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entropy for arbitrary entangling surface. In 3D there is no anomaly of entropy. But the

original squashed cone method can not be used directly to get the correct result. For higher

dimensions the anomaly of entropy would appear, still, we can not use the squashed cone

method directly. That is becasuse the Chern-Simons action is not gauge invariant. To get

a reasonable result we suggest two methods. One is by adding a boundary term to recover

the gauge invariance. This boundary term can be derived from the variation of the Chern-

Simons action. The other one is by using the Chern-Simons relation dΩ4n−1 = tr(R2n).

We notice that the entropy of tr(R2n) is a total derivative locally, i.e. S = dsCS . We

propose to identify sCS with the entropy of gravitational Chern-Simons terms Ω4n−1. In

the first method we could get the correct result for Wald entropy in arbitrary dimension.

In the second approach, in addition to Wald entropy, we can also obtain the anomaly

of entropy with non-zero extrinsic curvatures. Our results imply that the entropy of a

topological invariant, such as the Pontryagin term tr(R2n) and the Euler density, is a

topological invariant on the entangling surface.
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1 Introduction

The entropy is often used as a quality to reflect the degree of freedoms of a system. In the

gravitational field black hole entropy, i.e., Bekenstein-Hawking entropy [1, 2], is related to

geometry of the spacetime, and performs as a thermal quality. On the other hand in the

gauge field theory with gravity dual, the entanglement entropy for a subsystem could also

have a geometry description in the gravity side, which is known as the Ryu-Takayanagi

formula [3]. In general the geometry description of the entropy is closely connected with

the detail of the theory. Wald formula [4] provides the connection between the action and

entropy for general covariant gravitational theory.
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The recent idea concerning about the generalized gravitational entropy [5] gives a

strong evidence for the Ryu-Takayanagi formula on general entangling surfaces. General-

ization to theory other than Einstein gravity is not so straightforward. Instead, one has to

deal with the squashed conical singularity carefully and take into account the possible con-

tribution from the extrinsic curvatures. The first breakthough was made by [6], in which

the authors develop a nice approach of regularization to study the entropy of curvature-

squared gravity. However, recently it is found that this method produces wrong entropy for

general higher derivative gravity [7]. The correct approach to derive the entropy of general

higher derivative gravity was developed by [8], see also [9]. In this paper we use the method

of [8] and denote it by the squashed cone method. For other interesting developments of

the holographic entanglement entropy, please refer to [10–15].

The squashed cone method by Lewkowycz-Maldacena [5] and Dong [8] works well for

covariant gravitational theories. However, it may break down or need to be modified for

non-covariant gravitational theories. There are two kind of non-covariant gravitational

theories. The first one is that neither the action nor the equations of motion are gauge

invariant. The balck hole thermodynamics is not well-defined for this kind of gravitational

theories [16–18]. The second one is that the action is gauge invariant up to some boundary

terms. Theory with gravitational Chern-Simons term is one of this kind of non-covariant

theories. The Chern-Simons(CS) term as a possible correction to Einstein gravity is moti-

vated by the low-energy effective action from superstring theories. In 3D the modification

of the black hole entropy by CS term is studied in many literatures, see [19–22]. In higher

dimensions the answer is also found in [26, 27] by generalizing the covariant phase formal-

ism. There are also some studies on the contribution to thermodynamics and transport in

hydrodynamics from the gravitational anomalies [28, 29], which is related to the gravita-

tional CS term by AdS/CFT [30–32]. In this paper we would like to study the problem for

generalized gravitational entropy. Specially, we would use the regularization process devel-

oped in [8]. The method works well for covariant theory, but for CS theory, we find that

the method should be modified significantly to get a consistent result. The modification

is related with the local gauge transformation of theory with gravitational Chern-Simons

term, for this transformation would produce a total derivative terms. Actually the regu-

larized process would ignore the possible effect caused by the gauge transformation. The

modification is based on the consideration to fix the gauge freedom. In the following we re-

fer to entropy either to generalized gravity entropy or to holographic entanglement entropy

for they are the same thing in a sense.

The paper is organized as follows. In the next section we briefly introduce the regu-

larization process developed in [8]. In section 3 we briefly review the gravitational Chern-

Simons terms in arbitrary dimension. We will calculate the entropy in 3D in this section 4.

In section 5, we propose an approach to derive the entropy of gravitational Chern-Simons

terms. We work out the entropy exactly in 7D space-time. In section 6, we use this method

to get the Wald entropy in arbitrary dimension. We will also discuss other approach to get

the correct Wald entropy. We will conclude and discuss some related problems in section

7. Some useful formula and detail calculation can be found in appendix.
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2 Review of generalized gravitational entropy

The generalized gravitational entropy is based on the “replica trick” in Euclidean spacetime.

The un-normalized density matrix of the gravitational field is related to the partition

function Z(1) by trρ = Z(1). We could normalize the density matrix and define ρ̂ = ρ/trρ.

The n-th replica spacetime Bn would admit trρ̂n = Z(n)/Z(1)n, where Z(n) is the partition

function of Bn. In the semi-classical limit we would have trρ̂n ≃ exp(−I(n)+nI(1)), where

I(n) is the classical on-shell action of Bn, I(1) is the action of the original spacetime. One

could consider the orbifold B̂n ≡ Bn/Zn. This leads to In = nÎ(n), where Î(n) means the

action with the solution B̂n without counting the contribution from the conical defect in

B̂n . The entropy in O(G−1) can be expressed as

S = ∂ǫÎ(ǫ), (2.1)

where we denote n = 1 + ǫ. Now one fills the singular cone, the calculation becomes

S = −∂ǫI(ǫ), (2.2)

where I(ǫ) is the action of the regularized squashed cone. This equation is the starting

point to calculate the entropy. We refer the readers to [5]and [8] for more argument and

explanation to the generalized gravitational entropy and holographic entanglement entropy.

But in the theory that is not-covariant this statement can not be used directly. Such as

the gravity with Chern-Simons term we will discuss below, the local gauge transformation

or the non-covariant part of the diffeomorphism will lead to a boundary term, which also

contributes to the O(ǫ). For 3D gravity theory with Chern-Simons terms this problem is

first noticed in papers [19] and [35], in which the authors obtain additional contributions to

I(ǫ) by making integration by parts. In this paper we provide alternative methods to solve

this problem. Our main discussion below is about how to eliminate the ambiguity in the

non-covariant theory when using the squashed cone method by Lewkowycz-Maldacena [5]

and Dong [8]. Our approach is consistent with the results of [19, 35, 38].

Regardless of the difference that we mention above, one have to find a way to regularize

the squashed cone . We would follow the regularization process in [8]. According to [8],

the metric of regularized cone is

ds2 = e2A[dzdz̄ + e2AT (z̄dz − zdz̄)2] +
(

gij + 2Kaijx
a +Qabijx

axb
)

dyidyj

+2ie2A(Ui + Vaix
a)(z̄dz − zdz̄)dyi + . . . (2.3)

where T, gij ,Kaij , Qabij , Ui, Vai are independent of z and z̄, with the exception that Qzz̄ij =

Qz̄zij contains a factor e2A. The warp factor A is regularized by a thickness parameter a

as A = − ǫ
2 log(zz̄ + a2). The result is independent of the choice of regularization.

The contribution from the Wald entropy is related with the fact
∫

dzdz̄e−βA∂z∂z̄A = −πǫ. (2.4)

The key observation of [8] is that
∫

ρdρ∂zA∂z̄Ae
−βA = − ǫ

4β
, (2.5)
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where z = ρeiτ . The would-be logarithmic divergence gains a 1
ǫ enhancement:

∫

ρdρ
1

ρ2
eβǫ ∼ 1

βǫ
. (2.6)

This will give the anomaly contribution to the entropy. One is suggested to refer the recent

paper [10] in which we discuss more possible terms that may contribute to entropy. For

our purpose in this paper (2.4)(2.5) are enough.

3 Gravitational Chern-Simons term

In the this section we would like to introduce some definitions and properties of CS terms.

The gravitational CS terms can be constructed in two different ways, one is by the one-form

of Christoffel symbol Γ, the other one is the spin connection ω.

By using ω the (2n+1)-dimensional gravitational CS terms Ω2n+1 are formally defined

as

dΩ2n+1(ω) = TrRn+1, (3.1)

where R = dω + ωω is the two-form curvature, and we suppress the wedge between the

forms. Ω2n+1 can be expressed as

Ω2n+1 = (n+ 1)

∫ 1

0
tnstr(ωR

n
t ), (3.2)

where Rn
t
≡ R+ (t− 1)ω2, and “str” is defined by

str(A1, A2, . . . , An) ≡
1

n!

∑

π

Tr(Aπ(1)Aπ(2) . . . Aπ(n)), (3.3)

π denotes the permutations of {1,2,. . . ,n}. The CS action is

ICS =
λ

32πG

∫

M2n+1

2n

n+ 1
Ω2n+1, (3.4)

λ is the coupling constant. The full action is

I =
1

16πG

∫

d2n+1x
√−g

(

R+
n(2n+ 1)

l2

)

+ ICS . (3.5)

The spin connection ω can be construct by vielbeins E = {eaνµ }, which is defined by

Gµν = eaκν eaσµ δaκaσ . As an example we could choose the vielbeins of (2.3) up to O(ρ) as

follows.

ea1 = eµa1dx
µ =

eA

2
(dz + dz̄) + eA(z̄ − z)Uidy

i,

ea2 = −i
eA

2
(dz − dz̄)− eA(z̄ + z)Uidy

i,

eai = ējaidy
j + xaKajaidy

j , (3.6)
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where ējai ēkai = gjk and Kajai = Kajie
i
ai . Here a1, a2 denotes the local Lorentz indices

with respect to z, z̄. One can check that the above vielbeins can yield the correct metric

in order O(ρ):

eµa1eνa1 + eµa2eνa2 + eµaieνai = Gµν +O(ρ2). (3.7)

The choose of vielbeins are not unique, different ones are related by performing local

Lorentz transformations,

e′aµ = Λ(x) bν
aµ ebν . (3.8)

We can calculate the spin connection ω by the following formula,

ωµ,aνaκ =
1

2
(Caνσµe

σ
aκ + Caκµσe

σ
aν − Caσαβe

α
aνe

β
aκe

aσ
µ )

Caσ
µν = ∂µe

aσ
ν − ∂νe

aσ
µ . (3.9)

The spin connection ω can also be related with the one-form Christoffel symbols Γ by the

vielbeins,

ω x
µ y = Γx

µy − eax∂µeya, (3.10)

where we have mapped all the index into spacetime. We list some useful components of

the Christoffel symbols and spin connections in appendix A.

By varying the action (3.2) new terms would contribute to the equation of motion.

The result is derived in [26, 33],

Rµν −
1

2
GµνR− n(2n+ 1)

l2
Gµν + λCµν = 0 (3.11)

where

Cµν = ▽αS
µνα (3.12)

with

Sµνα = −1

2
ǫλ1λ2...λ2nµRν

κ1λ1λ2
Rκ1

κ2λ3λ4
. . . R

κ2n−2α
λ2n−1λ2n

. (3.13)

The CS term expressed by Γ is similar to ω, with ω replaced by Γ in (3.2).

4 Entropy of gravitational Chern-Simons terms in 3D

3D theory with CS term is also known as topologically massive gravity [34]. The black hole

entropy in this theory has been discussed in many authors, see e.g. [19–25] . Non-trivial

correction appears for rotating BTZ black. We would like to use the squashed cone method

to study the correction of CS term to black hole entropy (also the HEE formula) in 3D

spacetime.

For the Euclidean theory, the action of 3D CS term is

ICS =
−iλ

64πG

∫

d3x
√
Gǫµνσ

(

Γα
βµR

β
ανσ − 2

3
Γα
βµΓ

β
γνΓ

γ
ασ

)

, (4.1)

where we have integrated t, −i appears because of the Wick rotation, see [27].
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4.1 Result by using the squashed cone method directly

Firstly we use the squashed cone method by Lewkowycz-Maldacena [5] and Dong [8] di-

rectly. To get the contribution to HEE from the CS action, we need work in metric (2.3),

and find the O(ǫ). We calculate the components of Γ and R in the appendix A. It’s easy

to see that only the Wald entropy appears, and the final result of the entropy is

S =
iλ

16G

∫

Σ
dy(Γz

yzǫ
z
z + Γz̄

yz̄ǫ
z̄
z̄) =

iλ

16G

∫

Σ
Γν
σµǫ

µ
νdx

σ (4.2)

where Σ is codimension-2 surface in the bulk.

It’s also interesting to check the result by using the spin connection ω. The action

would be

ICS =
−iλ

64πG

∫

d3x
√
Gǫµνσ

(

ω α
µ βR

β
ανσ − 2

3
ω α
µ βω

β
ν γω

γ
σ α

)

. (4.3)

We also calculate all the components of ω in appendix A. Besides the Wald entropy there

are also contributions from the second term in (4.3). But the contribution finally vanishes.

The result is also

S =
iλ

16G

∫

Σ
Γν
σµǫ

µ
νdx

σ, (4.4)

where we use ω z
y z = Γz

yz + O(z). It is natural because Γ ia related with ω by local gauge

transformation, and the result is gauge-invariant.

But (4.2), (4.4) is not consistent with the result given in literature [19–22]. The incon-

sistence warn us to be careful when dealing with the non-covariant theory. Just like the

Wald method [4] to calculate the entropy of CS term, some modification is expected to get

the correct result [25]. We would give a solution to this problem in the next subsection for

the squashed cone method.

4.2 A solution

The vielbeins (3.6) still have a gauge freedom (3.8). An arbitrary local Lorentz trans-

formation would produce an additional total derivative term for the action. This term

contributes to entropy if we use the squashed cone method before integrating out the total

derivation term. The freedom should be eliminated if we want a reasonable result.

We denote the action of CS term after regularization as I(ǫ), the entropy S = −∂ǫI(ǫ).

As we can see from metric (2.3) the vielbeins Ea
µ and the spin connection ω a

µ b would also

depend on ǫ. Under an infinitesimal local Lorentz transformation parameterized by θab,

δθe
b = −θbae

a,

δθω
a
b = dθab + [ω, θ]ab. (4.5)

The 3D CS action

I
(3)
CS =

−iλ

32πG

∫

M3

Tr

(

ωdω +
2

3
ω

3

)

(4.6)

would have a variation that is total derivative term,

δθI
(3)
CS =

−iλ

32πG

∫

M3

dTr(θdω(ǫ)). (4.7)

– 6 –
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When we work in the metric (2.3), the above term (4.7) contains ǫ, which contributes to

entropy. This suggests new terms should be added to the action to eliminate the ambiguity.

We find the following one satisfies the requirement,

∆I
(3)
CS =

iλ

32πG

∫

M3

dTr(ω(0)ω(ǫ)). (4.8)

The total derivative term does not modify the equation of motion. In the limit ǫ → 0 it

vanishes, we get the original action. Under the infinitesimal local Lorentz transformation,

δθ∆I
(3)
CS =

iλ

32πG

∫

M3

dTr(δθω(0)ω(ǫ) + ω(0)δθω(ǫ))

=
iλ

32πG

∫

M3

(

dTrθdω(ǫ)− dTrθdω(0)
)

(4.9)

The variation of the modified action,

δθ Ĩ
(3)
CS = δθ

(

I
(3)
CS +∆I

(3)
CS

)

=
iλ

32πG

∫

M3

dTrθdω(0). (4.10)

This is what we expected. Now the contribution from (4.8) is

∆S =
iλ

16G

∫

Σ
Γν
σµǫ

µ
νdx

σ. (4.11)

Including this contribution we recover previous result for black hole in 3D gravity with CS

term. Then the HEE formula for 3D gravity theory with CS term is

1

4G

∫

dy
√
gyy +

iλ

8G

∫

Γν
σµǫ

µ
νdx

σ. (4.12)

The HEE formula of theory with a gravitational CS term was first derived in [35].

One could check (4.12) is consistent with the result of [35] and [38]. Before we move on

let’s comment more on the squashed cone method for non-covariant theory. We show that

the result obtained by using the squashed cone method by Lewkowycz-Maldacena [5] and

Dong [8] is not correct. To get the correct result one could add a suitable boundary term,

e.g., (4.8). Actually this method is consistent with the one used in [19] or [35]. In [19]

and [35] the authors also used the squashed cone method. To get the correct result of the

action in order O(ǫ), they make integration by parts and throw away a boundary term,

see the formula (B.6) and (B.7) in [35]. One could also understand this as the statement

of [19], ω = ωsing+ωreg, so R = dωsing+dωreg+ . . .,
∫

ωR =
∫

ωregRsing+ωsingdωreg+ . . . =

2
∫

ωregRsing . . .. A factor 2 also appears in this approach. If one just counts the terms that

is related to ∂z∂z̄A and ∂zA∂z̄A, the result is not correct. In fact the author in [36] just

considered the contribution from terms related to ∂z∂z̄A, one could check the result in [36]

is not consistent with (4.12). In higher dimension the anomaly term of the entropy (2.5)

will appear. The generalization to higher dimension is straightforward but much more

complex. We will comment on this problem later.
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4.3 The surface

If we know the solution of a black hole in 3D, the result (4.2) can be directly used to

calculate the entropy. But for HEE we have to find the surface Σ firstly. We would use

boundary condition method to determine where the Σ should be. We will follow the same

strategy as [5, 8].

We could parameterize the coordinate y in 3D, the metric is

ds2 = e2A[dzdz̄ + e2AT (z̄dz − zdz̄)2] +
(

1 + 2Kax
a +Qabx

axb
)

dy2

+2ie2A(U + Vax
a)(z̄dz − zdz̄)dy + . . . (4.13)

In three dimensions

Cµν = ǫµκσ ▽κ

(

Rν
σ − 1

4
δνσR

)

(4.14)

The equation of motion is

Eµν = Rµν −
1

2
GµνR− 1

l2
Gµν − iλCµν = 0 (4.15)

Let’s check the divergent terms in Ezz. The result is

Ezz =
ǫ

z

(

− 1

2
Kz(y) + λ(U(y)− 3Vz)Kz(y)−

iλ

2
K ′

z(y)

)

+ . . . , (4.16)

where the “. . . ” means terms less divergent. We should set the divergent term in (4.16) to

zero. We get the constraint,

− 1

2
Kz(y) + λ(U(y)− 3Vz)Kz(y)−

iλ

2
K ′

z(y) = 0, (4.17)

when λ = 0 we get the conditions for Einstein gravity ([5]). For Ez̄z̄ we would get a

constraint on Kz̄ with z ↔ z̄ and U(y) ↔ −U(y)), Vz → −Vz̄ in (4.17). The CS term

would give a non-trivial correction to constraint on the bulk surface Σ.

The question is considered in [35], they conclude that the minimization of (4.12) results

in the Mathisson-Papapetrou-Dixon(MPD) equations for a spinning particle in 3D, which

is exactly the equation (4.17). To get the correction to HEE by CS term, one need to solve

the MPD equation firstly.1

Actually without knowing the equation of motion of the surface, one also could get the

leading contribution of the correction to HEE. According to method of [37], the coordinate

y could be parameterized as y = ρ near the boundary, where ρ is the coordinate of the bulk

direction in the FG gauge, which states that any spacetime asymptotical to AdS admit the

expansion

ds2 =
l2

4

dρ2

ρ2
+

1

ρ
(g(0)ij + ρg(1)ij + ρ2g(2)ij + . . .), (4.18)

where g(0)ij is the boundary metric. Now we have two coordinates to describe the bulk

metric, i.e., Xµ ∈ {ρ, x1, x2} and {z, z̄, y}, where x1 and x2 are the boundary coordinates.

1We would like to thank Prof. Takayanagi for reminding the paper [35] when preparing the draft.
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To find the leading contribution of the entropy one needs to know the transformation

between the two coordinates. It is possible to get the coordinate transformation near the

boundary (ρ → 0),as

ρ = y +Bzy3/2 + Cz̄y3/2 + . . .

xi = xi0(y) +Aiy1/2z + Āiy1/2z̄ + . . . , (4.19)

with xi0 = xi0(0) + Dy . . ., where B,C,Ai, Āi, D are constants, there are some relation

among these parameters, which is not important for our purpose.This transformation can

be obtained by considering the following constraints.

∂Xµ

∂z

∂Xν

∂y
Gµν |z=0,z̄=0 = 0, and

∂Xµ

∂z

∂Xν

∂z̄
Gµν |z=0,z̄=0 =

1

2
. (4.20)

We know from (4.12) that the additional terms for the HEE formula is proportional to

Saddition ∝
∫

dyUy. (4.21)

Uy can be written in the coordinate {ρ, x1, x2} as

Uy ∝ ∂Xµ

∂y

∂Xν

∂z̄
▽µ nzν , (4.22)

where nν
z ≡ ∂xν

∂z , the derivative ▽ is defined in the coordinate {ρ, x1, x2}. One could take

the coordinate transformation (4.19) into (4.22), and find the ρ−1 term is vanishing, thus

Uy ∝ O(ρ0). As we know the first term in (4.12) would contribute a log divergence term

for the HEE. So the additional term in the theory with CS term would not contribute to

the leading divergence. In [35] the authors calculate some examples in which the bulk are

asymptotically to AdS3, the result is consistent with conclusion above.

5 Entropy of gravitational Chern-Simons terms in 7D

We find the contribution from the 3D CS term for HEE or black hole entropy. In 3D the

possible correction related to extrinsic curvature do not appear. It’s also interesting to

investigate this property in higher dimensional theory. It is well known that gravitational

CS term only exists in (4n − 1) dimensional spacetime. We will discuss 7D theory in the

following. Like the 3 dimensional case, one can’t obtain the result directly by using (2.2).

This is because of the fact that the action is not covariant. In this section we will use a

“topological method” to get the result. We argue that the result is correct. As an important

check this method could produce the correct result for Wald entropy in arbitrary dimension.

5.1 Approach to 7D case by a topological method

In this section we would like to use a “topological method” to derive the entropy for 7D the-

ory with gravitational CS term. This method is based on the observation that the entropy of
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a topological Invariant is a local total derivative.2 This is indeed the case for Euler densities,

or equivalently, the Lovelock gravity in critical dimensions [8], see also [39–41]. As we shall

prove below, this is also the case for the Pontryagin density tr(R4). Recall that we have

dΩ7(ω) = TrR4. (5.1)

We propose to derive the entropy of 7D CS term s7 from the following identity

ds7 = Entropy of dΩ7(ω) = Entropy of TrR4. (5.2)

Since the right hand side of (5.1) is invariant under the local Lorentz transformation, s7
(up to an exact form) would also be free of the ambiguity. To make s7 really be the entropy

of 7d CS term, we have assumed

Entropy of dΩ7(ω) = d(Entropy of Ω7(ω)). (5.3)

An evidence for the above approach is that we derive the correct entropy with zero extrinsic

curvature, which is obtained by using the generalized covariant phase formalism in [26, 27].

Now let us start to derive the entropy of 7D CS term. We use the spin connection

formulism in this section. Let’s take a theory in 8D with the action,

I8 =

∫

M8

tr(R4). (5.4)

By using the relation (3.1) one have

I7 =

∫

M7

Ω7, (5.5)

where M7 is a 7D manifold as the boundary of M8. The action (5.4) is invariant under the

local Lorentz transformation. We would firstly get the entropy for the theory with such an

action (5.4). The details of the calculation can be found in appendix C, we list the result

as follows.

S8 = −iπ

∫

Σ6

√

det(g)ǫ̂zz̄i1i2i3...i6
[

− 6Kzi1j1K
j1

z̄i2
Rzj2i3i4R

j2
z̄i5i6

+64∂i1Ui2∂i3Ui4K
j1

zi5
Kz̄i6j1 + 48iKzi1j1K

j1
z̄i2

∂i3Ui4Kzi5j2K
j2

z̄i6

−6K j1
z̄i1

Rzj1i2i3Kzi4j2R
j2
z̄i5i6

+ 2Kzi1j1r
j2j1

i2i3
Kz̄i4j3r

j3
j2i5i6

−12Kzi1j1r
j1
j2i2i3

K j2
z̄i4

K j3
zi5

Kz̄j3i6 + 8iKzi1j1r
j1
j2i2i3

K j2
z̄i4

∂i5Ui6

−32i∂i1Ui2∂i3Ui4∂i5Ui6 + 8i∂i1Ui2Rzj1i3i4R
j1
z̄i5i6

+Rzj1i1i2r
j1
j2i3i4

Rj2
z̄i5i6

]

+ (z ↔ z̄). (5.6)

where the integration is on the codimension-2 surface Σ6, “-i” appears because we are

using Euclidean version. The result is still quite complex, to see it more clear, we would

2After our paper we notice that a recent paper also uses the same method to deal with the entropy CS

term [38].
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rewrite the result by forms. On the surface Σ6, where z = z̄ = 0, Kaij and Ui are one-form,

Raijk and rijkl are two forms. One could map the spacetime index into the local Lorenz

coordinate by the vielbeins (3.6). From (3.6) we get

ea1z = ea2z̄ =
1

2
, ea2z = −ea2z̄ = − i

2
, eaij = ēaij , (5.7)

on the codimension-2 surface Σ6. In the following the index a, a′, a′′ . . . denote the element

of the set {a1, a2}, b, b′, b′′ . . . denote the set {ai}, c, c′ . . . denote the set {a1, a2, ai}. By

using (5.7) and (A.2) we have the following relation3

Kzij = eaze
b
iωj,ba, −2iUi = eza

′

ea
′′

z ωi,a′a′′ , rijkl = eb
′

i e
b′′

j rb′b′′kl, (5.8)

one could rewrite (5.6) as4

S8 = −iπ

∫

Σ6

[

− 6ǫaa
′

ωbaω
b
a′Ra′′b′R

b′a′′ + 64dUdUǫaa
′

ωbaω
b
a′

+24idU(ǫaa
′

ωbaω
b
a′)

2 + 8ωbaR
baǫa

′a′′
ωb′a′R

b′

a′′

+8ǫaa
′

ωbar
b
b′r

b′

b′′ω
b′′

a′ − 6ωbar
b
b′ω

b′aǫa
′a′′

ωb′′a′ω
b′′

a′′

+32ωbar
b
b′ω

b′adU − 128dUdUdU + 32dURabR
ba

+8ǫaa
′

Rabr
b
b′R

b′

a′

]

, (5.9)

where ǫaa
′ ≡ ǫzz̄eaze

a′
z̄ +ǫz̄zeaz̄e

a′
z ,ǫ

zz̄ = −ǫz̄z = −igzz̄. To simplify result we need the relation

Rab ≡ dωab + ωacω
c
b = dωab + ωaa′ω

a′

b + ωab′ω
b′

b, (5.10)

rbb′ = dωbb′ + ωbb′′ω
b′′

b′ . (5.11)

The result is

S8 =

∫

Σ6

ds7, (5.12)

with

s7 = −iπ
[

− 128UdUdU − 6ǫaa
′

ωbaω
b
a′ωa′′b′′R

b′′a′′

−64UdUǫaa
′

ωabω
b
a′ + 32Udωabdω

ba − 32dUωabω
b
b′ω

b′a

−8ǫaa
′

ωbaω
b
b′dω

b′

b′′ω
b′′

a′ − 8ǫaa
′

dωbaω
b
b′ω

b′

b′′ω
b′′

a′ + 16Uωabdω
b
b′ω

b′a

+8ǫa
′′a
ωabω

b
b′ω

b′

b′′ω
b′′

cω
c
a′′ + 8ǫaa

′

ωabdω
b
b′dω

b′

a′

]

. (5.13)

One could define the “density” of the entropy in 8D s8, and the relation s8 = ds7. This

is the expected relation that we mentioned in the beginning of this subsection. s8 is the

entropy that we obtain from the Pontryagin density, it has the similar relation (3.1) which

must be satisfied by the Pontryagin class. The entropy for the CS term in 7D is

S7 =

∫

Σ5

(s7 + ds′), (5.14)

3For example, Kzij = ωj,iz = ωj,cc′e
c
ie

c′

z =ωj,bae
b
ie

a
z , since ebz = eai = 0, where a ∈ {a1, a2}, b ∈ {ai}.

4We note that dxν1 ∧ dxν2 . . . ∧ dxνn = ǫν1ν2...νn
√

det(g)dnx.
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where the surface Σ5 is the codimension-2 surface in 7D, which is also a boundary of Σ6,
5

s′ is arbitrary. Our above approach actually do not use the viebeins in the regularized

spacetime (3.6), it is not expected the result is effected by the local gauge transformation.

We also show (5.13) is same as the result in [38] up to a boundary term in appendix D.

Here we only calculate the 7D result. We expect it can be generalized to (4n − 1)D

without any difficulty in principle. Conversely, we could say our result above provides

another evidence to support our proposal that the entropy of a topological Invariant is also

a topological Invariant.

6 Wald entropy in arbitrary dimension

The result (5.13) is new, and now we don’t have other methods to compare with. When

setting extrinsic curvature to zero, the entropy is just the Wald entropy. One could derive

the Wald entropy by other method, see [26, 27]. So the Wald entropy is a good example to

check the topological method. As we have discussed in section 4.2 for 3D case, one can not

obtain the correct result by using the squashed cone method directly. We also mentioned

the trick used in [19] and [35] is equal to add a boundary term in the action. We would

like to use the topological method and boundary term method in this section to calculate

the Wald entropy.

6.1 The topological method

Here we use a topological approach to this problem by considering the relation (3.1). For

3 dimension

dΩ3 = TrR2, (6.1)

here R lives in 4 dimension spacetime M4, Ω3 lives in M3. The above terms are invariant

under local Lorentz transformation. Let’s define

Ĩ4 =

∫

M4

TrR2 =

∫

M3

Ω3. (6.2)

It’s easy to check the contribution from (∂zA, ∂z̄A) vanishes. The total contribution of (6.2)

to the entropy is

S̃4 = 8iπ

∫

Σ2

RN , (6.3)

where the integration is on the a dimension-2 surface Σ2, RN is defined as

RN ≡ 1

2
trǫR. (6.4)

Note that RN = dΓN , where “d” is the defined on Σ2,

ΓN ≡ 1

2
tr(ǫΓ). (6.5)

5Actually the action in 8D depends on one more coordinate, the result of the corresponding entropy

is dependent on the coordinate. But one can assume to choose a suitable Mainfold for M8, on which the

boundary is M7, and the boundary of the surface Σ6 is Σ5.
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One could rewrite (6.3) as

S̃4 = 8iπ

∫

Σ1

ΓN , (6.6)

where Σ1 is a codimension-3 surface in M4, as well as a codimension-2 surface in M3.

Formally considering (6.2) we have the entropy

S3 = 8iπ

∫

Σ1

ΓN , (6.7)

if one uses the trick to find suitable M4 such that M3 is a boundary of M4, and Σ1 as a

boundary of Σ2.

The result is same as (4.12), and also [19, 35]. Now it is easy to generalize the method

to higher dimension. Actually the generalization is quite trivial. With the relation

dΩ2n+1 = trRn+1, (6.8)

one could have

Ĩ2n+2 =

∫

M2n+2

trRn+1 =

∫

M2n+1

Ω2n+1, (6.9)

The entropy from Ĩn is

S̃2n+2 = 4iπ(n+ 1)

∫

Σ2n

R
n
N . (6.10)

With the relation RN = dΓN , one have

S2n+1 = 4iπ(n+ 1)

∫

Σ2n−1

ΓNR
n−1
N

. (6.11)

The result is consistent with the one that is obtained by the covariant phase formal-

ism [26, 27].

6.2 Another approach

Actually we also could use the trick in 3 dimension to get the correct result for Wald

entropy in arbitrary dimension. We will briefly state the process in the following. As the

appendix B shows, a local gauge transformation would lead to a boundary term which is

related with ǫ in the regularized spacetime. Even if we only consider the Wald entropy,i.e.,

the extrinsic curvature is vanishing, this ambiguity still exist. The following term is suitable

to add to the action,6

∆In = −n(n+ 1)

∫ 1

0
dt(t− 1)tn−1

∫

M
dstr(ω(0),ω(ǫ),Rn−1

t
), (6.13)

where ω(ǫ) is the spin connection in the regularized metric (2.3), Rt is constructed by ω(ǫ).

After complex calculation one could get the variance of the action with the additional term,

δθ(In +∆In) = −n(n+ 1)

∫ 1

0
dt(t− 1)tn−1

∫

M

[

− str(R1, dθ,R
n−1
t

)

6The CS action is normalized as

In = (n+ 1)

∫

M

Ω2n+1. (6.12)
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+str(ω(0),R2,R
n−1
t

)
]

+2n(n+ 1)

∫ 1

0
dt(t− 1)2tn−1

∫

M

[

str(R1,ω,R2,R
n−2
t

)

−str(ω(0), Dtω,R2,R
n−2
t

) + str(ω(0),ω,R3,R
n−2
t

)
]

, (6.14)

with the following definitions,

R1 = Dtω(0), R2 = Dtdθ, R3 = DtDtdθ = [Rt, dθ], (6.15)

see the definition of “Dt” in appendix B. One could extract the O(ǫ) terms in (6.14), and

finally get

∆S = −4iπ(n+ 1)

∫

Σ
dfRn−1

N
, (6.16)

where Σ is the codimension-2 surface, f is defined as

f ≡ n− 1

n+ 1
tr(θǫ). (6.17)

RN is defined as

RN ≡ 1

2
tr(ǫR) (6.18)

where ǫ is 2-dimension Levi-Civita symbol with ǫ12 = −ǫ21 = 1. (6.17) is actually a

integration of total derivative term. Thus the local gauge transformation will not effect the

final result of the entropy, which is what we expect. With the additional term one could

get the entropy,

S = 4iπ(n+ 1)

∫

Σ
ωNR

n−1
N

, (6.19)

where RN is defined by (6.18), and ωN is defined as

ωN =
1

2
tr(ǫω), (6.20)

the result is consistent with [26, 27] and (6.11). (6.18) and (6.20) are related with each

other by

dωN = RN , (6.21)

for tr(ǫωω) = 0. Then it’s obvious (6.16) can be seen as the gauge transformation

ωN → ωN − df. (6.22)

Note that in 3D f = 0, so the result in 3D is gauge invariant.

We use the spin connection formulism of CS action in the above discussion. But it’s

easy to generalize the result to Christoffel symbols formulism. The non-covariant part of

the diffeomorphism δξ of Γ is,

δ̂ξΓ = dΛ, (6.23)

where Λa
b = ∂bξ

b. If one replaces the parameter θ with Λ, as well as Γ with ω, all the

result for Christoffel symbols formulism can be obtained.
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We show that the two methods both could get the correct result for Wald entropy. The

topological method is more reasonable and simpler. This method depends on the special

property of the gravitational CS terms. For other non-covariant theories, one could not

generalize the topological method. As we have mentioned adding a boundary term is equal

to making integration by parts [38]. In [38] the authors make more details discussion on

how to obtain the correct result by making integration by parts. In principle there is no

difficulty to write down a suitable boundary term to get the result (5.13).

7 Conclusion and discussion

In this paper we analyze the entropy when gravitational Chern-Simons terms are added

into the action. We find it is necessary to modify the squashed cone method by Lewkowycz-

Maldacena [5] and Dong [8] for theory with gravitational Chern-Simons terms. The ne-

cessity is related to the non-covariant part transformation of diffeomorphism since a total

derivative term would appear under such transformation. The covariant theory is free of

this ambiguity. One possible solution to this problem is to add a total derivative term into

the original Lagrangian, which does not affect the equation of motion, at the same time

eliminates the ambiguity caused by the diffeomorphism. This term is also vanishing in the

limit ǫ → 0.We show how to add a boundary term to get the correct Wald entropy. In

principle it is also straightforward to find a suitable boundary term to get correct result

for general case, i.e., the extrinsic curvature is non-vanishing, by following [38].

On the other hand we propose a ‘topological approach’ to calculate the entropy of

gravitational Chern-Simons terms when the extrinsic curvature Kaij is non-vanishing. It

yields the correct Wald entropy in arbitrary dimension and gives non-trivial results when

the extrinsic curvature does not vanish. Our results imply that the entropy of a topological

invariant seems to also be a topological invariant. There may exist some mathematical

interpretations or correspondence for this nice property. We hope someone could clarify

this problem in future.
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A Useful components of Γ and R

Γz̄
z̄z̄ = 2∂z̄A, Γz̄

iz̄ = 2iUi, Γj
z̄i = g

jk
Kz̄ki, Γz

ij = −2e−2A
Kz̄ji, Γm

li = γ
m
li , (A.1)

ω
z

z z = −ω
z̄

z z̄ = ∂zA, ω
z

i z = −2iUi, ω
j

i z = K
j

z i, ω
z

i j = −2e−2A
K

j
z̄ i, ω

k
i j = ω̄

k
i j , (A.2)
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Rzz̄zz̄ = e2A
(

∂z∂z̄A− 3Te2A
)

,

Rzz̄zi =
1

2
e2A

[

2iUi(z̄∂z∂z̄A+ ∂zA+ z∂z∂zA) + 3iVzi

]

Rzizj =
1

2

[

4Kzij∂zA− 2Qzzij + 2glkKzljKzik

]

Rzz̄ij =
1

2
e2A

[

2i∂iUj − 2e−2AglnKz̄njKzli

]

− (i ↔ j),

Rziz̄j =
1

2
e2A

[

i(∂iUj − ∂jUi) + 2e−2AgmnKz̄niKzmj + 4UiUj − 2e−2AQzz̄ij

]

Rzijk =
1

2
e2A

[

− 2e−2A∂jKzki − 4ie−2AUjKzik − 2e−2AKzljγ
l
ik

]

− (j ↔ k)

Rikjl = rikjl −
[

2e−2A(KzijKz̄kl +Kz̄ijKzkl)
]

− (j ↔ k). (A.3)

B Non-covariant part of Ω

Following the step as [26], we define the “covariant” derivative

D = d + [ω, ], Dt = d + [tω, ], (B.1)

note that d
dt(tRt) = Dtω one can get

δ̂Ω2n+1 = (n+ 1)

∫ 1

0
dttn

(

str(δ̂ω,Rn
t ) + nstr(ω, δ̂Rt,R

n−1
t

)
)

= (n+ 1)

∫ 1

0
dt
(

tnstr(dθ,Rn
t ) + ntn−1str(ω, (t− 1)Dtdθ,R

n−1
t

)
)

= (n+ 1)

∫ 1

0
dt

[

tnstr(dθ,Rn
t )− ntn−1dstr(ω, (t− 1)dθ,Rn−1

t
)

+nstr

(

d

dt
(tRt), (t− 1)dθ, (tRt)

n−1

)]

, (B.2)

where the last step we use

dstr(A1,A2 . . . ,An) =
n
∑

i=1

(−)a1+a2...+ai−1str(A1, . . . , D(Ai), . . .), (B.3)

Ai denotes the ai-form, the covariant derivative D ≡ d + [Θ, ], Θ is 1-form. Then

∫ 1

0
dtnstr

(

d

dt
(tRt), (t− 1)dθ, (tRt)

n−1

)

=

=

∫ 1

0
dt

(

d

dt
str((t− 1)dθ, tnRn

t )− tnstr(dθ,Rn
t )

)

, (B.4)

the first term vanishes. We get

δ̂Ω2n+1 = −n(n+ 1)d

∫ 1

0
dttn−1(t− 1)str(ω, dθ,Rn−1

t
). (B.5)
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C Details of the calculation in section 5

The action (5.4) can be written by the spacetime components as

I8 = − i

16

∫

M8

√

det(G)ǫβ1β2...β8Rα1
α2β1β2

Rα2
α3β3β4

Rα3
α4β5β6

Rα4
α1β7β8

, (C.1)

where “-i” appears because we work in the Euclidean spacetime. The contribution to the

entropy from Rzz̄zz̄ is

I(1) = −2i

∫

M8

√

det(G)ǫzz̄i1i2i3i4i5i6Rzz̄zz̄

[

4Rzz̄i1i2Rzz̄i3i4Rzz̄i5i6

+2Rzz̄i1i2Rzj1i3i4R
j1
z̄i5i6

+ 2Rzj1i1i2R
j1
z̄i3i4

Rzz̄i5i6

+Rzj1i1i2R
j1
j2i3i4

Rj2
z̄i5i6

]

(C.2)

The contribution from (Rzizj , Rz̄iz̄j) is

I(2) = −4i

∫

M8

√

det(G)ǫzz̄i1i2i3i4i5i6∂zA∂z̄A
[

Rzj1i1i2R
j1
z̄i3i4

Kzi5j2K
j2

z̄i6
(Gzz̄)2

+Kzi1j1K
j2

z̄i2
Rzz̄i3i4Rzz̄i5i6(G

zz̄)3 +K j1
zi1

Kz̄i2j2R
j2
zi3i4

Rz̄j1i5i6(G
zz̄)2

+K j1
zi1

Kz̄i2j2R
j2
z̄i3i4

Rzj1i5i6(G
zz̄)2 +K j1

zi1
Kz̄i1j2R

j3
j4i3i4

Rj3
j1i5i6

Gzz̄

−Kzi1j1R
j1
zi2i3

Kz̄i4j2R
j2
z̄i5i6

+Kzi1j1R
j1
j2i2i3

K j2
z̄i4

Rzz̄i5i6

]

+ (z ↔ z̄). (C.3)

One could get the O(ǫ) term of the above terms after complex calculation,

S8 = −iπ

∫

Σ6

√

det(g)ǫ̂zz̄i1i2i3...i6
[

− 6Kzi1j1K
j1

z̄i2
Rzj2i3i4R

j2
z̄i5i6

+64∂i1Ui2∂i3Ui4K
j1

zi5
Kz̄i6j1 + 48iKzi1j1K

j1
z̄i2

∂i3Ui4Kzi5j2K
j2

z̄i6

−6K j1
z̄i1

Rzj1i2i3Kzi4j2R
j2
z̄i5i6

+ 2Kzi1j1r
j2j1

i2i3
Kz̄i4j3r

j3
j2i5i6

−12Kzi1j1r
j1
j2i2i3

K j2
z̄i4

K j3
zi5

Kz̄j3i6 + 8iKzi1j1r
j1
j2i2i3

K j2
z̄i4

∂i5Ui6

−32i∂i1Ui2∂i3Ui4∂i5Ui6 + 8i∂i1Ui2Rzj1i3i4R
j1
z̄i5i6

+Rzj1i1i2r
j1
j2i3i4

Rj2
z̄i5i6

]

+ (z ↔ z̄). (C.4)

D Comparison with [38]

We would like to show our result (5.13) is different from the one in the recent paper [38]

only by a boundary term, in which the author calculate the same quantity. One could see

the paper [38] for more details. Since the notations in [38] are not all same as ones we use

here, we rewrite the result in [38] by our notations as

s7d,singleent,CS = 16π
[

8iUdU2 + [4idU + 3ωz̄ � ω z] ∧ [ωz � D̂ωz̄ + ωz̄ � D̂ωz]

+D̂ωz � r � ωz̄ − D̂ωz̄ � r � ωz

]

, (D.1)
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where ωz denotes ωbz, D̂ωbz ≡ Dωbz + 2iUωbz. One could get the following results

16π × 4idU ∧ [ωz � D̂ωz̄ + ωz̄ � D̂ωz] (D.2)

= 64iπdUUǫaa
′

ωabω
b
a′−32iπUdωabdω

ba+32iπdUωabω
b
b′ω

b′a−32iπd[Uωabdω
ba],

16π × 3ωz̄ � ω z ∧ [ωz � D̂ωz̄ + ωz̄ � D̂ωz] (D.3)

= 6iπǫaa
′

ωbaω
b
a′ωa′′b′′R

b′′a′′

16π × [D̂ωz � r � ωz̄ − D̂ωz̄ � r � ωz] (D.4)

= 8iπǫaa
′

ωbaω
b
b′dω

b′

b′′ω
b′′

a′ + 8iπǫaa
′

dωbaω
b
b′ω

b′

b′′ω
b′′

a′ − 16iπUωabdω
b
b′ω

b′a

−8iπǫaa
′′

ωbaω
b
b′ω

b′

b′′ω
b′′

cω
c
a′′ − 8iπǫaa

′

ωabdω
b
b′dω

b′

a′ .

Now we could see the difference between (D.1) and (5.13) is just a boundary term

−32iπd[Uωabdω
ba].
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