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1 Introduction

For string theory on a product R
n−1,1 × T d of a d-torus and Minkowski space, it has

been known since the early days of string theory that the d periodic coordinates xi on

the torus are supplemented by d dual periodic coordinates x̃i conjugate to the winding

numbers, and that the interactions depend on both x and x̃. The string theory has an

O(d, d;Z) T-duality symmetry acting linearly on the 2d coordinates (xi, x̃i). The O(d, d;Z)

then acts geometrically on the doubled torus T 2d with coordinates (xi, x̃i) through large

diffeomorphisms preserving the metric ds2 = 2dxidx̃i with signature (d, d). In [1], it was

shown that this extends to curved backgrounds with a T d torus fibration, with an O(d, d;Z)

T-duality symmetry provided all fields are independent of the torus coordinates. A T-

duality invariant string field theory for strings on R
n−1,1 × T d was constructed in [2].

In [3], string theory on a toroidal background was argued to lead to an effective field

theory on a doubled space, and generalisations to strings with chiral WZW interactions

were considered.
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In [4–6], it was found that T-duality allows the construction of certain non-geometric

backgrounds. In [7], T-folds were introduced as a class of non-geometric backgrounds that

include the examples of [4–6] and which look like manifolds with smooth tensor fields locally

but have T-duality transition functions. More precisely, they can be covered with patches

of the form U × T d where U is a patch of Rn and the transition functions involve diffeo-

morphisms, antisymmetric tensor gauge transformations and O(d, d;Z) T-duality transfor-

mations [7]. (Generalisations to U-folds with U-duality transitions and mirror-folds with

mirror symmetry transitions were also introduced in [7].) Conventional formulations of

string theory (e.g. using non-linear sigma-models) cannot be used for such non-geometric

backgrounds. In [7], it was shown that T-folds can be formulated in terms of a smooth dou-

bled geometry. Replacing the torus fibres T d with doubled tori so that the patches become

U ×T 2d, the T-fold transition functions lead to a construction of a smooth manifold with a

T 2d fibration, the key point being that the T-duality transitions now act geometrically on

the doubled torus fibres as large diffeomorphisms. This smooth doubled geometry allowed

a formulation of string theory on a T-fold as a constrained sigma model with the doubled

geometry as the target space [7, 8].

In [9, 10], it was found that there are yet further non-geometric backgrounds that are

not even geometric locally — i.e. they are not constructed from geometric patches. It

was proposed in [10] that many of these are backgrounds in which fields have non-trivial

dependence on dual coordinates x̃, and this was verified at special points in the moduli

space at which the background reduced to an asymmetric orbifold [10]. Such doubled

geometries were explored further in [11–13].

In [10], it was proposed that the natural framework for formulating string theory for

such non-geometric backgrounds would be in terms of a string field theory similar to that

of [2], and would lead to a theory of dynamical fields on the doubled geometry. Such a

Double Field Theory (DFT) for toroidal backgrounds R
n−1,1 × T d was constructed (to

cubic order in fields) in [14], where it was derived from closed string field theory. It gives

a theory of fields on the doubled space including gmn(x, x̃), bmn(x, x̃) and φ(x, x̃). It is

notationally convenient to supplement the coordinates yµ of Rn−1,1 with dual coordinates

ỹµ, and require all fields to be independent of ỹµ (corresponding to the absence of winding in

the non-compact dimensions). Then the space-time Rn−1,1×T d has D = n+d coordinates

xm = (yµ, xi) and there is a doubled space R2n−2,2×T 2d with coordinates XM = (xm, x̃m)

with M = 1, . . . , 2D, where the dual coordinates are x̃m = (ỹµ, x̃i). The constant metric

ηMN of signature (D,D) given by

ds2 = ηMNdXMdXN = 2dxmdx̃m

is used to raise and lower indices. The L0 − L̄0 = 0 constraint of string theory imposes

that all fields and parameters A (with matched levels N = N̄) satisfy the weak constraint

∂M∂MA ≡ ηMN∂M∂NA = 0 . (1.1)

(More generally, fields arising in string theory at levels N, N̄ would satisfy ∂M∂MA =

N − N̄ .) This theory was constructed to cubic order in the fields in [14], and is expected
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to be non-local at higher orders. In this theory, there is non-trivial dynamics in all 2D

dimensions, so that the extra dimensions are truly physical.

The full double field theory with dynamical double geometry has so far proved rather

intractable. A much simpler sub-sector of DFT is obtained by imposing the strong con-

straint that ∂M∂M = 0 when acting on all fields and their products, so that ∂M∂MA = 0

and ∂MA∂MB = 0 for any fields or gauge parameters A and B. This drastically truncates

the theory to one that can be constructed to all orders in the fields [16–18]. The (strongly

constrained) DFT is a field theory on the doubled space M with a rich symmetry structure.

In the remainder of this paper, we will address only DFT with the strong constraint. There

is now an extensive literature on the subject; see [19–21] for recent reviews of DFT with

the strong constraint and further references.

The truncation to the strongly constrained theory typically results in fields depending

only on half the coordinates, the xm say, leading to a conventional field theory on the

space parameterised by the xm. The formulation of strongly constrained DFT of [17, 18] is

background independent (in the sense that it does not depend on a background generalised

metric) and has the possibility of being formulated on more general doubled manifolds M

than the product of a torus and flat space for which it was derived. If the fields have

support only on a D-dimensional submanifold N ⊂ M , so that the fields depend only

on the coordinates xm of N and are independent of the remaining coordinates x̃m, then

the double field theory essentially recovers Siegel’s duality-covariant formulation of gravity

and supergravity theories on N [15]. This is a conventional field theory on the space-

time N , with massless fields that include a metric gmn, a b-field bmn and dilaton φ. The

symmetries of the theory include the diffeomorphisms of M and the antisymmetric tensor

gauge transformations, giving the gauge symmetry group Diff(N)⋉ Λ2
closed(N). However,

the formulation arising has a manifest T-duality symmetry. On M = R
2D, the theory has

O(D,D) symmetry, while on a product R2n×T 2d of flat space and a torus this is broken to a

group containing O(n, n)×O(d, d;Z). This duality-covariant formulation is closely related

to the formulation of gravity and supergravity theories in terms of generalised geometry,

as in [27, 28].

More generally, this picture need only be true locally: in each coordinate patch U of

the doubled space, there are preferred coordinates XM and a constant metric ηMN , and the

fields satisfy the strong constraint. The constraint implies that the fields depend on only

half the coordinates and so are fields on a D-dimensional sub-patch U ⊂ U , where U is a

subspace of U that is totally null with respect to η. In general these patches U need not fit

together to form a D-dimensional submanifold, but instead can constitute patches of a non-

geometric space such as a T-fold [7]. In each patch, there is a conventional (super)gravity

field theory, formulated in a duality symmetric way, but in the non-geometric case they need

not fit together to give (super)gravity field theory on a conventional space-time. Finding

a formulation of the theory in such backgrounds was one of the motivations for seeking a

double field theory [10, 14].

The background independent formulation of [17, 18] gives a DFT on the patch U for

arbitrary fields gij(x), bij(x), φ(x) on U . An important issue is what transition functions

are used to glue these patches together, and what kinds of doubled space M can arise. If
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the constant matrix η were to be viewed as a metric tensor on M , then the presence of a

flat metric on M would be highly constraining, so that M would be locally flat. However,

it is natural to use the symmetries of DFT in the transition functions — as usual, patching

with symmetries of the theory should lead to well-defined physics. If the matrix η is

not a tensor on M but is a ‘generalised tensor’ transforming with the generalised Lie

derivative arising in the DFT gauge transformations, then it can be extended to the whole

manifold, apparently without further constraining M . This is because the constant η is

invariant under the DFT symmetries [17, 18] and so patches smoothly using DFT transition

functions. To explore this idea and its consequences further, it is necessary to understand

the geometry of generalised tensors better. The constraint ηMN∂M∂NA = 0 would usually

require that η be a tensor, so there arises the issue as to whether the constraint can make

sense globally if η is a generalised tensor rather than a tensor. A natural generalisation is

to consider versions of DFT in which η is replaced by a general (non-constant) metric of

signature (D,D), and this has been explored in [26]. Here we will restrict ourselves to the

case of constant η.

If the doubled space involves a doubled torus or a bundle with doubled torus fibres,

then contact can be made with string theory on a torus or T-fold, and the significance

of the doubled geometry is that explained in [7]. However, the background independent

formulation of [17, 18] suggests DFT might be written on more general doubled spaces

M , constructed from local patches of the kind considered above. This leads to interesting

questions as to the geometry and significance of M . For non-toroidal doubled spaces M ,

there is the question of the meaning (if any) of the extra coordinates x̃. For a general

space-time N , there need not be any winding modes, or the number of winding modes

(given by the number of topologically distinct non-contractible loops) might be different

from the number of momenta, so that for general spaces there will not be expected to be

any T-duality and the x̃ cannot be associated with winding modes.

To better understand the geometry of DFT, a number of attempts have been made to

explore the relationship between the gauge symmetries of DFT and the diffeomorphisms

of the doubled space. Despite a number of formal similarities (e.g. one acts through Lie

derivatives, the other through generalised Lie derivatives) the gauge group and the diffeo-

morphism group are not isomorphic. The DFT gauge transformations of [17, 18] act on

fields at a point X ∈ M , taking fields at X to transformed fields at X, A(X) → A′(X).

Just as diffeomorphisms can be written in either an active or a passive form, it is natural

to ask whether the DFT transformations could be written in a form in which the coordi-

nates X transform. This could be helpful in understanding finite gauge transformations,

analysing the patching together of different regions of the doubled space, and in addressing

the question of whether duality transformations can be understood as arising from gauge

transformations.

Expressions for gauge transformations with finite parameters in which fields transform

at a point X, A(X) → A′(X), are obtained by exponentiating the infinitesimal transfor-

mations of [17, 18]. An alternative form for finite gauge transformations that acts on the

coordinates has been proposed recently in [22], and then related forms of this were devel-

oped in [23] and [24]. The proposal of [22] gives transformations with a non-associative
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composition rule and it was suggested in [21] that this leads to a kind of non-associative

geometry. This appears to be in tension with the formulation of double geometry of [7]

in which the doubled space is a conventional manifold, and with the fact that the DFT

is locally equivalent to a (super)gravity theory that has gauge transformations that com-

pose associatively. The use of these transformations as transition functions was considered

in [21, 25].

In [23] it was suggested that physical points should correspond not to points in the

doubled space M but to orbits in M under transformations referred to as ‘coordinate

gauge symmetries’. Forms for finite gauge transformations with XM transforming were

proposed and shown to give the correct results modulo certain DFT gauge symmetries. In

the formulation of [24], the doubled space is a conventional manifold, as in [7], and a key

role was played by certain local O(D,D) transformations. In [24], forms for finite gauge

transformations with XM transforming were proposed and shown to give the correct results

modulo the local O(D,D) transformations. However, as [23] and [24] give forms of finite

gauge transformations (with X transforming) only up to certain DFT gauge symmetries

or local O(D,D) transformations, they lose track of an important part of the finite gauge

transformations. As will be seen, they only encode the diffeomorphisms xm → xm +

ξm(x) + . . . of the subspace with coordinates x, and lose almost all information about the

anti-symmetric tensor gauge transformations.

These three proposals attempt to represent finite DFT gauge transformations in terms

of transformations that act as coordinate transformations on the coordinates X → X ′(X).

This cannot be an isomorphism as the DFT gauge group and the diffeomorphisms of the

doubled space are different groups. In [22], it was proposed to resolve this by introducing

a new star product composition of coordinate transformations of M , which turns out to

be non-associative. In [24], it was argued instead that the finite gauge transformations

used there provide a homomorphism up to local O(D,D) transformations. This leads to

three elements g1, g2, g3 of the group of finite DFT gauge transformations with g1g2g3 = 1

being represented not by the identity transformation but by a ‘cocycle’ that is a local

O(D,D) transformation. This was then argued to reveal an underlying gerbe structure

of the doubled manifold [24] when such gauge transformations were used as transition

functions.

In this paper, a new explicit and simple form for finite gauge transformations in DFT is

derived from the infinitesimal transformations of [18]. Under these finite transformations,

the coordinates transform and the issues arising with other approaches that were out-

lined above are avoided. The transformations are consistent with M being a conventional

manifold, they are associative and they agree with the forms obtained by exponentiat-

ing infinitesimal transformations exactly, not just modulo coordinate gauge symmetries or

local O(D,D) transformations. They elucidate the relationship with generalised geome-

try [29–32] and reveal an explicit gerbe structure. Here the main focus will be on DFT

in a local patch U with constant metric η, and the transition functions and global struc-

ture will be addressed in a separate paper. In each patch, the strong constraint implies

the fields depend on only half the coordinates, denoted xm, and are independent of the

remaining coordinates, denoted x̃m. In this way, a conventional field theory depending on
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the coordinates xm is recovered, as was to be expected. The coordinates xm transform un-

der the DFT gauge transformations, but the x̃m do not. Then locally a conventional field

theory of a metric and b-field is recovered, expressed in terms of generalised geometry. The

generalised tensors arise as sections of bundles arising naturally in generalised geometry

and are not tensors on the doubled space. However, the generalised geometry only arises

locally and globally a more general picture can emerge. In general, the transition functions

include T-dualities and give rise to a T-fold geometry.

The plan of the paper is as follows. In section 2, strongly constrained double field

theory and its infinitesimal gauge transformations are reviewed. In section 3, the algebraic

structure underlying the gauge symmetries of DFT are analysed with particular attention to

the reducibility of the symmetry. In section 4, the proposals for finite gauge transformations

of DFT of [22, 23] and [24] are reviewed, while section 5 gives a critique of these proposals.

In section 6, explicit forms for the finite gauge transformations of DFT are derived and

the geometry of generalised tensors are elucidated. In section 7, the implications of these

finite gauge transformations for the geometry of DFT are discussed.

2 Double field theory

Double field theory is formulated in a doubled space-time M with coordinates XM where

M,N = 1, . . . , 2D and a constant O(D,D) invariant ‘metric’ ηMN , which is used to raise

and lower indices. The indices M,N, . . . transform covariantly under O(D,D), so that

e.g. V M is an O(D,D) vector, while V MWM is O(D,D) invariant. If the fields and pa-

rameters of gauge transformations are required to satisfy the ‘strong constraint’ (so that

∂M∂MA = 0 and ∂MA∂MB = 0 for any fields or parameters A and B), then the theory

is locally equivalent to the standard theory of metric, b-field and dilaton. The strong con-

straint implies [17] that locally all fields depend on only D of the coordinates, and these

parameterise a subspace of a coordinate patch that is null with respect to η.

The theory can be formulated [18] in terms of a generalised metric HMN which encodes

the metric gmn and 2-form gauge field bmn, together with a scalar density d. The theory

has an infinitesimal symmetry

δξHMN = ξP∂PHMN +
(
∂MξP − ∂P ξM

)
HPN +

(
∂NξP − ∂P ξN

)
HMP ,

δξd = ξM∂Md−
1

2
∂MξM

(2.1)

with an O(D,D) vector parameter ξM (X). The strong constraint on all fields and param-

eters is used in proving gauge invariance of the action of [18].

2.1 Generalised Lie derivatives

The gauge transformation of the generalised metric can be written in terms of a generalised

Lie derivative [18]:

δξHMN = L̂ξHMN .

A generalised tensor TM...N
P ...Q is defined as transforming under the DFT gauge trans-

formations via the generalised Lie derivative, δξT
M...N

P ...Q = L̂ξT
M...N

P ...Q, so that the

– 6 –



J
H
E
P
0
4
(
2
0
1
5
)
1
0
9

generalised metric is a generalised tensor. The generalised Lie derivative of a generalised

tensor AM with one lower index is

L̂ξAM = ξP∂PAM + (∂MξP − ∂P ξM )AP , (2.2)

while for a generalised tensor AM with an upper index it is

L̂ξA
M = ξP∂PA

M + (∂MξP − ∂P ξ
M )AP . (2.3)

This then extends to arbitrary tensors using the Lebnitz rule and linearity [18]. The

generalised Lie derivatives of the O(D,D) metric ηMN and the Kronecker tensor δM
N

vanish:

L̂ξηMN = 0, L̂ξδM
N = 0 . (2.4)

The generalised Lie derivative L̂ξ of any generalised tensor vanishes when ξM = ∂Mχ,

so that for any generalised tensor T satisfying the strong constraint, we have

L̂ξ+η−1∂χT = L̂ξT . (2.5)

We shall refer to transformations with parameter of the form ξMred = ∂Mχ with L̂ξred = 0

as redundant transformations.

The commutator of two generalised Lie derivatives is

[
L̂ξ1 , L̂ξ2

]
= L̂[ξ1,ξ2]C

, (2.6)

with the C-bracket [15, 16]

[
ξ1, ξ2

]M
C

≡ ξN1 ∂NξM2 −
1

2
ξ1N∂MξN2 − (1 ↔ 2) . (2.7)

This is an O(D,D) covariant form of the Courant bracket [16]. Then the gauge algebra is

[
δξ1 , δξ2

]
= δ [ξ1,ξ2]c . (2.8)

The C-bracket does not satisfy the Jacobi identity [16]:

[
ξ1,

[
ξ2, ξ3

]
C

]
C
+ cyclic = J(ξ1, ξ2, ξ3) (2.9)

where the Jacobiator is JM = ∂MN , and N is the Nijenhuis tensor defined by

N (ξ1, ξ2, ξ3) =
1

6

(〈[
ξ1, ξ2

]
C
, ξ3

〉
+ cyclic

)
. (2.10)

As JM = ∂MN parameterises a redundant gauge transformation, it follows that

L̂JA = 0

for any tensor A satisfying the strong constraint. Then the generalised Lie derivatives

satisfy the Jacobi identity

[[
L̂ξ1 , L̂ξ2

]
, L̂ξ3

]
+ cyclic = 0 (2.11)
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which is essential for the gauge transformations given in terms of the generalised Lie deriva-

tive to be a symmetry [16].

The C-bracket can be written as

[
ξ1, ξ2

]M
C

=
[
ξ1, ξ2

]
M + λM

12 , λM
12 ≡ −

1

2
ξ1N∂MξN2 − (1 ↔ 2) , (2.12)

where
[
ξ1, ξ2

]
is the ordinary Lie bracket on the doubled space. This was used in [24] to

write the algebra (2.6) as [
L̂ξ1 , L̂ξ2

]
= L̂[ξ1,ξ2] +∆12 (2.13)

where

∆12 = L̂λ12
. (2.14)

In [24], it was emphasised that the gauge transformation L̂λ12
involves no translation term

when acting on tensors T satisfying the strong constraint as λM∂MT = 0, and can be

viewed as a local O(D,D) transformation. Such ‘∆-transformations’ played a key role in

the construction of [24], and will be discussed further in later sections.

2.2 Solving the strong constraint

It was shown in [17] that the strong constraint implies that, at least locally, all fields are

restricted to a D-dimensional null subspace. Consider then a patch U of M , which is

diffeomorphic to a patch of R2D with coordinates XM and constant metric η. Then the

strong constraint implies that the DFT fields only depend on the coordinates of a totally

null subspace U ⊂ U [17, 21]. Let the coordinates of U be xm and the remaining coordinates

be x̃m, so that

XM =

(
xm

x̃m

)
, ∂M =

(
∂m
∂̃m

)
(2.15)

and the O(D,D) invariant metric is

ηMN =

(
0 1

1 0

)
. (2.16)

In this coordinate basis, a generalised vector then decomposes as

ξM =

(
ξm

ξ̃m

)
, (2.17)

while the generalised metric takes the form

HMN =


gmn − bmkg

klbln bmkg
kn

−gmkbkn gmn


 (2.18)

in terms of the metric gmn and antisymmetric tensor gauge field bmn.

The strong constraint is solved in the patch U by having all fields and parameters

independent of x̃m so that

∂̃m = 0 (2.19)

– 8 –
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on all fields. Then the fields and parameters depend only on the coordinates xm, param-

eterising the D-dimensional patch U ⊂ U , so can be regarded as fields on the totally null

subspace U . It was shown in [18] that the transformation (2.5) then becomes

δξgij = Lξgij

δξbij = Lξbij + Lξ̃bij + ∂iξ̃j − ∂j ξ̃i
(2.20)

so that the ξm(x) are the parameters of diffeomorphisms acting through the ordinary Lie

derivative Lξ and ξ̃m(x) are the parameters of antisymmetric tensor gauge transformations.

Note that the coordinates xm on which the fields depend need not be the physical space-

time coordinates. A choice of polarisation splits the 2D coordinates XM into D space-time

coordinates and D dual winding coordinates [7]. This choice of splitting changes under T-

duality and need not correspond to the splitting into the coordinates x on which the fields

depend, and the remaining coordinates x̃. However, it was shown in [17] that one can

always choose a polarisation or duality frame in which, for a given patch, the coordinates

xm are the coordinates for a patch of space-time and the x̃m are the corresponding winding

coordinates.

3 Reducibility and the symmetry group

In this section, we analyse the algebraic structure underlying the symmetries of DFT

further, following the approach of [16]. The parameters ξM (X) can be written formally

as ξA where A is a composite index representing the discrete index M and the continuous

variables X, with summation over A representing summation over M and integration over

the coordinates X. The C-bracket defines constants fAB
C by

(
[ξ1, ξ2]C

)A
= −2fBC

AξB1 ξ
C
2 . (3.1)

These can then be used as structure constants for a closed algebra K with formal genera-

tors TA

[TA, TB] = fAB
CTC . (3.2)

This is not a Lie algebra, as there is a non-trivial Jacobiator

[[TA, TB], TC ] + cyclic permutations = gABC
DTD (3.3)

given by constants gABC
D = −3f[AB

EfC]E
D.

The redundant transformations with parameters ξM = ∂Mχ form an invariant subal-

gebra. That is, we can choose a basis of generators TA = {ta, Zα} where Zα generate the

redundant transformations, and the ta are a basis for the remaining generators. The Zα

generate an invariant subalgebra Z so that the algebra is of the form

[TA, Zα] = fAα
βZβ , [ta, tb] = fab

ctc + fab
γZγ . (3.4)

Moreover, the Jacobiator is in Z:

[[TA, TB], TC ] + cyclic permutations = gABC
αZα . (3.5)

– 9 –
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The quotient K/Z defines a Lie algebra h with structure constants fab
c, as the fab

c satisfy

the Jacobi identities. It will be useful to make a corresponding split of the parameters,

so that

ξATA = ρata + ζαZα . (3.6)

Suppose one were to attempt to define a linear representation of K in which TA is rep-

resented by a linear transformation L(TA), with the commutators of linear transformations

satisfying

[L(TA), L(TB)] = fAB
CL(TC) . (3.7)

This will fail in general as commutators of linear transformations satisfy the Jacobi iden-

tity while the structure constants fAB
C do not. However, such a representation can be

consistently defined if the generators Zα are represented trivially, L(Zα) = 0, so that it is

a representation of the quotient h = K/Z. Then we require L to satisfy

L(ξATA) = ρaL(ta) (3.8)

and

[L(ta), L(tb)] = fab
cL(tc) (3.9)

so that the L provide a representation of the lie algebra h. For finite parameters, expo-

nentiating then gives finite transformations

h(ξ) ≡ expL(ξATA) = exp ρaL(ta) (3.10)

which are elements of a Lie group H that has Lie algebra h. The generalised Lie derivatives

provide just such a representation acting on generalised tensors, with ξAL(TA) = L̂ξ. The

finite transformations given by exponentiation gives the symmetry group H of double field

theory (with the strong constraint).

The group of gauge transformations then has the composition

h(ξ1)h(ξ2) = h(ξ12) (3.11)

where for infinitesimal parameters

ξ12 = ξ1 + ξ2 −
1

2
[ξ1, ξ2]C + . . . (3.12)

As for each ξ = (ρ, ζ), only the ρ part acts, we can write h(ξ) = h(ρ) and find

h(ρ1)h(ρ2) = h(ρ12) (3.13)

with the Lie group multiplication giving ρ12 via the Baker-Campbell-Hausdorff formula:

ρa12 = ρa1 + ρa2 −
1

2
fbc

aρb1ρ
c
2 + . . . (3.14)
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4 Review of proposals for finite transformations

For diffeomorphisms of a manifold with coordinates xm, a tensor field T transforms via the

standard Lie derivative with respect to a vector field vm(x):

δT = LvT . (4.1)

This generates a finite transformation via exponentiation:

T ′(x) = eLvT (x) . (4.2)

A useful form of the transformation can be given by rewriting in terms of a change of

coordinates

x → x′(x), x′ = e−vm∂mx . (4.3)

For example, for a covector Tm, the transformation becomes

T ′
m(x′) = Tn(x)

∂xn

∂x′m
. (4.4)

Similarly, for the gauge transformations of DFT, a finite transformation is given by

exponentiating the generalised Lie derivative. For example, for a generalised tensor TM ,

T ′
M (X) = eL̂ξ TM (X) , (4.5)

where all fields and parameters depend on X and satisfy the strong constraint. This

exponentiation has been studied in [22–24] where explicit expressions for the finite trans-

formations have been rewritten in various forms using the strong constraint.

In [22], the question was raised as to whether there was a useful way of rewriting this

in terms of a transformation of the doubled coordinates XM , X → X ′ = f(X). In [22],

the following transformation for an O(D,D) vector TM was proposed:

T ′
M (X ′) = FM

NTN (X) , (4.6)

where the matrix F is defined by

FM
N ≡

1

2

(
∂XP

∂X ′M

∂X ′
P

∂XN
+

∂X ′
M

∂XP

∂XN

∂X ′P

)
. (4.7)

Here the indices on coordinates are raised and lowered with η. A tensor with an arbitrary

number of indices transforms ‘tensorially’, with each index rotated by the matrix F . It

was shown in [22] that F is in fact an O(D,D) matrix, so that ηMN is invariant. This is

different from a coordinate transformation on a cotangent vector field of the doubled space,

for which there would be a similar transformation with FM
N replaced by ∂XN

∂X′M ; the metric

ηMN would not in general be invariant under such coordinate transformations.

However, this proposal doesn’t quite work ifX ′ is given by the expected transformation

X ′M = e−ξK∂KXM . (4.8)
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In particular, it doesn’t reproduce the transformation (4.5), and for transformations X →

X ′ → X ′′, it doesn’t have the desired property

F(X ′′, X ′)F(X ′, X) = F(X ′′, X) . (4.9)

In [22], it was proposed that instead X ′(X) should be given by

X ′M = e−ΘK(ξ)∂KXM , ΘK(ξ) ≡ ξK +O(ξ3) , (4.10)

and ΘK(ξ) was found to O(ξ4). The results of [24] effectively determine ΘK(ξ) to all

orders. With this form of X ′, the transformations (4.6) were shown to give the same result

for T ′ as (4.5), and the composition law (4.9) was shown to hold [22].

It is important for the approach of [22] that Θ has a form given by

ΘM = ξM +
∑

i

ρi ∂
Mχi , (4.11)

with ρi and χi functions of ξ and X, so that, when acting on fields satisfying the strong

constraint,

ΘP∂P = ξP∂P (4.12)

and

L̂Θ(ξ) = L̂ξ . (4.13)

It will be convenient to denote the transformation with finite parameter ξ by k(ξ), so

that (4.6) can be written T ′ = k(ξ)T . Under composition, these would combine in the

natural way to give

k(ξ12)T = k(ξ1)
(
k(ξ2)T

)
(4.14)

which would imply [22]

ξ12 = ξ1 + ξ2 −
1

2
[ξ1, ξ2] + . . . (4.15)

with the ordinary Lie bracket. This is different from the composition law for DFT gauge

transformations (3.12) which is of similar form, but with the C-bracket instead of the Lie

bracket. In [21, 22], it was proposed that the multiplication of these transformations be

modified to a ‘star product’ k1 ⋆ k2 with

k(ξ12) = k(ξ1) ⋆ k(ξ2) (4.16)

with ξ12 now given to lowest order by

ξ12 = ξ1 + ξ2 −
1

2
[ξ1, ξ2]C + . . . (4.17)

so that it is determined by the C-bracket. It was conjectured that this could be done to all

orders, so that the gauge algebra of transformations would be consistent with that of DFT.

However, this star product is not associative

(k1 ⋆ k2) ⋆ k3 6= k1 ⋆ (k2 ⋆ k3) . (4.18)
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The violation of associativity is determined to lowest order in infinitesimal parameters by

the Jacobiator. Indeed, an explicit calculation in [21] implies

[
(k1 ⋆ k2) ⋆ k3

]
⋆
[
k1 ⋆ (k2 ⋆ k3)

]−1
= k(ξJ), ξJ ≡ −

1

6
J(ξ1, ξ2, ξ3) +O(ξ4) (4.19)

where ki = k(ξi). In [21], it was suggested that this non-associativity of the product of

transformations could have an interpretation in terms of a non-associative geometry for

doubled space-time.

The transformations k(ξ) have the property that they are non-trivial for the parameters

ξM = ∂Mχ of redundant gauge transformations, k(∂Mχ) 6= 1. The Jacobiator is of the

form J = ∂MN and defines a non-trivial transformation k(J), leading to the failure of

associativity.

In [24], a variant on this construction was proposed. The transformation (4.6)

with (4.7) was again used but now with the standard transformation for X under a diffeo-

morphism generated by ξ, given by

X ′M = e−ξK∂KXM . (4.20)

This no longer reproduced the transformation (4.5) or satisfied the composition law (4.9),

as the transformation of X is different from that of [24]. However, in [24] they showed that

this transformation agrees with (4.5) up to ∆-transformations, the local O(D,D) transfor-

mations arising in (2.13), and the composition law (4.9) is satisfied up to ∆-transformations.

This formulation requires no non-associativity, but was argued to involve a gerbe-like struc-

ture on doubled space-time.

In [23], it was pointed out that for any field T (X) satisfying the strong constraint,

T (X + ρ) = T (X) for any ρ of the form ρM = φ∂Mχ for some φ(X), χ(X). This was

referred to as a ‘coordinate gauge symmetry’ and it was proposed that physical points

should correspond to gauge orbits under the transformations

XM → XM + φ∂Mχ . (4.21)

The coordinate gauge transformations were then associated with DFT gauge transforma-

tions with parameter ρM . This gives a similar picture to [24]: the transformation (4.6)

with (4.7) with (4.20) agrees with (4.5) up to such DFT gauge transformations associated

with coordinate gauge transformations.

5 Discussion of proposals for finite transformations

5.1 The non-associative proposal

The double field theory gauge transformations h(ξ) with finite parameters ξ represent

elements of a Lie group H. In [22], the effect of any given gauge transformation on a

generalised tensor is reproduced by a transformation of the form (4.6) consisting of (i) a

transformation X → X ′(X) and (ii) a local O(D,D) transformation on each tensor index.

Here we wish to focus on the transformation X → X ′(X), which for [22] is given by (4.10).
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Then the proposal of [22] gives a map φ from the set Diff(M) of diffeomorphisms of the

doubled space, to H:

φ : Diff(M) → H (5.1)

with

φ : d(ξ) = e−ΘK(ξ)∂K → h(ξ) = eL̂ξ . (5.2)

Note that this map φ is not invertible, as there is a non-trivial kernel consisting of diffeo-

morphisms d(ξ) with parameter of the form ξM = ∂Mχ.

The diffeomorphisms Diff(M) have a standard group structure given by composition

d1 · d2, so that (d1 · d2)f = d1(d2f) for any function f(X) and d1, d2 ∈ Diff(M). The map

φ is not a homomorphism:

φ(d1 · d2) 6= φ(d1)φ(d2) . (5.3)

The approach of [21, 22] attempts to define a star product for elements of Diff(M) that

makes this a homomorphism:

φ(d1 ⋆ d2) = φ(d1)φ(d2) . (5.4)

The idea is that this should give a realisation of the DFT gauge transformations as diffeo-

morphisms of the doubled space. Note that as φ has a non-trivial kernel, this requirement

does not determine the star product completely. However, it determines it up to redun-

dant gauge transformations. The ambiguity can be largely fixed by requiring O(D,D)

covariance, which gives the star product of [22], but this choice has the drawback of giving

a non-associative multiplication. However, this construction raises a number of issues as

Diff(M) and H are different groups, and not homomorphic.

To illustrate the issues, consider two different Lie groups G,G′ of the same finite

dimension dG, with generators Ta, T
′
a in the corresponding Lie algebras, a = 1, . . . , dG. For

example, we might take G = GL(3,R) and G′ = SU(2) × SU(2) × SU(2). Then G will

contain elements of the form g = eξ
aTa and G′ will contain elements of the form g′ = eσ

aT ′

a .

One can then define a map φ : G → G′ between exponential group elements by

φ : g = exp(ξaTa) → φ(g) = exp(ξaT ′
a) (5.5)

or more generally by

φ : g = exp(ξaTa) → φ(g) = exp(f(ξ)aT ′
a) (5.6)

with f(ξ)a an invertible (and possibly non-linear) map R
dG → R

dG . This is not a homo-

morphism, but is an invertible map on the exponential group elements. One could attempt

to define a new star product on G that made it a homomorphism:

g1 ⋆ g2 = φ−1 (φ(g1) · φ(g2)) (5.7)

where g′1 · g′2 is the G′ group multiplication. This would mean trying to impose a G′

multiplication rule on elements of G. There are of course a number of problems with such

an attempt. For Lie groups, the algebraic structure of the Lie algebra determines much
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of the geometry, and it is inconsistent to impose the wrong multiplication rule on a given

geometry. Not all elements of the groups G,G′ will be of exponential form in general,

and there will be problems with extending the map φ smoothly to non-exponential group

elements. If one has a set with the multiplication rules of G′, then one is really dealing

with the Lie group G′, not G.

Consider now a similar set-up, but with G of greater dimension than G′, dG > dG′ , and

generators Ta of G and T ′
α of G′, α = 1, . . . , dG′ . For example, we might take G = GL(3,R)

and G′ = SU(2) × SU(2). We can consider a map from exponential elements of G to

exponential elements of G′ with

φ : g = exp(ξaTa) → φ(g) = exp(f(ξ)αT ′
α) (5.8)

where f(ξ)a is a (possibly non-linear) map f : RdG → R
dG′ . This would not be a homo-

morphism in general, but one again could attempt to define a new star product on G that

made it a homomorphism by requiring:

φ (g1 ⋆ g2) = φ(g1) · φ(g2) . (5.9)

As φ is no longer invertible, this does not completely determine the star product. However,

it will be imposing a product on G that is partially determined by the product in G′, and

similar objections to those above would again hold.

The construction of [21, 22] is similar to these examples, trying to impose the multi-

plication of H on the group Diff(M). The symmetries of DFT are not diffeomorphisms of

the doubled space M and have a different group structure from the diffeomorphisms. Any

attempt to realise DFT gauge transformations in terms of transformations X → X ′(X) is

likely to be problematic.

5.2 The proposal with local O(D,D)

Consider now the proposal of [24]. We again focus on the transformation of X. In [24],

the coordinate transformation X → X ′(X) = d(ξ)X where

d(ξ) = e−ξK∂K (5.10)

of the doubled space is associated with the DFT gauge transformation

h(ξ) = eL̂ξ . (5.11)

This map d(ξ) → h(ξ) cannot be a homomorphism from Diff(M) to H. This and related is-

sues are dealt with by the authors of [24] by working modulo the ∆ transformations arising

in the algebra (2.13), which they refer to as non-translating local O(D,D) transformations.

They show that the transformations resulting from d(ξ) and h(ξ) agree modulo such local

O(D,D) transformations, and that the composition rules also agree up to such transfor-

mations. Thus the map from Diff(M) to H might be thought of as a ‘homomorphism up

to local O(D,D) transformations’. In [24], it was proposed also that the local O(D,D)

transformations were the key to resolving a number of issues in DFT.
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To understand this further, we will now investigate these localO(D,D) transformations

in a patch in which the fields and parameters depend on xm but not x̃m, as in section 2.2.

The λM = (λm, λ̃m) defined in (2.12) then takes the form

λm
12 = 0, λ̃m12 = −

1

2
ξ1N∂mξN2 − (1 ↔ 2) . (5.12)

The transformation ∆12 = L̂λ12
is then just the anti-symmetric tensor gauge transformation

with parameter λ̃m12, giving δbmn = ∂[mλ̃n] and can be written in terms of the action on

the generalised metric of the infinitesimal O(D,D) matrix

∆ =

(
0 0

2∂[mλ̃n] 0

)
(5.13)

where

∂[mλ̃n] = −
1

2
∂mξ1N∂nξ

N
2 − (1 ↔ 2) . (5.14)

Exponentiation gives the finite O(D,D) matrix e∆ = 1 +∆

e∆ =

(
1 0

2∂[mλ̃n] 1

)
. (5.15)

For any generalised vector V M , the generalised Lie derivative L̂λ with parameter ξM =

(0, λ̃m) is

L̂λV
M = ∆M

NV N (5.16)

with ∆ given by (5.13), and

eL̂λV = e∆V . (5.17)

This extends tensorially to arbitrary generalised tensors.

With this local solution of the strong constraint in a patch U of M , the local O(D,D)

transformations or ∆-transformations of [24] are just the DFT gauge transformations with

parameter ξM = (0, ξ̃m), acting on the generalised metric through antisymmetric tensor

gauge transformations with parameter ξ̃m. Then the DFT gauge transformations with

parameters (ξm, ξ̃m), modulo the ∆-transformations which are DFT gauge transformations

with parameter (0, ξ̃m) are represented by the DFT gauge transformations with parameter

(ξm, 0). These are just the diffeomorphisms acting on the subspace U with coordinates xm,

and can be written in the form in which the coordinates (xm, x̃m) transform as X → X ′(X)

x → x′(x) = e−ξm∂mx, x̃ → x̃′ = x̃ . (5.18)

The DFT gauge transformations modulo local O(D,D) transformations are then just the

diffeomorphisms of U . Thus in [24], the coordinate transformation of the doubled space

X → X ′ = d(ξm, ξ̃m)X with

d(ξm, ξ̃m) = exp(−ξm∂m − ξ̃m∂̃m) (5.19)
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is mapped to the DFT gauge transformation h(ξm, ξ̃m), which modulo antisymmetric tensor

gauge transformations is just the diffeomorphism exp(−ξm∂m). Thus we are obtaining the

natural homomorphism from Diff(U) to Diff(U) corresponding to (ξ, ξ̃) → (ξ, 0). However,

this loses almost all information about the ξ̃ transformations, and essentially restricts

attention to the subgroup of DFT gauge transformations corresponding to diffeomorphisms

of U . It would be much more useful to have formulae for finite gauge transformations for

the whole gauge group with both parameters ξ and ξ̃.

On scalars Φ(X) satisfying the strong constraint, the diffeomorphism d(ξm, ξ̃m) only

acts through exp(−ξm∂m), so it is natural to go from Diff(U) to Diff(U). For generalised

tensors, there is also the action of F on the tensor indices, as in (4.6). It will be shown in

the next section that in fact

F = R̂e∆ (5.20)

for some ∆-transformation ∆, where

R̂ =

(
∂x′

∂x
0

0 ∂x
∂x′

)
(5.21)

so that, modulo ∆-transformations, the action of F is through a simple action of Diff(U).

Further, it will be seen that the composition of F1 = R̂1e
∆1 and F2 = R̂2e

∆2 is of the form

F1F2 = (R̂1R̂2)e
∆12 (5.22)

for some ∆12 so that the composition of the transformations of [24] gives the desired result

up to ∆-transformations. The gerbe-like properties of the composition rules for three

transformations F1F2F3 found in [24] are then seen as a consequence of working modulo

antisymmetric tensor gauge transformations, given the role of such gauge transformations

as gerbe transition functions.

In the next section, explicit forms for finite DFT gauge transformations will be found in

which the coordinates transform and full information about ξ̃ transformations is kept. They

compose with a standard group structure without any non-associativity or gerbe structure.

Working with the full transformations rather than modulo the ∆-transformations will also

allow the precise identification of the role of gerbes in the geometry.

5.3 The proposal with coordinate gauge symmetry

In a patch in which the fields and parameters depend on xm but not x̃m, the coordinate

gauge transformation (4.21) becomes [23]

xm → xm, x̃m → x̃m + λ̃m(x) (5.23)

where λ̃m = φ∂mχ. This is then associated with the DFT gauge transformation with

parameter ρM = (0, λ̃m), which as we have seen is an antisymmetric tensor gauge transfor-

mation acting through the O(D,D) transformation (5.15). As before, this association of

DFT gauge transformations with diffeomorphisms is not a homomorphism. It was shown

in [23] that the transformation (4.6) with (4.7) with (4.20) agrees with (4.5) up to such

antisymmetric gauge transformations. As in [24], this gives a form for finite DFT transfor-

mations, but only up to such antisymmetric gauge transformations.
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6 Finite gauge transformations

6.1 Finite gauge transformations for generalised vectors

Consider a patch U of M with coordinates XM = (xm, x̃m) and a generalised vector

decomposing as

V M =

(
vm

ṽm

)
, (6.1)

in which the strong constraint is solved by having all fields independent of x̃m so that

∂̃m = 0 (6.2)

on all fields and parameters, as in section 2.2. Then the fields just depend on the coordinates

xm, parameterising a D-dimensional patch U ⊂ U .

The generalised Lie derivative

L̂V W
M = V P∂PW

M +WP (∂MVP − ∂PV
M ) (6.3)

for V M (x),WM (x) then has the components

(L̂V W )m = vp∂pw
m − wp∂pv

m = Lvw
m (6.4)

and

(L̂V W )m = vp∂pw̃m + w̃p∂mvp + wp(∂mṽp − ∂pṽm) (6.5)

= Lvw̃m + wp(∂mṽp − ∂pṽm) (6.6)

where Lv is the usual Lie derivative on U .

Under an infinitesimal transformation with parameter V M , suppose W transforms as

δWM = L̂V W
M (6.7)

giving

δwm = Lvw
m (6.8)

δw̃m = Lvw̃m + wp(∂mṽp − ∂pṽm) . (6.9)

Now we introduce a 2-form gauge field1 bmn on U transforming as

δvbmn = Lvbmn + ∂mṽn − ∂nṽm (6.10)

and define

ŵm = w̃m − bmnw
n . (6.11)

1Here for simplicity we choose the 2-form gauge field to be the bmn appearing in the generalised metric.

We could choose any other 2-form gauge field b
′

mn here, with B = b
′ − b a globally defined 2-form, in

which case B would appear explicitly in some of the following formulae, such as the untwisted form of the

generalised metric.
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Then, remarkably, ŵ transforms as a 1-form on U under v transformations and is

invariant under ṽ transformations:

δŵm = Lvŵm .

Then given

WM =

(
wm

w̃m

)
, (6.12)

we can define

ŴM =

(
wm

ŵm

)
=

(
wm

w̃m − bmnw
n

)
(6.13)

with

δŴM = LvŴ
M . (6.14)

given by the usual Lie derivative on U . Ŵ is invariant under ṽ transformations.

We can then immediately write down the transformations of w(x, x̃) = w(x), ŵ(x, x̃) =

ŵ(x) under finite gauge transformations:

w′m(x′) = wn(x)
∂x′m

∂xn
ŵ′

m(x′) = ŵn(x)
∂xn

∂x′m
(6.15)

where x′(x) = e−vm∂mx. Moreover, we can use this to find the transformation of w̃. The

standard global transformations of the 2-form gauge field can be written as

b′mn(x
′) =

[
bpq(x) + (∂pṽq − ∂qṽp)(x)

] ∂xp

∂x′m
∂xq

∂x′n
. (6.16)

This corresponds to doing a b-field gauge transformation followed by a diffeomorphism

(other forms arise by taking these in a different order and give similar results). We now

consider

ŵ′
m(x′) = ŵn(x)

∂xn

∂x′m
. (6.17)

We have on the r.h.s.

ŵn(x)
∂xn

∂x′m
= (w̃n − bnpw

p)
∂xn

∂x′m
(6.18)

while on the l.h.s.

ŵ′
m(x′) = (w̃′

m − b′mnw
′n)(x′)

= w̃′
m(x′)−

[
bpq(x) + (∂pṽq − ∂qṽp)(x)

] ∂xp

∂x′m
∂xq

∂x′n
wr(x)

∂x′n

∂xr

= w̃′
m(x′)−

[
bpq(x) + (∂pṽq − ∂qṽp)(x)

]
wq(x)

∂xp

∂x′m
.

Putting these together, we find the terms involving b cancel, leaving the transformation for

w̃ given by

w̃′
m(x′) =

[
w̃n(x) + (∂nṽq − ∂qṽn)w

q(x)
] ∂xn

∂x′m
. (6.19)
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Then (6.15), (6.19) give the transformation of a generalised vector W = (w, w̃) under a

finite DFT gauge transformation.

Given these forms of finite gauge transformations, we now consider their geometric sig-

nificance. We have seen that Ŵ = (w, ŵ) transforms covariantly under a diffeomorphism

of U and is invariant under ṽ transformations, so that it is a section of (T ⊕ T ∗)U . In the

geometric case in which the transition functions between patches involve only diffeomor-

phisms and 2-form gauge transformations, the patches cover a manifold N and the b-field

is a connection for a gerbe over N . Then Ŵ = (w, ŵ) is a section of (T ⊕ T ∗)N while the

W̃ = (w, w̃) is a section of a bundle E which is a deformation of T ⊕ T ∗(N) resulting from

what is sometimes referred to as twisting T ⊕ T ∗ by a gerbe. It is the Courant algebroid

defined by the short exact sequence [32]

0 → T ∗ → E → T → 0 .

We will refer to Ŵ as the untwisted form of W , and the transformation W → Ŵ as

untwisting a generalised vector.

6.2 Generalised tensors

The untwisted form ŴM of a generalised vector WM can be written as

Ŵ = LW (6.20)

where

L =

(
1 0

−b 1

)
(6.21)

denotes the matrix with components

LM
N =

(
δmn 0

−bmn δm
n

)
. (6.22)

The transformation (6.15) of the untwisted vector Ŵ is then

Ŵ ′(X ′) = R̂Ŵ (X) (6.23)

where

R̂ =

(
Λ 0

0 (Λ−1)t

)
(6.24)

with

Λm
n =

∂x′m

∂xn
. (6.25)

The coordinate transformation acts only on the x:

XM → X ′M =

(
x′m

x̃′m

)
, (6.26)
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with

xm → x′m(x), x̃m → x̃′m = x̃m . (6.27)

The transformation of the twisted vector W was found by twisting the untwisted

transformation and is

W ′(X ′) = RW (X) (6.28)

where

R = L′(X ′)−1R̂L(X) = R̂S (6.29)

and

L′(X ′) =

(
1 0

−b′(x′) 1

)
(6.30)

with b′(x′) given by (6.16), and

S =

(
δmn 0

2∂[mṽn] δm
n

)
. (6.31)

The matrices R, R̂, L, S are all in O(D,D).

Lowering indices with η gives similar formulae for a generalised vector with lower index

UM =

(
ũm
um

)
. (6.32)

The untwisted vector

ÛM =

(
ûm
um

)
=

(
ũm − bmnu

n

um

)
(6.33)

transforms with

δÛM = LvÛM (6.34)

and is invariant under ṽ transformations. Then the untwisted vector is

Û = UL−1 (6.35)

(i.e. ÛM = UN (L−1)NM ; recall ηLη−1 = (Lt)−1 as L is in O(D,D)) and transforms under

a finite transformation as

Û ′(X ′) = Û(X)R̂−1 . (6.36)

For the twisted vectors

U ′(X ′) = U(X)R−1 . (6.37)

This extends to arbitrary generalised tensors TMN...
PQ.... We define the untwisted

tensor

T̂MN...
PQ... = LM

RL
N

S . . . TRS...
TU...(L

−1)T P (L
−1)UQ . . . (6.38)

which transforms as

T̂ ′MN...
PQ...(X

′) = R̂M
RR̂

N
S . . . TRS...

TU...(R̂
−1)T P (R̂

−1)UQ . . . (6.39)
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so that the original tensor transforms as

T ′MN...
PQ...(X

′) = RM
RR

N
S . . . TRS...

TU...(R
−1)T P (R

−1)UQ . . . (6.40)

Raising all lower indices with η gives a generalised tensor TM1...Mp of some rank p which

is a section of Ep while T̂M1...Mp is a section of (T ⊕ T ∗)p. In particular,

η̂MN = ηMN (6.41)

as L ∈ O(D,D), and is invariant, η′ = η.

6.3 The generalised metric

We can now apply the above to the generalised metric. The untwisted form of the gener-

alised metric

ĤMN = HPQ(L
−1)PM (L−1)QN (6.42)

is, using (2.18), simply

ĤMN =

(
gmn 0

0 gmn

)
(6.43)

and this gives the natural metric on T ⊕ T ∗ arising from gmn. The transformation

Ĥ′
MN (X ′) = ĤPQ(X)(R̂−1)PM (R̂−1)QN (6.44)

simply gives the expected

g′mn(x
′) = gpq(x)

∂xp

∂x′m
∂xq

∂x′n
. (6.45)

Finally, the finite transformation of the (twisted) generalised metric is

H′
MN (X ′) = HPQ(X)(R−1)PM (R−1)QN (6.46)

which implies the standard transformations of g, b (6.45), (6.16).

6.4 Large gauge transformations

The finite transformations that have been considered above have been obtained by exponen-

tiating transformations with infinitesimal parameters. The transformation with parameter

vm exponentiates to give a coordinate transformation under which x → x′(x) = e−vm∂mx.

This can then be extended to the symmetry under all coordinate transformations x → x′(x),

not just those obtained from exponentiating infinitesimal diffeomorphisms. This then gives

the group of general coordinate transformations of U , which for geometric backgrounds ex-

tends to the group of diffeomorphisms of N .

The transformation with parameter ṽm exponentiates to give

W ′(X ′) = SW (X) (6.47)
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where S is given by (6.31), using (6.28), (6.29) with R̂ = 1, under which b → b+ dṽ. This

can be extended to replace the exact 2-form dṽ by any closed 2-form ω (dω = 0), so that

S is now given by

S =

(
δmn 0

ωmn δm
n

)
(6.48)

so that now R = R̂S for this S in the formulae or previous sections, and the antisymmetric

tensor gauge transformation is b → b+ ω.

The ‘large’ gauge transformations are those that are not exponentials of infinitesimal

transformations. They consist of large diffeomorphisms, and of b-transformations with ω

closed but not exact. For a geometric background corresponding to fields on N , the gauge

symmetry group of DFT is H = Diff(N)⋉Λ2
closed(N), exactly as for the conventional field

theory of g, b, φ on N .

6.5 ∆-transformations

In [24], it was shown that the matrix F given by (4.7) is given by the matrix M giving the

action of finite DFT gauge transformations eL̂ξ up to a finite ∆-transformation

F = Re∆
′

(6.49)

for some ∆′ of the form (5.13). Then from (6.29),

F = R̂e∆ (6.50)

with R̂ given by (6.24) and e∆ = Le∆
′

. Then modulo ∆-transformations, F is just the

matrix R̂ giving the action of the diffeomorphism x → x′(x) on T ⊕ T ∗.

To find an expression for the product of two F ’s, we use the fact that for any matrix

of the form

D =

(
1 0

B 1

)
(6.51)

conjugating with R̂ gives a matrix of the same form:

R̂−1DR̂ = D′ (6.52)

where

D′ =

(
1 0

B′ 1

)
B′ = ΛtBΛ . (6.53)

Then for

F1 = R̂1e
∆1 , F2 = R̂2e

∆2 , (6.54)

we have

F1F2 = R̂1R̂2(R̂
−1
2 e∆1R̂2)e

∆2

= R̂1R̂2e
∆′

12

= R1R2e
∆12 (6.55)
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where ∆12,∆
′
12 are matrices of the form (5.13). Then the result of the composition of

the F matrices agrees with the composition of finite DFT gauge transformations up to a

∆-transformation, as argued in [24].

In [24], double geometries were considered in which fields in patches were related by

transition functions that are DFT gauge transformations. These transition functions can

be given by a coordinate transformation and an action of the matrix R on tensor indices,

as we have seen. In a triple overlap of patches, the three transition functions R1, R2, R3 in

the three double overlaps must satisfy R1R2R3 = 1 for consistency. However, writing the

transformations in terms of F instead of R gives a product F1F2F3 which is not 1 but gives

a ∆-transformation. In [24], it is suggested that this reflects a gerbe structure of the double

geometry. Here we see that this is a consequence of writing the R transformations as F

transformations up to ∆ transformations, and working only modulo ∆ transformations.

By a similar argument to that leading to (6.55), for any R1, R2, R3

F1F2F3 = R1R2R3e
∆123 (6.56)

for a ∆123 of the form (5.13). In particular, if R1R2R3 = 1, then in general F1F2F3 is not

1 but gives a ∆-transformation. Such issues with the composition of transformations are

avoided by using the form of the transformations using the R-matrices instead of the one

involving the F matrices.

7 Discussion

For DFT in a local patch U with constant η, the strong constraint leads to fields depending

on the coordinates x of aD-dimensional subspace U ⊂ U , and independent of the remaining

coordinates x̃. The infinitesimal gauge transformations of DFT are derived from string

theory in [14], and in this paper, simple finite forms for the DFT gauge transformations

have been found and seen to encode the gauge symmetries of the underlying field theory.

These then give the transformations and transition functions for generalised tensor fields.

In the case of a geometric background, the patches U cover a manifold N , while g and

H = db are well-defined tensor fields on N . The transition functions for b will involve

2-form gauge transformations, so that b is a connection for a gerbe over N . We will

first discuss generalised tensors for this geometric case, and then briefly consider the more

general case.

A geometric background consists of a space-time N with fields g(x), b(x), φ(x) depend-

ing on the coordinates xm of N . In the DFT formulation, N is a submanifold of a doubled

manifold M with coordinates XM = (xm, x̃m), and the fields are independent of the extra

coordinates x̃m of M . The DFT gauge transformations have been seen to correspond to

a diffeomorphism of N in which x → x′(x), together with a b-field gauge transformation

with finite parameter ṽm, so that the DFT gauge group is H = Diff(N)⋉ Λ2
closed(N).

There are three distinct kinds of ‘vector field’ on M , all of which have components that

can be written as WM (X), but which are sections of different bundles and so transform

differently. First, a conventional vector field on M is a section of the tangent bundle TM
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of M . It transforms under diffeomorphisms of M as

W ′(X ′)M =
∂X ′M

∂XN
W (X)N (7.1)

for any coordinate transformation X → X ′(X) and such transformations provide the tran-

sition functions between patches. Next, there are generalised vector fields and untwisted

generalised vector fields which satisfy the strong constraint by being independent of x̃, so

they are fields on N . The untwisted generalised vector fields ŴM (x) are sections of the

generalised tangent bundle T ⊕ T ∗ of N , and transform under diffeomorphisms x → x′(x)

of N as

Ŵ ′(x′) = R̂Ŵ (x) (7.2)

where

R̂ =

(
Λ 0

0 (Λ−1)t

)
Λm

n =
∂x′m

∂xn
. (7.3)

The transition functions for such vectors between patches of N is through this action of

the diffeomorphisms. Finally, generalised vector fields WM (x) are sections of E(N), which

is the generalised tangent bundle T ⊕ T ∗ of N , twisted by a gerbe. They transform under

the DFT gauge group H = Diff(N)⋉ Λ2
exact(N) as

W ′(X ′) = R̂ S W (X) (7.4)

where

S =

(
δmn 0

2∂[mṽn] δm
n

)
. (7.5)

These are patched together by DFT gauge transformation transition functions.

Similarly, given a field with components TMN...P (X), it is necessary to specify whether

it is a tensor, a generalised tensor or an untwisted generalised tensor. In DFT, a key role

is played by the constant matrix

ηMN =

(
0 1

1 0

)
. (7.6)

If these were the components of a tensor on M , i.e. if η were a section of (T ∗ ⊗ T ∗)M ,

then the presence of a flat metric on M would be highly restrictive and imply that M is

locally a flat space. Moreover, under a change of coordinates X → X ′(X) of M , η would

transform to a new matrix of components that would no longer be constant in general.

If, however, the constant matrix η gives the components of a generalised tensor in

(E∗ ⊗ E∗)N , then this places no restriction on N or M , and η is in fact invariant under

H = Diff(N)⋉ Λ2
closed(N). Untwisting gives the same matrix as η̂ = η, now regarded as a

section of [(T ⊕ T ∗)⊗ (T ⊕ T ∗)]N . η is the natural metric on (T ⊕ T ∗)N and is invariant

under Diff(N). In DFT, there is an η which is a generalised tensor and is defined in this

way for any manifold M with submanifold N .

The constraint ηMN∂M∂N = 0 is imposed locally in patches in DFT, as has been done

here. If ηMN were the components of a tensor, this condition can be extended to a globally
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well-defined condition. However, if η is not a tensor but a generalised tensor, then there

are problems in extending this form of the constraint globally. In the case of a geometric

background, then one can simply use the form of the constraint ∂̃m = 0, so that the fields

are fields on N .

Then DFT formulates a conventional field theory on N in terms of generalised geom-

etry, based on the generalised tangent bundle (T ⊕ T ∗)N . Type II supergravity has been

formulated in terms of generalised geometry in [28].

More generally, there may not be a geometric background N , and the above need apply

only locally. The doubled manifold M is covered by patches U with coordinates (x, x̃) in

each of which there is a ‘physical’ subspace U with coordinates x, and the DFT then gives

a field theory on each U formulated in terms of generalised geometry. However, the patches

U may not fit together to form a submanifold N in general, and may instead give a T-

fold. If the patches are glued together only with transition functions that are DFT gauge

symmetries x → x′(x), they can form a manifold N , but if O(D,D) transformations are

also involved, then a non-geometric space can result. Generalised vectors are then defined

over U as sections of the bundles (T ⊕ T ∗)U or E(U) over U . Transition functions and

non-geometric spaces in DFT will be discussed in a separate paper.
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