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1 Introduction: structure formation at smaller scales and neutrino in-

teracting dark matter

The existence of dark matter (DM) is required by a number of experimental results, from

galactic rotation curves, to gravitational lensing observations, to the cosmic microwave

background (CMB). Because of its success in accounting for data at cosmological scales,

the cold DM (CDM) paradigm has become the baseline scenario for studying DM-related

physics. Despite these successes, evidence for puzzles at galactic or smaller scales that

CDM cannot account for have been accumulating in recent years [1–7]. These puzzles go

by several names: the ”missing satellites,” ”too big to fail,” and ”core vs. cusp” problems.

For general, recent reviews of these small scale structure discrepancies see [8, 9].

Simulations based on CDM predict that there should be many thousands of DM sub-

halos in a Milky Way size galaxy, in contrast to the few dozen known Milky Way satellite
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galaxies (for a review see [10]). This discrepancy is termed the ”missing satellites” prob-

lem. The apparent deficit in the number of satellite galaxies could be due to conventional

astrophysics, such as the inability of low mass DM subhalos to form stars (for exam-

ple, due to supernova feedback or reionization blowing regular matter out of subhalos),

making them hard to detect (see [11] and references therein), or it could be due to the

properties of the DM particle. Several ways to change the vanilla CDM paradigm have

been suggested in order to affect structure on small scales and suppress the formation of

small DM subhalos, including: (i) the DM could be warmer [12, 13], (ii) the DM could

self-interact [14–17], or (iii) the DM could stay in thermal equilibrium with radiation to

lower temperatures than typically expected. To realize option (iii), the DM must interact

strongly with the components of the relativistic plasma, either photons, neutrinos, or dark

radiation. The use of stronger-than-expected interactions of DM with neutrinos to solve

the missing satellites problem has long been recognized [18–23]. In this paper we consider

a DM candidate that couples to a heavy sterile neutrino through a dark sector mediator.

DM-neutrino interactions are induced by neutrino mixing. We focus on the particle physics

and astrophysical constraints on these interactions, and also describe the effects of strong

DM-neutrino interactions on structure formation.

Structure formation involves a competition between gravity, which causes density in-

homogeneities to grow, and pressure, which resists the gravitational collapse. In general,

in the early Universe when the temperature was extremely high, the DM was in thermal

equilibrium with the relativistic plasma composed of photons, neutrinos, and possibly other

Standard Model (SM) states, via nongravitational interactions that are typically assumed

to be present. After the temperature drops below the DM mass, the DM abundance eventu-

ally falls out of chemical equilibrium, fixing its (comoving) number density. However, in the

case of neutrino-interacting DM, the DM remains in kinetic equilibrium with the plasma

via elastic scattering off neutrinos for a longer period of time. These interactions with the

relativistic plasma allow the DM to feel an additional pressure that resists gravitational

collapse and therefore suppresses the formation of structure.

As the temperature continues to drop, the DM goes out of kinetic equilibrium. This

happens at a decoupling temperature Td which can be roughly estimated by determining

when the rate for the DM momentum to appreciably change via scattering falls below the

expansion rate of the Universe. Since it is nonrelativistic, while in kinetic equilibrium the

DM has momentum of order
√
mχT where mχ is its mass and T is the temperature. After

N scatterings on the components of the relativistic plasma (which carry momentum T ),

the change in DM momentum is typically about
√
NT . For this change to be comparable

to the DM momentum itself implies that N ∼ mχ/T . The rate for N scatterings is

Γ = nrσ/N ∼ (T nrσ)/mχ where nr ∝ T 3 is the plasma (radiation) number density and σ is

the cross section for scattering. The cross section for scattering on relativistic plasma scales

as σ = T 2/Λ4 where Λ is the scale of the operator mediating the interaction. The decoupling

temperature is found when Γ = H ∼ T 2/MPl where H is the Hubble rate and MPl is the

Planck mass. Solving for the decoupling temperature gives the scaling Td ∼ Λ(mχ/MPl)
1/4.

This expression captures the intuitive expectation that as the interaction strength increases

(Λ decreases) Td decreases.
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Because the Universe is expanding after an initial period of inflation, density pertur-

bations on smaller scales enter the horizon before those of larger size. Since only density

perturbations with a size smaller than the horizon can grow, perturbations on smaller scales

begin to grow before perturbations on larger scales, so that the decoupling temperature

sets a minimum size for DM structures that can form. The growth of DM perturbations on

scales smaller than the horizon at T > Td is suppressed by the finite pressure of the coupled

DM-plasma gas. For T < Td, the DM pressure drops to zero and density perturbations on

scales of order the horizon size at T = Td and smaller can grow. Because the (comoving)

DM number density remains a constant, and since we know the present DM mass density,

the lower bound on the size of unsuppressed DM structures can be expressed as a lower

bound on the mass of gravitationally bound DM objects, Mcutoff . As we will see in section 3,

this cutoff can be related to the decoupling temperature via Mcutoff ∼ 108M�(keV/Td)3,

where M� ' 2× 1030 kg is the mass of the Sun. The standard weakly interacting massive

particle (WIMP) CDM scenario with Λ ∼ mχ ∼ 100 GeV leads to a decoupling temper-

ature around 10 MeV and hence Mcutoff � M�, which is too small to be relevant for the

small scale structure puzzles [24–26].

Strong neutrino-DM interactions lower Td which increases Mcutoff , offering a solution

to the missing satellites problem by suppressing the formation of smaller halos. Of course,

Mcutoff must be chosen to be consistent with observations of halo masses. An analysis of

satellite galaxies indicates that the mass of their surrounding DM halos before accretion

onto the Milky Way was around Mhalo ∼ 109M� [27]. Measurements of the Lyman-

α absorption lines in the spectra of distant quasars due to the presence of clumps of

intergalactic neutral hydrogen (the “Lyman-α forest”) indicate that the halos with Mhalo ∼
3 × 108M� exist [28]. Similarly, DM substructure can be observed using gravitational

lensing, with the smallest structures observed having Mhalo ∼ 1 × 108M� [29, 30]. Since

tidal disruption could cause these observed halo masses to be smaller than the original halo,

and since a value for Mcutoff < Mhalo is certainly allowed, in this work we consider models

with Mcutoff in the range 107M� − 109M�. This range requires a decoupling temperature

Td ∼ keV. The scaling of Td implies (Λ4mχ)1/5 ∼ 50 MeV. Therefore, in this scenario the

DM mass is indicated to be of order tens of MeV.

There are two other small scale structure problems in the CDM paradigm, the ”core vs.

cusp” and ”too big to fail” problems. Simulations of standard CDM predict that the DM

density profile ρ in a galaxy should form a cusp at the center, ρ ∝ r−1 [31]. Observations

in some dwarf galaxies indicate that actual DM density profiles appear to be more cored,

with a constant DM density in the center [32]. This is the ”core vs. cusp” problem. The

”too big to fail problem” is that simulations predict that the most massive Milky Way

satellite galaxies should be more massive than they are observed to be. In this paper we

will spend most of our time detailing the impact of strong neutrino-DM interactions on the

missing satellites problem, but we address the other two problems briefly.

The outline of this paper is as follows. In section 2, we build a model of DM that

interacts strongly enough with neutrinos to obtain a cutoff mass in the range 107M� −
109M� and examine the constraints on it. Section 3 contains a detailed calculation of the

cutoff mass in the model. Effects on supernovae are especially interesting and we examine
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them in this model in section 4. In section 5 we discuss some possible tests of the model

and we conclude in section 6.

2 The model

2.1 Ingredients and basics

Interactions between neutrinos and SM gauge singlets, such as DM, can be safely generated

through the ”neutrino portal.” In this scenario, couplings of the SM to DM occur through

the operator H`, where H is the Higgs doublet and ` is a lepton doublet containing a

neutrino and a charged lepton. An effective 4-fermi interaction between neutrinos and DM

can be generated that looks schematically like (H`)2 (DM)2. At the renormalizable level,

this higher dimensional operator arises due to the exchange of a mediator that is either

neutral or charged under the symmetry that is typically invoked to keep the DM stable.

If the mediator is neutral, then exchange of this mediator also leads to neutrino and DM

self-interactions. To focus primarily on DM-neutrino interactions, we study the case where

the mediator is also charged under the DM stabilization symmetry.

In light of the discussion above, we introduce a complex scalar, φ, and a Dirac fermion,

χ, which are oppositely charged under a global, conserved U(1)d that acts as the DM

stabilization symmetry. The SM fields are all neutral with respect to this U(1)d. The

lighter of φ and χ is therefore stable and is our DM candidate. For definiteness, and because

the opposite situation gives qualitatively the same results, we focus on the situation where

the DM is fermionic with χ lighter than φ.

Additionally, we give φ lepton number −1 so that we can generate an effective DM-

neutrino coupling through the operator φχ̄ν without breaking lepton number. The other

ingredients in the model are a pair of left-handed Weyl fermions, N1,2, with lepton number

−1 and +1 respectively, that are SM gauge singlets, i.e. sterile neutrinos.

We assume that lepton number is conserved in interactions involving N1,2. The ob-

served masses of the light neutrinos could be of the lepton-number violating Majorana type,

arising from other lepton-number–violating interactions at a high scale, or Dirac. Although

Dirac neutrino masses can easily be made consistent with our model, for definiteness we

will assume the tiny observed masses are Majorana, arising e.g. through a standard seesaw

scenario. Below the seesaw scale, the terms in the Lagrangian relevant for the neutrino

masses are given by

−Lm =
mij

〈H〉2
H`iH`j +MN1N2 + λiN1H`i + h.c., (2.1)

where i, j = e, µ, τ are lepton flavor indices and H is the Higgs doublet. Electroweak and

Lorentz indices have been suppressed. mij is the effective Majorana mass matrix for the

active neutrinos which can be generated at a very high scale by interactions that violate

lepton number, the details of which are irrelevant for us. We assume that each of the

entries in m is much smaller than M .

The interaction of the sterile neutrinos with the DM and mediator is given by

−Lint = (y1φ
∗N1 + y2φN2)χL + h.c., (2.2)
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We have assumed that the couplings of the right-handed component of χ can be ignored

compared to those of the left-handed component — reversing or relaxing this assumption

does not change any of the physics we are interested in.

After electroweak symmetry is broken, the Higgs field gets a vacuum expectation value,

〈H〉 ≡ v = 174 GeV, which leads, in the basis (νi, N
∗
1 , N2), to the neutrino mass matrix,mij λjv 0

λiv 0 M

0 M 0

 . (2.3)

N∗1 pairs up with

ν̂4 =
MN2 +

∑
i λivνi√

M2 +
∑

i λ
2
i v

2
(2.4)

to form a Dirac fermion N̂ = (ν̂4, N
∗
1 )T with mass m4 =

√
M2 +

∑
i λ

2
i v

2. To avoid

limits on the number of neutrino species present during the time of neutrino decoupling

from measurements of the CMB [33] as well as from big bang nucleosynthesis (BBN) [34],

we take m4 > 10 MeV. The orthogonal linear combinations of νi and N2 furnish three

Majorana neutrinos with masses m1,2,3 which are extremely small compared to m4, at

most O (0.5 eV). We write the relationship between the mass eigenstates and the flavor

eigenstates explicitly using the unitary matrix U that diagonalizes the mass matrix,

νi = Uij ν̂j , (2.5)

with i = e, µ, τ,N (defining νN ≡ N2) and j = 1, . . . , 4.

The mediator φ decays to χ̄ and antineutrinos through eq. (2.2). The rate for this is

Γφ→ν̄χ̄ =
∑
i

|UNi|2
y2

2mφ

16π
, (2.6)

where the sum runs over kinematically allowed neutrinos, and we neglect the light neutrino

masses and mχ. We will be most interested in the case where the heavy neutrino can decay

invisibly to χχ̄ plus a light neutrino through an intermediate φ with a rate,

ΓN̂→νχχ̄ =

(
y2

1 + |UN4|2 y2
2

)
m4

32π
×

1 if mφ � m4(
1− |UN4|2

)
y22

192π2

(
m4
mφ

)4
if mφ � m4,

(2.7)

where we have ignored mχ. As long as this is kinematically allowed (m4 > 2mχ, since

the light neutrino masses are negligible) it is the dominant decay channel for the heavy

neutrino. The heavy neutrino can also decay visibly through the weak neutral current.

The rate for the decay to νe+e−, for example, is

ΓN̂→νe+e− =
(

1− |UN4|2
) G2

Fm
5
4

192π3
. (2.8)
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In the phenomenologically interesting region GFm
2
4, GFm

2
φ � 1, so the visible decays of

the heavy neutrino are highly suppressed.

We will be particularly interested in the cross section for the light neutrinos to scatter

on DM at rest, through diagrams like that shown in figure 1. Defining σν̂iχ as the cross

section for the ith neutrino mass eigenstate to scatter, ν̂iχ→
∑3

j=1 ν̂jχ, we have

σν̂iχ =
|UNi|2

|Ue4|2 + |Uµ4|2 + |Uτ4|2
σνχ, σνχ =

3∑
i=1

σν̂iχ, (2.9)

with

dσνχ
dE′ν

=
g4

32π
mχ

 1(
m2
φ −m2

χ − 2mχEν

)2
+m2

φΓ2
φ

+
E′ν

2/E2
ν(

m2
φ −m2

χ + 2mχE′ν

)2
+m2

φΓ2
φ

 .

(2.10)

In this expression, Eν is the initial neutrino energy and E′ν is the final neutrino energy

which is in the range Eν/ (1 + 2Eν/mχ) < E′ν < Eν . We have ignored the light neutrino

masses, made use of the unitarity of U , and defined the coupling

g ≡ y2

√
|Ue4|2 + |Uµ4|2 + |Uτ4|2. (2.11)

Without loss of generality, we will set g > 0 throughout this paper.

In the limit that the neutrino energy is small, Eν � mχ,φ, the cross section becomes

σνχ =
g4

8π

E2
ν(

m2
φ −m2

χ

)2 = 5× 10−38cm2
( g

0.3

)4
(

Eν
1 keV

)2(40 MeV

mφ

)4

, (2.12)

ignoring terms of order m2
χ/m

2
φ on the r.h.s. . This form for the cross section matches

on to σ = T 2/Λ4 with Λ ∼
√
m2
φ −m2

χ/g. As mentioned in the introduction, to have

107M� . Mcutoff . 109M�, we require that Λ and mχ are O (few × 10 MeV). In other

words, we need mχ and mφ to be tens of MeV and g & 0.1.

When the temperature of the Universe is larger than mχ, the DM and anti-DM will ex-

ist in chemical equilibrium with the rest of the constituents of the plasma. As the Universe

cools below mχ, the DM and anti-DM number densities are depleted through annihilation

to light neutrinos via φ exchange (also through diagrams like the one in figure 1) which

occurs with a cross section

σannv =
g4m2

χ

16πm4
φ

= 3× 10−20 cm3

s

( g

0.3

)4 ( mχ

20 MeV

)2
(

40 MeV

mφ

)4

. (2.13)

This process sets a lower limit on the DM mass to avoid the production of neutrinos during

BBN. The requirement is that mχ & 10 MeV [34, 35]. Additionally, for parameter values

motivated by small scale structure considerations, this annihilation cross section is too large
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χ χ

ν̂i ν̂j

φ

Figure 1. Diagram relevant for neutrino scattering on DM and for DM annihilation to neutrinos.

for the DM to be a thermal relic. We assume that its relic density is set by a primordial

DM–anti-DM asymmetry. Whether this asymmetry is connected to the baryon asymmetry

is beyond the scope of this work.

There are also constraints on the strength of the DM-neutrino interaction from mea-

surements of the Lyman-α forest [36] as well as the CMB [37, 38], which again imply that

the DM has a mass greater than about 10 MeV.

To determine whether g & 0.1 and mχ,φ ∼ few×10 MeV are feasible requires examining

the constraints on |Ue4|, |Uµ4|, and |Uτ4|. We do this in the next section. We assume that

m4 > 2mχ, so that the heavy neutrino decays invisibly.

2.2 Neutrino mixing matrix elements

Below, we determine what values of the elements of the neutrino mixing matrix, U , are

allowed by data from lepton and meson decays and neutrino oscillation experiments. We

pay particular attention to |Ue4|, |Uµ4|, and |Uτ4| since they directly enter the cross section

relevant for keeping DM in thermal equilibrium with the neutrinos. The constraints on

these matrix elements for the case of an additional, heavy, invisibly decaying neutrino are

not well organized and not always correctly treated in the literature. We collect these

constraints and show the limits on these matrix elements from our analysis in figure 2. We

defer discussion of constraints from supernovae to section 4.

2.2.1 Limits on |Ue4|, |Uµ4|, and |Uτ4| from particle decays

We now examine the existing limits on |Ue4|, |Uµ4|, and |Uτ4| in the case of an invisibly

decaying heavy neutrino with mass above around 10 MeV that can be derived from meson

and lepton decays.

We first focus on decays of a meson M to a lepton ` and neutrino mass eigenstate

ν̂i, M
+ → `+ν̂i. Since the heavy neutrino decays invisibly, all final state neutrino mass

eigenstates result in the same signal, `+ and missing energy, up to a difference in the energy

of the `+. The light neutrino masses can all be neglected, while the heavy neutrino mass

must be retained. The decay rate to light neutrinos is

ΓM+→`+ν̂1,2,3 =

3∑
i=1

|U`i|2 ΓSM
M+→`+ =

(
1− |U`4|2

)
ΓSM
M+→`+ (2.14)

– 7 –
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Figure 2. 90% C. L. upper limits on |U`4|2, ` = e, µ, τ , as functions of the heavy neutrino

mass m4 from meson and lepton decays. Limits on |Ue4|2 (dashed, orange) come from searches in

π → eν [39, 40], the ratio of Γ(π → eν)/Γ(π → µν) [41–43] and the measurement of the muon

lifetime [44]. |Uµ4|2 limits (dotted, purple) are derived from peak searches in π → µν [45] and

K → µν [46, 47], the muon lifetime measurement [44], the energy spectrum in muon decay (labeled

”TWIST”) [48, 49], and the unitarity of the measurements of the CKM matrix [50]. We have

derived limits on |Uτ4|2 (blue, solid) from the rate for τ → µνν̄ and data from ref. [51] on τ → ν3π.

We also show the limit on |Uτ4| from atmospheric neutrino oscillations described in section 2.2.2

and the lower bound on m4 from BBN and CMB measurements. Where rates depend on more than

one |U`4|, we assume only one is dominant to produce each limit. See text for details.

and the rate to the heavy neutrino is

ΓM+→`+ν̂4 = |U`4|2 ρM` (m4) ΓSM
M+→`+ . (2.15)

ΓSM
M+→`+ is the rate for this process as calculated in the SM for a massless neutrino.

ρM` (m4) is a factor that reflects the reduced phase space available as well as possible en-

hancement to helicity-suppressed decays with ρM` (m4 = 0) = 1 and ρM` (m4 ≥ mM −m`) =

0. There are therefore two signatures of a heavy neutrino in this decay: (i) a change in the

total rate for M → ` from the SM expectation and (ii) if kinematically allowed, a peak in

the ` energy spectrum at (m2
M +m2

` −m2
4)/2mM in the M rest frame.

Decays with more than two particles in the final state, such as muon decay, leptonic

τ decays, and semileptonic kaon decays, are modified analogously, with a straightforward

adjustment of the phase space and the possible inclusion of a second |U`4| if two neutrinos

are in the final state. We now discuss the available data.

– 8 –
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Peak searches in π → eν [39, 40] strongly constrain |Ue4| while searches for peaks in

π → µν [45], and K → µν [46, 47] similarly limit |Uµ4|. We show these limits in figure 2.

Limits on |Ue4| and |Uµ4| can be obtained by comparing Γπ→eν to Γπ→µν . Defining

R =

(
Γπ→eν
Γπ→µν

)
exp

/(
Γπ→eν
Γπ→µν

)
SM

=
1 + |Ue4|2 [ρπe (m4)− 1]

1 + |Uµ4|2 [ρπµ (m4)− 1]
, (2.16)

current data [41, 42] and SM prediction [43] gives R = 0.996± 0.003. This is particularly

constraining on |Ue4| since π → eν̂4 is not as helicity-suppressed as the decay to light

neutrinos. In figure 2 we show the limit that R implies on |Ue4| if we assume that |Uµ4| = 0

which gives a conservative limit for m4 < mπ.

Nonzero values of |Ue4| and |Uµ4| can also affect the relationship between the Fermi con-

stant extracted from measurements of the muon lifetime, Gµ, and determinations using high

energy data. In the on-shell renormalization scheme, for example, the Fermi constant can

be expressed in terms of the W and Z boson masses and the fine structure constant through

GF =
πα√

2
(
1−m2

W /m
2
Z

)
m2
W (1−∆r)

, (2.17)

where 1 − ∆r = 0.9636 ± 0.0004 encodes radiative corrections. The presence of a heavy

neutrino with m4 > mµ −me changes the relationship between GF measured in this way

and Gµ via

G2
µ =

(
1− |Ue4|2

)(
1− |Uµ4|2

)
G2
F . (2.18)

The expression when m4 < mµ −me is more complicated but straightforward. The very

precise measurement of the muon lifetime [44] gives Gµ = (1.1663787± 0.0000006) ×
10−5 GeV−2. Using mW = 80.385 ± 0.015 GeV and mZ = 91.1876 ± 0.0021 GeV re-

sults in GF = (1.168± 0.001) × 10−5 GeV−2. We use these values to set an upper limit

on the larger of |Ue4| or |Uµ4|, conservatively assuming that the smaller of the two can be

neglected, in figure 2. For m4 > mµ−me, the limit is |Ue4|, |Uµ4| < 7.9×10−2 at 90% C. L.

For m4 < mµ − me, the shape of the e+ energy spectrum in µ+ decay is modified.

This spectrum was most accurately measured in [48] which was used to set a limit on |Uµ4|
in [49] for m4 > 40 MeV which we also show in figure 2, labeled as ”TWIST.”1

There is also a constraint on |Uµ4| that can be derived using the unitarity of the quark

mixing (CKM) matrix, V . Vud is most accurately measured using superallowed nuclear

beta decays. For m4 larger than several MeV, the rates for these are proportional to(
1− |Ue4|2

)
|Vud|2G2

F . (2.19)

Vud is extracted by dividing this by G2
µ. Doing so gives [50]

|Vud|√
1− |Uµ4|2

= 0.97425± 0.00022. (2.20)

1The reason we only show the limit for m4 > 40 MeV is that there is a gap in the limit on |Uµ4| between

the regions probed by π → µν and K → µν, i.e. for 40 MeV < m4 < 80 MeV [49].
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A value of Vus can be extracted from KL → π−e+ν decay. For m4 > mK0 −mπ± −me,

the rate for this is proportional to(
1− |Ue4|2

)
|Vus|2G2

F (2.21)

and again dividing by G2
µ results in [50]

|Vus|√
1− |Uµ4|2

= 0.2253+0.0015
−0.0013. (2.22)

Squaring then adding (2.21) and (2.22) and using the unitarity of the CKM matrix im-

plies that

1− |Vub|2

1− |Uµ4|2
= 0.9999+0.0008

−0.0007. (2.23)

At this level |Vub| is negligible and can be ignored. Doing so, this translates into the

constraint |Uµ4| < 3.5× 10−2 at 90% C. L.

To find limits on |Uτ4|, we look at processes involving the τ neutrino such as τ decays

or decays of Ds mesons. Existing searches using Ds decays for heavy neutrinos all look for

visible decays of the heavy neutrino, so they are not sensitive to this scenario. Consequently,

we focus on τ decays. In deriving our limits on |Uτ4| below, we assume that |Ue4|, |Uµ4| �
|Uτ4|. In this case, the total rate for τ to decay to a generic final state X plus missing

energy is

Γτ→Xν =
[
1 + |Uτ4|2 (ρτX (m4)− 1)

]
ΓSM
τ→X , (2.24)

where, as before, ρτX (m4) is a kinematic factor that depends on the heavy neutrino mass.

Because leptonic τ decay rates are well-predicted and well-measured, they can offer

meaningful constraints on |Uτ4|. We can use the measurements of the branching ratios for

τ → eν̄ν and τ → µν̄ν of 17.83 ± 0.04% and 17.41 ± 0.04% respectively [50] along with

the independently measured τ lifetime, (290.17± 0.62) × 10−15 s [52], to determine the

experimental rates,
Γexp
τ→eν̄ν = (4.04± 0.09)× 10−13 GeV,

Γexp
τ→µν̄ν = (3.95± 0.09)× 10−13 GeV.

(2.25)

Using these with the SM expectations for these rates which take into account the error on

mτ [53],

ΓSM
τ→eν̄ν = (4.031± 0.001)× 10−13 GeV,

ΓSM
τ→µν̄ν = (3.920± 0.001)× 10−13 GeV,

(2.26)

and the expression in (2.24) can limit |Uτ4|. The constraint from τ → µ decay, shown in

figure 2,2 is stronger since the central value of the measured rate is further from the SM

expectation than the τ → e mode, although still in agreement. For m4 > mτ − mµ the

90% C. L. limit is |Uτ4| < 8× 10−2 and weakens to |Uτ4| < 0.4 at m4 = 130 MeV.

2Our limits on |Uτ4| for a heavy neutrino that decays invisibly differ substantially from those in [54]

which also considered shifts in leptonic τ decays. The main reason for this is that we consider a unitary
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We can also set a limit on |Uτ4| by looking for changes in the differential rates for

τ decays to multiparticle final states. This procedure was undertaken by the ALEPH

collaboration [51] to place an upper limit of 18.2 MeV at 95% C. L. on the mass of the

τ neutrino using τ → ν3π and τ → ν5π decays. We use the data for the τ → ν3π rate

as a function of the three pion invariant mass from [51], modeling the τ → ν3π decay as

occurring through the chain τ → νa1 → νπρ → ν3π to set a limit on |Uτ4| varying m4,

also shown in figure 2. This limit is less strong than what we derived from τ → µ decays,

partially due to the fact that properly modeling the 3π rate is nontrivial. Properly modeling

the 5π decay mode is even more difficult but could offer an improvement in the limit due

to the reduced phase space available which enhances the effects of a massive neutrino.

As mentioned above, solutions to small scale structure problems imply that g =

y2

√∑
` |U`4|

2 ∼ 0.3. Given the constraints outlined above, and without increasing y2

to nonpertubative values, this is only possible to achieve with |Uτ4| & 0.1. In this case

m4 . 300 MeV and |Ue4|, |Uµ4| � |Uτ4|. In the rest of the paper, we therefore sim-

plify our analysis by making the approximation that λe,µ = 0 in eq. (2.1). In that case,

|Ue4| = |Uµ4| = 0 and Uτ4 ≡ sin θτ with θτ = tan−1 (−λτv/M). The light Majorana neutri-

nos are linear combinations of νe, νµ and ντN ≡ cos θτντ − sin θτN2 while the heavy Dirac

neutrino has mass m4 = M/ cos θτ and contains ν̂4 = cos θτN2 + sin θτντ and N∗1 .3

2.2.2 Constraints from neutrino oscillation experiments

In the limit that Ue4 and Uµ4 are zero, we can parameterize the 4× 4 matrix U using only

four angles, θτ as defined above, θ12, θ13, and θ23,

U =


1 0 0 0

0 1 0 0

0 0 cθ sθ
0 0 −sθ cθ




1 0 0 0

0 c23 s23 0

0 −s23 c23 0

0 0 0 1




c13 0 s13 0

0 1 0 0

−s13 0 c13 0

0 0 0 1




c12 s12 0 0

−s12 c12 0 0

0 0 1 0

0 0 0 1



=


c12c13 c13s12 s13 0

−c23s12 − c12s13s23 c12c23 − s12s13s23 c13s23 0

−cθ (c12c23s13 − s12s23) −cθ (c23s12s13 + c12s23) cθc13c23 sθ
sθ (c12c23s13 − s12s23) sθ (c23s12s13 + c12s23) −sθc13c23 cθ

 ,

(2.27)

neutrino mixing matrix whereas [54] does not [effectively making the replacement ρτX (m4)→ ρτX (m4)+1

in (2.24)] with the consequence that our limits weaken as the heavy neutrino mass is decreased. This is

to be expected for a unitary mixing matrix since the heavy neutrino becomes indistinguishable from the

light neutrinos as it is made lighter. Additionally, since the presence of a heavy neutrino in the final state

also affects the other decay modes, we limit the change in the leptonic rate itself using the branching ratio

and the independent determination of the τ lifetime. In contrast [54] limited shifts of the branching ratio

effectively assuming the total width was unchanged.
3The reason that we did not choose to add just a single Weyl sterile neutrino earlier is that in such

a scenario, after integrating the sterile neutrino out, the light neutrino mass matrix element mij receives

contributions proportional to the product of mixing angles θiθjM , where M is the sterile neutrino mass

and the mixing angle between active neutrino i and the sterile neutrino is again θi ∼ λiv/M . Obtaining a

mixing angle large enough to be interesting in this case requires a sterile neutrino that is too light to avoid

cosmological difficulties.
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with cθ ≡ cos θτ , sθ ≡ sin θτ and cij ≡ cos θij , sij ≡ sin θij . For simplicity, we have ignored

possible CP -violating phases in the mixing matrix.

Although we have four flavors of neutrino, our analysis of existing constraints differs

from existing sterile neutrino analyses because the fourth mass eigenstate is assumed to be

heavier than several MeV, in order to avoid cosmological constraints from the CMB [33]

and BBN [34]. As discussed above, the heavy fourth mass eigenstate is mostly comprised of

sterile and tau flavors, in order to satisfy laboratory and precision electroweak constraints

on electron and muon neutrino mixing with a neutral heavy lepton. Current terrestrial

experiments produce either µ or e flavor neutrinos at the source, and so can only produce

a linear combination of the three light mass eigenstates. Since the light mass eigenstates

are comprised of all four flavors, e, µ, τ, and sterile N2, the presence of the sterile compo-

nent could affect neutrino oscillation experiments. Oscillations via the heavy neutrino are

independent of the particular value of its mass since they correspond to a length

L =
4πp

∆m2
' 4πp

m2
4

. 2.5× 10−12 cm
( p

MeV

)
, (2.28)

where p is the momentum of the neutrinos in question, using the lower bound on the heavy

neutrino mass of about 10 MeV. Therefore, the light mass differences must be given by the

solar and atmospheric mass splittings as usual [55],

∆m2
12 = ∆m2

� ' 7.5× 10−5 eV2,
∣∣∆m2

13

∣∣ = ∆m2
atm ' 2.5× 10−3 eV2, (2.29)

where ∆m2
ij ≡ m2

i −m2
j .

We begin by noting that our assumption that Ue4 and Uµ4 are negligible allows us

to determine θ12, θ13, and θ23 using terrestrial neutrino experiments which are insensitive

to θτ . Combining these measurements with solar neutrino experiments allows for possible

sensitivity to θτ . We describe this procedure below.

In principle, one needs to account for the effect of the different interaction with matter

of the sterile neutrinos [56, 57], which can be included via a potential Vnc in the flavor basis

for the active neutrino flavors of

Vnc = −GF√
2
nn (2.30)

where nn is the neutron density, with the opposite sign for antineutrinos. In matter with

equal numbers of protons and neutrons and density of 2.7 g/cm3, a length scale of 4000

km can be derived from 1/Vnc, which gives an estimate of the distance scale required for

matter interactions to have an important effect in the analysis of neutrino oscillations [58]

in the Earth’s crust. Currently, the strongest constraints on the active neutrino mixing

parameters derive from experiments which are not at long enough baseline to be highly

sensitive to the matter effects. However, as we point out below, a strong limit on θτ may

be extracted from the IceCube and Super-Kamionkande experiments, due the difference in

matter effects between sterile and active neutrinos as they travel through the Earth.

The best determination of Ue3 is by the reactor experiment Daya Bay [59], which

measures electron antineutrino disappearance over a distance of 1.6 km. The value of Uµ3

may be determined by measurements of muon neutrino and antineutrino disappearance
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by the K2K [60] and MINOS experiments [61], with baselines of 250 km and 730 km,

respectively. Because matter effects are not highly significant at these baselines, extraction

of this parameter is little affected by the possible presence of a sterile component in the

third mass eigenstate. Ue2 can be determined by the long baseline reactor experiment

KamLAND [62] which has a baseline average of 180 km. These measurements of Ue3, Uµ3,

and Ue2 can be combined to give determinations of θ12, θ13, and θ23 that are independent

of θτ , and these angles must be close to the values given by the usual three neutrino fits

to data [55],

θ12 ∼ 32◦, θ13 ∼ 8◦, θ23 ∼ 40◦. (2.31)

Turning now to solar neutrinos, we note that electron neutrino disappearance is mainly

governed by the flavor composition of the second mass eigenstate, since we may neglect the

small angle θ13. High energy solar electron neutrinos are produced in the core of the sun,

primarily via 8B decays, and have a large effective mass from the matter interactions, larger

than
√

∆m2
12 but smaller than

√
|∆m2

23|. These electron neutrinos are approximately an

energy eigenstate of the effective Hamiltonian which includes matter interactions. Adia-

batic evolution of the electron neutrinos as they exit the core causes them to exit the sun

primarily as the second mass eigenstate in vacuum. Neglecting θ13, the fraction of this mass

eigenstate which is detected as electron neutrino is |s12|2, while the fraction |c12s23 sin θτ |2

is undetectable sterile. Hence, high energy charged current electron neutrino detection from

solar neutrino experiments and the solar neutral current flux [63] can be used to constrain

θτ when combined with either the KamLAND determination of θ12 or with the theoretical

calculation of the 8B flux. Because the KamLAND experiment, while very constraining

of
√

∆m2
12, is not as sensitive to Ue2, the theoretical calculation of the 8B flux currently

gives the best precision on this determination. Experimentally, a combination of electron

scattering and neutral current measurements are used to calibrate the flux [64, 65] and the

sterile neutrino component could affect this. Since the 8B flux is theoretically known to

about the 15% level currently [66], we obtain a limit of |sin θτ | . 0.6. This agrees with

analyses of the combined solar data and KamLAND that has shown that the probability

of electron neutrino disappearance into sterile neutrinos could be substantial [67, 68].

Strong limits on θτ come from the change in matter effects due to mixing with the

sterile neutrino. As mentioned above, the light eigenstates are made up of νe, νµ, and

ντN . In the presence of nonzero θτ , ντN has diminished weak interactions compared to νµ,

with a potential given by VτN = Vnc cos2 θτ . A recent search by Super-Kamiokande [69]

used atmospheric neutrinos to look for µ → sterile transitions. Because of the lack of

matter effects for the sterile neutrinos, this can manifest as a change in the distribution of

muon neutrino zenith angle in the detector from the standard µ → τ transition scenario.

At 90% C. L., the limit is |Uτ4| = |sin θτ | < 0.42. Similar effects were searched for in

data from IceCube and DeepCore, using the language of neutrino nonstandard interactions

(NSI) [70]. In NSI studies, the difference in weak interaction strength between the light

flavor eigenstate ντN and that of ντ is parameterized by εττ with

εττ =
1

6

(
VτN
Vnc
− 1

)
=

sin2 θτ
6

. (2.32)

– 13 –



J
H
E
P
0
4
(
2
0
1
5
)
1
7
0

φ

Z

χχ

φ φ

H H

χ

#

ν̂i ν̂j
ν̂i ν̂j

Figure 3. Left: one loop diagram which gives rise to an effective χ-χ̄-Z coupling. Right: diagram

that contributes to the |φ|2 |H|2 operator.

In ref. [70], a 90% C. L. of εττ < 0.03 from azimuthal distributions of neutrinos was found.

This also translates into |Uτ4| < 0.42. We show this limit along with those from τ decays

in figure 2.

2.3 New couplings to the Z and Higgs

At one loop, through the diagram shown on the left in figure 3, an effective coupling of

DM to the Z boson is generated. In the limit that m4 � mφ, this effective interaction is

LZχ̄χ = − gw

cos θw

(
y2 sin 2θτ

8π

)2

Zµχ̄Lγ
µχL, (2.33)

where gw is the weak coupling strength and θw is the weak mixing angle. This operator

contributes to the invisible decay width of the Z (the rate for Z → neutrinos is unchanged

due to the unitarity of U for m4 � mZ/2
4). The good agreement between the SM expec-

tation for this rate and experiment offers a potential constraint on the model. The rate for

Z → χχ̄ through this operator is

ΓZ→χχ̄ = 4.2× 10−4 (y2 sin 2θτ )4 MeV. (2.34)

The 95% C. L. upper limit on extra contributions to the Z invisible width is 2.0 MeV [72].

This translates to a weak limit of |y2 sin 2θτ | < 8.3.

This effective Zµχ̄Lγ
µχL interaction can lead to the scattering of DM on normal matter.

For phenomenologically interesting values of the parameters, however, this scattering is

highly suppressed: taking y2 = 1 and θτ = 0.3, the cross section is about 10−7−10−6 times

that of neutrino scattering. Because this cross section is so small, using proton beam dumps

to produce the heavy neutrino, though production of Ds → τντ (as used in searches for

visibly decaying heavy neutrinos [73–75]), which decays to DM that scatters in a detector

(see, e.g. [76–79]) is not promising.

We now consider interactions involving the Higgs. The operators proportional to λi
in (2.1) will lead to contributions to the invisible width of the Higgs boson after electroweak

4A global fit of electroweak precision data shows a slight preference for nonzero values of Uτ4 if m4 &
45 GeV due to a decrease in the invisible Z width [71].
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symmetry breaking, through h → N1νi. Since we ignore λe,µ and take m4 � mh =

125 GeV, the rate for this decay is

Γh→inv. =
λ2
τ

16π
mh. (2.35)

The invisible branching ratio of the Higgs is presently limited to about 25% [80], which

translates into |λτ | . 2 × 10−2. This is not constraining on the model since |λτ | =

(m4/v)| sin θτ | is less than 2× 10−3 if m4 < 300 MeV.

At one loop, as seen on the right in figure 3, a logarithmically-divergent dimension-4

operator involving the scalar φ and the Higgs doublet is generated,

LφH = λφH |φ|2 |H|2 , (2.36)

with

λφH ∼
(
y1λτ
2π

)2

log

(
Λ2

M2

)
=

g2

4π2

(
y1

y2

)2 (m4

v

)2
log

(
Λ2

M2

)
, (2.37)

where Λ is the scale of the physics that enters to cut this contribution off. After electroweak

symmetry breaking, this gives a contribution to the mass of φ given by δm2
φ = λφHv

2. This

contribution defines a lower bound on mφ; obtaining a mass below this value requires some

fine-tuning of this contribution against the bare value of the mass. Noting that M ' m4

and choosing Λ = 1 TeV,

δm2
φ ∼ (10 MeV)2

( g

0.3

)2
(
y1/y2

0.5

)2 ( m4

100 MeV

)2
[
log

(
1 TeV

m4

)/
10

]
. (2.38)

Therefore, φ can have a mass in the tens of MeV range for a heavy neutrino with mass

of O(100 MeV) without running into any fine-tuning problems, even for a cutoff at the

TeV scale.

3 Solving the missing satellites problem

As was mentioned in the introduction, DM-neutrino interactions will suppress the growth

of small scale DM density perturbations in the early Universe, helping to alleviate the

missing satellites problem. This suppression of small scale structure occurs below the

maximum of two different length scales for washing out structure. These two length scales

have different physical origins and will be discussed in detail in this section. Since the DM

density is known, this maximum length scale corresponds to a mass cutoff scale, Mcutoff ,

below which the formation of less massive structures is suppressed. These cutoff scales have

been examined previously in the literature [18–20, 23–25, 81], but we reproduce them here

for completeness. We also explicitly show the role of geff (the effective number of relativistic,

bosonic degrees of freedom) in the following equations, in order to clarify discrepancies in

the literature.

The first scale for washing out small scale structure is set at early times when the DM

is in thermal equilibrium with the relativistic plasma. Once T . mχ the expansion of the
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Universe will cause the plasma density to decrease enough such that the annihilation and

production scattering processes keeping DM in chemical equilibrium with the plasma will

freeze out, ending DM number-changing processes. (Note that DM-neutrino interactions

that are strong enough to solve the missing satellites problem force DM to be asymmetric

and not a thermal relic — see the discussion following eq. (2.13).) However, DM-neutrino

elastic scattering can keep the DM in thermal equilibrium even after chemical decoupling.

The DM eventually will fall out of thermal equilibrium once the DM-neutrino elastic scat-

tering rate drops below the Hubble expansion rate of the Universe. This time when elastic

scattering ceases is called kinetic decoupling. After this, the DM simply free-streams and

washes out small scale structure, setting another scale below which structure formation is

suppressed.

In the following we discuss how DM-neutrino interactions can lead to a value of Mcutoff

in the range of 107M�−109M� which is large enough to solve the missing satellites problem.

We will find the range of interesting DM-neutrino coupling, g, and DM and mediator

masses, mχ and mφ, which can achieve these cutoff mass scales.

3.1 Kinetic decoupling condition

Kinetic decoupling occurs when the rate for DM-neutrino collisions to change the DM

momentum, γ(T ), becomes small compared to the Hubble parameter, H(T ). Hence the

decoupling temperature, Td, can be estimated by solving

γ(Td) = H(Td), (3.1)

where

γ(T ) =
1

3mχT

∫ ∞
0

d3p

(2π)3
f(p/T )(1− f(p/T ))

∫ 0

−4p2
dt(−t)dσνχ

dt
. (3.2)

Here f(p/T ) = (ep/T+1)−1 is the Fermi-Dirac distribution function describing the neutrinos

in the massless limit and t is the usual Mandelstam variable. This kinetic decoupling

equation comes from an approximate solution to the Boltzmann equation, see [82]. An

exact, though more complicated, analytical form is also available [83]. As we will soon

show, DM and the neutrinos must remain in kinetic equilibrium until T ' 1 keV, which

occurs after the neutrinos decouple from the photons at T ' 1 MeV, in order for DM to solve

the missing satellites problem. This means that the terms on the l.h.s. of eq. (3.1) which

have to do with the neutrino-DM fluid should be evaluated at the neutrino temperature,

which differs from the photon temperature via Tν = (4/11)1/3Tγ . In what follows all

temperatures are photon temperatures and the factor of (4/11)1/3 has been included when

necessary.

We solve for Td using the approximate form of the total DM-neutrino cross section

for Eν � mχ, mφ. This is a good approximation near decoupling since at this point

Eν ∼ T � mχ, mφ. Hence

dσνχ
dt

=
g4

32π
(
m2
φ −m2

χ

)2 . (3.3)
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Using this in eq. (3.1), the remaining integrals can be done analytically and the decoupling

temperature is given by

Td =

(
672

31π
√

5π

)1/4
(
geff(Td)

1/8

M
1/4
Pl

)m1/4
χ

√
m2
φ −m2

χ

g


= 1.0 keV

(
geff(Td)

3.36

)1/8 ( mχ

20 MeV

)1/4


√
m2
φ −m2

χ

35 MeV

( g

0.3

)−1
,

(3.4)

where geff(T ) is the effective number of relativistic, bosonic degrees of freedom at temper-

ature T . This expression for the decoupling temperature contains the correct parametric

dependence derived using simple arguments in the introduction. Note that we used the

expression for the Hubble parameter during the radiation dominated period (valid down

to T ' 1 eV) given by

H =

√
4π3geff(T )

45M2
Pl

T 2. (3.5)

3.2 The cutoff mass scale

There are two main processes that erase primordial density fluctuations in the DM fluid

on small scales: (i) acoustic oscillations in the coupled, relativistic plasma of the early

universe up until the time of kinetic decoupling, and (ii) free streaming of DM after kinetic

decoupling. The larger of the two scales set by these processes determines Mcutoff .

While DM remains in thermal equilibrium with the relativistic plasma, it is involved

in the acoustic oscillations of the plasma since it couples to the neutrinos. This results in

damped oscillations in the DM power spectrum that appear on the scale of the horizon at

kinetic decoupling, H−1
d = adηd, where ηd =

∫ td
0 dt/a(t) is the comoving distance a photon

can travel from the beginning of the Universe until the time of kinetic decoupling [25].

Here a(t) denotes the scale factor in a Friedmann-Robertson-Walker metric and ad is the

scale factor at the time of kinetic decoupling. This smallest distance scale corresponds to

a DM halo mass cutoff given by

Mao = ρχ(Td)
4π

3
(adηd)3, (3.6)

where ρχ(T ) is the DM energy density (equal to its mass density for T < Td � mχ) at

temperature T . Since the mass enclosed in a given volume remains the same even as that

volume expands, Mao can also be expressed in terms of the DM density and scale factor

today as

Mao = ρχ(T0)
4π

3
(a0ηd)3. (3.7)

Using typical values and assuming entropy in a comoving volume is conserved from Td until

today, this becomes

Mao = 2× 108M�

(
geff(Td)

3.36

)−1/2( Td

keV

)−3

, (3.8)
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where we used H0 = 67 km/s/Mpc, Ωχ = 0.27, geff(T0) = 3.36 and T0 = 2.7 K.

After kinetic decoupling, DM free-streams, washing out structure on scales smaller

than `eq = πaeq

∫ teq
td

dt(vphys/a(t)) at the time of matter-radiation equality [24, 25]. Here

aeq is the scale factor at matter-radiation equality, vphys = v/a(t) is the velocity of the

DM particles, and v is their constant comoving velocity. This scale describes the distance

that DM free-streams from Td to Teq ' 1 eV. Up until Teq this scale grows as lnT and the

growth after Teq, proportional to T−1/3, has been neglected. Evaluating ` today we find

`0 =

(
a0

ad

)(
v

ad

)
π

Hd
ln

[
geff(Td)1/3Td

geff(Teq)1/3Teq

]
. (3.9)

Approximating the DM velocity at the time of decoupling as v/ad =
√

(4/11)1/3Td/mχ,

the cutoff mass scale due to DM free-streaming is given by

Mfs = ρχ(T0)
4π

3
`30

= 3× 105M�

(
geff(Td)

3.36

)−1/2 ( mχ

20 MeV

)−3/2
(
Td

keV

)−3/2

×
{

1 + ln

[(
geff(Td)

3.36

)(
Td

keV

)]
/6.0

}3

.

(3.10)

The smallest mass object formed by DM is the largest of Mao and Mfs. Comparing

eq. (3.8) and eq. (3.10), we see that in order to obtain values of Mcutoff in the range

107 − 109M� with mχ,φ ∼ few× 10 MeV, Td ∼ keV is needed and acoustic oscillations set

the cutoff scale. Hence, combining eq. (3.4) and eq. (3.8), we have that

Mcutoff = 2× 108 M�

(
geff(Td)

3.36

)−7/8 ( g

0.3

)3 ( mχ

20 MeV

)−3/4


√
m2
φ −m2

χ

35 MeV

−3

. (3.11)

The left panel of figure 4 shows the cutoff scale varying mχ and mφ. We take g = 0.42 to

be as large as allowed by limits on |Uτ4| from τ decays and neutrino oscillation experiments

with y2 = 1. On the right panel we display the coupling g required to obtain Mcutoff = 107,

108, and 109M� as a function of mχ for mφ = 20 and 40 MeV. We set y2 = 1 and show the

resulting upper limit on g = y2 |Uτ4| from the limit |Uτ4| < 0.42 as found in section 2.2.1.

Finally, we note that the effect of DM-photon interactions on the nonlinear structure

formation of satellite galaxies in a Milky Way sized galaxy has been simulated in [84].

The effects of DM-photon interactions on structure formation should be very similar to

the effects of DM-neutrino interactions since they both suppress structure formation on

small scale due to acoustic oscillations. They find that for a constant DM-photon cross

section, σDM−γ & 7× 10−35 cm2 for mχ = 20 MeV, is ruled out at the 2 sigma level since

then DM-photon interactions would wash out too much structure to be consistent with

the number of satellite galaxies that we observe in the Milky Way. In our scenario, the

DM-neutrino cross section is not a constant, but at the time of kinetic decoupling when

the value of the DM-neutrino cross section is most important for affecting small scale
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Figure 4. Left: Values of mφ required for Mcutoff = 107 (dashed), 108 (dotted), and 109M� (solid)

as functions of mχ. To fix g = y2 |Uτ4|, we set y2 = 1 and take the largest value of |Uτ4| allowed by

τ decays and neutrino oscillation experiments, 0.42, as shown in figure 2. The gray shaded region

on the bottom-right corresponds to the unphysical situation where the mediator is lighter than the

DM. Right: the coupling g required for Mcutoff = 107, 108, and 109M� varying the DM mass for

mφ = 20 and 40 MeV. The upper limit on g = y2 |Uτ4| of 0.42 (cf. section 2.2.1) assuming y2 = 1 is

also shown. In both plots we show the lower limit on the DM mass from observations of the CMB

and BBN.

structure, we have that for typical parameters, σ ' g4(3Td)2/(8π(m2
φ −m2

χ)2) ' 2× 10−36

cm2, which is within the bounds of ref. [84], but still large enough to significantly decrease

structure formation on small scales. Similarly, in simulations of a model in which dark

matter interacts with dark radiation [85], small galaxies form later and have lower central

densities than in standard CDM.

4 Implications for supernovae

Supernovae (SNe), being abundant sources of neutrinos, can offer interesting information

about strong DM-neutrino interactions. In this section we examine the effects of such

interactions on the properties of SNe neutrinos. We also comment on how the addition of

strong DM-neutrino interactions to SNe feedback affects, but does not alleviate, the ”core

vs. cusp” and ”too big to fail” problems.

4.1 Neutrino emission and cooling

In the standard picture of core collapse SNe, the three flavors of neutrinos and antineu-

trinos are produced in the supernova (SN) at temperatures around 30 MeV, mainly via

nucleon bremsstrahlung and electron neutrino-antineutrino annihilation. Outside of the

first neutronization burst of electron neutrinos, the neutrinos remain trapped in the dense

core of the collapsing star for ∼ 0.2 s at which point they free-stream out of the star over

a time period of ∼ 10 s, carrying away the binding energy of the remaining proto-neutron

star ∼ 3× 1053 erg. For recent reviews see e.g., [86, 87].
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DM candidates with mχ . 100 MeV are light enough to be thermally produced in

SNe. If these DM candidates are weakly interacting, then they can be constrained since

the presence of this DM could help cool the proto-neutron star, producing a neutrino

signal that is in conflict with the observations from SN 1987A. In our scenario, DM (with

a mass & 10 MeV) will also be produced in the SN. However, due to the strong DM-

neutrino interactions, this DM will thermalize with the neutrino gas and maintain a thermal

distribution out to large radii until the temperature of the neutrinos falls below the DM

mass, suppressing DM production.

Neutrinos begin to free-stream away from the SN when the density of the stellar

material drops, which occurs where the matter temperature is ∼ 5 MeV < mχ. At this

point, DM production is suppressed, but the coupled DM-neutrino gas from the core will

still diffuse out of the star, cooling the star on timescales set by the speed of sound in the

DM-neutrino fluid. In this sense, strong DM-neutrino interactions are similar to strong

neutrino self-interactions in SNe since they both involve the emission of a strongly-coupled

gas, and hence strong DM-neutrino interactions do not significantly affect the cooling time

for SNe [37, 88]. Thus it is likely that this neutrino-interacting DM will not come into

conflict with the observation of neutrino cooling from SN 1987A.

In [89] a similar scenario of relatively strong DM-nucleon and DM-neutrino interactions

inside SNe was considered. In this case, the DM thermalized with the stellar material and

bound the neutrinos to the star out to larger radii and lower temperatures (a result similar

to what would be expected from simply increasing the strength of neutrino interactions

with regular matter). This would lead to an overall decrease in the energies of the emitted

neutrinos and an increase in the cooling time, resulting in a rough bound of mχ & 10 MeV

in order to be consistent with the neutrino observations from SN 1987A. However, for the

case of DM that only interacts with neutrinos, it is natural to expect that the constraint

on mχ will be weakened since the DM does not have strong interactions with the stellar

material and is not trapped in the core of the star. A precise study of the emission of

neutrinos is beyond the scope of this work and will be explored in a future paper [90].

Finally, refs. [37, 91] find that the constraints on neutrino-interacting DM from SNe

come not from cooling, but from SN neutrinos scattering off the DM and out of the line of

sight of our detectors. They place a bound on the DM-neutrino cross section of σν̂iχ . 10−25

cm2 (mχ/MeV) by requiring that the neutrino mean free path be larger than the Earth-

SN distance for a nearby SN. In the next section, we will find that our neutrino-DM cross

section abides by this constraint except near resonance, producing a feature in the neutrino

spectra which should be observable in the next galactic SN.

4.2 Observation of a nearby supernova

An interesting consequence of strong DM-neutrino interactions is the scattering of SN neu-

trinos off DM on their way to Earth. The parameters implied by the missing satellite

problem make this particularly intriguing because the resonant neutrino energy for scat-

tering, Eres = (m2
φ −m2

χ)/2mχ, is in the range of energies produced in SNe since both χ

and φ have masses that are tens of MeV.
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We consider a light neutrino mass eigenstate i that was emitted from a SN. As it

travels from the SN to Earth, scattering on DM can deflect it, decreasing the flux that is

observed,

Flux (ν̂i)Earth = Flux (ν̂i)SN e
−Γid, (4.1)

where

Γi = σν̂iχ ×
1

d

∫ d

0
dxnχ. (4.2)

As defined in (2.9), σν̂iχ is the cross section for ν̂i to scatter on DM at rest, d is the

distance between the SN and Earth, and nχ is the DM number density along the line of

sight. Using (2.9), we can isolate the mass eigenstate dependence,

Γi =
|UNi|2

|Ue4|2 + |Uµ4|2 + |Uτ4|2
Γ, (4.3)

with

Γ = σνχ ×
1

d

∫ d

0
dxnχ (x) . (4.4)

To get a rough idea of what distance scale this attenuation occurs on, we set nχ(x) to

a constant value, with a magnitude equal to the local DM density, which is typical on

galactic scales. That is, we take nχ(x) = n̄χ = (0.3 GeV/mχ) cm−3. Then, 1/Γ = 1/σνχn̄χ
defines a length scale over which the scattering of DM is important. This length scale can

be comparable to galaxy sizes for neutrinos with energy close to the resonance energy, Eres.

At this energy the cross section is, for mφ � mχ,

σνχ '
4π

m2
φ

= 3× 10−24 cm2

(
40 MeV

mφ

)2

, (4.5)

where we have also assumed that mφ < m4 so that Γφ = g2mφ/16π. This cross section

leads to an attenuation length

1

Γ
' 7 kpc

( mφ

40 MeV

)2 ( mχ

20 MeV

)
. (4.6)

The cross section is this large only in a region of width O(MeV) around Eres. Off resonance,

the cross section drops quite rapidly below the bound found in [37, 91]. Therefore, the DM-

neutrino interactions show up as a feature in the spectrum of neutrinos from a SN at an

energy given by Eres = (m2
φ −m2

χ)/2mχ.

The mixing matrix U determines the relative attenuation of each eigenstate. For

simplicity, in the tribimaximal approximation which is a good rough description of the

neutrino mixing pattern, sin θ12 = 1/
√

3, sin θ23 = 1/
√

2, and θ13 = 0, the attenuation

scales for the three light eigenstates are

1

Γ1
' 6

Γ
,

1

Γ2
' 3

Γ
,

1

Γ3
' 2

Γ
. (4.7)
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Because of this hierarchy, the fraction of ν̂1 neutrinos is increased due to scattering on DM.

As for the flavor composition of the neutrinos, because ν̂1 has a larger component of νe than

ν̂2 or ν̂3, the fraction of electron neutrinos detected from a SN is likewise increased. Thus,

an increase in the electron neutrino fraction at Eres is a telltale sign of strong DM-neutrino

interactions.

Beyond affecting the signals from nearby SNe, neutrino-DM interactions can leave an

imprint in the diffuse SN background (DSNB). This was studied in detail in [92] in the

context of an effective interaction between (scalar) DM and neutrinos. For parameters

relevant for our scenario, the spectral distortion at Eres could be observable at proposed

next generation experiments like Hyper-Kamiokande.5

4.3 The ”core vs. cusp” and ”too big to fail problems”

SNe can also figure prominently in potential solutions to the ”core vs. cusp” problem. This

problem arises from the discrepancy in the DM density profile near the centers of galaxies

between standard CDM simulations, which predict cusps, and observations, which favor

cores. Some simulations [94–98] and analytic models [99, 100] that include feedback from

SNe on the DM indicate that such a coupling can modify the shape of DM profiles near

the centers of galaxies, hence solving the core vs. cusp problem. The energy transferred

from SNe to the interstellar medium modifies the gravitational potential felt by the DM,

allowing the DM to move away from the center of the galaxy, creating a more cored profile.

In some simulations, taking reasonable values for the SN rate, transferring on the order

of 1050 − 1051 ergs per SN to the DM is sufficient to turn a cusped halo into a cored

one [94, 98].

Additionally, SN feedback can address the ”too big to fail problem,” in which sim-

ulations predict that the Milky Way satellite galaxies should be more massive than they

are observed to be. SN feedback has been shown to reduce the DM density in the center

of galaxies, and this helps allieviate the too big to fail problem [101]. In [98], N-body

simulations including SN feedback showed that indeed the too big to fail problem could be

solved by SN feedback moving DM from the center region of galaxies out to larger radii.

It has also been suggested that SN feedback may not be sufficient to address these

small scale structure problems [102, 103]. Maximally, around 1% of the supernova energy

can be transferred to DM gravitationally, causing the DM to move away from the center of

galaxies, via the method described above. The other 99% of the SN energy is released in the

form of neutrinos. In the case of strong DM-neutrino interactions, the neutrinos released

by a SN can transfer energy to DM by elastic scattering. This increases the transfer of

energy from SNe to DM and potentially makes SN feedback more effective at solving the

core vs. cusp and too big to fail problems.

Simple estimates show that the energy transfer from SNe to DM through this mecha-

nism is of the right order of magnitude to solve the core vs. cusp problem. However, since

5In a similar vein (although unconnected to SNe), neutrinos with energies of 102 − 103 TeV have been

explored as probes of new neutrino interactions due to scattering [93]. Because of the suppression of the

scattering cross section at high energies, σνχ ∝ 1/Eν , and the small DM density relevant for neutrinos

traveling cosmological distances, ρχ ∼ 1.5 keV/cm3, this is unimportant in our scenario.
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the scattering length of the neutrinos is a kpc or larger, as seen in section 4.2, each neutrino

emitted by a SN in the inner region of a galaxy scatters at most an O(1) number of times

as it leaves the galaxy. In, for example, a bright dwarf galaxy like Fornax, it is estimated

that about 105 SNe have occurred [103], each of which emitted about 1058 neutrinos so

that maximally around 1063 DM particles will gain energy from SNe neutrinos through

scattering. This should be compared to the roughly 1068 DM particles in Fornax, given a

galactic mass of 109M� and a 20 MeV DM mass. Therefore, the energy from SNe is only

distributed to a small fraction of the DM and cannot turn a core into a cusp. Accounting

for neutrinos from stars that do not become SNe could have an effect on the core vs. cusp

problem and will be studied in future work [90].

5 Future tests

As we have described, to achieve a cutoff on DM structures of Mcutoff ∼ 108M� requires

|Uτ4| & 0.1. One promising test of strong DM-neutrino interactions is to improve the

searches that are sensitive to |Uτ4|. We discuss prospects for this improvement below.

5.1 τ decays

For m4 > 100 MeV the strongest constraint on |Uτ4| comes from τ decays, in particular

our estimate using changes to Γτ→µνν̄ . However, the measurements of the branching ratio

for τ → µ were not searches for heavy neutrinos and could be subject to systematic

biases in acceptance estimates that assume a vanishing neutrino mass. The best dedicated

experimental search for a heavy component to ντ used LEP data, based on about 105 τ+τ−

pairs, looking at hadronic three- and five-prong decays [51]. We strongly suggest that new

experimental searches be undertaken to search for a massive (greater than 10 MeV) neutrino

component of ντ . The B-factories have each collected about 104 times more τ pairs and

Belle II will improve on that by an order of magnitude. Therefore the statistical errors in

such a search could conceivably improve by ∼ 100. Using several decay channels is a good

strategy since multi-prong hadronic final states are more sensitive to the reduced phase

space available but leptonic decays are subject to less theoretical uncertainty. Although the

search in ref. [51] was systematics limited, if the systematic errors for new dedicated searches

can be controlled to the level of the statistical ones, an improvement of the sensitivity to

|Uτ4| by a factor of 10 would be possible, exploring a large amount of parameter space

favored by solutions to small scale structure problems. Improving these searches would be

a highly desirable test of DM-neutrino interactions.

We also briefly mention here that the value of |Vus| extracted using τ decays to strange

mesons is smaller than that obtained by other methods [104]. In particular, the central

value obtained using the ratio Γτ→Kν/Γτ→πν is about 1% below the value from |Vud| and

CKM unitarity (assuming Uµ4 = 0). The value using the inclusive strange rate is even

smaller, about 4% smaller than the CKM unitarity value. While not statistically significant,

these are intriguing and could be signs of a heavy neutrino component to ντ since final

states involving kaons have less phase space available (which is suggested by the inclusive,

multibody final states leading to a smaller |Vus|). The value of |Uτ4| required to align
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the central values of |Vus| from Γτ→Kν/Γτ→πν and CKM unitarity is in tension with the

estimate of the limit from τ → µ decay derived in section 2.2.1 but, as mentioned above,

there could be an unaccounted for systematic bias in this estimate. If the discrepancy in

|Vus| measurements becomes significant, it could be another hint of the existence of an

O(100 MeV) component to the τ neutrino.

5.2 Matter effects on neutrino oscillations

For m4 below 100 MeV, the strongest limit on |Uτ4| is due to matter effects in atmospheric

neutrino oscillations. The lack of weak interactions of the sterile neutrino leads to a dif-

ference in the matter effects between νµ and the linear combination of ντ and sterile that

makes up the light neutrinos. Limits on |Uτ4| have been derived from analyzing the zenith

angle distribution of muon neutrinos at Super-K [69] and in IceCube and (low energy)

DeepCore data in the language of neutrino NSI [70]. The Super-K limit on |Uτ4| is statis-

tics limited and will be improved with more data. An analysis of the PINGU upgrade of

IceCube indicates that it will be able to place a 90% C. L. upper limit on the NSI parameter

εττ of 1.7× 10−2 [105]. This will improve the reach on |Uτ4| to about 0.3. Furthermore, a

year of full DeepCore data will allow εττ to be probed at 90% C. L. to 6× 10−3 [70] which

will allow values of |Uτ4| > 0.2 to be tested. This is a very promising test of the model.

5.3 Ue4 and Uµ4

In addition to a nonzero Uτ4 we might expect, at some level, that Ue4 and Uµ4 are also not

vanishing in this model. While it is technically natural for Ue4 and Uµ4 to be extremely

suppressed compared to Uτ4 (radiative contributions to Ue4, Uµ4 are necessarily generated

but are proportional to the light neutrino masses and are therefore tiny), it is not a re-

quirement that the sterile-active neutrino coupling only violate Lτ . (We use L` to label the

global U(1) associated with lepton flavor `.) In most of this paper, for simplicity and in

light of the phenomenological requirement that Uτ4 � Ue4, Uµ4, we have ignored Ue4 and

Uµ4 but it is possible that they are nonzero. In fact, it is easy to contemplate a model in

which the hierarchy Uτ4 � Ue4, Uµ4 is enforced with Ue4, Uµ4 6= 0 by imposing a symmetry

that satisfies minimal flavor violation (MFV). In an MFV scenario, we would expect that

λi in eq. (2.1) are proportional to the lepton Yukawas so that, in addition, Uµ4 � Ue4.

If we take the reasonable view that in this model Ue4 and Uµ4 are not strictly zero, we

could potentially expect to see a signal in the observables that we used to constrain Ue4 and

Uµ4 in section 2.2.1. Furthermore, we might also expect signals in lepton-flavor–violating

(LFV) processes such as τ → µγ, τ → eγ, µ → eγ, or µ → e conversion. The fact that

this model includes a neutrino with a mass above 10 MeV adds additional motivation to

search for LFV — a relatively large m4 reduces the GIM-suppression of such processes.

The decay τ → µγ could be particularly interesting in an MFV context, while the effort

to greatly improve the reach in sensitivity to µ → eγ and µ → e conversion makes these

processes interesting as well.

Lastly, a nonzero value of Uµ4 would also open up the possibility of observing this

model in νµ → ντ oscillations at the proposed short baseline experiment MINSIS [106].

MINSIS proposes to use the NUMI beamline at Fermilab with a kton-scale emulsion cloud
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chamber detector, capable of observing τ neutrinos, situated 1 km away. Early studies

indicate that, for |Uτ4|2 = 0.1, sensitivity to |Uµ4|2 above roughly 10−6 is possible [106].

6 Conclusions

The paradigm of CDM does an excellent job of describing a wide range of data on the

scales of galaxy clusters or larger. However, there appear to be persistent discrepancies

between predictions in the CDM paradigm and observations at smaller scales.

We have focused on one of these problems, that of missing satellites. This problem

can be solved by introducing strong interactions between neutrinos and DM which keep

the DM in thermal equilibrium with the relativistic matter in the early Universe to lower

temperatures than typically expected. This washes out structures with masses below a

particular scale Mcutoff . If Mcutoff is chosen to be in the range 107 − 109M�, then the ex-

pectation for the number of satellite galaxies of a Milky Way sized galaxy can be brought

into agreement with observations, solving the missing satellites problem. A cutoff of this

size requires a large DM-neutrino scattering cross section. This can be realized in a renor-

malizable theory if the DM has a mass that is tens of MeV and is coupled to a sterile

neutrino that mixes with the active neutrinos. The strength of the mixing that is required

combined with both cosmological and particle physics data implies that the sterile neutrino

mixes most with ντ and leads to a heavy neutrino that is mostly sterile but with a sizable

ντ component. There are a number of signatures of this scenario, both for astrophysical

and particle physics experiments.

Strong DM-neutrino interactions are particularly interesting for supernovae. The mass

scale implied by a solution to the missing satellites problem indicates that a future observa-

tion of neutrinos from a nearby supernova could show an imprint of DM-neutrino scattering.

This scenario can also be tested at neutrino oscillation experiments, due to the the change

of matter effects due to the sterile neutrino. There will be progress on these measurements,

probing regions of parameter space that are able to solve small scale structure problems.

τ decays are also a promising area to search for the signs of neutrino-DM interactions.

Improvements of the searches for a massive component of ντ would be a useful way of

probing this model. Lastly, lepton-flavor–violating processes are well motivated by this

scenario. The reach of searches for these processes will be greatly improved in the near

future, opening up the opportunity for discovery.
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