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1 Introduction

The production of a hadron in a high energy collision is in general an extremely compli-

cated problem dominated by nonperturbative aspects of QCD. There are several ways to

simplify the problem in order to make a theoretical analysis more tractable. One way is to

consider inclusive production of the hadron, summing over all possible additional hadrons

in the final state. Another simplification is to consider the production of the hadron with

transverse momentum pT that is much larger than the momentum scale ΛQCD of non-

perturbative effects in QCD, so that there are aspects of the problem that involve the
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small coupling constant αs(pT ). Another simplification is to consider a hadron whose con-

stituents include a heavy quark whose mass m is much larger than ΛQCD, so that there are

aspects of the problem that involve the small coupling constant αs(m). If the hadron is a

heavy quarkonium, whose constituents are a heavy quark and antiquark, there are further

simplifications from the typical relative velocity v of the constituents being small compared

to 1. The most theoretically tractable problem is the one in which all these simplifying

features are combined: the inclusive production of quarkonium at large pT .

A rigorous factorization theorem for the inclusive production of a single hadron at

large pT was derived by Collins and Soper in 1981 [1]. It states that in the inclusive cross

section for producing a hadron H at pT � ΛQCD, the leading power in the expansion in

powers of ΛQCD/pT can be expressed as a sum of perturbative QCD (pQCD) cross sections

for producing a parton convolved with fragmentation functions :

dσ[H +X] =
∑
i

dσ̂[i+X]⊗Di→H(z). (1.1)

The sum extends over the types of partons (gluons, quarks, and antiquarks). The pQCD

cross sections dσ̂ are essentially inclusive cross sections for producing the parton i, which

can be expanded in powers of αs(pT ), convolved with parton distributions if the colliding

particles are hadrons. The nonperturbative factors Di→H(z) are functions that give the

probability distribution for the longitudinal momentum fraction z of the hadron H relative

to the parton i. The symbol “⊗” in eq. (1.1) represents an integral over z. Evolution

equations for the fragmentation functions can be used to sum large logarithms of pT /ΛQCD

to all orders in αs.

The factorization formula in eq. (1.1) applies equally well to heavy quarkonium with

m� ΛQCD. A proof of this factorization theorem that deals with issues specific to quarko-

nium production was first sketched by Nayak, Qiu, and Sterman in 2005 [2]. It gives the

leading power (LP) in the expansion in powers of m/pT and it applies only at pT � m.

We will refer to this factorization theorem as the LP factorization formula. In the case of

cross sections summed over quarkonium spins, the corrections are suppressed by a power

of m2/p2
T multiplied by logarithms of pT /m. The LP factorization formula has limited pre-

dictive power, because the nonperturbative factors Di→H(z) are functions of z that must

be determined from experiment.

In 1994, Bodwin, Braaten, and Lepage proposed the NRQCD factorization formula,

which uses an effective field theory called nonrelativistic QCD to separate momentum scales

of order m and larger from momentum scales of order mv and smaller. The theoretical

status of the NRQCD factorization conjecture is discussed in ref. [3]. The NRQCD fac-

torization formula states that the inclusive cross section for producing a quarkonium state

H can be expressed as the sum of pQCD cross sections for producing a QQ̄ pair with

vanishing relative velocity multiplied by NRQCD matrix elements :

dσ[H +X] =
∑
n

dσ[(QQ̄)n +X] 〈OHn 〉. (1.2)

The sum extends over the color and angular-momentum channels of the QQ̄ pair. The

pQCD cross sections dσ are essentially inclusive cross sections for producing the QQ̄ pair,
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which can be expanded in powers of αs(m), convolved with parton distributions if the

colliding particles are hadrons. The nonperturbative factors 〈OHn 〉 are multiplicative con-

stants that can be expressed as vacuum expectation values of four-fermion operators in

nonrelativistic QCD [4]. They scale as definite powers of the typical relative velocity v of

the Q or Q̄ in H. The NRQCD matrix element 〈OHn 〉 is essentially the probability for a

QQ̄ pair created in the state n to evolve into a final state that includes the quarkonium

H. Through heroic calculations over the past decade, the inclusive pQCD cross sections

for producing a QQ̄ pair in all the most phenomenologically relevant channels have been

calculated to next-to-leading order (NLO) in αs, even for the most difficult case of hadron

collisions [5–7]. In many cases, the NLO corrections are very large, which suggests that

higher order corrections may also be important. However the NLO calculations are suffi-

ciently difficult that further improvement of the accuracy to next-to-next-to-leading order

seems to be out of the question.

The predictive power of the LP factorization formula in eq. (1.1) can be increased

by applying the NRQCD factorization conjecture to the fragmentation functions. This

reduces the nonperturbative factors from functions of z to multiplicative constants. The

fragmentation function for the parton i to produce the quarkonium H is expressed as a sum

of functions of z that can be calculated using pQCD multiplied by NRQCD matrix elements:

Di→H(z) =
∑
n

di→(QQ̄)n(z) 〈OHn 〉. (1.3)

The sum extends over the color and angular-momentum channels of a nonrelativistic QQ̄

pair. The pQCD functions di→(QQ̄)n(z) can be expanded in powers of αs(m). The non-

perturbative factors are NRQCD matrix element 〈OHn 〉. If the LP/NRQCD factorization

formula obtained by inserting eq. (1.3) into eq. (1.1) is expanded in powers of αs(m), it

should reproduce the leading power in the expansion in powers of m/pT of the NRQCD

factorization formula in eq. (1.2). The usefulness of the LP/NRQCD factorization for-

mula has proved to be limited at present collider energies. Explicit calculations using the

NRQCD factorization formula have revealed that, in some channels, the LP cross section

is not the largest contribution until pT is almost an order of magnitude larger than m [8].

An important recent development is the derivation of a factorization theorem that

extends the LP factorization formula in eq. (1.1) to the next-to-leading power (NLP) of

m2/p2
T . This factorization theorem was proven by Kang, Qiu, and Sterman [9, 10]. A

similar factorization formula has been derived by Fleming, Leibovich, Mehen, and Roth-

stein using soft collinear effective theory [11, 12]. In the NLP factorization formula, the

terms suppressed by m2/p2
T are expressed as a sum of pQCD cross sections for produc-

ing a collinear QQ̄ pair convolved with double-parton fragmentation functions, which are

nonperturbative probability distributions in the longitudinal momentum fraction of the

quarkonium H relative to the QQ̄ pair. The predictive power of the NLP fragmentation

formula can be dramatically increased by applying the NRQCD factorization formula to

the double-parton fragmentation functions as well as the single-parton fragmentation func-

tions [13, 14]. In the case of cross sections summed over quarkonium spins, the corrections

are suppressed by a power of m4/p4
T multiplied by logarithms of pT /m. If the resulting
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NLP/NRQCD factorization formula is expanded in powers of αs(m), it should agree with

the first few terms in the expansion in powers of m/pT of the NRQCD factorization formula.

The NLP/NRQCD factorization formula opens the door to dramatic improvements

in the accuracy of theoretical predictions for quarkonium production at very large pT .

The factorization formula can be expressed as a triple expansion in powers of αs, v, and

m/pT . NLP factorization incorporates subleading powers of m/pT . The NRQCD expansion

includes subleading powers of v. Accurate predictions also require including subleading

powers of αs. The aspects of the problem that are perturbative are the pQCD cross sections

for producing single partons, the pQCD cross sections for producing collinear QQ̄ pairs,

the coefficient functions of NRQCD matrix elements in the NRQCD expansions of both

the single-parton fragmentation functions and the double-parton fragmentation functions,

and the evolution kernels for both sets of fragmentation functions. It would be desirable

to have all these ingredients calculated to NLO in αs.

The NRQCD-expanded LP fragmentation formula was actually first applied to quarko-

nium production at large pT back in 1993, when the first fragmentation functions for S-wave

quarkonium states were calculated to leading order (LO) in αs for channels that are lead-

ing order in v. The fragmentation functions for a gluon into spin-singlet and spin-triplet

S-wave states at leading order in αs and v were calculated by Braaten and Yuan [15, 16].

The fragmentation function for a heavy quark into spin-singlet and spin-triplet S-wave

states at leading order in αs and v were calculated by Braaten, Cheung, and Yuan [17].

The fragmentation functions have since been calculated at LO in αs for all the color and

angular-momentum channels that are predicted by NRQCD factorization to be most phe-

nomenologically relevant. For the color-octet 3S1 channel, in which the LO fragmentation

function is proportional to δ(1 − z), the fragmentation function has been calculated to

next-to-leading order (NLO) in αs [13, 18]. In this paper, we present the first NLO cal-

culation of a fragmentation function whose form at LO is a nontrivial function of z: the

fragmentation function for a gluon into a spin-singlet S-wave state ηQ at leading order in v.

The outline of our paper is as follows. In section 2, we calculate the LO fragmenta-

tion function using Feynman rules introduced by Collins and Soper. We also define some

quantities that are useful in the NLO calculations. In section 3, we explain how the cal-

culation of the real NLO corrections can be simplified by introducing subtraction terms

that cancel all the ultraviolet and infrared divergences, allowing the phase-space integrals

to be calculated in 4 dimensions. We calculate the phase-space integrals of the subtraction

terms analytically using dimensional regularization. In section 4, we describe the calcu-

lation of the virtual NLO corrections, and we present analytic results for the poles that

arise from the dimensionally regularized loop integrals. In section 5, we show how all the

poles from phase space integrals and from loop integrals are cancelled by renormalization of

the parameters of QCD and renormalization of the operator whose matrix element defines

the fragmentation function. Some numerical illustrations of our results are presented in

section 6. We discuss the prospects for the NLO calculation of all the other phenomeno-

logically relevant fragmentation functions in section 7. Some details of the calculation of

integrals at NLO are presented in appendices. In appendix A, we derive parametrizations

of massless two-parton phase space integrals that are used to integrate the subtractions
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Figure 1. One of the 4 cut diagrams for gluon fragmentation into a color-singlet 1S0 QQ̄ pair at

leading order in αs. The eikonal line is represented by a double solid line. The dotted line is the

cut. The other 3 cut diagrams at leading order are obtained by interchanging the two gluon vertices

on each side of the cut.

terms for the real NLO corrections. In appendix B, we present the pole terms in the loop

integrals with an eikonal propagator that appear in the virtual NLO corrections.

2 Leading-order fragmentation function

In this section, we calculate the perturbative fragmentation function for g → QQ̄, with the

QQ̄ pair in a color-singlet 1S0 state, at leading order in αs. We also introduce some related

expressions that are useful in the calculation at next-to-leading order in αs.

2.1 Feynman rules

Gluon fragmentation functions can be calculated using Feynman rules derived by Collins

and Soper in 1981 [1]. The fragmentation function is expressed as the sum of all possible

cut diagrams of a particular form. The diagrams include an eikonal line that extends from

a gluon-field-strength operator on the left side of the cut to a gluon-field-strength operator

on the right side. Single virtual gluon lines are attached to the operators on the left side

and the right side. The two virtual gluon lines from the operators are connected to each

other by gluon and quark lines produced by QCD interactions, with possibly additional

gluon lines attached to the eikonal line. The cut passes through the eikonal line, the line

for the particle into which the gluon is fragmenting, and possibly additional gluon and

quark lines. An example of a cut diagram with the cut passing through the lines of a heavy

quark and antiquark and an additional gluon is shown in figure 1.

The Feynman rules for the cut diagrams are relatively simple [1]. The 4-momentum

K of the gluon that is fragmenting enters the diagram through the operator vertex on the

left side of the eikonal line and it exits through the operator on the right side. Some of

that momentum flows through the single virtual gluon attached to the operator and the
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remainder flows through the eikonal line. The operator at the left end of the eikonal line

is labelled by a Lorentz index µ and a color index a. The operator at the right end of the

eikonal line is labelled by a Lorentz index ν and a color index b. The Feynman rules can

be summarized as follows:

• If the single virtual gluon line attached to the operator at the left end of the eikonal

line has momentum q, Lorentz index λ, and color index c, the Feynman rule for the

operator is −i(K.ngµλ − qµnλ)δac, where n is a light-like 4-vector.

• The attachment of an additional gluon line with Lorentz index β and color index c

to an eikonal line with color indices d and e to the left and right of the attachment

has the Feynman rule gsf
cdenβ .

• The propagator for an eikonal line carrying momentum q is i/(q.n+iε). The Feynman

rule for a cut eikonal line carrying momentum q is 2πδ(q.n).

• The remaining Feynman rules are those of QCD.

The particle into which the gluon is fragmenting has a specified 4-momentum. In

the case of fragmentation of a gluon into quarkonium, it is convenient to express that

4-momentum as 2p. The longitudinal momentum fraction z of the quarkonium is

z = (2p).n/K.n. (2.1)

The fragmentation function is the sum of all cut diagrams contracted with −gµν and δab
and multiplied by the Collins-Soper prefactor [1]

NCS =
1

(N2
c − 1)(2− 2ε)

z1−2ε

2πK.n
. (2.2)

The factors in the denominator include the number of color and spin states of a gluon in D =

4−2ε dimensions. The factor of z1−2ε arises from an integral over a transverse momentum.

2.2 NRQCD factorization

The NRQCD factorization formalism [4] can be used to expand the fragmentation function

for producing a quarkonium state into a sum of matrix elements of NRQCD operators

multiplied by perturbatively calculable coefficients. The NRQCD matrix elements scale

as definite powers of the relative velocity v of the heavy quark in the quarkonium. For

a 1S0 quarkonium state ηQ, the matrix element that is leading order in v was denoted

〈O1(1S0)〉ηQ in ref. [4]. Within the vacuum-saturation approximation, it can be interpreted

as proportional to the square of the wavefunction at the origin for the quarkonium:

〈O1(1S0)〉ηQ = Nc|R(0)|2/(2π). (2.3)

The NRQCD factorization conjecture asserts that its coefficient, which is a function of z,

can be calculated as a power series in αs(m), where m is the heavy quark mass. If we keep

only the 〈O1(1S0)〉ηQ term, the fragmentation function for g → ηQ can be expressed as

Dg→ηQ(z) = 〈O1(1S0)〉ηQ
[
α2
sdLO(z) + α3

sdNLO(z) + . . .
]
. (2.4)

– 6 –
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The function dLO(z) in the leading-order term was calculated by Braaten and Yuan in

1993 [15]. Our goal is to calculate the function dNLO(z) in the next-to-leading order term.

This function also depends on renormalization and factorization scales that have been

suppressed in eq. (2.4).

The formation of the quarkonium ηQ from the fragmentation of a gluon involves non-

perturbative effects that are represented by the sum of infinitely many Feynman diagrams.

Thus the fragmentation function Dg→ηQ(z) can not be calculated directly using perturba-

tive QCD. However the coefficient of 〈O1(1S0)〉ηQ in Dg→ηQ(z) can be determined from the

perturbative calculation of the fragmentation function for producing an appropriate QQ̄

state at a fixed order in αs. The simplest choice is a QQ̄ pair in a color-singlet spin-singlet

state with zero relative momentum. Its angular momentum quantum numbers are there-

fore 1S0. The perturbative fragmentation function Dg→QQ̄(z) for producing the QQ̄ pair

has the same form as in eq. (2.4) but with a different prefactor:

Dg→QQ̄(z) = 〈O1(1S0)〉QQ̄
[
α2
sdLO(z) + α3

sdNLO(z) + . . .
]
. (2.5)

It can be calculated from cut diagrams for the gluon fragmentation function in which the

cut lines include Q and Q̄. Given the normalization of the NRQCD operator O1(1S0)

defined in ref. [4], the NRQCD matrix element for the QQ̄ pair is

〈O1(1S0)〉QQ̄ = 2Nc. (2.6)

If dimensional regularization is used to regularize ultraviolet and infrared divergences,

this matrix element has no NLO corrections. By dividing the perturbatively calculated

fragmentation function Dg→QQ̄(z) by 2Nc, we can obtain the coefficient of 〈O1(1S0)〉ηQ in

eq. (2.4).

The perturbative fragmentation function Dg→QQ̄(z) for producing a color-singlet spin-

singlet QQ̄ pair with zero relative momentum can be conveniently obtained by replacing

the spinors from cuts through the heavy quark and antiquark lines in a cut diagram by

projection matrices. The replacement rule for the product of the spinors to the left of

the cut is

vj(p)ūi(p) −→
1√
Nc
δij ·

1

2
√

2m3/2
(p/−m)γ5(p/+m). (2.7)

This projection matrix is the product of a color matrix with explicit indices i and j that

projects the QQ̄ pair into a color-singlet state and a Dirac matrix that projects it into a 1S0

state. The projection matrix Γij on the right side of eq. (2.7) satisfies Tr(Γijγ0Γ†ijγ0) = 4m,

which is the standard relativistic normalization for a particle of mass 2m in its rest frame.

With the projection matrix in eq. (2.7), the Dirac structure on each side of the cut reduces

to the trace of Dirac matrices that include a single factor of γ5.

We use dimensional regularization in D = 4 − 2ε dimensions to regularize ultraviolet

and infrared divergences. Since the conventional definition of γ5 is specific to 4 dimensions,

there is the possibility of an incompatibility between the definition of γ5 and dimensional

regularization. One property of γ5 that we will use is that the trace of a product of γ5 and

fewer than four gamma matrices is 0. In the LO and NLO diagrams for the fragmentation

– 7 –
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function, this property can be used to reduce the Dirac trace in the amplitude on the left

side of the cut to Tr([γµ, γλ, γρ]p/γ5), where [γµ, γλ, γρ] is the antisymmetrized product of

three gamma matrices whose 6 terms have coefficients +1 or −1. The Dirac trace on the

right side of the cut can similarly be reduced to Tr([γν , γσ, γτ ]p/γ5). After integrating over

the momentum of the radiated gluon, the only independent tensors that can be contracted

with the product of these Dirac traces to give a scalar are gµνgλσgρτ and gµνgλσnρnτ . In 4

dimensions, the Dirac trace from the left side of the cut is

1

6
Tr([γµ, γλ, γρ]p/γ5) = −iεµλραpα Tr(1). (2.8)

The Dirac trace on the right side of the cut gives a similar expression with Levi-Civita

tensor ενστβ . In 4 dimensions, the product of εµλρα and ενστβ can be expressed as an

antisymmetrized sum of products of four metric tensors with 24 terms. With some of the

more common prescriptions for γ5, these metric tensors can be interpreted as those for D

dimensions. In this case, the contractions of the two independent tensors with the product

of the two traces reduces to

gµνgλσgρτ ·
1

6
Tr([γµ, γλ, γρ]p/γ5) · 1

6
Tr([γν , γσ, γτ ]p/γ5)

= (D − 1)(D − 2)(D − 3)m2
[
Tr(1)

]2
, (2.9a)

gµνgλσnρnτ ·
1

6
Tr([γµ, γλ, γρ]p/γ5) · 1

6
Tr([γν , γσ, γτ ]p/γ5)

= −(D − 2)(D − 3)(p.n)2
[
Tr(1)

]2
. (2.9b)

The study of alternative prescriptions for γ5 can ultimately be reduced to its effects on

these two expressions.

2.3 Born fragmentation function

The fragmentation function for g → QQ̄ can be calculated perturbatively from the cut

diagrams in which the cut lines include Q and Q̄. At leading order in αs, the cut diagrams

are the diagram in figure 1 and three other diagrams. One of the other diagrams is obtained

by interchanging the vertices where the gluon from the operator and the final-state gluon

attach to the quark line on the left side of the cut. The other two are obtained by making

a similar interchange on the right side of the cut. The cut lines are those for the Q and

Q̄, the final-state gluon, and the eikonal line. The final-state Q and Q̄ are on-shell with

equal momenta p and total longitudinal momentum fraction z. The final-state gluon is

on-shell with a momentum q whose phase space must be integrated over. The cut through

the eikonal line gives a factor of 2πδ(K.n− (2p+ q).n).

The amplitude corresponding to the sum of the two diagrams on the left side of the

cut can be written down using the Feynman rules:

−ig2
s

(2p+ q)2[(p+ q)2 −m2]
[K.ngµλ − (2p+ q)µnλ] ε∗β(q)

× ū(p)
[
(T aT c)ijγ

λ(p/+ q/−m)γβ − (T cT a)ijγ
β(p/+ q/+m)γλ

]
v(p), (2.10)

– 8 –
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where i, j, and c are the color indices of the final-state Q, Q̄, and gluon. After replacing

the spinors by the projector in eq. (2.7) and using the fact that the trace of the product of

γ5 and fewer than four gamma matrices is 0, the amplitude can be reduced to

−ig2
sδ
ac

2(2Nc)1/2m1/2(2p+ q)2p.q
[K.ngµλ − (2p+ q)µnλ] ε∗β(q) qδ ·

1

6
Tr
[
[γλ, γδ, γβ ]p/γ5

]
. (2.11)

The cut diagram is obtained by multiplying this amplitude, whose free indices are µ and

a, by its complex conjugate with indices ν and b, integrating over the phase space of the

gluon, and summing over its color and spin states. The fragmentation function Dg→QQ̄(z)

is then obtained by contracting the cut diagram with δab(−gµν) and multiplying by the

Collins-Soper prefactor in eq. (2.2).

We denote the product of the differential phase space for the final-state gluon with

momentum q and the factor 2πδ(K.n − (2p + q).n) from the cut through the eikonal line

by dφBorn. We use dimensional regularization with D = 4 − 2ε dimensions to regularize

both ultraviolet and infrared divergences. The integral over q.n can be evaluated using the

delta function from the cut through the eikonal line. After integrating over the angles of

the transverse components of q, dφBorn reduces to a single differential:

dφBorn =
z−1+ε(1− z)−ε

2(4π)1−εΓ(1− ε)K.n

(
s− 4m2

z

)−ε
ds, (2.12)

where s is the invariant mass of the QQ̄g system:

s = (2p+ q)2. (2.13)

In eq. (2.12), there is an implied Heavyside theta function that imposes the constraint

s > 4m2/z.

The fragmentation function for g → QQ̄ at leading order in αs can be expressed as

D
(LO)

g→QQ̄(z) = NCS

∫
dφBornABorn(p, q), (2.14)

where NCS is the Collins-Soper prefactor in eq. (2.2) and the function ABorn in the inte-

grand is

ABorn(p, q) =
4(1− 2ε)(N2

c − 1)g4
s [(2p+ q).n]2

Ncms2(s− 4m2)2

×
[
(1− 2z + 2z2 − ε)s2 − 8(z − ε)m2s+ 16(1− ε)m4

]
. (2.15)

We will refer to this function as the Born squared amplitude. The LO fragmentation

function in D dimensions is

D
(LO)

g→QQ̄(z) =
2(1− 2ε)(4π)εα2

s

Γ(2− ε)Ncm
[z(1− z)]−ε

×
∫ ∞

4m2/z
ds

(s− 4m2/z)−ε

s2

[
1− ε− 2z(1− z)

s(s− 4m2/z)

(s− 4m2)2

]
. (2.16)
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Since the integral in eq. (2.16) has no divergences, we can set ε = 0. The LO fragmen-

tation function in 4 dimensions reduces to

D
(LO)

g→QQ̄(z)
∣∣∣
ε=0

=
2α2

s

Ncm

∫ ∞
4m2/z

ds
(1− 2z + 2z2)s2 − 8zm2s+ 16m4

s2(s− 4m2)2
. (2.17)

After evaluating the integral over s, the final result for the LO fragmentation function is

D
(LO)

g→QQ̄(z)
∣∣∣
ε=0

=
α2
s

2Ncm3

[
2(1− z) log(1− z) + 3z − 2z2

]
. (2.18)

The NRQCD matrix element, which is given by eq. (2.6), can be inserted by multiplying

by 〈O1(1S0)〉QQ̄/(2Nc). Comparing with eq. (2.5), we can read off the function dLO(z) in

the fragmentation function for g → QQ̄:

dLO(z) =
1

4N2
cm

3

[
2(1− z) log(1− z) + 3z − 2z2

]
. (2.19)

This same function dLO(z) appears in the fragmentation function for g → QQ̄ in eq. (2.4).

The leading-order fragmentation function calculated by Braaten and Yuan in 1993 [15] can

be reproduced by inserting the expression for 〈O1(1S0)〉ηQ in eq. (2.3).

2.4 Born squared amplitudes with uncontracted Lorentz indices

To facilitate the calculation of the NLO corrections to the fragmentation function, it is

convenient to generalize the integration measure for the LO fragmentation function in

eq. (2.16) by allowing q to be an arbitrary light-like vector. The Collins-Soper prefactor in

eq. (2.2) can be generalized to a function of p and q:

NBorn(p, q) =
1

(N2
c − 1)(2− 2ε)

1

2π(2p+ q).n)

(
2p.n

(2p+ q).n

)1−2ε

. (2.20)

The Born phase-space measure in eq. (2.12) generalizes to

dφBorn(p, q) =
1

2(4π)1−εΓ(1− ε)
(q.n)−ε

(2p.n)1−ε

(
s− (2p+ q).n

2p.n
4m2

)−ε
ds, (2.21)

where s = (2p+q)2. The product of NBorn, dφBorn, and the function ABorn(p, q) in eq. (2.15)

defines a LO differential fragmentation function with general light-like vector q:

NdφABorn(p, q) =
2(1− 2ε)(4π)εα2

s

Γ(2− ε)Ncm
[z(1− z)]−ε

(s− 4m2/z)−ε

s2

×
[
1− ε− 2z(1− z)

s(s− 4m2/z)

(s− 4m2)2

]
ds, (2.22)

where s = (2p+ q)2 and z is the longitudinal momentum fraction

z =
(2p).n

(2p+ q).n
. (2.23)
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If this measure is multiplied by a function of s and integrated over s from 4m2/z to ∞, it

defines a function of z.

In the calculation of the real NLO corrections to the fragmentation function, it is

convenient to have expressions for the Born squared amplitude with a pair of uncontracted

Lorentz indices. They will be used to construct subtraction terms that cancel the ultraviolet

and infrared divergences in the NLO corrections point-by-point in the phase space. Such

amplitudes with uncontracted indices cannot be expressed as a linear combination of the

contracted tensors in eqs. (2.9b), but our prescription to extend γ5 in D dimensions can

still be used. As will become clear later, contributions from subleading terms in ε always

originate from the Laurent expansion of subtraction terms involving the Born squared

amplitude with no Lorentz indices. Hence the study of alternative prescriptions for γ5 can

indeed ultimately be reduced to its effects on the two expressions in eqs.(2.9b). There

are two useful choices for the uncontracted indices µ and ν. One choice is the Lorentz

indices associated with the ends of the eikonal line. The other choice is the Lorentz indices

associated with the polarization vectors of the cut gluon line. We will refer to those

expressions as the Born tensors.

The Born tensor with Lorentz indices associated with the eikonal line is

Aµνeikonal(p, q) =
(1− 2ε)(N2

c − 1)g4
s [(2p+ q).n]2

2Ncm[(2p+ q)2]2(p.q)2

[
(2p.q)2Tµν − (2p+ q)2lµlν

]
, (2.24)

where lµ and Tµν are

lµ = 2pµ − 2p.n

(2p+ q).n
(2p+ q)µ, (2.25a)

Tµν = −gµν +
nµ(2p+ q)ν + (2p+ q)µnν

(2p+ q).n
. (2.25b)

They satisfy l.n = 0 and Tµνnν = 0. Upon contracting Aµνeikonal with −gµν , we recover the

Born squared amplitude in eq. (2.15):

ABorn(p, q) = −gµνAµνeikonal(p, q). (2.26)

The Born tensor with Lorentz indices associated with the final-state gluon is

Aµνgluon(p, q) =
2(N2

c − 1)g4
s [(2p+ q).n]2

Ncm[(2p+ q)2]2(p.q)2

4∑
i=1

Ci(z, p.q)T
µν
i (p, q), (2.27)

where the tensors are

Tµν1 (p, q) = −gµν +
qµnν + nµqν

q.n
, (2.28a)

Tµν2 (p, q) = −gµν +
qµpν + pµqν

p.q
, (2.28b)

Tµν3 (p, q) =

(
pµ − p.q

q.n
nµ
)(

pν − p.q

q.n
nν
)
, (2.28c)

Tµν4 (p, q) = qµqν . (2.28d)
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Their coefficients are

C1(z, p.q) = −2(1− z)(m2 + p.q)
[
zp.q − 2(1− z)m2

]
, (2.29a)

C2(z, p.q) = [1− 2ε− 2z(1− z)] (p.q)2 − 2z(1− z)m2p.q, (2.29b)

C3(z, p.q) = 4(1− z)2(m2 + p.q), (2.29c)

C4(z, p.q) = z2p.q + (−1 + 2ε+ z2)m2. (2.29d)

The argument z of Ci(z, p.q) is the longitudinal momentum fraction in eq. (2.23), which

depends on p and the arbitrary light-like vector q. The tensors in eqs. (2.28) satisfy

Tµνi qν = 0 because of gauge invariance. Upon contracting Aµνgluon with −gµν , we recover

the Born squared amplitude in eq. (2.15):

ABorn(p, q) = −gµνAµνgluon(p, q). (2.30)

3 Real NLO corrections

The real NLO corrections to the perturbative fragmentation function for g → QQ̄, with

the QQ̄ pair in a color-singlet 1S0 state, come from cut diagrams with two real partons in

the final state. The two partons can be two gluons or a light quark-antiquark pair (qq̄).

Cut diagrams with two real gluons can be obtained from the four LO cut diagrams with

a single real gluon, such as the diagram in figure 1, by adding a gluon line that crosses

the cut and runs from any of the 6 colored lines on the left side of the cut to any of the 6

colored lines on the right side of the cut. The additional gluon line can also be attached

to the operator vertex, with the fragmenting gluon attached to the eikonal line. The cut

diagrams with a light qq̄ pair can be obtained from the four LO cut diagrams by replacing

the real gluon line that crosses the cut by a virtual gluon that produces a qq̄ pair that

crosses the cut.

3.1 Subtraction procedure

Each of the cut diagrams involves an integral over the phase space of the two real partons in

the final state. The integrals diverge in several phase-space regions, yielding poles of both

infrared (IR) and ultraviolet (UV) nature. Five (overlapping) boundaries in the phase-

space can be associated with the singular behaviour of the integrand. The boundaries can

be defined in terms of Lorentz invariants. We denote the momenta of both the Q and Q̄

by p and the momenta of the final-state partons (which can be gluons or a light quark

and antiquark) by q1 and q2. The invariant mass of the four particles in the final state is

s = (2p+ q1 + q2)2. The boundaries of the singular regions are represented in figure 2:

1. the integration up to the boundary (2p+ q1)2/s = 0 yields a UV pole,

2. the integration up to the boundary (2p+ q2)2/s = 0 yields a UV pole,

3. the integration up to the boundary (q1 + q2)2/m2 = 0 yields an IR pole,
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q1.q2 = 0

q 1
.n
=
0

q
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0

(2
p
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q 1
)
2 /s

=
0 (2p

+
q
2 ) 2
/s
=
0
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D

4
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Subtraction
D

2

X1,4

X3,4 X3,5

X2,5

Figure 2. Representation of the singular regions for the integration of the real emission amplitude.

Each line represents a specific limit, which is specified in terms of Lorentz invariants in the inner part

of the figure. The relevant subtraction terms to extract the poles in each limit are also indicated.

The phase-space regions X1,4 and X2,5 yield a double pole 1/(εIRεUV). The phase-space regions

X3,4 and X3,5 yield a double pole 1/ε2IR.

4. the integration up to the boundary q2.n/(q1.n+ q2.n) = 0 yields an IR pole,

5. the integration up to the boundary q1.n/(q1.n+ q2.n) = 0 yields an IR pole.

The phase-space regions Xi,j connecting two of the above boundaries are associated with

double poles, which can either be of pure infrared nature (in the case of X3,4 and X3,5) or

of mixed nature (in the case of X1,4 and X2,5).

The real NLO contribution to the fragmentation function can be expressed as

D
(NLO,real)

g→QQ̄ (z) = NCS

∫
dφreal(p, q1, q2)Areal (p, q1, q2) , (3.1)

where NCS is the Collins-Soper prefactor in eq. (2.2), dφreal is the product of the differential

phase space for final-state partons with momenta q1 and q2 and the factor 2πδ(K.n− (2p+

q1 + q2).n) from the cut through the eikonal line, and Areal is the squared amplitude.

Our strategy to extract the poles in the expression in eq. (3.1) is to design a subtraction

term Di for each of the five singular regions in figure 2 whose integral over that region has

poles that match those of the integral of Areal. The contribution to the fragmentation

function in eq. (3.1) can be expressed as

D
(NLO,real)

g→QQ̄ (z) = NCS

∫
dφreal(p, q1, q2)

[
Areal (p, q1, q2)−

5∑
i=1

Di(p, q1, q2)

]

+

5∑
i=1

NCS

∫
dφreal(p, q1, q2)Di(p, q1, q2). (3.2)

The subtraction terms Di are designed so that the integral in the first term is finite and

can be evaluated in D = 4 dimensions. The integrals in the second term are evaluated in
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D = 4−2ε dimensions, so the UV and IR divergences appear as poles in ε. The construction

of the subtraction terms Di is described in sections 3.2 and 3.4, where we follow closely the

subtraction procedure introduced by Catani and Seymour [19]. The analytic integration

of the subtraction terms to obtain the poles in ε is described in sections 3.3 and 3.5, where

we again follow closely the procedure introduced in ref. [19].

3.2 Subtractions for UV and mixed poles

The UV poles in the real NLO contribution to the fragmentation function are matched by

the integrals of the subtraction terms D1 associated with the limit (2p + q1)2/s → 0 and

D2 associated with the limit (2p + q2)2/s → 0. The total invariant mass s, the invariant

mass si for the system consisting of the QQ̄ pair and the parton of momentum qi, and the

longitudinal momentum fraction yi for that system are

s = (2p+ q1 + q2)2, si = (2p+ qi)
2, yi =

(2p+ qi).n

(2p+ q1 + q2).n
. (3.3)

Our subtraction term Di associated with the limit si/s → 0 includes a factor of

Aµνeikonal(p, qi), where Aµνeikonal is the Born tensor defined in eq. (2.24) whose Lorentz in-

dices µ and ν are associated with the eikonal line. The factor Aµνeikonal can be interpreted as

arising from the fragmentation of a gluon with longitudinal momentum yiK.n into a QQ̄

pair with longitudinal momentum zK.n via the radiation of a gluon of momentum qi.

The subtraction terms D1 and D2 are given by

Di(p, q1, q2) =
4παsµ

2ε

s
V UV
µν (yi, li)

1

y2
i

Aµνeikonal(p, qi), i = 1, 2, (3.4)

where the kernel V UV
µν (yi, li) is defined by

V UV
µν (y, l) = 2Nc

[(
y

1− y
+ y (1− y)

)
(−gµν)− 2(1− ε)1− y

y

lµlν
l2

]
. (3.5)

The 4-vectors l1 and l2 appearing as the second argument of V UV
µν (yi, li) in eq. (3.4) are

defined by

lµ1 = qµ2 −
q2.n

(2p+ q1).n
(2p+ q1)µ, (3.6a)

lµ2 = qµ1 −
q1.n

(2p+ q2).n
(2p+ q2)µ. (3.6b)

These 4-vectors are orthogonal to n: li.n = 0.

3.3 Integrals with UV and mixed poles

Explicit expressions for the poles in the integral of the subtraction term Di (i = 1, 2) can be

obtained by carrying out the integration over the (3−2ε)-dimensional slice associated with

a fixed value of si = (2p+ qi)
2. A convenient decomposition of the phase-space measure is

derived in appendix A:

NCSdφreal(p, q1, q2) = NBorn(p, qi)dφBorn(p, qi) dφ
(i)(p, q1, q2). (3.7)
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The prefactor NBorn(p, qi) is defined in eq. (2.20). The factor dφBorn(p, qi), which is differ-

ential in si, is defined in eq. (2.21). The measure dφ(i) for integration over the slice with

fixed si is

dφ(i)(p, q1, q2) =
1

4(2π)3−2ε
(s− si/yi)−εds y1−ε

i (1− yi)−εdyi dΩ⊥, (3.8)

where dΩ⊥ is the transverse angular measure whose integral is 2π1−ε/Γ(1 − ε). The dif-

ferential variables s, si, and yi are defined as functions of p, q1, and q2 in eqs. (3.3). The

range of yi is from z to 1. The range of si is from 4m2/(z/yi) to ∞, and the range of s is

from si/yi to ∞.

To carry out the integration over the transverse angles in Ω⊥, we observe that the

4-vectors lµ1 and lµ2 defined in eq. (3.6) are orthogonal to nµ, so Lorentz invariance implies∫
dΩ⊥

lµi l
ν
i

l2i
= A

(
−gµν +

nµ(2p+ qi)
ν + nν(2p+ qi)

µ

(2p+ qi).n

)
+Bnµnν , (3.9)

where A and B are functions of si, yi and u. Because of gauge invariance, the amplitude

Aµνeikonal is orthogonal to nµ and nν , so that only the term A(−gµν) survives after contracting

the tensor on the right side of eq. (3.9) with Aµνeikonal. We can determine the coefficient A

by contracting both sides of eq. (3.9) by gµν :

A = − π1−ε

Γ(2− ε)
. (3.10)

After integrating over the angles in Ω⊥, one can make the replacement∫
dΩ⊥V

UV
µν (yi, li) −→

2π1−ε

Γ(1− ε)
P̂ (real)
gg (yi)(−gµν), (3.11)

where P̂
(real)
gg (y) is the real-gluon contribution to the Altarelli-Parisi splitting function for

g → g without any regularization of the pole at y = 1:

P̂ (real)
gg (y) = 2Nc

[
y

1− y
+

1− y
y

+ y(1− y)

]
. (3.12)

The contraction of −gµν in eq. (3.11) with the Born tensor Aµνeikonal(p, qi) gives the Born

squared amplitude ABorn(p, qi) obtained from eq. (2.15) by replacing q by qi. The UV pole

can be made explicit by integrating analytically over the variable s:

NCS

∫
dφrealDi(p, q1, q2) =

Γ(1 + ε)

εUV

αs
4π

(
πµ2

m2

)ε ∫ 1

z

dyi
yi

(1− yi)−εP̂ (real)
gg (yi) (3.13)

×
∫
NdφABorn(p, qi) (si/4m

2)−ε,

where NdφABorn(p, qi) is the LO differential fragmentation function obtained from

eq. (2.22) by replacing q by qi. The variables s and z in eq. (2.22) are replaced by si
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and z/yi. The IR pole associated with the yi = 1 endpoint can be extracted by applying

the plus prescription:

(1− y)−εP̂ (real)
gg (y) = P (real)

gg (y)− 2Ncδ(1− y)
1

εIR
(3.14)

−2Nc

[(
log(1− y)

1− y

)
+

+

(
1

y
+ y(1− y)− 2

)
log(1− y)

]
ε+O(ε2),

where P
(real)
gg (y) is the real-gluon contribution to the Altarelli-Parisi splitting function

for g → g:

P (real)
gg (y) = 2Nc

[
y

(1− y)+
+

1− y
y

+ y(1− y)

]
. (3.15)

With the use of eq. (3.14), the expression in eq. (3.13) can be expressed as the sum of

a term with a double pole, a term with a single pole, and a finite remainder:

2∑
i=1

NCS

∫
dφrealDi(p, q1, q2) =

αs
2π

Γ(1 + ε)

(
πµ2

m2

)ε
[I2(z) + I1(z) + I0(z)], (3.16)

where the functions In(z) are

I2(z) = − 2Nc

εUVεIR

[
D

(LO)

g→QQ̄(z)− εDlog(z)
]
, (3.17a)

I1(z) =
1

εUV

∫ 1

z

dy

y
P (real)
gg (y)D

(LO)

g→QQ̄(z/y), (3.17b)

I0(z) = −NcDlog2(z/y)−
∫ 1

z

dy

y
P (real)
gg (y)Dlog(z/y) (3.17c)

−2Nc

∫ 1

z

dy

y

[(
log(1− y)

1− y

)
+

+

(
1

y
+ y(1− y)− 2

)
log(1− y)

]
D

(LO)

g→QQ̄(z/y).

The LO fragmentation function D
(LO)

g→QQ̄(z) is defined in eq. (2.16). The functions Dlog(z)

and Dlog2(z) are defined by

Dlog(z) =

∫
NdφABorn(p, q) log(s/4m2), (3.18a)

Dlog2(z) =

∫
NdφABorn(p, q) log2(s/4m2), (3.18b)

where the measure NdφABorn(p, q), which is differential in s = (2p + q)2, is given in

eq. (2.22). These functions appear in eqs. (3.17b) and (3.17c) with argument z/y. In

eqs. (3.17a) and (3.17b), there are terms of order ε0 from the expansion of D
(LO)

g→QQ̄(z) to

order ε2 and the expansion of Dlog(z) to order ε. These expansions are not actually needed,

because the canceling poles in ε will also be expressed in terms of the functions D
(LO)

g→QQ̄(z)

and Dlog(z).
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3.4 Subtractions for IR poles

The IR poles in the real NLO contribution to the fragmentation function are matched by

the subtraction terms D3, D4, and D5 associated with the limits q1.q2 → 0, q2.n → 0,

and q1.n→ 0, respectively. The expressions for these subtraction terms can be made more

compact by introducing a light-like 4-vector q̃ that has the same longitudinal momentum

as q1 + q2:

q̃µ = (q1 + q2)µ − q1.q2

(q1 + q2).n
nµ. (3.19)

It satisfies q̃ 2 = 0 and q̃.n = (q1 + q2).n. It is also convenient to introduce variables s̃, u,

and λ defined by

s̃ = (2p+ q̃)2, u =
q2.n

(q1 + q2).n
, λ =

(q1 + q2)2

4m2
. (3.20)

Our subtraction terms D3, D4, and D5 include a factor of Aµνgluon(p, q̃), where Aµνgluon is the

Born tensor defined in eq. (2.27) whose Lorentz indices µ and ν are associated with the

final-state gluon. The factor Aµνgluon can be interpreted as arising from the fragmentation

of a gluon with longitudinal momentum K.n into a QQ̄ pair with longitudinal momentum

zK.n via the radiation of a gluon of momentum q̃.

The subtraction terms D4 and D5 are defined by

Di(p, q1, q2) =
2παsµ

2ε

m2
V IR(i)(p, q1, q2)(−gµν)Aµνgluon(p, q̃), i = 4, 5, (3.21)

where the kernels V IR(i)(p, q1, q2) are

V IR(4)(p, q1, q2) =
Ncs̃

u(u+ λ)[s̃+ 4m2λ/(1− z)]
, (3.22a)

V IR(5)(p, q1, q2) =
Ncs̃

(1− u)(1− u+ λ)[s̃+ 4m2λ/(1− z)]
. (3.22b)

The subtraction term D3 matches the IR poles originating from collinear partons in

the final state. It can be expressed in the form

D3(p, q1, q2) =
4παsµ

2ε

(q1 + q2)2

[
V gg
µν (q1, q2) + V qq̄

µν (q1, q2)
]
Aµνgluon(p, q̃). (3.23)

The kernel V gg
µν + V qq̄

µν has been split into two terms associated with collinear gluons and

collinear quarks. It is convenient to introduce a 4-vector q̆(u) whose components are

q̆(u)µ = uq2
µ − (1− u)q1

µ. (3.24)

The kernels associated with collinear gluons and collinear quarks are

V gg
µν (q1, q2) = 2Nc

[(
1− u
u+ λ

+
u

1− u+ λ

)
(−gµν) + (1− ε) 1

1 + λ

q̆(u)µq̆(u)ν
q1.q2

]
, (3.25a)

V qq̄
µν (q1, q2) = 2TFnf

[
1

1 + λ
(−gµν)− 2

1 + λ

q̆(u)µq̆(u)ν
q1.q2

]
, (3.25b)

where TF = 1
2 is the trace of the square of a generator for the fundamental representation.
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3.5 Integrals with IR poles

Explicit expressions for the poles in the subtraction terms D3, D4, and D5 can be obtained

by carrying out the phase-space integration over the (3 − 2ε)-dimensional slice associated

with a fixed value of s̃ = (2p+ q̃)2. A convenient decomposition of the phase-space measure

is derived in appendix A:

NCSdφreal(p, q1, q2) = NBorn(p, q̃)dφBorn(p, q̃) dφ̃(p, q1, q2). (3.26)

The prefactor NBorn(p, q̃), which is defined in eq. (2.20), coincides with NCS. The fac-

tor dφBorn(p, q̃), which is differential in s̃, is defined in eq. (2.21). The measure dφ̃ for

integration over the slice with fixed s̃ is

dφ̃(p, q1, q2) =
(4m2)1−ε

4(2π)3−2ε
u−ε(1− u)−εdu λ−εdλ dΩ⊥, (3.27)

where dΩ⊥ is the transverse angular measure. The differential variables s̃, u, and λ are

defined as functions of p, q1, and q2 in eqs. (3.20). The range of s̃ is from 4m2/z to ∞.

The range of λ is from 0 to ∞, and the range of u is from 0 to 1.

In the expressions for D4 and D5 in eq. (3.21), the contraction of −gµν with Aµνgluon(p, q̃)

gives the Born squared amplitude ABorn(p, q̃) obtained from eq. (2.15) by replacing q by

q̃. In the expression for D3 in eq. (3.23), the Born tensor Aµνgluon(p, q̃) is contracted with

the tensors V gg
µν and V qq̄

µν defined in eq. (3.25). A factor of ABorn(p, q̃) appears only after

integrating over the transverse angles in Ω⊥. To carry out that integration, we observe

that the 4-vector q̆(u) defined in eq. (3.24) is orthogonal to q̃, so Lorentz invariance implies∫
dΩ⊥

q̆(u)µq̆(u)ν

q1.q2
= C

(
−gµν +

nµq̃ν + nν q̃µ

n.q̃

)
+Dq̃µq̃ν , (3.28)

where the coefficients C and D are functions of q1.q2 and u. Because of gauge invariance,

the Born tensor Aµνgluon(p, q̃) is orthogonal to q̃µ and q̃ν , so only the term C(−gµν) survives

after contracting the tensor on the left side of eq. (3.28) with Aµνgluon(p, q̃). We can determine

the coefficient C by contracting both sides of eq. (3.28) by gµν :

C =
2π1−ε

Γ(2− ε)
u(1− u). (3.29)

The IR poles can be made explicit by integrating over the variables u and λ. The

integral over λ can be evaluated analytically, and it gives a pole in ε. The integral over u

gives a second pole in ε. After isolating the term that gives the pole, the integrand can

be expanded in powers of ε and then integrated over u. The resulting expressions for the

integrals of D4 and D5 are the same:

NCS

∫
dφrealDi(p, q1, q2) =

αs
2π

Γ(1 + ε)

(
πµ2

m2

)ε ∫
NdφABorn(p, q̃) V(p, q̃), i = 4, 5,

(3.30)

– 18 –



J
H
E
P
0
4
(
2
0
1
5
)
1
2
1

where NdφABorn(p, q̃) is the LO differential fragmentation function obtained from eq. (2.22)

by replacing q by q̃. The function V(p, q̃) includes all the poles in ε:

V(p, q̃) = Nc

[
1

2

(
1

εIR
− log

(1− z)s̃

4m2

)2

− Li2

(
1− 4m2

(1− z)s̃

)
+
π2

6

]
. (3.31)

After integrating over s̃, the integral of D4 +D5 reduces to∑
i=4,5

NCS

∫
dφrealDi(p, q1, q2)

=
αsNc

2π
Γ(1 + ε)

(
πµ2

m2

)ε{[
1

ε2IR
− 2

εIR
log(1− z) + log2(1− z) +

π2

3

]
D

(LO)

g→QQ̄(z)

−2

(
1

εIR
− log(1− z)

)
Dlog(z) +Dlog2(z)− 2DLi(z)

}
.

(3.32)

The LO fragmentation function D
(LO)

g→QQ̄(z) is defined in eq. (2.16) and the functions Dlog(z)

and Dlog2(z) are defined in eqs. (3.18). The function DLi(z) is defined by

DLi(z) =

∫
NdφABorn(p, q)Li2

(
1− 4m2

(1− z)s

)
, (3.33)

where the measure NdφABorn, which is differential in s = (2p+ q)2, is given in eq. (2.22).

In eq. (3.32), there are terms of order ε0 from the expansion of D
(LO)

g→QQ̄(z) to order ε2 and

the expansion of Dlog(z) to order ε. These expansions are not actually needed, because the

canceling poles in ε will also be expressed in terms of the functions D
(LO)

g→QQ̄(z) and Dlog(z).

In the expression for the integral of D3, the IR poles appear in a multiplicative constant

factor that can be separated into contributions from gluons and quarks:

NCS

∫
dφrealD3(p, q1, q2) =

αs
2π

Γ(1 + ε)

(
πµ2

m2

)ε (
Vgg + Vqq̄

) ∫
NdφABorn(p, q̃). (3.34)

The factors Vgg and Vqq̄ are integrals over λ and u that can be evaluated analytically.

Their Laurent expansions to order ε0 are

Vgg = Nc

[
1

ε2IR
+

11

6εIR
+

103

18
− π2

3

]
, (3.35a)

Vqq̄ = TFnf

[
− 2

3εIR
− 10

9

]
. (3.35b)

After integrating over s̃, the integral of D3 reduces to

NCS

∫
dφrealD3(p, q1, q2) =

αs
2π

Γ(1 + ε)

(
πµ2

m2

)ε (
Vgg + Vqq̄

)
D

(LO)

g→QQ̄(z). (3.36)

The poles in ε in Vgg + Vqq̄ will be cancelled by another term proportional to D
(LO)

g→QQ̄(z),

leaving only the terms of order ε0.
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4 Virtual NLO corrections

The virtual NLO corrections to the perturbative fragmentation function for g → QQ̄, with

the QQ̄ pair in a color-singlet 1S0 state, come from cut diagrams with one loop on either the

right side or the left side of the cut. Loop diagrams on one side of the cut can be obtained

from the LO diagrams by adding a gluon line connecting any pair of the 6 colored lines, by

adding a loop correction to the propagator of the fragmenting gluon, or by adding a loop

correction to the propagator of the virtual heavy quark. There are additional loop diagrams

in which the heavy quark line is attached to the eikonal line by both the fragmenting gluon

that attaches to the end of the eikonal line and by a second gluon line, with the gluon that

crosses the cut attached to either the fragmenting gluon or the eikonal line.

As in the LO cut diagrams, we denote the momenta of both the Q and Q̄ by p and the

momentum of the final-state gluon by q. We denote the loop momentum by l. The sum

of the virtual one-loop cut diagrams at order α3
s defines a function Avirtual (p, q, l). The

virtual NLO contribution to the fragmentation function can be expressed as

D
(virtual)

g→QQ̄ (z) = NCS

∫
dφBorn

∫
dDl

(2π)D
Avirtual (p, q, l) , (4.1)

where NCS is the Collins-Soper prefactor in eq. (2.2) and dφBorn is the phase-space measure

in eq. (2.12).

By means of standard tensor reduction techniques, the integral over the loop momen-

tum l in eq. (4.1) can be reduced to a sum of one-loop scalar integrals whose numerators

are simply 1. Our procedure to apply this reduction is implemented with the use of the

Mathematica package FeynCalc [20]. The denominators of the scalar integrals come from

Feynman propagators with mass m, massless Feynman propagators, and eikonal propaga-

tors of the form i/[(l+P ).n+ iε], where P is a linear combination of p and q. A product of

eikonal propagators can be reduced algebraically to a linear combination of single eikonal

propagators. A scalar integral with only Feynman propagators is a function of the invari-

ant mass s = (2p + q)2. A scalar integral with one eikonal propagator is a function of s

and the momentum fraction z = (2p).n/(2p + q).n. We need the Laurent expansion in

ε = (4−D)/2 for each scalar integral to order ε0. Our results for the scalar integrals with

only Feynman propagators are in agreement with results available in the literature [21, 22].

The Laurent expansions for the scalar integrals with a single eikonal propagator can be

evaluated analytically, with the finite terms order of ε0 expressed in terms of dilogarithms.

For some of the integrals, the analytic expressions in terms of dilogarithms are very com-

plicated, so the finite terms might as well be expressed in terms of finite integrals that can

be evaluated numerically. Our results for the poles in ε in the scalar integrals with one

eikonal propagator are given in appendix B.

In all the poles in ε from the loop integral in eq. (4.1), the Born squared amplitude

ABorn(p, q) appears as a multiplicative factor. The virtual NLO corrections to the frag-

mentation function can therefore be expressed as

D
(virtual)

g→QQ̄ (z) =
αs
2π

Γ(1 + ε)

(
πµ2

m2

)ε
NCS

∫
dφBorn [fpole(p, q)ABorn(p, q) +Afinite(p, q)] ,

(4.2)
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where fpole(p, q) has only poles in ε and Afinite(p, q) is a finite function of s = (2p+ q)2 and

z. The terms in fpole(p, q) can be organized to make their cancellation against the poles

from other contributions of the NLO correction more transparent:

fpole(p, q) = Ug + UQ(s) + 2UgQQ̄ + Ueikonal +M(s) + S1 + S2(s, z). (4.3)

There are four terms in eq. (4.3) with only UV poles:

Ug =

(
5

3
Nc −

4

3
TFnf

)
1

εUV
, (4.4a)

UQ(s) = CF
1

εUV

(
12m2

s− 4m2
− 1

)
, (4.4b)

UgQQ̄ = (Nc + CF )
1

εUV
, (4.4c)

Ueikonal = Nc
1

εUV
. (4.4d)

where CF = (N2
c −1)/(2Nc) is the Casimir for the fundamental representation. In Feynman

gauge, the terms Ug, UQ(s), UgQQ̄, and Ueikonal arise from virtual-gluon propagator cor-

rections, virtual-quark propagator corrections, quark-gluon vertex corrections, and eikonal

line corrections, respectively. There is one term in eq. (4.3) with mixed UV and IR poles:

M(s) = 2Nc
1

εUVεIR

[
1− ε log(s/4m2)

]
. (4.5)

In Feynman gauge, this term comes from loop correction to the gluon-eikonal vertex. There

are two terms in eq. (4.3) with only IR poles:

S1 = 2CF
1

εIR
, (4.6a)

S2(s, z) = 2Nc

[
− 1

ε2IR
+

1

εIR

(
log(s/4m2) + log(1− z)− 1

2

)]
. (4.6b)

The infrared poles originate from loop-momentum configurations in which partons becom-

ing soft and/or collinear. The term S1 is a soft pole that in Feynman gauge comes from

one-loop diagrams obtained from the four LO cut diagrams by exchanging a gluon between

the on-shell heavy quarks. All other infrared poles are included in the term S2(s, z).

The virtual NLO corrections in eq. (4.2) can be expressed as

D
(virtual)

g→QQ̄ (z) =
αs
2π

Γ(1 + ε)

(
πµ2

m2

)ε [(
Ug + 2UgQQ̄ + Ueikonal + S1

)
D

(LO)

g→QQ̄(z)

+

∫
NdφABorn(p, q)

(
UQ(s) +M(s) + S2(s, z)

)
+NCS

∫
dφBornAfinite(p, q)

]
, (4.7)

where NdφABorn(p, q) is the LO differential fragmentation function in eq. (2.22). Many of

the IR poles cancel against terms in the real NLO corrections, which are given in eq. (3.2).
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The poles in the real NLO corrections are contained in the D1 and D2 subtraction terms

in eq. (3.16), the D4 and D5 subtraction terms in eq. (3.32), and the D3 subtraction term

in eq. (3.36). The mixed and subleading poles in M(s) cancel the poles in the I2(z) term

in eq. (3.17a). The double IR pole in S2(4m2, z) cancels the 1/ε2IR poles in eq. (3.32) and

in the Vgg term in eq. (3.35a). The poles log(1 − z)/εIR + log(s/4m2)/εIR in S2(4m2, z)

also cancel against terms in eq. (3.32). After these cancellations between the real NLO

corrections and the virtual NLO corrections, the only poles that remain are single IR poles

proportional to D
(LO)

g→QQ̄(z) and single UV poles.

5 Renormalization

Beyond leading order in αs, the fragmentation function Dg→ηQ depends on a factorization

scale µF and the running coupling constant αs depends on a renormalization scale µR.

If we make those scales explicit, the expansion of the fragmentation function to NLO in

eq. (2.4) becomes

Dg→ηQ(z, µF ) = 〈O1(1S0)〉ηQ
[
α2
s(µR)dLO(z) + α3

s(µR)dNLO(z, µR, µF ) + . . .
]
. (5.1)

The scales µF and µR are introduced through renormalization.

The calculation of the fragmentation function is performed in terms of the renormal-

ized fields Ψr and Ar, the renormalized coupling constant g, and the physical mass m of

the heavy quark. Their relations with the corresponding bare quantities involve renormal-

ization constants δ2, δ3, δg, and δm:

Ψ = (1 + δ2)1/2Ψr, Aµ = (1 + δ3)1/2Aµr , g0 = µε(1 + δg)g, m0 = m(1 + δm). (5.2)

The renormalization of the coupling constant is performed in the MS scheme, whereas the

renormalization of the heavy quark mass is performed in the on-shell mass scheme. In the

resulting expressions for the renormalization constants δ2, δ3, δg, and δm, it is convenient

to pull out a common factor:

δi =
αs
2π

Γ(1 + ε)

(
πµ2

m2

)ε
δ̃i. (5.3)

The rescaled renormalization constants δ̃i in the scheme specified above read

δ̃2 = −CF
2

[
1

εUV
+

2

εIR
+ 4 + 6 log 2

]
, (5.4a)

δ̃3 =

(
5

6
Nc −

2

3
TFnf

)[
1

εUV
− 1

εIR

]
, (5.4b)

δ̃g = −b0
2

[
1

εUV
+ log

4m2

µ2
R

]
, (5.4c)

δ̃m = −3CF
2

[
1

εUV
+

4

3
+ 2 log 2

]
, (5.4d)

where b0 = (11Nc−4TFnf )/6 is the coefficient of −α2
s/π in the beta function (d/dµ)αs(µ).

In the counterterm for g in eq. (5.4c), we have allowed for the renormalization scale µR of

αs to be different from the scale µ introduced through dimensional regularization.
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The NLO contributions to the fragmentation function from the counterterms for the

propagators and vertices in the LO cut diagrams are

D
(counter)

g→QQ̄ (z) =
αs
2π

Γ(1 + ε)

(
πµ2

m2

)ε ∫
NdφABorn(p, q)

[
2CgQQ̄ + Ceikonal + Cg + CQ(s)

]
.

(5.5)

The terms with the coefficients 2CgQQ̄, Ceikonal, Cg, and CQ(s) are associated with the quark-

gluon vertices, the eikonal-gluon vertex, the gluon propagator, and the quark propagator

in the LO cut diagrams, respectively. The expressions of these coefficients in terms of the

rescaled renormalization constants δ̃i’s are

CgQQ̄ = 2δ̃g + 2δ̃2 + δ̃3, (5.6a)

Ceikonal = δ̃3, (5.6b)

Cg = −2δ̃3, (5.6c)

CQ(s) =
8m2

s− 4m2
δ̃m − 2δ̃2 . (5.6d)

The final expression for the counterterm contributions to the NLO fragmentation func-

tion are

D
(counter)

g→QQ̄ (z) =
αs
2π

Γ(1 + ε)

(
πµ2

m2

)ε [(
2CgQQ̄ + Ceikonal + Cg

)
D

(LO)

g→QQ̄(z)

+

∫
NdφABorn(p, q)CQ(s)

]
. (5.7)

The field renormalization constants δ̃2 and δ̃3 include single IR poles. They cancel

the single IR poles that remain after adding together the real NLO corrections and the

virtual NLO corrections. The real NLO corrections have single IR poles proportional to

D
(LO)

g→QQ̄(z) in the D4 and D5 subtraction terms in eq. (3.32) and in the Vgg and Vqq̄ terms in

eq. (3.35) from the D3 subtraction term. The virtual NLO corrections have single IR poles

proportional to D
(LO)

g→QQ̄(z) in the S1 and S2(s, z) terms in eqs. (4.6). If the expressions

for the coefficients in eqs. (5.6) are inserted into the sum of coefficients that appears in

eq. (5.5), the linear combination of field renormalization constants is 2δ̃2 + δ̃3. The IR pole

in 2δ̃2 cancels the IR pole in S1 introduced in eq. (4.3). The IR pole in δ̃3 cancels the

yet-to-be-cancelled single IR poles in the sum of the contributions from S2(s, z) introduced

in eq. (4.3) and from the terms Vgg and Vqq in eqs. (3.34). This completes the cancellation

of the IR poles.

The renormalization of the operator defining the fragmentation function also introduces

a counterterm. Its expression in the MS scheme reads

D
(operator)

g→QQ̄ (z) = −αs
2π

Γ(1 + ε)

(
πµ2

m2

)ε [
1

εUV
+ log

4m2

µ2
F

] ∫ 1

z

dy

y
Pgg(y)D

(LO)

g→QQ̄(z), (5.8)
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where Pgg(y) is the Altarelli-Parisi splitting function including both real and virtual

contributions:

Pgg(z) = 2Nc

[
z

(1− z)+
+

1− z
z

+ z(1− z)

]
+ b0δ(1− z). (5.9)

We have allowed for the factorization scale µF to be different from the scale µ introduced

through dimensional regularization.

When the contribution from the counterterms D
(counter)

g→QQ̄ (z) and D
(operator)

g→QQ̄ (z) defined

in eqs. (5.5) and (5.8) are added to the real correction given in eq. (3.2) and to the virtual

correction defined in eq. (4.7), all the poles cancel. For the UV poles, the cancellation works

as follows. The UV poles originating from the terms Ug, UQ(s), and 2UgQQ̄ in eq. (4.3)

are canceled by the UV poles from the terms Cg, CQ(s), and 2CgQQ̄ in the expression for

D
(counter)

g→QQ̄ (z) in eq. (5.5). The poles originating from the term I1(z) in eq. (3.16) plus the

poles originating from the term Ueikonal in eq. (4.3) are cancelled by the operator coun-

terterm D
(operator)

g→QQ̄ (z) in eq. (5.8) plus the UV poles in the counterterm Ceikonal introduced

in eq. (5.5).

6 Numerical results

Once all the poles have been cancelled in the NLO corrections to the fragmentation function,

the function dNLO(z, µR, µF ) in eq. (5.1) can be obtained by adding all the finite parts:

• the subtracted real NLO corrections, which are integrated over the phase space of

the two final-state partons in 4 dimensions,

• the finite parts of the integrated subtraction terms in eqs. (3.16), (3.32), and (3.36),

• the finite parts of the virtual NLO corrections in eq. (4.7), which are integrated over

the Born phase space,

• the finite parts from the renormalization counterterms in eqs. (5.7) and (5.8).

The numerical integrations are performed with the use of the adaptive Monte Carlo inte-

grator Vegas [23].

The NLO fragmentation function proportional to α2
s(µR)dLO(z) +

α3
s(µR)dNLO(z, µR, µF ) is compared with the LO fragmentation function proportional to

α2
s(µR)dLO(z) in figure 3 for the case of bottomonium. We set mb = 4.75 GeV and nf = 4,

and we use the value αs(µR = 2mb) = 0.181 for the strong coupling constant. For the

central values of the renormalization and factorization scales, we choose twice the mass of

the heavy quark: µR = µF = 2mb. The LO term α2
sdLO(z) increases monotonically from 0

to α2
s/(36m3

b) as z increases from 0 to 1. The NLO term α3
sdNLO(z) increases from −∞ as

z → 0 to a broad maximum at an intermediate value of z, and then decreases to −∞ as

z → 1. For µR = µF = 2mb, its maximum is 2.9 α3
s/(36m3

b) at z = 0.45. The NLO term is

negative near both endpoints, but it cannot be compared to the LO term in these regions,

because the dNLO(z) is actually a distribution in z with delta-function contributions at
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Figure 3. The coefficients of 〈O1(1S0)〉ηQ/(36m3
b) in the fragmentation function for g → ηb at LO

and NLO. The curves are α2
sdLO(36m3

b) (dotted line) and (α2
sdLO + α3

sdNLO)(36m3
b) (solid line) for

the scale choices µR = µF = 2mb. The bands are obtained by varying the renormalization scale µR
by a factor of 2.

the endpoints z = 0 and z = 1. In the integral of the product of dNLO(z) and a smooth

function of z, the endpoint contribution cancels a divergence in the integral up to the

endpoint, so that the integral over the endpoint region is well behaved. The NLO term

can be compared to the LO term in the intermediate region of z, and it is larger than the

LO term in this region. At z = 0.5, the NLO fragmentation function is larger than the LO

fragmentation function by a factor of 2.7. The total fragmentation probability obtained

by integrating the NLO fragmentation function over z from 0 to 1 is larger than the LO

fragmentation probability by a factor 1.89 for the choice of scales µR = µF = 2mb. The

mean value 〈z〉 of the longitudinal momentum fraction is 2/3 at LO, and it decreases to

0.54 at NLO.

The sensitivity of the LO and NLO fragmentation functions to the renormalization

scale µR is illustrated in figure 3. The bands are obtained by varying µR up or down by

a factor of 2 around the central value 2mb (with µF = 2mb). The NLO band in figure 3

is significantly wider than the LO band except near the endpoint at z = 1. One might

have expected the sensitivity to µR to be decreased by adding NLO corrections, but this

is not the case simply because the NLO term in the fragmentation function is larger than

the LO term in the central region of z. The ratio of the fragmentation functions at NLO

and LO is less sensitive to the renormalization scale. At z = 0.5, the ratio changes from

2.79 to 2.71 to 2.67 as µR varies from mb to 2mb to 4mb. The ratio of the fragmentation
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Figure 4. The coefficients of 〈O1(1S0)〉ηQ/(36m3
b) in the fragmentation function for g → ηb at LO

and NLO. The curves are α2
sdLO(36m3

b) (dotted line) and (α2
sdLO + α3

sdNLO)(36m3
b) (solid line) for

the scale choices µR = µF = 2mb. The band is obtained by varying the factorization scale µF by a

factor of 2.

probabilities at NLO and LO changes from 1.75 to 1.89 to 1.99. The mean momentum

fraction 〈z〉 increases from 0.49 to 0.54 to 0.57.

The sensitivity of the NLO fragmentation function to the factorization scale µF is

illustrated in figure 4. The band is obtained by varying µF up or down by a factor of 2

around the central value 2mb (with µR = 2mb). In the central region of z, the width of

the band from varying µF is much narrower than that from varying µR in figure 3, as the

function multiplying log(4m2/µ2
F ) is vanishing at the point z ≈ 0.6. The width increases

near the endpoints of z at 0 and 1, but the fragmentation function also has canceling

endpoint contributions at z = 0 and z = 1. Therefore the increased sensitivity to µF near

the endpoints will not result in a large increase in sensitivity for the integral of the product

of the fragmentation function and a smooth function of z. The ratio of the fragmentation

probabilities at NLO and LO is more sensitive to µF than to µR, ranging from 2.58 to 1.89 to

1.21 as µF varies from mb to 2mb to 4mb. Once fragmentation probabilities are convoluted

with parton cross sections, the µF dependence originating from the QCD correction to the

fragmentation functions is expected to be canceled against the µF dependence originating

from the QCD correction to the parton cross sections at fixed NLO accuracy.

7 Summary

In this paper, we have presented the NLO calculation of the fragmentation function for a

gluon into a spin-singlet S-wave quarkonium state ηQ at leading order in v. This calcu-

– 26 –



J
H
E
P
0
4
(
2
0
1
5
)
1
2
1

lation represents the first NLO result for a fragmentation function into quarkonium that

is a nontrivial function of z at LO. We have found that the real NLO correction can be

organized in an efficient way by constructing a set of subtraction terms matching the poles

in each phase-space boundary leading to singularities. This strategy allows for a trans-

parent organization of both UV and IR poles and their cancellation among the different

components of the calculation (real correction, virtual corrections, and counterterms). It

also paves the way to automation of the NLO calculation of the fragmentation functions

in other NRQCD channels.

We found that the NLO QCD corrections have a dramatic effect on the fragmentation

function in the MS renormalization and factorization schemes. The effect on the shape of

the fragmentation function is particularly dramatic. Instead of increasing monotonically

with z as at LO, the NLO fragmentation function has a broad maximum in the central

region of z. In this region, it is about a factor of 3 larger than at LO. As a consequence, the

NLO fragmentation function displays strong sensitivity to the renormalization scale. These

results suggest that QCD corrections to fragmentation functions could have a significant

impact on the production of quarkonium states at large transverse momentum.
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A Two-parton phase space integrals

The real NLO corrections to the fragmentation function involve integrals over the phase

space for two massless partons whose longitudinal momenta are constrained to add up to

K.n− 2p.n. The dimensionally regularized phase-space measure is

dφreal(p, q1, q2) =
dD−1q1

(2π)D−12q1,0

dD−1q2

(2π)D−12q2,0
2πδ(K.n− (2p+ q1 + q2).n). (A.1)

Explicit parametrizations of this phase-space measure are required in sections 3.3 and

section 3.5 in order to calculate the poles in ε in the integrals of the subtraction terms for

the real NLO corrections.

The phase-space measure for a single massless parton of momentum q can be ex-

pressed as
dD−1q

(2π)D−12q0
=

1

2(2π)3−2ε
q1−2ε

0 dq0 | sin θ|1−2εdθ dΩ⊥, (A.2)

where θ is the polar angle, and dΩ⊥ is the measure for integration over angles in the

transverse plane. The total transverse solid angle is Ω⊥ = 2π1−ε/Γ(1 − ε). The light-like

4-vector n defines a spatial direction that can be used as the polar axis that determines the
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polar angle θ. However it is sometimes convenient to choose the polar axis in the spatial

direction of a different light-like 4-vector k. A convenient alternative set of variables from

q0 and θ is the longitudinal momentum q.n and a variable λ defined by

λ = 2k.q/k.n. (A.3)

The phase-space measure can be expressed as

dD−1q

(2π)D−12q0
=

1

4(2π)3−2ε
(q.n)−εd(q.n)λ−εdλ dΩ⊥. (A.4)

This phase-space measure is independent of the overall scales of n and k. In a Lorentz

frame where the spatial parts of n and k are back-to-back, q.n = q0n0(1 − cos θ) and

λ = q0(1 + cos θ)/n0, so eq. (A.4) reduces to the measure in eq. (A.2).

A convenient parameterization of the two-parton phase-space measure in eq. (A.1) can

be obtained by introducing two light-like 4-vectors that define the polar axes of q1 and q2:

a 4-vector k1 that may depend on p and a 4-vector k2 that may depend on p and q1. We

also introduce a momentum fraction u defined by

u =
q2.n

(q1 + q2).n
. (A.5)

After integrating over the longitudinal component and transverse angles of q1, the phase-

space measure reduces to

dφreal(p, q1, q2) =
2−2ε[(1− z)K.n]1−2ε

(4π)4−3εΓ(1− ε)
[u(1− u)]−εdu λ−ε1 dλ1 λ

−ε
2 dλ2 dΩ2⊥. (A.6)

Phase space for UV and mixed poles. To obtain the phase-space parameterization

used to integrate the UV and mixed poles in section 3.3, we choose the light-like vectors

k1 and k2 that specify the polar axes for q1 and q2 to be

kµ1 = 2pµ − m2

p.n
nµ, kµ2 = (2p+ q1)µ − (2p+ q1)2

2(2p+ q).n
nµ. (A.7)

The variables λ1 and λ2 defined by eq. (A.3) are

λ1 =
1

zK.n

(
s1 −

1− u+ uz

z
4m2

)
, (A.8)

λ2 =
1

(1− u+ uz)K.n

(
s− 1

1− u+ uz
s1

)
, (A.9)

where s1 = (2p+ q1)2 and s = (2p+ q1 + q2)2. We then change variables in eq. (A.6) from

u, λ1, and λ2 to y1 = 1− u+ uz, s1, and s. The phase-space measure reduces to

dφreal(p, q1, q2) =
2−2εz−1+ε

(4π)4−3εΓ(1− ε)K.n
y−1+ε

1 (1− y1)−ε(y1 − z)−εdy1 (s− s1/y1)−εds

×[s1 − 4m2/(z/y1)]−εds1 dΩ2⊥. (A.10)

After multiplying by the Collins-Soper prefactor in eq. (2.2), we obtain the measure given

by eqs. (3.7) and (3.8) with i = 1.
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Phase space for IR poles. To obtain the phase-space parameterization used to inte-

grate the IR poles in section 3.5, we first introduce additional integrals over a light-like

4-vector q̃ that has the same longitudinal component as q1 +q2 and over the invariant mass

(q1 +q2)2. We do this by multiplying the phase-space measure in eq. (A.1) by 1 in the form

1 =

∫ ∞
0

dt

∫
dD q̃ δD(q̃ − (q1 + q2) + [t/2(q1 + q2).n]n) δ(t− (q1 + q2)2). (A.11)

After expressing the phase-space measure for q1 in the manifestly covariant form

dDq1δ(q
2
1)θ(q1.n)/(2π)D−1, the D-dimensional delta function in eq. (A.11) can be used

to integrate over q1. The phase-space measure in eq. (A.1) can then be reduced to

dφreal(p, q1, q2) =
dD−1q̃

(2π)D−12q̃0

dD−1q2

(2π)D−12q2,0
2πδ(K.n− (2p+ q̃).n)

q̃.n

(q̃ − q2).n
. (A.12)

The last factor comes from integrating δ(q2
1) over t and is equal to 1/(1 − u), where u =

q2.n/q̃.n. We choose the light-like vectors k̃ and k2 that specify the polar axes for q̃ and

q2 to be

k̃µ = 2pµ − m2

p.n
nµ, kµ2 = q̃µ. (A.13)

The variables λ̃ and λ2 defined by eq. (A.3) are

λ̃ =
1

zK.n

(
s̃− 1

z
4m2

)
, (A.14)

λ2 =
(1− u)t

(1− z)K.n
, (A.15)

where s̃ = (2p + q̃)2 and t = 2q̃.q2/(1 − u). We insert the expressions analogous to

eq. (A.6) for the phase-space measures of q̃ and q2 into eq. (A.12). After integrating over

the longitudinal component and transverse angles of q̃, the measure becomes

dφreal(p, q1, q2) =
2−2ε[(1− z)K.n]1−2ε

(4π)4−3εΓ(1− ε)
u−ε

1− u
du λ̃−εdλ̃ λ−ε2 dλ2 dΩ2⊥. (A.16)

We then change variables from λ̃ and λ2 to s̃ and t. The phase-space measure reduces to

dφreal(p, q1, q2) =
2−2εz−1+ε(1− z)−ε

(4π)4−3εΓ(1− ε)K.n
[u(1− u)]−εdu (s̃− 4m2/z)−εds̃ t−εdt dΩ2⊥.(A.17)

After multiplying by the Collins-Soper prefactor in eq. (2.2) and making the change of

variables λ = t/4m2, we obtain the measure given by eqs. (3.26) and (3.27).

B Virtual loop integrals with an eikonal propagator

The virtual NLO corrections to the fragmentation function for g → QQ̄ require the evalua-

tion of loop integrals whose integrand is the product of Feynman propagators and a single

eikonal propagator. These integrals have UV and IR divergences, which in dimensional

regularization appear as poles in ε = (4 − D)/2. In this appendix, we present the pole

terms in these integrals.
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B.1 Reduction to Feynman parameter integrals

The single eikonal propagator can be expressed in the form 1/[(l+P ).n+ iε], where l is the

loop momentum and the 4-vector P is a linear combination of p and q. After combining the

j Feynman denominators using Feynman parameters, the loop integral can be expressed

in the form ∫
dDl

(2π)D
1

[(l −Q)2 −∆ + iε]j
1

(l + P ).n+ iε
, (B.1)

where the 4-vector Q is a linear combination of p and q whose coefficients depend on Feyn-

man parameters, and the scalar ∆ is a linear combination of m2 and p.q whose coefficients

depend on Feynman parameters. The eikonal denominator can be combined with the other

denominator by introducing an additional integral over a variable λ:∫
dDl

(2π)D
(2j)

∫ ∞
0

dλ
1

[(l −Q)2 + 2λ(l + P ).n−∆ + iε]j+1
. (B.2)

After making the shift l→ l+Q− λn in the loop momentum and then evaluating the

integral over λ, the result is

1

(Q+ P ).n+ iε

∫
dDl

(2π)D
1

[l2 −∆ + iε]j
. (B.3)

The eikonal denominator in eq. (B.1) has been replaced by one that is independent of the

loop momentum l but depends on the Feynman parameters. After evaluating the integral

over the loop momentum, the result is

(−1)ji

(4π)D/2
Γ(j −D/2)

Γ(j)
(∆− iε)D/2−j 1

(Q+ P ).n+ iε
. (B.4)

It remains only to evaluate the integrals over the Feynman parameters.

If the loop integral is multiplied by (2p + q).n, it is independent of the scale of the

light-like vector n. Since it is Lorentz invariant function of p, q, and n, the resulting integral

must be (m2)D/2−j multiplied by a function of two dimensionless variables:

z =
(2p).n

(2p+ q).n
, r =

p.q

m2
. (B.5)

If j = 2, the integral over the loop momentum is UV divergent, resulting in the factor Γ(ε)

in eq. (B.4). The integrals over the Feynman parameters may also give IR divergences.

These divergences can be isolated into terms that can be evaluated analytically, giving

poles in ε. The finite terms of order ε0 can also be evaluated analytically in terms of

logarithms and dilogarithms of functions of z and r. For some of the loop integrals, the

evaluation of the integrals using a computer algebra program, such as Mathematica, gives

dilogarithms with many different arguments. The number of different arguments can be

reduced by using functional identities for dilogarithms. However, for many of the integrals,

the expressions for the finite terms are still sufficiently complicated that we do not present

them here.
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B.2 Integrals with two Feynman propagators

There are 12 independent integrals with two Feynman propagators and an eikonal prop-

agator. These integrals have a UV divergence that yields a single pole in ε. They may

also have an IR divergence that yields a second pole in ε. If there is a double pole in ε,

the nature of the subleading single pole is ambiguous. It is convenient to express these

integrals as the product of a Laurent expansion in ε and an overall factor of

I2 = i
(4π)εΓ(1 + ε)

16π2(2p+ q).n
(4m2)−ε. (B.6)

It is convenient to introduce a compact notation for the Feynman propagators. The prop-

agators for momentum k and masses 0 and m are denoted by

D(k) =
1

k2 + iε
, (B.7a)

D(k,m) =
1

k2 −m2 + iε
. (B.7b)

The pole terms in the 10 nonzero integrals are

∫
dDl

(2π)D
D(l)D(l − 2p)

l.n+ iε
=
I2

z

[
− 1

εUVεIR
+

1

ε
(−iπ) +O(ε0)

]
, (B.8a)∫

dDl

(2π)D
D(l)D(l − 2p)

(l + q).n+ iε
=
I2

z

[
− 1

εUV
log(1− z) +O(ε0)

]
, (B.8b)∫

dDl

(2π)D
D(l)D(l − p,m)

l.n+ iε
=
I2

z

[
− 1

εUVεIR
− 2

ε
log 2 +O(ε0)

]
, (B.8c)∫

dDl

(2π)D
D(l)D(l − p,m)

(2p− l).n+ iε
=
I2

z

[
2

εUV
log 2 +O(ε0)

]
, (B.8d)∫

dDl

(2π)D
D(l)D(l − p,m)

(l + q).n+ iε
=
I2

z

[
2

εUV
log

2− z
2(1− z)

+O(ε0)

]
, (B.8e)∫

dDl

(2π)D
D(l)D(l − p,m)

(2p+ q − l).n+ iε
=
I2

z

[
− 2

εUV
log

2− z
2

+O(ε0)

]
, (B.8f)∫

dDl

(2π)D
D(l)D(l − 2p− q)

l.n+ iε
= I2

[
− 1

εUVεIR
+

1

ε
[log(1 + r)− iπ] +O(ε0)

]
, (B.8g)∫

dDl

(2π)D
D(l)D(l − p− q,m)

l.n+ iε
=

I2

2− z

[
− 2

εUVεIR
+

2

ε

(
log

r

2
− iπ

)
+O(ε0)

]
,(B.8h)∫

dDl

(2π)D
D(l)D(l − p− q,m)

(2p+ q − l).n+ iε
=

I2

2− z

[
− 2

εUV
log

z

2
+O(ε0)

]
, (B.8i)∫

dDl

(2π)D
D(l,m)D(l − q,m)

(l + p).n+ iε
=

I2

1− z

[
1

εUV
log

2− z
z

+O(ε0)

]
. (B.8j)

There are also two integrals that vanish with dimensional regularization, because the loop

integral in eq. (B.3) has no scale. The vanishing of these integrals can be interpreted as
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due to cancellations between poles in ε that are of UV and IR origin:∫
dDl

(2π)D
D(l)D(l − q)
l.n+ iε

=
I2

1− z

[
−
(

1

εUVεIR
− 1

ε2IR

)]
, (B.9a)∫

dDl

(2π)D
D(l)D(l − q)

(l + 2p).n+ iε
=

I2

1− z

[
−
(

1

εUV
− 1

εIR

)
log z

]
. (B.9b)

B.3 Integrals with three Feynman propagators

There are 8 independent integrals with three Feynman propagators and an eikonal propa-

gator. These integral have no UV divergences. The IR divergences yield double and single

poles in ε. It is convenient to express these integrals as the product of a Laurent expansion

in ε and an overall factor of

I3 = i
(4π)εΓ(1 + ε)

16π2(2p+ q).n
(4m2)−1−ε. (B.10)

The pole terms in the 8 independent integrals are∫
dDl

(2π)D
D(l)D(l − p,m)D(l − p− q,m)

l.n+ iε

=
I3

zr

[
2

ε2IR
+

4

εIR

(
− log r + log

2− z
z

+ iπ

)
+O(ε0)

]
, (B.11a)∫

dDl

(2π)D
D(l)D(l − p,m)D(l − 2p− q,m)

l.n+ iε

=
I3

z(r + 1)

[
1

ε2IR
+

2

εIR
(− log(r + 1)− log z + iπ) +O(ε0)

]
, (B.11b)∫

dDl

(2π)D
D(l)D(l − 2p− q)D(l − p− q,m)

l.n+ iε

=
I3

(1− z)r + 2− z

[
2

εIR

(
− log

r + 1

r
− log(2− z)

)
+O(ε0)

]
, (B.11c)∫

dDl

(2π)D
D(l)D(l − q)D(l − 2p− q)

l.n+ iε

=
I3

(1− z)(r + 1)

[
1

ε2IR
+

1

εIR
(−2 log(r + 1)− log(1− z) + iπ) +O(ε0)

]
,

(B.11d)∫
dDl

(2π)D
D(l)D(l − p,m)D(l − p− q,m)

(2p+ q − l).n+ iε
= O(ε0), (B.11e)∫

dDl

(2π)D
D(l)D(l − q)D(l − p− q,m)

l.n+ iε

=
I3

(1− z)r

[
3

ε2IR
+

2

εIR

(
−2 log r + log

2− z
1− z

+ 2iπ

)
+O(ε0)

]
, (B.11f)∫

dDl

(2π)D
D(l)D(l − q)D(l − 2p− q)

(2p+ q − l).n+ iε

=
I3

zr − 1 + z

[
− 2

εIR
(log(r + 1) + log z) +O(ε0)

]
, (B.11g)
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∫
dDl

(2π)D
D(l)D(l − q)D(l − p− q,m)

(2p+ q − l).n+ iε

=
I3

zr

[
1

ε2IR
+

2

εIR
(− log r − log z + iπ) +O(ε0)

]
. (B.11h)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.C. Collins and D.E. Soper, Parton distribution and decay functions, Nucl. Phys. B 194

(1982) 445 [INSPIRE].

[2] G.C. Nayak, J.-W. Qiu and G.F. Sterman, Fragmentation, NRQCD and NNLO factorization

analysis in heavy quarkonium production, Phys. Rev. D 72 (2005) 114012 [hep-ph/0509021]

[INSPIRE].

[3] G.T. Bodwin et al., Quarkonium at the frontiers of high energy physics: a Snowmass white

paper, arXiv:1307.7425 [INSPIRE].

[4] G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation

and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55

(1997) 5853] [hep-ph/9407339] [INSPIRE].

[5] M. Butenschoen and B.A. Kniehl, J/ψ polarization at Tevatron and LHC:

nonrelativistic-QCD factorization at the crossroads, Phys. Rev. Lett. 108 (2012) 172002

[arXiv:1201.1872] [INSPIRE].

[6] K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang and Y.-J. Zhang, J/ψ polarization at hadron

colliders in nonrelativistic QCD, Phys. Rev. Lett. 108 (2012) 242004 [arXiv:1201.2675]

[INSPIRE].

[7] B. Gong, L.-P. Wan, J.-X. Wang and H.-F. Zhang, Polarization for prompt J/ψ and ψ(2s)

production at the Tevatron and LHC, Phys. Rev. Lett. 110 (2013) 042002 [arXiv:1205.6682]

[INSPIRE].

[8] C.-H. Chang, Y.-Q. Chen and R.J. Oakes, Comparative study of the hadronic production of

B(c) mesons, Phys. Rev. D 54 (1996) 4344 [hep-ph/9602411] [INSPIRE].

[9] Z.B. Kang, J.W. Qiu and G. Sterman, Factorization and quarkonium production, Nucl. Phys.

Proc. Suppl. 214 (2011) 39.

[10] Z.-B. Kang, J.-W. Qiu and G. Sterman, Heavy quarkonium production and polarization,

Phys. Rev. Lett. 108 (2012) 102002 [arXiv:1109.1520] [INSPIRE].

[11] S. Fleming, A.K. Leibovich, T. Mehen and I.Z. Rothstein, The systematics of quarkonium

production at the LHC and double parton fragmentation, Phys. Rev. D 86 (2012) 094012

[arXiv:1207.2578] [INSPIRE].

[12] S. Fleming, A.K. Leibovich, T. Mehen and I.Z. Rothstein, Anomalous dimensions of the

double parton fragmentation functions, Phys. Rev. D 87 (2013) 074022 [arXiv:1301.3822]

[INSPIRE].

[13] Y.-Q. Ma, J.-W. Qiu and H. Zhang, Heavy quarkonium fragmentation functions from a heavy

quark pair. I. S wave, Phys. Rev. D 89 (2014) 094029 [arXiv:1311.7078] [INSPIRE].

– 33 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(82)90021-9
http://dx.doi.org/10.1016/0550-3213(82)90021-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B194,445
http://dx.doi.org/10.1103/PhysRevD.72.114012
http://arxiv.org/abs/hep-ph/0509021
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0509021
http://arxiv.org/abs/1307.7425
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.7425
http://dx.doi.org/10.1103/PhysRevD.51.1125 10.1103/PhysRevD.55.5853
http://arxiv.org/abs/hep-ph/9407339
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9407339
http://dx.doi.org/10.1103/PhysRevLett.108.172002
http://arxiv.org/abs/1201.1872
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1872
http://dx.doi.org/10.1103/PhysRevLett.108.242004
http://arxiv.org/abs/1201.2675
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.2675
http://dx.doi.org/10.1103/PhysRevLett.110.042002
http://arxiv.org/abs/1205.6682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6682
http://dx.doi.org/10.1103/PhysRevD.54.4344
http://arxiv.org/abs/hep-ph/9602411
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9602411
http://dx.doi.org/10.1016/j.nuclphysbps.2011.03.054
http://dx.doi.org/10.1016/j.nuclphysbps.2011.03.054
http://dx.doi.org/10.1103/PhysRevLett.108.102002
http://arxiv.org/abs/1109.1520
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.1520
http://dx.doi.org/10.1103/PhysRevD.86.094012
http://arxiv.org/abs/1207.2578
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.2578
http://dx.doi.org/10.1103/PhysRevD.87.074022
http://arxiv.org/abs/1301.3822
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.3822
http://dx.doi.org/10.1103/PhysRevD.89.094029
http://arxiv.org/abs/1311.7078
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.7078


J
H
E
P
0
4
(
2
0
1
5
)
1
2
1

[14] Y.-Q. Ma, J.-W. Qiu and H. Zhang, Heavy quarkonium fragmentation functions from a heavy

quark pair. II. P wave, Phys. Rev. D 89 (2014) 094030 [arXiv:1401.0524] [INSPIRE].

[15] E. Braaten and T.C. Yuan, Gluon fragmentation into heavy quarkonium, Phys. Rev. Lett. 71

(1993) 1673 [hep-ph/9303205] [INSPIRE].

[16] E. Braaten and T.C. Yuan, Gluon fragmentation into spin triplet S wave quarkonium, Phys.

Rev. D 52 (1995) 6627 [hep-ph/9507398] [INSPIRE].

[17] E. Braaten, K.-m. Cheung and T.C. Yuan, Z0 decay into charmonium via charm quark

fragmentation, Phys. Rev. D 48 (1993) 4230 [hep-ph/9302307] [INSPIRE].

[18] E. Braaten and J. Lee, Next-to-leading order calculation of the color octet 3S(1) gluon

fragmentation function for heavy quarkonium, Nucl. Phys. B 586 (2000) 427

[hep-ph/0004228] [INSPIRE].

[19] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO

QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323]

[INSPIRE].
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