈O1(x1) . . .On(xn)〉h is the usual vacuum-normalized path integral with a source h(x)

〈O1(x1) . . .On(xn)〉h =

∫
[Dµ]O1(x1) . . .On(xn)e−S0−

∫
ddxh(x)O0(x)∫

[Dµ]e−S0−
∫
ddxh(x)O0(x)

. (1.5)

The operators Oi may or may not coincide with O0.

Of particular interest are the correlation functions that can be obtained by derivatives

of the disordered free energy, WD[gi]. In the context of second order phase transitions

these correlation functions determine many aspects of the thermodynamics, and thus play

an important role. Unlike the usual situation in CFTs where all correlation functions can

be obtained from derivatives of the free energy, this is not the case for disordered theories.

1We do not study in this paper disordered theories relevant to quantum phase transitions. In these

theories there is an extra time direction, but the disorder only depends on the spatial directions. We also

do not consider thermal phase transitions in quantum systems, which are described by a compact Euclidean

time direction. We only consider here the most symmetric case of disorder in Euclidean CFTs; this is relevant

to classical phase transitions. We leave the study of the various other cases by our methods to future work.
2The case of more than one coupling being random can be treated similarly, as well as cases where the

disorder couples to operators with non-zero spin. Also, one can consider other probability distributions in

the space of couplings.
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We will be careful to illuminate these differences when they are important. For example, if

we take the second derivative of the disordered free energy with respect to some couplings

gi that couple to Oi we would find the disorder-averaged connected correlation function

δ2WD[gi]

δgi(x1)δgj(x2)
= 〈Oi(x1)Oj(x2)〉 − 〈Oi(x1)〉〈Oj(x2)〉 . (1.6)

Note that the second term is not the same as 〈Oi(x1)〉·〈Oj(x2)〉. Generically the correlation

functions (1.6) behave differently from 〈Oi(x1)Oj(x2)〉. In the context of the holographic

duality of field theories to gravitational theories, connected correlation functions of the

type (1.6) naturally appear as derivatives of the bulk action of the gravitational theory.

The Harris argument [4] provides a simple diagnostic of when disorder is irrelevant.

Suppose the scaling dimension of the scalar operator O0 to which we couple disorder is ∆.

Because of the quadratic term in h on the right-hand side of (1.3), it is natural to associate

to h dimension d/2, and to take c to be a dimensionless coupling constant. Then, the term∫
ddxh(x)O(x) in the action is relevant if ∆ < d/2, marginal if ∆ = d/2, and irrelevant

if ∆ > d/2. Thus, we expect disorder to be innocuous for ∆ > d/2. This is the Harris

bound. If ∆ ≤ d/2 we have to analyze the situation case by case. In this situation, even

arbitrarily small disorder may have profound effects on the low-energy behavior of the

theory. It is also useful to keep in mind that the argument that for ∆ > d/2 disorder has

no effect on the phase transition is only valid for small disorder; large disorder is similar

to an irrelevant operator with a large coefficient, and it may have non-trivial consequences

(another subtlety in this argument is considered in subsection 2.4).

One difficulty in analyzing the disordered free energy (1.3) by standard field theory

methods is that we are averaging the logarithm of the partition function, and not the

partition function itself, so we are not just adding extra terms to the action. One common

way to address this is by appealing to the replica trick, where we average the n’th power

of the partition function, and then perform an analytic continuation in n

lim
n→0

Zn − 1

n
= log(Z) = W . (1.7)

Alternatively, in some situations (including all the cases we analyze in this paper), the free

energy can be sufficiently controlled directly, and then the replica trick is not necessary.

Analyzing disorder in free field theories (with disorder for the free scalar field) is

relatively straightforward, and we begin by reviewing what is known about this case. We

add some new observations on the nature of the low-energy fixed points (when these fixed

points exist). In particular we show that they are not scale-invariant.

However, in many experimental situations one is interested in strongly coupled field

theories, and then there are very few methods for analyzing disorder systematically. For

example, consider the Ising model in d dimensions with the exchange energy (the bond)

having a small stochastic component of the type (1.2). This is described in the continuum

limit by making the coefficient of the energy operator, ε(x), a random variable as above.

For d = 3 this modifies the properties of the phase transition, and one finds new critical

exponents. It is of great interest to find a useful approach to computing these critical
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exponents. One method that has been attempted is the epsilon expansion around d = 4.

It turns out that the expansion is in
√
ε and it unfortunately does not work as well as for

the pure Ising model. See [5] for a relatively recent review and references.

Another method that is useful when the disorder is close to being marginal is an

expansion in (d/2 − ∆) (for the Ising model ∆ ∼ 1.41, and hence d/2 − ∆ ∼ 0.09 is

numerically rather small and one can hope that expanding in it would give reasonably

good results) — one can view this as an expansion in the heat-capacity critical exponent.

When (d/2−∆) is small the disordered fixed point is sometimes close to the original, pure,

fixed point. This method was used in two dimensions, see for example [6–9], and an analysis

in 2 + ε dimensions was considered in [2]. The application of this approach to the random

3d Ising model will appear in a future publication (see [10] for some preliminary details).

In this paper we study a different method for controlling the effects of disorder in

interacting theories, which is to take the large-N limit of vector models or of gauge theories.

In most of this paper we analyze large-N theories where the coupling constant of a ‘single-

trace operator’ is taken to be a random variable. We analyze many aspects directly in field

theory. In addition, if this theory has a known dual given by a weakly coupled gravitational

theory on AdSd+1, then W [h, g1, g2, . . .] of (1.3) is equal to the AdSd+1 bulk action with

specified boundary conditions, and one can consider its average. If the gravitational theory

is weakly curved then it is possible to explicitly study these disordered theories in AdSd+1.

This is done in section 5 (see [11, 12] for earlier works, and see also [13]).3

In the extreme large-N limit, the field theory behaves as a ‘generalized free field theory’,

and we can exactly solve the path integrals that appeared above, and compute the corre-

lation functions of the disordered theory. We find again that scale-invariance of disordered

fixed points is not guaranteed (even though they are fixed points of the renormalization

group). We argue that when the disorder is marginal, it can sometimes be an exactly

marginal deformation of the disordered fixed point, and that in some other cases the low-

energy theory is scale-invariant but has unconventional dependence on the disorder. It

would be interesting to understand if these non-standard properties of large-N disordered

fixed points can occur also for finite-N theories. We also analyze what happens when a

double-trace deformation is present in addition to the disorder.

The extreme large-N limit is dual by the AdS/CFT correspondence to a free field

theory on AdSd+1, and in section 5 we use holography to make detailed computations

and compare them to the field theory expectations. In particular, we reproduce the beta

functions that the field theory predicts.

In sections 5 and 6 we study the leading 1/N corrections to the infinite N results.

When the disorder is of order one in the large-N limit, these give small corrections that

become important only at distances that (for marginal disorder) are exponentially large

in N . However, these effects are important when the disorder c2 scales as the number of

degrees of freedom (namely, as N2 for gauge theories and as N for vector models). We

cannot compute the 1/N corrections exactly, but we can analyze them perturbatively in the

3See [14–16] for the holographic analysis of disordered theories of the type that is relevant for quan-

tum phase transitions, where disorder breaks the Poincaré symmetry. See also, for instance, [17–19] and

references therein for additional recent studies of holographic disorder.
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disorder, both holographically (where this involves an interacting field theory on AdSd+1)

and in field theory, and we do this at leading order. In general the behavior found for infinite

N is modified. At leading order in 1/N we find unconventional momentum-dependence

in correlation functions of the disordered theory, with extra logarithms. Holography may

allow for an exact analysis of this limit in some cases, but we leave this to future work.

2 Disorder in free field theories and in large-N theories

2.1 A review of disorder in free field theories

We begin by analyzing disorder in free scalar field theories. This can be a first approxi-

mation to disorder in weakly coupled theories. It is also relevant for second order phase

transitions when we have, on one side of the transition, a broken continuous global sym-

metry, since this gives a free theory of Nambu-Goldstone bosons at low energies.

Our action is

S =

∫
ddx

(
1

2
(∂µσ(x))2 + h(x)σ(x)

)
, (2.1)

and we take the coupling h to vary randomly as in (1.2). For specific h(x) there is a

competition between the fact that the field σ(x) wants to align itself with the local source

h(x), and the kinetic term that suppresses variations of the field.

For a given h(x), we can compute the (normalized) two-point function of σ(x) in closed

form,4

〈σ(x)σ(y)〉h =
1

(x− y)d−2
+

∫
ddzddw

h(z)h(w)

(x− z)d−2(y − w)d−2
. (2.3)

Thus, we find the exact result

〈σ(x)σ(y)〉 =
1

(x− y)d−2
+

∫
ddz

c2

(x− z)d−2(y − z)d−2
. (2.4)

The second term on the right-hand side is infrared divergent for d ≤ 4. Therefore, the

theory (2.1) with h(x) a random field is sick for d ≤ 4. This is the simplest example of

a conformal field theory that ceases to exist because one of its couplings is taken to be

a random field [20]. In particular, this computation shows that phase transitions with

spontaneous breaking of continuous symmetries cease to exist in d ≤ 4 once we make the

couplings to the Nambu-Goldstone bosons random [20].

We can see another manifestation of the sickness encountered in (2.4) by computing

〈σ(x)〉h =

∫
ddz

h(z)

(x− z)d−2
. (2.5)

4The propagator in position space of a free field normalized as in (2.1) is

〈σ(x)σ(y)〉 =
Γ(d/2− 1)

4πd/2
1

(x− y)d−2
. (2.2)

We omit these numerical prefactors and some combinatorial coefficients in this section in order not to clutter

the equations.
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Therefore,

〈σ(x)〉〈σ(y)〉 =

∫
ddz

c2

(x− z)d−2(y − z)d−2
. (2.6)

This is again infrared divergent for d ≤ 4.

Note that the connected average 〈σ(x)σ(y)〉 − 〈σ(x)〉〈σ(y)〉 is altogether independent

of disorder and finite! This is the combination that arises from the second derivative of the

disordered free energy with respect to an extra source for σ(x).

However, it is possible to see the infrared catastrophe also at the level of the disordered

free energy. To that end, we introduce a source for the composite operator σ2(x),

S =

∫
ddx

(
1

2
(∂σ(x))2 + h(x)σ(x) + g(x)σ2(x)

)
. (2.7)

When the CFT describes a second order phase transition, g is proportional to (T − Tc).
Averaging over the random field h and computing the first derivative with respect to g of

the disordered free energy WD[g] we get

− δWD

δg(x)
= 〈σ2(x)〉 =

∫
ddyddy′

h(y)h(y′)

(x− y)d−2(x− y′)d−2
=

∫
ddy

c2

(x− y)2d−4
. (2.8)

The integral is infrared divergent for d ≤ 4. Hence, the operator σ2(x) does not exist as

a local operator in the disordered theory, and the theory is thus sick. This is very similar

to the familiar infrared divergence that leads to the Mermin-Wagner-Coleman theorem in

d = 2 [21, 22].

2.2 The low-energy limit for d > 4

In the cases where the theories described in the previous subsection exist, namely d > 4,

it is interesting to ask what is their behavior at low energies.

Consider δ2WD
δg(x)δg(y) , the connected averaged two-point function

〈σ2(x)σ2(y)〉 − 〈σ2(x)〉〈σ2(y)〉 . (2.9)

According to what we found above, this should be well defined for d > 4. In second-

order phase transitions we can interpret this correlation function as measuring the second

derivative of the disordered free energy with respect to the temperature, namely the heat-

capacity exponent. One finds that in the deep infrared (compared to the scale set by c),

and for d > 4,

〈σ2(x)σ2(y)〉 − 〈σ2(x)〉〈σ2(y)〉 ' 1

(x− y)d−2

∫
ddz

c2

(x− z)d−2(y − z)d−2
' c2

(x− y)2d−6
.

(2.10)

The scaling dimension of σ2 in the infrared is thus shifted (in the second derivative of

the free energy) from (d − 2) to (d − 3). As a result, the heat-capacity exponent of the

disordered theory vanishes in d = 6. In d = 6, the two-point function (2.10) can be written

as ∼ c2
∫
d6peipx log(p2). This “dimensionless” behavior in d = 6 is the starting point

of a systematic ε-expansion of the disordered free energy of interacting theories around
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d = 6 [23]. It is important to point out that again the connected average (2.10) behaves

very differently from 〈σ2(x)σ2(y)〉, which is dominated, like the disconnected contribution

〈σ2(x)〉〈σ2(y)〉, by a term that scales as c4/(x− y)2d−8 at large distances.

Let us also discuss the connected averaged three-point function of σ2, namely,
δ3WD

δg(x)δg(y)δg(z) . One finds that it receives a contribution that goes like c2 from disorder,

but all the contributions of order c4 and higher exactly cancel:

− δ3WD

δg(x)δg(y)δg(z)
' 1

(x− y)d−2(x− z)d−2(y − z)d−2

+

[
c2

(x− y)d−4(x− z)d−2(y − z)d−2
+ 2 permutations

]
. (2.11)

In the infrared the terms proportional to c2 always dominate. As expected, for d > 4

the correlation function (2.11) decays at long distances and so the theory is well behaved.

However, in the deep infrared the three-point function (2.11) is inconsistent with conformal

invariance. In fact, it is not even consistent with scale-invariance.5 Based on the two-point

function (2.10) one would have expected that σ2 carries dimension d − 3, but the overall

dimension of the three-point function (2.11) in the infrared is 3d− 8 rather than 3d− 9.6

In the next section we will see how these results are reproduced using the replica trick,

and we will return there to the discussion of scale-invariance in the infrared. Here we only

mention that this non-scale-invariance in the infrared can be traced in the replica trick

computation to the fact that the replicated theory is unstable; the deep infrared limit and

the n→ 0 limit of (3.1) do not commute.

2.3 Disorder in the large-N limit

Large-N field theories (such as SU(N) gauge theories in the ’t Hooft limit or O(N) vector

models) provide useful examples where disorder can be analyzed explicitly in the N →∞
limit, since connected correlation functions in these theories are suppressed by powers of

1/N .

5Note that in momentum space there is a well-known relation [20, 23–26] between the IR limit of disorder-

averaged connected correlation functions of the d-dimensional free theory, such as (2.10) and (2.11), and

connected correlation functions of the pure (d − 2)-dimensional free theory. This relation holds when all

momenta lie in a (d−2)-dimensional subspace, and it continues to hold to all orders in perturbation theory

(though it does not hold non-perturbatively). This relation implies that these specific disorder-averaged

connected correlation functions in momentum space obey a (d−2)-dimensional scaling symmetry (and even

a conformal symmetry), as do the correlation functions (2.10) and (2.11) when integrated over two of the

dimensions. It also implies some relations between the critical exponents of the d-dimensional disordered

theory and the (d − 2)-dimensional pure theory. However, the full correlation functions of the disordered

free theory do not obey any scaling symmetry, as exhibited already by the form of (2.10) and (2.11).
6Another option is to force the connected correlation functions to be scale-invariant in the infrared,

by scaling each operator according to the scaling dimension implied by its two-point function. With this

scaling we find that all connected n-point functions with n > 2 (such as (2.11)) vanish in the IR. This

would imply that the disorder-averaged IR theory is non-local. For instance, all connected 3-point functions

〈σ(x)σ(y)O(z)〉 with any operator O would vanish in the IR, implying that σ(x)σ(y) has no overlap with

any local operator (except the identity operator); this is unlike the situation in the UV theory where

the connected
〈
σ(x)σ(y)σ2(z)

〉
is non-zero. The same is true also for any other product of two operators

O1(x)O2(y) in the IR. Thus, the interpretation of having no scale-invariance in the IR seems more reasonable

to us. We thank S. Rychkov for discussions on this point.
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The simplest case arises when we have disordered couplings for ’single-trace operators’

(operators invariant under SU(N) or O(N) that cannot be written as products of invariant

operators) in a large-N theory and we normalize their two-point functions and sources to

be of order one in the large-N limit; for infinite N this leads to ‘generalized free fields’.

Generalized free fields are CFT operators that obey the same statistics as free fields, even

though they can have different dimensions from free fields. We normalize the two-point

function of a scalar operator O(x) of dimension ∆ to

〈O(x)O(y)〉 =
1

(x− y)2∆
, (2.12)

and higher-point functions are then given by Wick’s theorem. The only operators in such

theories are products of O and of derivatives of O. As a consequence, the OPE of O(x)O(y)

does not include the energy-momentum tensor (unless ∆ = (d − 2)/2, in which case O is

an ordinary free field). Thus, one cannot think of such a theory as a local CFT, but

one can think of it as a decoupled sector of a local CFT with cT = ∞, where cT is the

central charge appearing in the two-point function of the energy-momentum tensor. In the

AdS/CFT correspondence, a generalized free field is related to a free field of mass m in an

AdSd+1 space of radius L, with ∆(∆− d) = m2L2.7

In this section we study such theories with arbitrary values of ∆ < d/2, and with

disorder for O. In this case we can compute everything exactly as a function of c2, as long

as c2 remains finite in the large-N limit. As in the previous subsection, we find a non-

trivial low-energy limit with novel behavior. In the next section we will discuss the specific

case of ∆ = d/2, where some new features arise. In large-N disordered theories the free

energy and correlation functions can be exactly computed as a function of the interesting

couplings, so we do not need to use the replica trick. However, in the next section we will

perform computations also using the replica trick, and we will see that in some cases there

are subtleties in using the replica trick for generalized free fields.

The computations in this subsection are straightforward generalizations of the

computations performed above for free fields. Consider a generalized free field O with

∆ < d/2, so that disorder is a relevant perturbation. Its two-point function in the presence

of some source h,

〈O(x)O(y)〉h =

∫
[Dµ]O(x)O(y)e−S0−

∫
ddxhO∫

[Dµ]e−S0−
∫
ddxhO , (2.13)

can be solved exactly. In momentum space we get (up to unimportant prefactors that we

will ignore throughout this section)

〈O(k)O(l)〉h = k2∆−dδ(d)(k + l) + k2∆−dl2∆−dh(k)h(l) , (2.14)

and in position space

〈O(x)O(0)〉h =
1

x2∆
+

∫
ddzddw

h(w)h(z)

(x− z)2∆w2∆
. (2.15)

7Such relations between sectors of CFTs and field theories on AdS space can exist also for non-free field

theories on AdSd+1 [27].
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We can now directly average these expressions using (1.2) to find an exact result [11]

〈O(k)O(−k)〉 =
(k2)d/2−∆ + c2

(k2)d−2∆
. (2.16)

In the deep UV we find

lim
k2→∞

〈O(k)O(−k)〉 = (k2)∆−d/2 −→ lim
x→0
〈O(0)O(x)〉 = x−2∆, (2.17)

and in the deep infrared

lim
k2→0

〈O(k)O(−k)〉 =
c2

(k2)d−2∆
−→ lim

x→∞
〈O(0)O(x)〉 = c2xd−4∆. (2.18)

We see that in the UV, there is no effect of the weak disorder, and the two-point function

in the UV is the same as in the pure theory, as expected when the disorder is relevant. In

the infrared, however, the disorder term dominates and the behavior is altered.

The distribution 1/(k2)d−2∆ is non-integrable for d − 4∆ ≥ 0, i.e ∆ ≤ d/4. Exactly

when this happens the correlation function in position space does not decay. This signifies

a disease of the theory which generalizes the result of [20] (our computation reduces to [20]

when ∆ = (d − 2)/2, as reviewed in subsection 2.1). Note that if the original CFT is

unitary, then ∆ ≥ d/2− 1, and thus d− 4∆ ≥ 0 can only happen if d ≤ 4.

Let us next consider the correlation function (2.16) from which we subtract the piece

which is disconnected before the h-average is taken. Indeed, 〈O(k)〉h = k2∆−dh(k), so

〈O(k)〉〈O(l)〉 = c2k4∆−2d. Hence, the piece that is dominant in the infrared in (2.16)

exactly cancels with the average of the disconnected correlation function, and the second

derivative of the free energy behaves as

〈O(k)O(−k)〉 − 〈O(k)〉〈O(−k)〉 = (k2)∆−d/2 , (2.19)

which is completely independent of disorder! It is easy to see that the same is true also for

higher derivatives of the free energy, and even for connected correlators of O with other

operators. This is due to the fact that all the connected correlators of more than two

generalized free fields vanish.

As in subsection 2.1, to see the sickness of the theory for ∆ ≤ d/4, we can also add a

source for the operator O2. Then we can take a derivative of the free energy with respect

to the source and obtain 〈
O2(k)

〉
h

=

∫
ddl

h(k − l)h(l)

(k − l)d−2∆ld−2∆
. (2.20)

If we average over h, only the zero momentum piece has a non-zero average (as expected

from translation invariance of the statistical ensemble) and we find

〈O2(k = 0)〉 = c2V ol(Rd)×
∫
ddl

1

l2d−4∆
. (2.21)

This is infrared divergent if ∆ ≤ d/4. So we could say that the operator O2 does not exist

in the disordered theory if ∆ ≤ d/4. For example, consider the free (non-critical) O(N)
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vector model at very large N . The operator O = ~φ2 is a dimension ∆ = d− 2 generalized

free field operator. Its dimension is smaller than d/4 for d ≤ 8/3. Hence, in this range,

introducing small disorder in ~φ2 would render the theory ill-defined.

Now we will assume d/2 > ∆ > d/4 and compute the infrared anomalous dimension

of O2. We will study the averaged connected two-point function. This subtracts the most

infrared divergent pieces and has a clear physical interpretation as the second derivative of

the free energy with respect to some source. The final answer for the average of the second

derivative of the free energy with respect to the source of O2 is

〈O2(k)O2(−k)〉 − 〈O2(k)〉〈O2(−k)〉 = (k2)−d/2+2∆ + c2(k2)−d+3∆ . (2.22)

There are no higher corrections in c2. The dominant term in the UV is the first one which

leads to the dimension 2∆, as appropriate in a generalized free field theory. The infrared

dominant term is the second term. Thus, O2 behaves as a field with a shifted dimension:

∆O2 : 2∆ −→ 3∆− d/2 . (2.23)

As expected, the marginal case ∆ = d/2 is a fixed point of the transformation. Also, the

dimension of O2 always decreases under such renormalization group (RG) flows.

However, the infrared theory does not adhere to the rules of any standard scale-

invariant fixed point. Indeed, if we consider higher derivatives of the disordered free energy

with respect to the source of O2, they are all at most linear in c2, and we get in the deep in-

frared higher correlation functions of O2 which do not respect the scaling (2.23). For exam-

ple, generalizing (2.11), the averaged connected three-point function scales in the infrared as

〈O2(x)O2(y)O2(z)〉conn. ∼ c2

(x− y)4∆−d(y − z)2∆(x− z)2∆
+ 2 permutations . (2.24)

Such a three-point function is certainly inconsistent with O2 being a primary of the

conformal group, and, given (2.23), it is even inconsistent with O2 being an eigen-operator

of the dilatation operator in a scale-invariant field theory. As in the free field theory

discussed above, one can also interpret the theory as having scale-invariance but with all

higher-point functions vanishing, but this seems to lead to a loss of locality. We will discuss

the interpretation of these results in the replica trick computation in the next section.

2.4 Generalized free fields with ∆ > d/2

In this case disorder is irrelevant according to the Harris criterion so it would appear that

there is nothing to be discussed. We will see below that this is not quite the case. The

momentum space two-point correlation function in the pure theory is given by

〈O(k)O(−k)〉 = k2∆−d . (2.25)

However, one can also add a constant which corresponds to a contact term in position

space

〈O(k)O(−k)〉 = Λ2∆−d
UV + k2∆−d , (2.26)
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where ΛUV is some unknown UV scale which is scheme-dependent (for instance, it can

depend on the details of an underlying lattice theory).8

If we deform our theory by disorder for O, then, for instance, the disordered two-point

function (2.16) now becomes (up to unimportant numerical coefficients)

〈O(k)O(−k)〉 = Λ2∆−d
UV + k2∆−d + c2

(
Λ2∆−d
UV + k2∆−d

)2
. (2.27)

Keeping the factors that are most important in the infrared we obtain a contact term

plus (1 + 2c2Λ2∆−d
UV )k2∆−d + · · · . As long as ΛUV 6= 0 the effects of disorder are thus not

suppressed compared to the pure theory.9 On the other hand, if we choose ΛUV = 0, the

term proportional to c2 would be multiplied by k4∆−2d, which is parametrically suppressed

in the infrared. One can verify that many other correlation functions (including connected

averaged correlation functions) are affected by disorder, and that the effects of disorder

cannot be removed by a redefinition of the operators when ΛUV 6= 0.

We thus see that although the disorder is irrelevant in the technical sense, it does

modify correlation functions in the infrared. (This is perhaps reminiscent of dangerously

irrelevant operators in standard renormalization group flows. The difference is that here the

effects of irrelevant disorder are only present when we allow for a contact term as in (2.26).)

3 Disorder at large-N using the replica trick

3.1 Large-N theories with disorder for an operator with ∆ = d/2

In the marginal case ∆ = d/2 it is natural to compute the beta function for the disorder.

We can compute this using the replica trick (3.1). The approach we use below is analogous

to that of [2, 6–9]. The results are however not the same because in the context of large-N

theories double-trace operators play an important role.

We start by considering

Wn ≡
∫

[Dh]Zn[h]e−
∫
ddx

h(x)h(x)

2c2 , (3.1)

where

Z[h] =

∫
[Dµ]e−S−

∫
ddxh(x)O(x). (3.2)

We can then compute the averaged disordered free energy (1.3) by

WD =
d

dn
Wn

∣∣∣∣
n=0

. (3.3)

We write

Zn[h] =

∫ n∏
A=1

[DµA]e−
∑
A SA−

∑
A

∫
ddxh(x)OA(x) , (3.4)

8If one imagines coupling O(x) to a source h(x), the above contact term is obtained by adding to the

Lagrangian ∼ Λ2∆−d
UV

∫
ddxh2(x). Such a contact term would be generically induced by an RG flow. We

will see in section 4 that this indeed happens in the double-trace flow.
9In position space, the contribution containing c2Λ2∆−d

UV arises from the integrated disorder operator

coinciding with one of the insertions in the correlation function.
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where capital Latin indices go over the replicas, A = 1, · · · , n. We therefore have the path

integral

Wn =

∫
[Dh]e−

∫
ddx

h(x)h(x)

2c2

n∏
A=1

[DµA]e−
∑
A SA−

∑
A

∫
ddxh(x)OA(x) . (3.5)

We solve the h path integral first. The equation of motion of h sets h(x) = −c2
∑

AOA(x)

and thus

Wn =

∫ n∏
A=1

[DµA]e−
∑
A SA+ c2

2

∫
ddx

∑
A,B OA(x)OB(x) . (3.6)

Therefore, we have a collection of n identical CFTs perturbed by some marginal couplings

that connect them.

In (3.6) one has to decide what to do with the operator OA(x)OA(x) for some particular

A. In generic field theories there is no marginal operator appearing in this Operator

Product Expansion (OPE), so this term can just be dropped. However, in large-N theories

(generalized free field theories) the OPE takes the form

O(x)O(0) ∼ 1

xd
+O2(0) + · · · . (3.7)

Thus, we simply interpret the product OA(x)OA(x) as the operator O2
A(x). With this

interpretation we have (keeping only marginal terms)

Wn =

∫ n∏
A=1

[DµA]e−
∑
A SA+ c2

2

∫
ddx

∑
A,B OA(x)OB(x) . (3.8)

Expanding (3.8) in weak disorder, we get

Wn =

∫ n∏
A=1

[DµA]e−
∑
A SA (3.9)

×

1+
c2

2

∫
ddx

∑
A,B

OA(x)OB(x)+
c4

8

∫
ddxddy

∑
A,B,C,D

OA(x)OB(x)OC(y)OD(y)+· · ·

 .
The third term in the second line can renormalize the second term in the second line.

Indeed, marginal terms in the OPE (OAOB) (x) (OCOD) (y) lead to logarithmic divergences

at short distances, which can be absorbed either by renormalizing c2 or by adding new terms

to the action.

In large-N theories there is just one way to get a marginal term as x→ y in the third

term of (3.9), i.e. from the unit operator in a single contraction of O’s. This gives

(OAOB)(x)(OCOD)(0) ∼ 1

xd
(δACOBOD + 3 permutations) , (3.10)

and ∑
A,B

OAOB(x)
∑
C,D

OCOD(0) ∼ 4n

xd

∑
A,B

OAOB(0) . (3.11)
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The integral ddx over (3.11) in (3.9) diverges logarithmically, so the conclusion is that we

have a beta function10

dc2

d log(µ)
= −γ(d)c4n+O(c6) , (3.12)

where γ(d) ≡ Vol(Sd−1) = 2πd/2/Γ(d/2).

The beta function for the physical disordered theory is obtained by simply substituting

n = 0 in (3.12), letting the derivative in (3.3) act on the first line of (3.9), so

dc2

d log(µ)
= 0 . (3.13)

This shows that in generalized free field theories the marginal disorder c is exactly marginal!

At first sight this is not too surprising, since we found in the previous section that

the averaged connected two-point function of O does not depend on the disorder (so one

could say that O does not get renormalized as a result of disorder). However, the averaged

connected correlation function of double-trace operators now takes the form

〈O2(x)O2(0)〉 − 〈O2(x)〉〈O2(0)〉 =
2

x2d
+

4

xd
c2

∫
ddy

1

yd(y − x)d
. (3.14)

Equivalently, in momentum space,

〈O2(k)O2(−k)〉 − 〈O2(k)〉〈O2(−k)〉 = (3.15)

= 2

∫
ddq log(q2/µ2) log((k − q)2/µ2) + 4c2

∫
ddq log(q2/µ2) log2((k − q)2/µ2) .

Clearly the first term makes sense because if we rescale µ we get an integral that does

not depend on k and hence a contact term. But the second integral transforms under

rescaling µ non-trivially already at separated points. Therefore, the two-point correlation

function looks reminiscent of a logarithmic CFT (logarithmic CFTs are argued in [28] to

arise naturally in disordered theories):

〈O2(x)O2(0)〉 − 〈O2(x)〉〈O2(0)〉 =
2 + 4c2 log(x2µ2)

x2d
. (3.16)

O2 may seem to have a non-zero anomalous dimension as a function of the exactly marginal

disorder c2, but the result (3.16) is actually exact for any c2 so it does not exponentiate as

an anomalous dimension should.

To summarize, the exactly marginal parameter c2 does have an effect on the correlation

functions.

3.2 Exact replica computations and an interpretation of non-scale-invariance

Next, we want to understand from the point of view of the replica trick why the disorder

limit n→ 0 of (3.8) leads to a non-scale-invariant theory for the case of ∆ < d/2. We can

solve the replicated generalized free field theory (3.8) exactly for any n. For any integer

10Similar methods were applied in d = 2 to describe the disordered Ising and Potts models, see.

e.g. [2, 6–9].
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n 6= 0 we have a standard QFT so we expect the low-energy limit to be scale-invariant,

but this is not what we found for the disordered theory in the previous section. We will

see that the limit of n → 0 does not commute with the long distance limit in the class of

theories we study here.11

We study the theory of n initially decoupled generalized free field theories with an

interaction (−1
2c

2
∑

A,B OAOB), where A,B = 1, · · · , n. We will calculate the correlation

function 〈
∑

AOA(x)
∑

B OB(0)〉 exactly. By the time we take n→ 0, the derivative of this

with respect to n gives the two-point connected average of the generalized free fields in

the disordered theory. Note that this correlation function in the replicated theory is not

normalized, so we always have to multiply the answers below by 〈1〉 at the end of the day.

That, however, will not change our conclusions. After some combinatorics we find

〈
∑
A

OA(k)
∑
B

OB(−k)〉 =
n

kd−2∆ − nc2
. (3.17)

This two-point function signals an instability because of the singularity in the denominator.

This is not surprising as the interaction term that we must add in the replicated theory,
1
2c

2
∑

AB OAOB, appears with the wrong sign in the potential (3.6). Now:

A. If we first apply to (3.17) the operator d
dn

∣∣
n=0

we clearly get

〈O(k)O(−k)〉conn. =
1

kd−2∆
. (3.18)

This corresponds to O having scaling dimension ∆ (in agreement with (2.19)). Note

that it is completely independent of disorder, as we found above.

B. If, on the other hand, we first take the limit of small momentum (crossing the singu-

larity at kd−2∆ = nc2), we get

〈
∑
A

OA(k)
∑
B

OB(−k)〉 = − 1

c2
− 1

nc4
kd−2∆ + · · · . (3.19)

The first term is a contact term, and the other terms have singular dependence on n

for small n. This formula naively implies that the infrared dimension of O is d−∆,

which is what we are used to from double-trace deformations (though for any n 6= 1

the deformation is not equivalent to a double-trace deformation).

We therefore clearly see that the limit of small n and the infrared limit do not commute.

This is due to the singularity in (3.17), which signals an instability at lower and lower

energies as n→ 0. If we go to very small momenta first, we go below the unphysical pole

(whose location scales as a positive power of n). But if we take n→ 0 first, the instability

is “sequestered,” and we get the correct answer for the disordered behavior.

The analysis is particularly simple for free scalar fields as in subsection 2.1. In this

case the replicated theory is again a free field theory, with one field of mass m2 = −nc2,

11Even for integer n the replicated theory is not really a standard QFT in the case of generalized free

fields, because of an instability discussed below.
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and with (n − 1) massless free fields. The presence of the tachyonic field for any finite

n indicates that the theory is unstable, and this becomes problematic once we go to

momenta below k2 = nc2.

We now turn to the correlator 〈
∑

AO2
A(k)

∑
B O2

B(−k)〉. After some combinatorics

one arrives at the expression

〈
∑
A

O2
A(k)

∑
B

O2
B(−k)〉 = 2

∫
ddl

(
nl2∆−d(k − l)2∆−d + 2nc2(k − l)2∆−d l4∆−2d

1− nc2l2∆−d

+n2c4 l4∆−2d

1− nc2l2∆−d
(k − l)4∆−2d

1− nc2(k − l)2∆−d

)
. (3.20)

Now we demonstrate again that the infrared limit and the small n limit do not commute:

A. If we apply the operator d
dn

∣∣
n=0

first we get

〈O2(k)O2(−k)〉 = 2

∫
ddl

(
l2∆−d(k − l)2∆−d + 2c2(k − l)2∆−dl4∆−2d

)
. (3.21)

This coincides with (2.22), and the infrared dominant term is the one proportional to

c2, which gives k6∆−2d, that translates in position space to xd−6∆. This is precisely

the transformation (2.23).

B. If we take the infrared limit first, we notice that for instance for n = 1 the leading

infrared term cancels between the three terms in (3.20). This is important, because in

this case where we just have an almost standard double-trace deformation, we indeed

expect that the dimension of
∑

AO2
A should be 2d − 2∆. For any other n > 0 the

cancellation does not happen and we get that the leading infrared behavior is k4∆−d,

corresponding to x−4∆ in position space, so that the dimension of
∑

AO2
A stays 2∆.

It would be interesting to understand if the breakdown of scale-invariance in disordered

theories is always associated to such instabilities in the replicated theory.

Preliminary studies suggest that the issues of non-scale-invariance (2.24) and logarith-

mic correlation functions as in (3.16) can also be naturally understood by generalizing the

Osborn equations [29] to disordered systems. However, we leave this topic for the future.

4 Double-trace deformations and disorder

We now generalize the study above to include a double-trace operator O2 in the action in

addition to the disorder. The reasons for doing that are twofold:

1. In a general field theory we expect that such double-trace deformations should be

present in any physical application (since the double-trace deformation is relevant at

large N if and only if disorder is relevant).

2. We have seen above that scale non-invariance is related to an instability of the repli-

cated theory. We would like to test this by curing the instability with an explicit

double-trace deformation.
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Our theory is thus

S = S0 +
1

2
λ

∫
ddxO2(x) +

∫
ddxh(x)O(x) , (4.1)

with h a random Gaussian field. Repeating the steps near (2.16) we find that the two-point

function now takes the exact form [11]

〈O(k)O(−k)〉 =
1

(k2)d/2−∆ + λ
+

c2(
(k2)d/2−∆ + λ

)2 . (4.2)

For λ = 0 it coincides with (2.16), and for c = 0 it coincides with the familiar results in

theories with double-trace deformations (see e.g. [30]).

We assume ∆ < d/2. At very high energy we always asymptote to (k2)∆−d/2, which

corresponds to O having dimension ∆. This is because the disorder and double-trace

deformations are both small in the ultraviolet.

Let us now compute the averaged connected two-point function. We subtract the

average of one-point functions from (4.2) to find

〈O(k)O(−k)〉 − 〈O(k)〉〈O(−k)〉 =
1

kd−2∆ + λ
. (4.3)

So we see that the connected averaged two-point function does not see the disorder at all,

as in the case of λ = 0 (2.19).

As before, we can also consider the two-point function of O2, removing the pieces which

are disconnected before the h-average. One can find exact results even in the presence of

the double-trace coupling. Our final answer is

〈O2(k)O2(−k)〉conn.=

∫
ddl

[
1

ld−2∆+λ

1

(k−l)d−2∆+λ
+c2

(
1

ld−2∆+λ

)2 1

(k−l)d−2∆+λ

]
.

(4.4)

This coincides with the previous result (2.22) for λ = 0, where the dimension in the infrared

is given by 3∆ − d/2. Another special case is c = 0. In this case at large k, the virtual

momentum l is going to be large as well, and we can neglect λ and get
∫
ddl 1

ld−2∆(k−l)d−2∆ ∼
1

kd−4∆ → 1
x4∆ . This power-law behavior is associated to an operator of dimension 2∆, as

expected from O2 at high energies. At low energies all the momenta are small and we

expand and get
∫
ddl
[

1
λ2 + ld−2∆

λ3 + ld−2∆(k−l)d−2∆

λ4

]
+ · · · . The first two terms do not give

nontrivial momentum-dependence in the infrared, and so the leading piece comes from the

third term, which gives k3d−4∆ → x−4d+4∆. Hence, the infrared dimension of the operator

O2 is given by 2d− 2∆, as we expect for the ordinary double-trace deformed theory.

Analyzing (4.4) for generic non-zero c and λ, it turns out that the infrared scaling is

always x4∆−4d, so that O2 has dimension 2d − 2∆. This has a simple interpretation. If

we imagine first reaching the fixed point of the double-trace deformed theory, then O has

dimension d−∆. Therefore, according to the Harris criterion, the disorder is now irrelevant,

and hence the two-point function after turning on disorder has the same IR scaling as in

the ordinary double-trace deformed theory. Therefore at the level of two-point functions

the qualitative picture of the renormalization group flow is as follows:
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c=0 flow

UV pure fixed point,

IR pure fixed point,

Disordered fixed point,

O 2

O 2

O 2

Figure 1. A schematic picture of the large-N renormalization group flows in the presence of

disorder and a double-trace deformation.

However, in view of subsection 2.4, this is not quite the whole story. In higher-point

functions we now find results that are consistent with scale-invariance but depend non-

trivially on the dimensionless parameter c2/λ. At long distances we have at separated

points an exact result

〈O2(x1) · · · O2(xn)〉conn. = 〈O2(x1) · · · O2(xn)〉conn.
c=0

(
1 + 2

c2

λ

)
. (4.5)

The dependence on c2/λ cannot be removed by a redefinition of the operators. From the

point of view of the infrared double-trace fixed point, λ is a cutoff scale in the ultraviolet.

Even though c2 is technically irrelevant in the double-trace fixed point, the additional

dependence on c2/λ in (4.5) is present because the RG flow to the double-trace fixed point

induces a contact term as in (2.27).

Let us note that in the presence of the double-trace deformation, the instability found

in (3.17) is removed. Given any λ > 0, for small enough but finite n, there is no unphysical

singularity, because the denominator in (3.17) is modified as cn2 → cn2 − λ. This is in

accord with the fact that scale-invariance is not violated by disorder in the presence of λ.

4.1 Marginal double-trace deformations and disorder

If we assume that the generalized free field O has ∆ = d/2, then disorder is marginal and

also the double-trace deformation is marginal. We should thus study the beta function in

this case, as we did in subsection 3.1.

In the replica trick, we should now deform the n decoupled theories by

δS =
λ

2

∑
A

O2
A −

c2

2

∑
A,B

OAOB . (4.6)

The sign of the double-trace deformation is the usual one necessary for stability if λ > 0.

Simple combinatorics shows that the singular terms in the OPE take the form∑
A

O2
A(0)

∑
B

O2
B(x) ' 4

xd

∑
A

O2
A(0) ,

∑
A

O2
A(0)

∑
C,D

OCOD(x) ' 4

xd

∑
A,B

OAOB(0) , (4.7)
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∑
A,B

OAOB(0)
∑
C,D

OCOD(x) ' 4n

xd

∑
A,B

OAOB(0) .

Combining these, and generalizing the analysis of subsection 3.1, we find the coupled beta

functions

dλ

d log(µ)
= γ(d)λ2 ,

1

2

dc2

d log(µ)
= γ(d)c2λ− γ(d)n

c4

2
. (4.8)

The physical disordered theory is obtained for n→ 0 and we get

dλ

d log(µ)
= γ(d)λ2 ,

dc2

d log(µ)
= 2γ(d)c2λ . (4.9)

If we take λ = 0 initially, then λ remains zero and disorder is exactly marginal, as we have

already seen in subsection 3.1. For any λ > 0, λ is marginally irrelevant and goes like

γ(d)λ→ −1/ log(µ) in the infrared. Plugging this into the running of disorder, we see that

disorder behaves like

c2 → 1

log2(µ)
(4.10)

in the infrared. Disorder is thus marginally irrelevant in the present situation.

In order to make contact with the previous subsection, let the operator O now have

dimension ∆ = 1
2d −

1
2ε in the ultraviolet (ε > 0). The beta functions (4.9) are then

modified as

dλ

d log(µ)
= −ελ+ γ(d)λ2 ,

dc2

d log(µ)
= −εc2 + 2γ(d)c2λ . (4.11)

The coupling λ then evolves to its fixed point γ(d)λ∗ = ε, as for c2 = 0, and the beta

function for disorder becomes dc2

d log(µ) = εc2. This is equivalent to the physics that we found

in the previous subsection: disorder is irrelevant in the infrared according to the Harris

bound, since the dimension of O becomes d − ∆ at low energies, and thus c2 acquires

effectively a negative mass dimension ε.

5 Holographic analysis of disorder

In the AdS/CFT correspondence [31–33], the scalar operator O in the d-dimensional CFT

maps to a scalar field φ in a gravitational theory on AdSd+1. This field is weakly coupled in

the large-N limit of the CFT. In the AdS/CFT correspondence it is natural to normalize

the AdS action to have a factor of cT in front of it, so that otherwise this action remains

fixed in the large-N limit. In this convention the two-point function 〈OO〉 scales as cT , and
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thus the source scales as 1/
√
cT and disorder naturally scales as 1/cT . We will denote the

source appearing in the AdS equations of motion as ĥ and denote its disorder averages by

ĉ2, noting that compared to our CFT conventions in the previous sections ĉ2 ' c2/cT . On

general grounds, because connected correlation functions are suppressed by extra powers of

cT , the corrections from disorder to correlation functions that do not include the operator

O itself will be suppressed by a power of cT . In particular, this is true for the two-

point function of the energy-momentum tensor, which will only be corrected at order one

(compared to the leading term of order cT ), and it is also true for partition functions on

spheres, that were computed in [11] (following [30]).

As in previous sections, we discuss Euclidean CFTs.12 We choose a random source for

an operator O(x) of dimension ∆

ĥ(x) = 0, ĥ(x)ĥ(y) = ĉ2δ(d)(x− y). (5.1)

In momentum space we have

ĥ(k1)ĥ(k2) = ĉ2δ(d)(k1 + k2), |k1| < kmax, (5.2)

where we explicitly put in a UV cutoff kmax to regulate various divergences that we will find.

Obviously such a cutoff exists in any physical application. We will be interested in particu-

lar in how the couplings and the disorder depend on this cutoff. Our starting point is very

similar to that of, for example, [14], but with Euclidean disorder (which preserves the com-

plete Poincaré group ISO(d)) instead of Lorentzian disorder which is independent of time.13

We begin our analysis with free fields in AdS, corresponding to generalized free fields

in the CFT (or to infinite cT ). We then add interactions in AdS, so that we include

finite-cT effects. In principle in holography we should always include (for finite cT ) the

coupling of the field φ to gravity, but for simplicity we will work in the limit in which the

φ3 and φ4 interactions of φ with itself are much larger than its interactions with gravity

or any other interactions, and ignore the latter interactions. Gravitational and other

interactions can be included by similar methods.

Note that because in the AdS/CFT correspondence [31–33] the classical bulk action is

the logarithm of the CFT partition function (at leading order in 1/N), in the holographic

description we can compute the connected correlators for quenched random disorder (such

as (1.6)) simply by putting random sources into the classical equations of motion and av-

eraging over them with a Gaussian weight. Therefore, the AdS/CFT correspondence maps

the problem of disorder in strongly coupled large-N conformal field theories to standard

stochastic differential equations.

Note that at linear order in the equations of motion of any field, it does not matter

whether we first solve its equations or first average over the disorder; at higher orders this

does matter, and we should first solve the equations of motion for general sources and only

then average over the disorder.

12See footnote 1 for a clarification.
13One can also study holographic disorder using the methods of the holographic renormalization group [34,

35]; this was done for electric disorder in [36, 37].
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We will take the metric on AdS space to be

ds2 =
L2

z2
(dz2 + δmndx

mdxn) . (5.3)

The boundary of space is at z = 0, while large z describes the IR region. In our approxi-

mation where we neglect the coupling to gravity, this will remain the exact metric. For a

free scalar of mass m on AdS the dimension of the dual operator is ∆ = d
2 − ν, where

|ν| =
√
d2

4
+m2L2 . (5.4)

When ν < 0 (∆ > d
2) the random source is an irrelevant deformation. In order to introduce

a relevant deformation we have to use the alternative quantization for scalars in AdS space

so that ν > 0 [38], consistent with unitarity for operators of dimension d
2 − 1 < ∆ < d

2 .

Note that the unitarity condition imposes ν < 1.

On dimensional grounds we expect that if there is any part of the solution that is

independent of the cutoffs then it should depend only on ĉzν (after averaging over the

disorder). The perturbative expansion in ĉ will thus break down (or acquire a cutoff

dependence) for large z when ν > 0, and for small z when ν < 0, as expected from the

(ir)relevance of the disorder.

The linear solution which is regular in the IR for an operator of dimension ∆ with a

source ĥ(k) in momentum space is

φ(x, z) =

∫
ddk

(2π)d/2
eik·xĥ(k)zd/2|k|−νKν(|k|z) , (5.5)

where Kν is a modified Bessel function, up to a constant 21+ν

Γ(−ν) for ν 6= 0, and (−1) for

ν = 0, which we will ignore.

Near the boundary, for z � 1/kmax, we expect the solution to be governed by the

source at the corresponding point, so φ(x, z) should go as ĥ(x)zd−∆ = ĥ(x)zd/2+ν , and

this indeed follows from the behavior of the Bessel function at small arguments. More

precisely, this is true for ν < 0, while for ν > 0 the solution is dominated by the vacuum

expectation value (VEV) of the corresponding operator so it scales as zd/2−|ν|. For the

special case of ν = 0 the leading solution (5.5) in this regime goes as ĥ(x)zd/2 log(zkmax),

again as expected from the form of the non-normalizable solution for the scalar field. As

we go into the bulk the source gets smeared.

In the absence of interactions, the scalar field φ vanishes after averaging over the

disorder, so let us compute the disorder average of φ2:

φ2(x, z) = ĉ2

∫ kmax

0

ddk

(2π)d
|k|−2νzdKν(|k|z)2. (5.6)

If we change variables kµ = uµ/z, then the average becomes

φ2(x, z) = z2ν ĉ2

∫ zkmax

0

ddu

(2π)d
|u|−2νKν(|u|)2. (5.7)
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The integral is finite for d > 4ν, or ∆ > d/4. This coincides with the field theory

result described after (2.18), though we are not computing the same observable here. For

d = 4ν there are logarithmic divergences from the |u| → 0 limit. For ν < 1/2 we have

finite results for d ≥ 2. For z � 1/kmax the average of φ2 goes as ĉ2z2ν(zkmax)d−4ν when

ν > 0, as ĉ2z2ν(zkmax)d for ν < 0, and as ĉ2(zkmax)d log2(zkmax) for ν = 0. In this region

the scalings are just the squares of the scaling of φ. In the region z � 1/kmax which

describes the disordered field theory, the average goes as ĉ2z2ν in all cases, including ν = 0,

independently of the cutoff.

If the field φ is free in the bulk, then this is the whole story, and in the marginal case

ν = 0 the disorder deformation seems to be exactly marginal. Since there is no dependence

on the cutoff, it seems that the field theory stays disordered with the same coefficient at

all relevant scales. This is expected since the large-N beta function for the disorder (3.13)

vanishes in this case. However, φ2 does not have any direct field theory interpretation, so

in the rest of this section we will compute physical observables to understand better the

dependence on ĉ2.

5.1 Generalized free fields and double-trace operators

Let us start from the case of a free field theory in the bulk, in which (5.5) is the exact

expression for the field in the bulk. This case was also analyzed using the replica trick

in [11], with similar results. Up to constants, the expansion of (5.5) in momentum space

takes the form (for ∆ 6= d/2)

φ(k, z) = zd−∆ĥ(k) + z∆β(k) + higher orders in z, (5.8)

where β(k) = |k|2∆−dĥ(k) (up to constants mentioned above). β(k) may be identified with

the VEV of the operator, so that we have 〈O(k)〉 = |k|2∆−dĥ(k) for any source ĥ(k) (this

is determined by dimensional analysis; note that the vacuum expectation value here is a

field theory vacuum expectation value, not a disorder average). By taking a derivative with

respect to the source we obtain

〈O(k)O(−k)〉 = |k|2∆−d (5.9)

for any source ĥ(k). This is independent of the source, so obviously we obtain the same

answer also after the disorder averaging. General n-point functions of O(x) in this case

are given by products of 2-point functions, so they are all independent of the disorder; this

trivially reproduces the field theory result (2.19) (note that the correlation functions we

compute in this section are always connected).

In the special case of ∆ = d/2 we have instead

φ(x, z) = zd/2(ĥ(x) log(zµ) + β(x)), (5.10)

with a dependence of the VEV on the arbitrary scale µ which must be introduced in this

case. The form of the solution above implies that, up to a rescaling of µ,14

〈O(k)〉 = β(k) = log(k/µ)ĥ(k) (5.11)

14By an abuse of notation, from now on we will use k both for the momentum vector and for its absolute

value. We hope this will not cause any confusions.
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and

〈O(k)O(−k)〉 = log(k/µ) , (5.12)

independently of the disorder, as expected.

Next, let us add to the field theory action a double-trace interaction S = λ̂
2

∫
ddxO2(x);

if we make λ̂ space-dependent then this will also be useful for computing correlation func-

tions of O2(x), but for now let us just take λ̂ to be a constant. Again, λ̂ is related to λ

in our CFT analysis by a factor of cT . The analysis will again be very similar to the field

theory, so let us focus on the most interesting case of ∆ = d/2 where we expect to see

some logarithmic running (4.9). Since λ̂ and ĉ2 run, we need to fix some UV cutoff kmax

as before, where we turn on the disorder with a value ĉ2(kmax) = c2
0, and also set an initial

boundary condition for the RG flow λ̂(kmax) = λ0.

In the presence of the double-trace deformation, (5.10) is modified to [39]

φ(x, z) = zd/2([λ̂β(x) + ĥ(x)] log(zµ) + β(x)) + higher orders in z. (5.13)

Using (5.11) for the new source in (5.13), we have

β(k) = log

(
k

µ

)
(λ̂β(k) + ĥ(k)) → β(k) = 〈O(k)〉 =

ĥ(k) log(k/µ)

1− λ̂ log(k/µ)
. (5.14)

This determines the 2-point function and all correlation functions of O(x), in agreement

with the field theory analysis of section 4. In particular, since the 2-point function is the

same as the field theory result, and is independent of the source, we find the same running

of λ̂ as we did in the field theory, namely that λ̂(µ) ∝ −1/ log(µ). Note that in general, λ̂

could also start depending on the momentum due to higher derivative double-trace terms

that could be generated, but we ignore this.

If we now compute (5.13) at two different scales, one of them being the scale kmax

where we impose our initial boundary conditions, we obtain (up to higher orders in z)

φ(x, z) = zd/2([λ̂(µ)β(µ, x) + ĥ(µ, x)] log(zµ) + β(µ, x)) =

= zd/2([λ0β(kmax, x) + ĥ(kmax, x)] log(zkmax) + β(kmax, x)). (5.15)

Assuming that we take momenta much smaller than µ, we can use (5.14) to find

ĥ(µ, k) = ĥ(kmax, k)
1− λ̂(µ) log(k/µ)

1− λ0 log(k/kmax)
. (5.16)

Squaring this, and averaging over the disorder letting it depend on the scale and on the

momentum (unlike the UV disorder c2
0), we obtain

ĉ2(µ, k) = c2
0

(
1− λ̂(µ) log(k/µ)

1− λ0 log(k/kmax)

)2

. (5.17)

We are interested in the k-independent part of this, corresponding to the Gaussian part of

the disorder, and indeed for k � µ < kmax, the result is independent of k, and we find

ĉ2(µ) = c2
0

λ̂2(µ)

λ2
0

. (5.18)
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When joined with the running of λ̂ that we found above, this implies ĉ2(µ) ' 1/ log2(µ),

precisely as in the field theory analysis (4.10). Note that for λ̂ = 0 we find no running of

ĉ2, as expected.

In order to compute correlation functions of O2(x) as in the previous section we need to

take λ̂ to depend on x and to take derivatives with respect to it. The general principles of

the AdS/CFT correspondence imply that this must give the same answers as the field theory

analysis above, but let us show this explicitly for the one-point function of O2(0) as a func-

tion of the source ĥ(x). To obtain this we first compute
〈
O2(0)O(w)

〉
, which we can obtain

by putting λ̂(x) = λ1δ(x) (for simplicity we are not including a constant double-trace cou-

pling here). With this coupling, (5.13) becomes in momentum space (at leading order in z)

φ(k, z) = zd/2
([
λ1

∫
ddlβ(l) + ĥ(k)

]
log(zµ) + β(k)

)
. (5.19)

Using the generalization of (5.11) we obtain

β(k) = log(k/µ)

[
λ1

∫
ddlβ(l) + ĥ(k)

]
. (5.20)

Integrating this we obtain∫
ddkβ(k) = λ1

∫
ddk log(k/µ)

∫
ddlβ(l) +

∫
ddk log(k/µ)ĥ(k), (5.21)

leading to ∫
ddkβ(k) =

∫
ddk log(k/µ)ĥ(k)

1− λ1

∫
ddk log(k/µ)

. (5.22)

Plugging this back into (5.20), we find

〈O(k)〉 = β(k) = log(k/µ)

[
λ1

∫
ddl log(l/µ)ĥ(l)

1− λ1

∫
ddl log(l/µ)

+ ĥ(k)

]
. (5.23)

And, taking the derivative with respect to λ1 and setting λ1 = 0, we obtain

〈
O(k)O2(x = 0)

〉
= log(k/µ)

∫
ddl log(l/µ)ĥ(l). (5.24)

This is also the derivative of
〈
O2(x = 0)

〉
with respect to ĥ(k) (assuming we only keep

connected pieces), so we have

〈
O2(x = 0)

〉
=

(∫
ddk log(k/µ)ĥ(k)

)2

. (5.25)

This is precisely the expected answer that we would get by contracting the two O’s in this

operator with additional O’s, so the results manifestly reproduce the field theory results

for generalized free fields. It is clear that this will be the case also for higher correlation

functions, and for theories with non-zero λ.
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5.2 Adding bulk interactions — general

Next, let us add interactions in the bulk. If we have some bulk potential (in addition to the

mass term) V (φ) = λ3φ
3/3 + λ4φ

4/4, then in momentum space (projecting the equation

of motion of φ on a specific value of the momentum k) we have

z2∂2
zφ+ (1− d)z∂zφ− z2k2φ−m2L2φ = λ3φ

2 + λ4φ
3. (5.26)

We will mostly specialize to the marginal case where ∆ = d/2 and m2L2 = −d2/4.

The general solution to the homogeneous equation in the marginal case is

φ(k, z) = zd/2(AK0(kz) +BI0(kz)) (5.27)

for some constants A and B, while the general solution to the inhomogeneous equation with

a function f(z) on the right-hand side of (5.26) (for a specific momentum k) is given by

φ(k, z) = zd/2
[
K0(kz)

∫ ∞
z

I0(kw)

w
w−d/2f(w)dw − (I0 ↔ K0)

]
, (5.28)

plus a homogeneous solution (5.27). Assuming that both integrals converge when z →∞,

and that the second integral vanishes in this limit, the IR boundary condition sets B = 0.

And, assuming that both integrals converge when z → 0 (which will be the case for the

functions f that we will encounter), the fact that we do not want to have an extra source

in the UV (which we could swallow into a redefinition of the original source) means that

to get the precise solution we should choose A such that the solution becomes

φ(k, z) = zd/2
[
−K0(kz)

∫ z

0

I0(kw)

w
w−d/2f(w)dw − I0(kz)

∫ ∞
z

K0(kw)

w
w−d/2f(w)dw

]
.

(5.29)

The new contribution to the vacuum expectation value of O is then given by

〈O(k)〉 = −
∫ ∞

0

K0(kw)

w
w−d/2f(w)dw. (5.30)

For general values of the dimension of O, (5.29) takes exactly the same form but with

the index of the Bessel functions modified from 0 to (−ν), and (5.30) is replaced by

〈O(k)〉 = −k−ν
∫ ∞

0

Kν(kw)

w
w−d/2f(w)dw. (5.31)

5.3 φ4 interactions

Let us start from the case λ3 = 0. In this case the source in (5.26) starts at order ĥ3, and

is given by

f(k, z) = λ4φ
3(k, z) = λ4

∫
ddk1

(2π)d/2
ĥ(k1)z3d/2K0(k1z) ·

·
∫

ddk2

(2π)d/2
ĥ(k2)ĥ(k−k1−k2)K0(k2z)K0(|k1+k2−k|z). (5.32)

The solution at order ĥ3 will be given by (5.29).
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If we are just interested in computing 〈O(k)〉 at order ĥ3, and then using this to

compute the disorder average of the two-point function 〈O(k)O(−k)〉 at order ĉ2, we can

average already at this stage the disorder over two of the sources in (5.32). Thus, up to

this order we can replace (5.32) by

f(k, z) = λ4φ
3(k, z) = ĉ2λ4

∫ kmax

0
ddk1z

3d/2K0(k1z)2ĥ(k)K0(kz)

= ĉ2λ4ĥ(k)K0(kz)

∫ zkmax

0
ddu1z

d/2K0(u1)2 (5.33)

(up to a multiplicative constant).

Plugging this into (5.29), we find that the partly-averaged φ at order ĥ3, which we will

denote by φ(3), is given by

φ(3)(k, z) = ĉ2λ4ĥ(k)zd/2
[
−K0(kz)

∫ z

0

I0(kw)

w

∫ wkmax

0
ddu1K0(u1)2K0(kw)dw−

−I0(kz)

∫ ∞
z

K0(kw)

w

∫ wkmax

0
ddu1K0(u1)2K0(kw)dw

]
. (5.34)

Note that the integrals over w indeed converge for finite cutoff, as is necessary for the

validity of this specific solution.

Alternatively, we can compute the average vacuum expectation value 〈O(k)O(−k)〉
directly by taking a derivative of (5.30), and we find

〈O(k)O(−k)〉 = −ĉ2λ4

∫ ∞
0

K0(kw)2

w

∫ wkmax

0
ddu1K0(u1)2dw. (5.35)

Since the integral over u1 converges as kmax → ∞, it may seem that there is no cutoff

dependence here (and thus also no interesting momentum dependence, given that the left-

hand side is dimensionless). However, this is too naive. The integral over w has two

regions. When w � 1/kmax, the integral over u1 is approximately given by the integral

from 0 to ∞, which is some constant C0 independent of w. However, when w � 1/kmax,

the integrand can be approximated by log2(u1), such that the integral over u1 behaves as

(wkmax)d log2(wkmax). Thus, we have approximately, for k � kmax (up to constants)

〈O(k)O(−k)〉 ' −ĉ2λ4

[∫ 1/kmax

0

K0(kw)2

w
(wkmax)d log2 (wkmax) dw

+

∫ ∞
1/kmax

C0
K0(kw)2

w
dw

]
(5.36)

' −ĉ2λ4
C0

3
log3(k/kmax) +O

(
ĉ2λ4 log2(k/kmax)

)
.

Note that this result is dominated by the contribution from w � 1/kmax which is above

the effective short-distance cutoff on the radial direction. We will try to understand this

surprising result from the field theory point of view in the next section.
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Repeating exactly the same procedure for general values of the operator dimension

∆ < d/2, (5.35) is replaced by

〈O(k)O(−k)〉 = −ĉ2λ4k
−2ν

∫ ∞
0

Kν(kw)2

w
w2ν

∫ wkmax

0
ddu1u

−2ν
1 Kν(u1)2dw. (5.37)

Using the expansion of the Bessel function near x = 0, Kν(x) ∝ x−ν , we find that the

contribution from the region w > 1/kmax is now proportional to ĉ2λ4k
−4ν log(k/kmax), while

the region w < 1/kmax has a contribution proportional to k−4ν . Thus, in this case we have

〈O(k)O(−k)〉 ' −ĉ2λ4Cνk
−4ν log(k/kmax) (5.38)

for some constant Cν , with an extra logarithm on top of the power expected on dimensional

grounds. Again, we will understand the origin of this logarithm in the next section.

5.4 φ3 interactions

Now let us take a non-zero value of λ3, so that the operator O has a non-zero 3-point

function proportional to λ3 (for simplicity we take λ4 = 0 here). In this case we have a

source for φ already at order ĥ2, given by

f(z) = λ3φ
2(k, z) = λ3

∫
ddk1

(2π)d/2
ĥ(k1)zdK0(k1z)ĥ(k − k1)K0(|k − k1|z). (5.39)

Performing a disorder average here gives something proportional to δ(d)(k), related to a

constant VEV for the disorder-averaged φ2 (5.7).

Anyway, to go to higher orders we now cannot directly average over this, and we have

to plug this full expression into (5.29), leading to (up to a multiplicative constant)

φ(2)(k, z) = λ3z
d/2

∫
ddk1ĥ(k1)ĥ(k − k1) ·

×
[
−K0(kz)

∫ z

0

I0(kw)

w
wd/2K0(k1w)K0(|k − k1|w)dw (5.40)

−I0(kz)

∫ ∞
z

K0(kw)

w
wd/2K0(k1w)K0(|k − k1|w)dw

]
.

At order ĥ3 the source is now given by this solution times the first order solution,

namely

f(z) = λ3(φ2(k, z))(3) = 2λ2
3z
d

∫
ddk2ĥ(k − k2)K0(|k − k2|z)

∫
ddk1ĥ(k1)ĥ(k2 − k1) ·

×
[
−K0(k2z)

∫ z

0

I0(k2w)

w
wd/2K0(k1w)K0(|k2−k1|w)dw (5.41)

−I0(k2z)

∫ ∞
z

K0(k2w)

w
wd/2K0(k1w)K0(|k2 − k1|w)dw

]
.

Once again, for the purpose of computing the disorder average of 〈O(k)O(−k)〉 to order

ĉ2, we are allowed to average over two of the disorder coefficients appearing here. There is
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one average here that gives a divergence, which is when we average over the last two sources

such that k2 = 0. The origin of this divergence is confusing at first sight, since it does

not go away even when we put both UV and IR cutoffs on the disorder distribution (5.2).

However, if we follow its origin from the bulk point of view, we see that it arises from an

exchange of a bulk scalar with spatial momentum k2 = 0. Thus, this is an IR divergence

that will disappear in the presence of any IR cutoff on the full theory. We will therefore

subtract it in our computation.

Considering the other contributions to the average, we obtain

f(z) = λ3(φ2(k, z))(3) = 2ĉ2λ2
3z
dĥ(k)

∫
ddk1K0(k1z) · (5.42)

×
[
−K0(|k + k1|z)

∫ z

0

I0(|k + k1|w)

w
wd/2K0(k1w)K0(kw)dw

−I0(|k + k1|z)

∫ ∞
z

K0(|k + k1|w)

w
wd/2K0(k1w)K0(kw)dw

]
.

Next we need to plug this into (5.28) to obtain the third order solution, but for us it

is enough to obtain the VEV of O to third order, using (5.30). Using this to compute the

2-point function, we obtain

〈O(k)O(−k)〉 = −2ĉ2λ2
3

∫ ∞
0

dv
K0(kv)

v
vd/2

∫ kmax

0
ddk1K0(k1v) ·

×
[
−K0(|k + k1|v)

∫ v

0

I0(|k + k1|w)

w
wd/2K0(k1w)K0(kw)dw (5.43)

−I0(|k + k1|v)

∫ ∞
v

K0(|k + k1|w)

w
wd/2K0(k1w)K0(kw)dw

]
.

The integrals here converge separately, but as in the previous subsection we need to analyze

them more carefully, and such a careful analysis again gives a log3(k/kmax) behavior.

Note that in this case, and also in the previous case at higher orders in ĉ2, it is

important that we first solve the equations for arbitrary sources, and only then average

over the disorder. We would get different answers if we would first average and then plug

the results into the higher order computations. Thus, it is not clear if there is any meaning

to an effective disordered solution for the bulk field φ(x, z).

6 1/N corrections

In subsections 5.3 and 5.4 we saw how we could perform holographic computations for

disorder with c2 of order the central charge cT , at leading order in the disorder ĉ2 = c2/cT
(in principle it is straightforward to extend this computation to arbitrary orders). We

found several interesting results for this scaling of c2, and in this section we would like to

understand these results from the field theory point of view. So, we consider the leading

correction as a function of c2/cT directly in the field theory. For finite c2 in the large-N

limit this gives the first 1/N correction, that becomes important (in the marginal case) at

distances exponentially large in N , while for c2 of order cT this correction is significant at
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distances of order one, and can lead to changes even if c2/cT is small compared to other

scales. Below we will present two derivations of our results in parallel. One approach

is direct, and the other is through the replica trick. It seems like the latter approach is

easier to generalize to higher orders, while the direct approach removes doubts about the

validity of the replica trick in this situation.

In principle it is possible to compute 〈OO〉 in a perturbative expansion in the disorder,

using conformal perturbation theory. At leading order this formally gives

〈O(x)O(y)〉 =
1

(x− y)2∆
+

1

2
c2

∫
ddw 〈O(x)O(y)O(w)O(w)〉+ · · · . (6.1)

The limit when the two points near w come together is singular, but we can introduce

some UV cutoff on the distance between the two points and use the OPE expansion in the

original theory near w, which has the general schematic form

O(w)O(w + ε) ∼
∑
P

cOOPP (w)ε∆P−2∆. (6.2)

The identity operator can be dropped from (6.2) since it gives a disconnected contribution

already for fixed sources. We will normalize the operators P to have a 2-point function

with coefficient one. Terms with ∆P < 2∆ are UV-singular, and will depend on a UV

cutoff µ on the distance 1/ε. Terms with ∆P ' 2∆ lead to universal contributions and

should be kept, while terms with ∆P > 2∆ will be negligible as the cutoff is removed. As

we are studying large-N theories, we will assume that an operator with ∆P ' 2∆ exists.

We denote P = O2 for this particular operator (keeping in mind that at finite but large

N the dimension is no longer exactly additive, ∆O2 − 2∆O ∼ c−1
T ). There could be other

operators of dimension 2∆, in particular, single-trace operators. These would modify the

results below, but it is clear how to generalize our discussion when necessary.

The contribution from O2 at the order c2 is

〈O(x)O(y)〉 =
1

2
c2cOOO2

∫
ddw

〈
O(x)O(y)O2(w)

〉
µ2∆−∆2

O = (6.3)

=
1

2
c2c2

OOO2µ
2∆−∆O2

∫
ddw

1

(x− y)2∆−∆O2 (x− w)∆O2 (y − w)∆O2
.

The above result arises in the replica trick as follows. We study n copies of the CFT,

perturbed by 1
2c

2
∑

A,B OAOB. The terms with A = B are interpreted as the operators

µ2∆−∆2
OO2

A. To compute the average (6.3) we then consider the correlator 〈O1O1〉 and in

the end of the computation we take n→ 0 (without taking a derivative with respect to n).

Clearly the only contribution at order c2 arises from
∫
ddw〈O1(x)O2

1(w)O1(y)〉, and it is

independent of n. Therefore, one finds precisely (6.3).

The integral over w (6.3) diverges at large w if ∆O2 ≤ d/2. In the large-N limit this

happens when ∆ ≤ d/4, giving another exposition of the problems in that case (that we

have already discussed at length in previous sections).

As long as d
2 < ∆O2 < d the integral converges both for large w and for w → x and

w → y. We get (up to constants) the following leading order in c2 result

〈O(x)O(y)〉 =
1

2
c2µ2∆−∆O2

c2
OOO2

(x− y)2∆+∆O2−d . (6.4)
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This result is to be trusted only for ∆O2 equal to 2∆ up to infinitesimally small corrections.

It is easy to see both in the direct approach and in the replica trick, that in the absence of

such an operator there is no contribution at order c2 that is independent of the cutoff.

If the dimension ∆O2 is exactly 2∆, (6.4) just gives a finite contribution going as

c2c2
OOO2/(x− y)4∆−d. In the large-N limit, when we normalize the 2-point function of O2

to one, cOOO2 behaves at large-N as
√

2(1 +A/cT + . . .) for some constant A independent

of cT . For c2 ∼ 1 only the first term remains, while for c2 ∼ cT the second term also

remains. If c2 � cT but c2/cT stays constant in the large N limit, then we can trust our

approximation and neglect higher order corrections in c and higher order corrections in c−1
T .

We are interested in comparing with the holographic computation which sees only the

disorder-averaged free energy, so we should subtract from (6.4) the disconnected piece,

which is always present and goes (at order c2) as

〈O(x)〉 〈O(y)〉 =

∫
ddw

c2

(x− w)2∆(y − w)2∆
. (6.5)

At leading order in 1/cT this exactly cancels the leading term above, as in our general

discussion of generalized free field theories in section 4.15 All remaining terms are of order

c2/cT , ensuring a finite limit when c2 ∝ cT with c2/cT � 1.

Thus, for ∆O2 = 2∆ < d, the connected two-point function at order c2 goes as

Ac2

cT (x− y)4∆−d . (6.6)

We will now include the effects that are associated to ∆O2 deviating from 2∆. In

general ∆O2 = 2∆ − B/cT + · · · for some constant B, which stays finite as cT → ∞.

In such a case we can write µ2∆−∆P = 1 + (B/cT ) log(µ) + · · · . The term of order one

contributes to our computation a term proportional to A as in (6.6). The B-term gives a

contribution to the 2-point function (6.4) proportional to

c2B log(µ|x− y|)
cT (x− y)4∆−d . (6.7)

Note that in the holographic computation B should have contributions proportional both

to λ4 and to λ2
3, and in particular we found a contribution of this form proportional to λ4

in our computation with general dimensions ∆ (5.38).

Our computation up to now was done for the relevant case, ∆ < d/2. In the marginal

case ∆ = d/2 we need to reconsider the integral over w that we did above, since it has a

logarithmic UV divergence as w → x and w → y. Note that this divergence has a different

origin from the one leading to (6.7) — it is related to the fact that ∆O2 is close to d (but

it is still also close to 2∆). Note also that the disconnected contribution (6.5) has a similar

logarithmic divergence whenever ∆ is close to d/2. We therefore need to combine all these

logarithms carefully.

15This cancellation is very easy to see in terms of the replica trick. The connected averaged correlation

function corresponds to the derivative at n = 0 of 〈
∑
AOA

∑
B OB〉, which goes like n2c2 in generalized

free field theory. This is why the connected averaged correlation functions of the single-trace operators do

not depend on disorder in a generalized free field theory.
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In a general large-N theory, the dimension of the single-trace operator O in the large-

N limit goes as ∆ = d/2 − D/cT + · · · for some constant D. If we now expand (6.5) in

1/cT we get (keeping only the leading logarithm)

〈O(x)〉 〈O(y)〉=
∫
ddw

c2

(x−w)d(y−w)d
(1+(d−2∆)(log(µ(x−w))+log(µ(y−w)))+· · · )=

= 3(d− 2∆)
γ(d)c2

(x− y)d
log2(µ(x− y)) +O

(
1

c2
T

)
, (6.8)

dropping the leading term (which eventually cancels) in the second line. Similarly, the

integral over w appearing in the second line of (6.3) for ∆O2 ' d gives (again keeping only

the leading logarithm)

3(d−∆O2)
γ(d)

(x− y)d
log2(µ(x− y)) +O

(
1

c2
T

)
, (6.9)

so that the total contribution to 〈O(x)O(y)〉 goes as

(3d− 3∆O2 − 2(2∆−∆O2))
γ(d)c2

(x− y)d
log2(µ(x− y)) +O

(
1

c2
T

)
. (6.10)

When we subtract (6.8) from (6.10) to obtain the connected two-point function, the con-

tribution is of order c2/cT and the leading log term takes the form

(2∆−∆O2)
γ(d)c2 log2(µ(x− y))

(x− y)d
. (6.11)

This is exactly the same form that we found in the previous section, since the Fourier

transform of log2(µ(x − y))/(x − y)d is proportional to log3(k/µ). So we identify the

coefficient we found there as the correction at order 1/cT to the dimension of O2 compared

to twice the dimension of O. It is indeed well-known from the early days of the AdS/CFT

correspondence [40] that the diagrams that appeared in the previous section (at order λ4

and at order λ2
3) contribute to this ‘anomalous dimension’.16 As in previous cases, the two-

point function of the form (6.11) does not look like an anomalous dimension for O in the

disordered theory. So the interpretation of the computations above in terms of anomalous

dimensions is not straightforward. To learn about the low-energy behavior we need to go

to higher orders, and to resum the perturbative expansion in c2/cT . This is beyond the

scope of this paper, but it would be very nice to do so in the future.
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