
J
H
E
P
0
4
(
2
0
1
5
)
1
0
8

Published for SISSA by Springer

Received: November 20, 2014

Revised: February 17, 2015

Accepted: March 22, 2015

Published: April 20, 2015

Reducing differential equations for multiloop master

integrals

Roman N. Lee

Budker Institute of Nuclear Physics,

Novosibirsk, 630090 Russia

E-mail: r.n.lee@inp.nsk.su

Abstract: We present an algorithm of the reduction of the differential equations for

master integrals the Fuchsian form with the right-hand side matrix linearly depending on

dimensional regularization parameter ε. We consider linear transformations of the functions

column which are rational in the variable and in ε. Apart from some degenerate cases

described below, the algorithm allows one to obtain the required transformation or to

ascertain irreducibility to the form required. Degenerate cases are quite anticipated and

likely to correspond to irreducible systems.

Keywords: NLO Computations

ArXiv ePrint: 1411.0911

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP04(2015)108

mailto:r.n.lee@inp.nsk.su
http://arxiv.org/abs/1411.0911
http://dx.doi.org/10.1007/JHEP04(2015)108


J
H
E
P
0
4
(
2
0
1
5
)
1
0
8

Contents

1 Introduction 1

2 Preliminaries 2

3 Reduction at one point 5

4 Global reduction 11

5 Reduction process 14

6 Factoring out ε 15

7 Using block-triangular form 16

8 Example 19

9 Conclusion 23

A The form of matrices S1 and S2. 24

1 Introduction

For a few last decades, the demand for the multiloop calculations is constantly growing, the

methods of such calculations evolved accordingly. For multiscale integrals, probably, the

most powerful technique is the differential equations method [1–5]. Within this method,

the master integrals are found as solutions of the differential equations obtained with the

help of the IBP reduction [6–8].

Recently, a remarkable observation has been made by Henn in ref. [9] concerning the

differential equations method. Namely, it appeared that in many cases the dependence

on the dimensional regularization parameter ε of the right-hand side of the differential

equations for the master integrals can be reduced to a single factor ε by a judicious choice

of the master integrals. For brevity in what follows we will refer to such a form of the

differential system as ε-form. With this form (and also the initial conditions) at hand,

finding the solution up to any fixed order in ε becomes a trivial task. Moreover, the solution

manifestly possesses a remarkable property of homogeneous transcendental weight. Since

then a number of papers successfully applied this approach to the calculation of various

classes of integrals [10–20].

In general, finding an appropriate basis is not easy. In ref. [9] two guiding principles

have been suggested. The first method is based on the examination of generalized unitarity

cuts, and the second one is based on finding integral d log form. Both methods may be
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used (with some amount of heuristic work) for determining whether a specific integral

is homogeneous or not, however, in general, they do not give an algorithm of finding

appropriate basis (though, they proved their validity in a number of applications). In

refs. [14, 21] algorithms of the reduction have been presented assuming a very special form

of the differential system. Despite these advances, finding an appropriate basis has been

rather an art than a skill so far. Therefore, devising a practical algorithm of finding the

described form of the differential system is of essential interest.

In the present paper we describe a method of finding an appropriate basis which is

based on the differential system alone. The system can be written in the matrix form

∂xJ = M (ε, x) J , (1.1)

where ε is the dimensional regularization parameter (d = 4 − 2ε), x is some parameter, J

is the column of the master integrals, M is n× n matrix, rational in both ε and x.

Our main algorithm can be divided into three stages. At first stage the differential

system is reduced to the Fuchsian form, i.e., to a form when the elements of M have only

simple poles with respect to x. After this stage, the matrix can be written as

M (ε, x) =
∑
k

Mk(ε)

x− xk
. (1.2)

Note that this step is always doable for the systems with regular singularities. Possibility to

reduce the system to Fuchsian form is known since works [22, 23] of Röhrl and the specific

algorithm for this reduction can be easily deduced from that of Barkatou & Pflügel [24, 25],

see below. Algorithm 2 of the present paper is advantageous only in that it tries to minimize

the number of apparent singularities generated during the reduction process. At second

stage the eigenvalues of Mk are normalized, i.e., their real parts are reduced to the interval

[−1/2, 1/2). For the systems reducible to ε-form this means that all eigenvalues are made

proportional to ε. It is easy to see that, when this step is successful, the resulting system

has no apparent singularities, see eq. (3.33) and discussion after it. Finally, a constant

transformation is searched for in order to factor out ε, i.e., to reduce the system to ε-form.

We give one nontrivial example of the application of our algorithm.

Except for the last stage, our algorithm is not specific to the systems depending on

parameter. In particular, it can be used to eliminate apparent singularities and to find the

matrices of monodromy around singular points (up to similarity).

2 Preliminaries

We consider the system of differential equations for the master integrals as given in eq. (1.1).

Under the change of functions

J = T (ε, x) J̃ (2.1)

the system modifies to an equivalent system

∂xJ̃ = M̃ (ε, x) J̃ , (2.2)
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where

M̃ = T−1MT− T−1∂xT . (2.3)

The observation of ref. [9] states that it is often possible to find a transformation T so

that the new column J̃ satisfies a simple equation

∂xJ̃ = εS(x)J̃ . (2.4)

Though it is not stated explicitly in ref. [9], we will require that the matrix S has a Fuchsian

form, i.e.,

S(x) =
∑
k

Sk
x− xk

, (2.5)

where k runs over finite set. This condition is very important on its own because the

form (2.5) allows one to express the result in terms of generalized harmonic polylogarithms.

In what follows we will often omit ε in the arguments of functions unless it may lead to

confusion.

Definition 1. The differential system (1.1) is said to have a regular singularity at x =

x0 6= ∞ (at x = x0 = ∞) if x = x0 6= ∞ is a singular point of M(x) (y = 0 is a singular

point of M(1/y)/y2) and all solutions of the system grow at most like a finite power of

x− x0 (of x) in the sectorial vicinity of x0.

The power-like growth of the master integrals (which are the solutions of the system)

in the vicinity of any point follows from their parametric representation. Therefore, it is

natural to expect that all singular points of the differential system for the master integrals

are regular singularities.

An apparent singularity is a regular singularity which is a finite-order pole or a regular

point of any solution of the system. Therefore, the monodromy around an apparent singu-

larity is an identity matrix. As we shall see, it means that, locally, we can always remove

apparent singularity with a rational transformation.

Definition 2. The differential system (1.1) is said to have Poincaré rank p > 0 at the

singular point x = x0 6= ∞ if M(x) can be represented as M(x) = A(x − x0)/(x − x0)1+p,
where A(x) is regular at x = x0 matrix and A(0) 6= 0. The system is said to have Poincaré

rank p > 0 at the point x =∞ if M(x) can be represented as M(x) = A(1/x)x−1+p, where

A(y) is a regular at y = 0 matrix and A(0) 6= 0.

If p = 0, we say that the system is Fuchsian in x = x0 and call A(0) a matrix residue.

Respectively, we call x0 a Fuchsian point of the system.

It is easy to show that when the Poincaré rank of a system is zero at some point, this

point is a regular singularity of the system. But the converse is not always true. However,

if some point is a regular singularity, it is possible to transform the system to the equivalent

one with zero Poincaré rank at that point. More generally, Moser [26] has given necessary

and sufficient condition of the possibility to reduce the (generalized) Poincaré rank of the

system and also presented an algorithm for finding the appropriate transformation matrix.

Barkatou and Pflügel have given an improved version of the algorithm in refs. [24, 25]. Their
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algorithm consists of a sequence of rational transformations, each lowering the generalized

Poincaré rank p + r/n − 1, where r = rankA(0) and n is the size of A(0). Applying

these transformations several times for each singularity, one can minimize the Poincaré

rank of all singularities, except maybe one (usually chosen to be x =∞). In particular, if

all singularities are regular, after the application of the algorithm, Poincaré ranks for all

but one singularities can be nullified and thus the system is reduced to a Fuchsian form

everywhere, except, may be, one point. In fact, their algorithm also allows one to transform

a regular system to Fuchsian form globally with a penalty of introducing some apparent

singularities.

The possibility to transform a regular system to Fuchsian form in all points and to

eliminate all apparent singularities would mean the positive solution of the 21st Hilbert

problem, consisting of proving of the existence of linear differential equations having a

prescribed monodromy group. However, Bolibrukh in ref. [27] has proved by presenting an

explicit counterexample, that it is not always possible and thus 21st Hilbert problem has

negative solution. Nevertheless, the problem of reducing, when it is possible, a rational

differential system to Fuchsian form without apparent singularities is very important. An

ultimate solution of this problem in the most general case, and, in particular, deciding

whether such a reduction is possible, is not known so far to the best of our knowledge.

Definition 3. The transformation (2.3) generated by the matrix T(x) is regular at x =

x0 6=∞ (at x =∞) if T(x) = T0 +O(x− x0) (T(x) = T0 +O(1/x)) and detT0 6= 0.

In this definition the condition detT0 6= 0 simply states that T−1(x) is also a power

series near the point x = x0 (x = ∞). Naturally, regular transformations can not change

the pole order of M, so we have to consider singular transformations. While there are

transformations singular at only one point on the extended complex plane, their form

appears to be too restrictive for our purposes.1 The key tool of our approach is the

transformation singular at two points.

Definition 4. A balance is a transformation, generated by the matrix T of the form

T(x) = B(P, x1, x2|x)
def
= P + c

x− x2
x− x1

P , (2.6)

where c is some constant, P, P are the two complementary projectors, i.e. P2 = P and

P = I − P. More specific, we call the transformation generated by (2.6) the P-balance

between x1 and x2.

Note that this transformation appears in the consideration of the Riemann problem

in complex analysis, see, e.g., ref. [28]. We will always put c = 1 when both x1 and x2
are finite. When x1 = ∞ (when x2 = ∞), we put c = x1 (c = 1/x2) and understand

c(x− x2)/(x− x1) as a limit for x1 →∞ (for x2 →∞).

The inverse of the balance is also a balance, since

B(P, x1, x2|x)B(P, x2, x1|x) = I , (2.7)

1See, however section 7.
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Therefore, the transformation (2.6) is regular everywhere, except the points x = x1 and

x = x2, where, respectively, T(x) and T−1(x) have simple poles.

3 Reduction at one point

The basic idea of reducing the Poincaré rank is to find such a projector P that the trans-

formation generated by (2.6) lowers the rank of A0. For a regular singularity, the idea is

to use (2.6) to normalize the eigenvalues of the matrix residue.

Let us concentrate on the reduction of the differential system at one point. Without

loss of generality, we assume that x = 0 is a singular point of the system (1.1) and the

Laurent series expansion of M(x) near x = 0 has the form

M(x) = A0x
−p−1 + A1x

−p +O(x−p+1) . (3.1)

Lowering Poincaré rank. First, let us consider the problem of lowering of the Poincaré

rank, so p > 0 in this subsection. We assume that A0 is a nilpotent matrix since it

is a necessary condition for the existence of a transformation which lowers the Poincaré

rank [26]. Therefore, A0 can be reduced to Jordan form with zero diagonal. Let r =

rankA0, then a necessary and sufficient condition of existence of a transformation lowering

the generalized Poincaré rank p+ r/n− 1 introduced in ref. [26] is that

xr det(A0/x+ A1 − λI)|x=0 = 0 (3.2)

identically as a function of λ.

It is convenient to use an equivalent form of this condition, which was introduced in

ref. [25]. Let {u(α)k |k = 1 . . . N, α = 0, . . . nk} be a basis constructed of the generalized

eigenvectors of A0 with the properties

A0u
(0)
k = 0 , A0u

(α+1)
k = u

(α)
k . (3.3)

Here N is a number of Jordan cells (including the trivial ones), nk is a rank of k-th Jordan

cell, which is its dimension minus one. In what follows we assume that Jordan cells are

ordered by their sizes, so that n1 > n2 > . . . > nN . Let

U =
(
u
(0)
1 , . . . , u

(n1)
1 , u

(0)
2 , . . . , u

(n2)
2 , . . .

)
(3.4)

be the matrix with columns u
(α)
k . This matrix generates the similarity transformation

A0 → Ã0 = U−1A0U reducing A0 to Jordan form. Then

U−1 = (v
(n1)
1 , . . . , v

(0)
1 , v

(n2)
2 , . . . , v

(0)
2 , . . .)† , (3.5)

where v
(α)
k are the generalized eigenvectors of A†0 satisfying

v
(0)†
k A0 = 0 , v

(α+1)†
k A0 = v

(α)†
k . (3.6)

We will call v
(α)†
k the left generalized eigenvectors of A0, in contrast to u

(α)
k which we will

call the right generalized eigenvectors of A0.
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From U−1U = I we have

v
(α)†
k u

(β)
l = δklδα+β,nk , (3.7)

so that {u(α)k |k = 1, . . . , N ;α = 0, . . . , nk} and {v(α)k |k = 1, . . . , N ;α = nk, . . . , 0} are the

dual bases.

One observes that relations (3.3), (3.6), (3.7) are invariant under the following basis

transformation:

u
(α)
k → u

(α)
k + cu

(α)
l , v

(nl−α)
l → v

(nl−α)
l − cv(nk−α)k , (α = 0, 1, . . . nk) , (3.8)

where c is an arbitrary number, and k and l are some fixed Jordan cell numbers, k > l (we

remind that n1 > n2 > . . . > nN in our convention).

The above transformation corresponds to the transformation of the matrix U:

U→ U(I + cE(l,k)) , (3.9)

where (E(l,k))
îαĵβ

= δilδjkδαβ . Here we denoted by k̂α the number of the column in which

u
(α)
k stands in U. The condition (3.2) can be written as [24, 25]

detL(λ) = det(L0 + λL1) = 0 , (3.10)

where

L(λ) = L0 + λL1 = [v
(0)†
k (A1 + λI)u(0)l ] (k, l = 1 . . . N). (3.11)

The transformation (3.8) induces the following transformation of the matrix L0:

L0 → (I− cδnknl∆
(l,k))L0(I + c∆(l,k)) , (3.12)

where ∆(l,k) is the matrix with unity on the intersection of l-th row and k-th column and

zero elsewhere, i.e. ∆
(l,k)
ij = δilδjk. It is easy to check that L1 is invariant under these

transformations. General composition of the transformations of the form (3.9) can be

written as

U→ U(I + E) , (3.13)

L0 → (I− ∆̃)L0(I + ∆) , (3.14)

E =
∑

l,k; l<k

cl,kE(l,k) , ∆ =
∑

l,k; l<k

cl,k∆
(l,k) . (3.15)

The expression for ∆̃ can be derived from the representation I + ∆ =
∏

(I + ci∆
(li,ki)),

but its explicit form is irrelevant for further discussion. What is relevant, is that, given an

arbitrary uppertriangular matrix ∆ with zero diagonal, we can easily reconstruct E.

Our idea now is to use transformations (3.12) for the reduction of the matrix L to

some suitable form, allowing for simple determination of the appropriate projector P for

the rank-reducing transformation (2.6). Namely we have the following

– 6 –
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Input : Matrix L0 and integer r, such that L1 = diag(0, . . . , 0︸ ︷︷ ︸
r

, 1, . . . , 1) and (3.10)

holds.

Output: {k0, S,∆}, where ∆ is uppertriangular with zero diagonal such that the

transformation (3.14) results to L0 of the form described in Claim 1 with

the corresponding k0 and S.

1 begin

2 S ←− ∅
3 ∆←− zero matrix.

4 repeat

5 Construct L̃0 = (a1, a2, . . .) by striking out from L0 all rows with numbers

from S. Below ai denotes the i-th column of this matrix.

6 Find the minimal i such that i 6∈ S and i-th column of L̃0 is linearly

dependent on first i− 1 columns: ai = c1a1 + . . .+ ci−1ai−1.

7 ∆0 ←− −c1∆(1,i) − . . .− ci−1∆(i−1,i)

8 ∆̃0 ←− −c1δn1ni∆
(1,i) − . . .− ci−1δni−1ni∆

(i−1,i)

9 L0 ←− (I− ∆̃0)L0(I + ∆0)

10 ∆←− ∆ + ∆0 + ∆∆0

11 S ←− S ∪ {i}
12 until i 6 r;

13 return {i, S/{i},∆}

Algorithm 1. Reducing L0.

Claim 1. Using the transformations (3.12) it is possible to secure that (L0)jk = 0 for any

j and k satisfying

j 6∈ S & k ∈ S ∪ {k0} , (3.16)

where k0 is a number of nontrivial Jordan cell (so that nk0 6= 0) and S is some set of the

numbers of trivial Jordan cells, i.e. for any i ∈ S holds ni = 0.

A constructive proof of this claim is given in algorithm 1.

The transformation on line 9 guarantees that any i-th column of L̃0 with i ∈ S is

zero. It may be not obvious why it is always possible to find appropriate i on line 6 when

S contains only numbers larger than r. To explain this, let us examine the form of the

matrix L(λ) after m passes of the ‘repeat’ loop. Then S = {i1, . . . im}, where ij > r

is the number appearing at pass #j. Let L′(λ) denote a matrix obtained from L(λ) by

simultaneous rearrangement of columns and rows in such a way that ik-th column (and

row) of the latter is k-th-to-last of the former. Then L′(λ) has the following block form

L′(λ) =

(
X(λ) 0

Y Z(λ)

)
, (3.17)

– 7 –
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Input : Matrix M(x) appearing in the right-hand side of the differential equation.

Output: Transformation matrix T(x) transforming M(x) to M̃(x), such that M̃(x)

is Fuchsian at any point.

1 begin

2 M̃←−M(x)

3 T←− identity matrix

4 while there is a point with positive Poincaré rank do

5 if there is a pair of singular points x1 and x2, such that

1. Poincaré rank of the system at x = x1 is positive

2. It is possible to construct the projector Q as in eq. (4.6)

6 then

7 T0 ←− B(Q, x1, x2|x)

8 M̃←− T−10 M̃T0 − T−10 ∂xT0

9 T←− TT0

10 else

11 Let x1 be the point with positive Poincaré rank.

12 Choose arbitrary regular point x2.

13 T0 ←− B(P, x1, x2|x), where P is defined in eq. (3.20)

14 M̃←− T−10 M̃T0 − T−10 ∂xT0

15 T←− TT0

16 return T

Algorithm 2. Reduction to Fuchsian form.

where Z(λ) is a lower-triangular m×m matrix with diagonal elements equal to λ. Then,

from the condition detL′(λ) = detL(λ) = 0, we obtain detX(λ) = 0, and, in particular,

detX(0) = 0 . (3.18)

Now we note that the columns of X(0) coincide, up to rearrangement, with the eligible

columns of L̃0 on line 5 of the algorithm, and the condition (3.18) tells that there is a

linear dependency between them. Thus, it is indeed possible to find i as prescribed in line

6. The algorithm terminates at most when all i > r are already included in S.

Now we can use the output of algorithm 1 for the construction of the appropriate

projector, such that the transformation (2.6) strictly lowers the rank of A0. First, we use

∆ for the reconstruction of the matrix E. To this end it suffices to represent ∆ as a linear

combination of ∆(l,k). Trivially, ∆ =
∑

l,k; l<k ∆lk∆
(l,k), so E =

∑
l,k; l<k ∆lkE(l,k). Using

this matrix, we apply transformation (3.13) to U. Let now u
(α)
k and v

(α)
k be defined via

eqs. (3.4) and (3.5) for the transformed U.

Claim 2. The transformation generated by

T = B(P, 0, x2|x) , (3.19)

– 8 –
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where x2 6= 0 and

P =
∑

k∈S∪{k0}

u
(0)
k v

(nk)†
k = u

(0)
k0
v
(nk0 )†
k0

+
∑
k∈S

u
(0)
k v

(0)†
k (3.20)

strictly lowers the rank of A0.

The proof is very simple. We note that A0P = 0 and the Laurent expansion of the

transformed matrix M̃ near x = 0 has the form

M̃(x) = Ã0x
−p−1 +O(x−p) , (3.21)

where

Ã0 = PA0 + PA1P . (3.22)

In order to prove that Ã0 has matrix rank strictly smaller than that of A0 it is sufficient to

demonstrate that Ã0 has more eigenvectors (with zero eigenvalue) than A0. Let us check

that any left eigenvector v
(0)†
j of A0 remains an eigenvector of Ã0. This is obvious for j ∈ S

since v
(0)†
j∈SP = 0. Let now j 6∈ S. Then v

(0)†
j P = v

(0)†
j (in particular, this is valid for j = k0

since v
(0)†
k0

u
(0)
k0

= 0). Then

v
(0)†
j Ã0 = v

(0)†
j (A0 + A1P) = v

(0)†
j A1P =

∑
k∈S∪{k0}

(L0)jkv
(0)†
k (j 6∈ S) . (3.23)

But, according to the Claim 1, (L0)jk = 0 in the sum. So, we have proved that all

eigenvectors of A0 remain to be the eigenvectors of Ã0. Obviously, we have an extra

eigenvector of the latter, namely, v
(nk0 )†
k0

, since v
(nk0 )†
k0

P = 0.

Applying (3.19) several times, we lower the rank of the leading coefficient A0 until it

becomes zero (and thus A0 itself is zero). This lowers the Poincaré rank by one. Acting in

the same way, we finally lower the Poincaré rank to zero.

Algorithm 1 as well as the transformation (3.19) are very similar to those presented

in refs. [24, 25]. Moreover, our transformation is not optimal in a sense of [25]. The only

advantage of our transformation (3.19) is that it gives as few terms in the sum in eq. (3.20)

as possible. This will be helpful for the constructions of section 4.

Normalizing eigenvalues in Fuchsian singularities. The results of the previous sub-

section allow one to reduce the Poincaré rank at one point in a stepwise manner provided

A0 is nilpotent and (3.2) holds. If at some step either of these two conditions fails, then

the point is irregular. Otherwise, we can lower Poincaré rank to zero, i.e., make system

Fuchsian at a given point. The question remains whether we can do still better — can

we find a rational transformation that will restrict the form of the matrix residue? In this

subsection we assume that p = 0 in eq. (3.1), i.e., that the Laurent series expansion of

M(x) near x = 0 has the form

M(x) = A0/x+ A1 +O(x) . (3.24)

– 9 –
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Similar to the previous subsection, let

{u(α)k |k = 1 . . . N, α = 0, . . . nk} (3.25)

be a basis constructed of the generalized eigenvectors of A0 with the properties

A0u
(0)
k = λku

(0)
k , A0u

(α+1)
k = λku

(α+1)
k + u

(α)
k . (3.26)

The vectors of the dual basis {v(n1)
1 , . . . , v

(0)
1 , v

(n2)
2 , . . . , v

(0)
2 , . . .} obey orthonormality con-

dition (3.7) and satisfy

v
(0)†
k A0 = λkv

(0)†
k , v

(α+1)†
k A0 = λkv

(α+1)†
k + v

(α)†
k . (3.27)

Let us consider the transformation generated by B(P, 0, x2|x), where

P = u
(0)
1 v

(n1)†
1 . (3.28)

Since PA0P = λ1PP = 0, the Laurent series expansion near x = 0 of the transformed

matrix M̃ starts from x−1:

M̃(x) = Ã0/x+O(x0) (3.29)

with

Ã0 = PA0 + A0P + P + PA1P . (3.30)

Proposition 1. With the account of multiplicity, only one eigenvalue of Ã0 is different

from the corresponding eigenvalue of A0. Namely, λ1 changes to λ1 + 1.

The proof of this proposition becomes obvious if one examines the form of Ã0 in the

basis (3.25) and calculates its characteristic polynomial. Indeed, in the basis (3.25), matrix

A0 has the following form A0 = diag(λ1, . . .)+diag(1)(f1, f2, . . .), where diag(1) denotes the

matrix with f1, f2, . . . standing above the diagonal and zero elsewhere, fi = 0 or 1. Then

Ã0 = c1 ⊗ (1, 0, . . .) + diag(λ1 + 1, . . .) + diag(1)(0, f2, . . .) , (3.31)

where c1 is the first column of the matrix A1. So, the matrix Ã0 differs from A0 only in

the first column and first row. Obviously, the characteristic polynomial of the former is

P (Ã0, λ) = (λ1 + 1− λ)P (A0, λ)/(λ1 − λ).

Similar, B(u
(n1)
1 v

(0)†
1 , x2, 0|x) shifts one eigenvalue down. Thus we come to the following

Claim 3. Using balances

B(u
(0)
1 v

(n1)†
1 , 0, x2|x) ,

B(u
(n1)
1 v

(0)†
1 , x2, 0|x) , (3.32)

it is possible to reduce the matrix residue to the normalized form in which all its eigenvalues

have the real parts lying in the interval [a, a+ 1), where a is a real number.
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Usual choice is a = 0, however we will prefer a = −1/2 due to the reasons which should

be clear from the consideration below. Note that in this normalized form the monodromy

matrix for the small loop around x = 0 is given, up to similarity, by

M = exp[2πiA0] . (3.33)

Thus, using the results of this subsection and the previous one, we can simply find

the monodromy matrix around any regular point of the differential system. In particular,

we can detect whether a given point is an apparent singularity (i.e., the monodromy is

an identity). To this end, we note that, given A0 is normalized and eq. (3.33) defines an

identity matrix, one may easily conclude that A0 = 0 (by considering the matrix function

of the Jordan form). Therefore, normalization totally eliminates any apparent singularity.

Note that if the matrix residue is not normalized, in general, the monodromy matrix is not

given by eq. (3.33) due to resonances (the eigenvalues of A0, whose difference is an integer

number).

4 Global reduction

The transformations considered in the previous section have a serious flaw: while improving

the form of the matrix at one point, they, in general, worsen its form in another. In

principle, the reduction of the Poincaré rank to zero can always be done at the cost of

introducing some apparent Fuchsian singularities. This is because balances may increase

the pole order at most by one. So, choosing at each step a regular point as x2, we can

globally reduce the Poincaré rank to zero. However, we, of course, would like to avoid

generating unnecessary apparent singularities in the process of reducing the Poincaré rank.

The situation is different when we want to normalize all Fuchsian singularities. In this case

we definitely do not want to generate apparent singularities, since any apparent singularity

is not normalized (otherwise there would be no singularity at all). In the present section we

show that, except for some degenerate cases, it is possible to slightly modify the projectors

constructed in the previous section so that the resulting balances respect the Poincaré rank

at the second point.

Let us first describe transformations which do not increase Poincaré rank at any point.

Suppose x1 and x2 are two finite singular points of the matrix M(x), so that the Laurent

series around x1 and x2 have the form

M(x) = A0(x− x1)−p1−1 +O((x− x1)−p1) (4.1)

M(x) = B0(x− x2)−p2−1 +O((x− x2)−p2) (4.2)

and p1 > 0 , p2 > 0 .

Claim 4. If Q is a projector such that ImQ and KerQ are invariant subspaces of A0 and

B0, respectively, then the transformation B(Q, x1, x2|x) does not increase the Poincaré rank

of M at any point.
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The proof is straightforward after observing that Q satisfies

QA0Q = QB0Q = 0 . (4.3)

We stress that the claim is also valid when one or both points are Fuchsian.

More explicitly, let {u1, . . . , um} span m-dimensional invariant space of A0. Suppose

that, among m-dimensional left invariant spaces of B0, there is one which allows for the

basis {v†1, . . . , v
†
m} satisfying

v†juk = δjk . (4.4)

Such a basis for m-dimensional left space exists iff the space does not contain a vector,

orthogonal to all u1, . . . , um. Then

Q =

m∑
k=1

ukv
†
k (4.5)

is the projector satisfying conditions of Claim 4.

Let us now consider the Q-balance between x1 and x2 with

Q =
∑

k∈S∪{k0}

u
(0)
k v†k (4.6)

where all notations are as in eq. (3.20) except that now v†k span some left-invariant space

of B0, but still satisfy v†ju
(0)
k = δjk.

Claim 5. Let M(x) has Laurent series expansion near x = 0 as in (3.1) with p > 0 and

that near x = x2 as in (4.2). Then the Q-balance between 0 and x2, eq. (2.6) with Q from

eq. (4.6) strictly diminishes the matrix rank of A0 and does not increase the Poincaré rank

at any other point.

In order to prove this claim, let us use the identities

PQ = Q , QP = P (4.7)

and

A0Q = A0P = 0 . (4.8)

These identities simply follow from the definitions of the projectors P and Q, eqs. (3.20)

and (4.6). Then

Ã0 = QA0+QA1Q = (Q+P)PA0+(Q+P)PA1P(P+Q) = (Q+P)[PA0+PA1P](P+Q) . (4.9)

The expression in square brackets is just the transformation of the leading coefficient gen-

erated by B(P, 0, x2|x). Taking into account that (Q + P) = (P + Q)−1, we see that the

transformed leading coefficient Ã0 after the transformation T1 = B(Q, 0, x2|x) coincides

with that after the transformation T2 = B(P, 0, x2|x)(P + Q) (Note that these transforma-

tions are nevertheless different, since T1 = (Q + P)T2). Then, the correctness of Claim 5

follows from that, on one hand, B(Q, 0, x2|x) satisfies conditions of Claim 4, and on the
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other hand the leading coefficient is transformed as though by the transformation which

is a product of B(P, 0, x2|x), satisfying conditions of Claim 2, and constant nonsingular

matrix (which does not change the rank of A0).

Similar modifications should also be made for the balances (3.32) used for the nor-

malization of the matrix residue eigenvalues. We simply replace in their definitions the

vectors v
(n1)†
1 and u

(n1)
1 with v† and u which are left and right eigenvectors of the matrix

B0, respectively, provided they satisfy v†u
(0)
1 = 1 and v

(0)†
1 u = 1.

Claim 6. Let M(x) has Laurent expansion near x = 0 as in (3.24) and that near x = x2 as

in (4.2). Let u and v† be the right and left eigenvectors of A0 and B0, respectively. Then

the B(uv†, 0, x2|x) increases by one the eigenvalue of A0, corresponding to u, and does not

increase the Poincaré rank at any point.

The proof is very similar to the previous case. Let now Q = uv† and P be defined

in (3.28) with u
(0)
1 = u. In addition to the identities (4.7) we use now

A0Q = λQ , A0P = λP . (4.10)

Then

Ã0=QA0+ A0Q+Q︸ ︷︷ ︸
∝Q=(Q+P)Q

+QA1Q = (Q + P)PA0 + (Q + P)(A0 + I)Q + (Q + P)PA1P(P + Q)

= (Q+P)PA0+(Q+P)(A0+I)P(P+Q)+(Q+P)PA1P(P + Q)

= (Q + P)[PA0 + A0P + P + PA1P](P + Q) , (4.11)

where in the last transition we used the identity PA0 = PA0(P+Q). Again, we see that the

expression in square brackets is just the transformation of the leading coefficient generated

by B(P, 0, x2|x). Since Ã0 is, up to a similarity, the same as in (3.30), the Proposition 1

proves the claim.

If the second point is also Fuchsian, this transformation simultaneously shifts in the

opposite direction the eigenvalue of the matrix B0, corresponding to v† and u, respectively.

Therefore, the process of normalization resembles balancing the scales, this is the reason

why we call the transformation (2.6) the balance.

Definition 5. We say that the Fuchsian point x1 can be balanced with the singular point

x2 6= x1 if at least one of the two conditions holds

1. there exist u and v†, right and left eigenvectors of A0 and B0, such that v†u = 1 and

the real part of the eigenvalue of A0, corresponding to u is less than −1/2.

2. there exist u and v†, right and left eigenvectors of B0 and A0, such that v†u = 1 and

the real part of the eigenvalue of A0, corresponding to v† is greater or equal than 1/2.

Here A0 and B0 are the matrix residues of the Laurent expansion of M(x) near x = x1 and

x = x2, respectively. More specific, we say x1 can be balanced with x2 via B(uv†, x1, x2|x)

or via B(uv†, x2, x1|x), depending on whether the first or second condition holds.
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Definition 6. We say that two Fuchsian points x1 and x2 6= x1 can be mutually balanced

if at least one of the two conditions holds

1. there exist u and v†, A0u = λu, v†B0 = µv†, such that <λ < 1/2, <µ > 1/2,

and v†u = 1.

2. there exist u and v†, B0u = λu, v†A0 = µv†, such that <λ < 1/2, <µ > 1/2,

and v†u = 1.

Here A0 and B0 are the matrix residues of the Laurent expansion of M(x) near x = x1 and

x = x2, respectively. More specific, we say that x1 and x2 can be mutually balanced via

B(uv†, x1, x2|x) or via B(uv†, x2, x1|x), depending on whether the first or second condition

holds.

The reason for these definitions is clear: if x1 can be balanced with some point, there

exists a balance which moves one eigenvalue of matrix residue in x = x1 towards the

interval [−1/2, 0). If the two points can be mutually balanced, there exists a balance

which moves one eigenvalue of matrix residue at x = x1 and that at x = x2 towards the

interval [−1/2, 1/2).

5 Reduction process

The transformations described in two previous sections give one much freedom in reducing

a given system to a Fuchsian form and in normalizing eigenvalues of the matrix residues

at Fuchsian points. Let us summarize the basic line of the reduction process in the form

of two algorithms.

Note that this algorithm assumes that all singular points of the system are regular, so

the transformation on line 13 can be always constructed. Let us comment on the condition

2 on line 5. This condition holds if it is possible to find an invariant subspace of the

matrix B0, which has a dual basis with {u(0)k , k ∈ S ∪ {l}}, see (4.6). It appears to be a

nontrivial task due to the complexity of the set of invariant spaces of an arbitrary matrix,

see, e.g. ref. [29]. However, one might try the subspace formed by the eigenvectors of B0,

and consecutively add vectors from the Jordan chain if needed. If these attempts fail,

one may simply go to line 10 with a penalty of possibly introducing an extra apparent

singularity. Given that at the next stage this singularity is likely to disappear, this is not

a real problem.

Next stage is described by the following algorithm

Though being very useful, the above algorithm does not necessarily give a canonical

form of M(x) in any sense. In particular, the outcome depends on the sequence of the pairs

of points chosen at a specific step. However, in many tested cases, this algorithm succeeds in

normalizing the system at all but one singular points, in particular, removing all apparent

singularities. As it was already mentioned, the possibility of removing all apparent points

is equivalent to the content of the 21st Hilbert problem. As proved by Bolibrukh [27],

this task is not always possible to complete and, therefore, the 21st Hilbert problem has a

negative solution. In his paper Bolibrukh presents an example of the system which can not
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be reduced to Fuchsian form without apparent singularities. We have checked, that our

algorithm indeed fails to reduce this system. At some step it appears to be not possible to

balance an apparent singularity with any other singular point due to the orthogonality of

the corresponding eigenvectors.

On the other hand in the same paper it was proved that for n = 2 the 21st Hilbert

problem can always be solved. For our setup, it translates to the statement that, given a

Fuchsian system of two equations, it is always possible to get rid of the apparent singu-

larities. Let us show that the tools developed in this section easily allow one to perform

this task, thus, giving a constructive proof of the statement. Our line of reasoning is very

simple: we show that it is always possible to shift the eigenvalues of the matrix residue in

the apparent singularity towards the interval [−1/2, 1/2) without introducing new appar-

ent points and increasing the pole order. The eigenvalues of the matrix residue in apparent

singularity should definitely be integer, otherwise, we may show that the point is not an

apparent singularity by normalizing the system at this point (possibly spoiling its form

in others) and calculating the monodromy from eq. (3.33). Moreover, when both eigen-

values are zero, the whole matrix should be zero. Then, in a finite sequence of shifts we

will eventually eliminate singularity. Eliminating singularities one by one, we obtain the

desired form.

Suppose x = 0 is the apparent singularity and A0 6= 0 is a 2× 2 matrix residue at this

point. Note that the differential system in Fuchsian form can not have only one singular

point, so we may rely on the existence of at least one singularity different from x = 0. If

both eigenvalues of A0 are nonzero and of the same sign, we may use the transformation

T = x
x−x2 I or T = x−x2

x I to raise or lower both eigenvalues. Here x2 is some other singular

point. Thus, we may restrict ourselves to the case when, say, one eigenvalue is negative

and the other one is non-negative. Suppose that A0 = diag(n1 < 0, n2 > 0). The right

eigenvector of A0, corresponding to n1 is u = (1, 0)†. Suppose, all left eigenvectors of matrix

residues at other singular points are orthogonal to u. Then, it is easy to show that the

general form of these matrix residues is
(
a b
0 a

)
. But this form is in obvious contradiction

with the requirement that the sum of all matrix residues is zero. This is because the

diagonal elements of this sum are n1 +
∑

i ai and n2 +
∑

i ai which can not be both zero.

Therefore, there is a left eigenvector v† of the matrix residue at some point x2, such that

v†u = 1 and x = 0 can be balanced with x = x2 via B(uv†, 0, x2|x).

6 Factoring out ε

So far, we described the constructions which are not specific to the systems depending

on parameter. However, the idea of their application to the reduction of the systems,

depending on ε, should be clear. First, we use algorithm 2 to reduce the system to Fuchsian

form. A necessary condition of existence of the ε-form (2.4) is that the eigenvalues of all

matrix residues have the form n+ αε, where n is integer. If this condition is not satisfied,

then the system definitely can not be transformed to the form (2.4). In this case one might

try some changes of variable.2 If the condition holds, one may pass to the algorithm 3 in

2Note that such a situation often happens for the integrals with massive internal lines. When passing

back to the original variable one encounters transformations, involving algebraic functions (in particular,

square roots).
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order to normalize eigenvalues of the matrix residue at all but one point x = x1, assuming ε

is sufficiently small (i.e., assuming n+αε belongs to the interval [−1/2, 1/2) only if n = 0).

If this step appears to be doable, the normalized eigenvalues are all proportional to ε. The

sum of the eigenvalues in x = x1 is also proportional to ε since the matrix residue at this

last point is simply minus the sum of the matrix residues at the normalized points (and

so the trace is minus sum of the traces). Then one should try to balance x = x1 in two

steps. First, shift down one of the positive unnormalized eigenvalues by means of balance

with some point x = x2, either singular or regular, and then mutually balance x1 and x2
shifting up one of the negative unnormalized eigenvalues of the matrix residue at x = x1.

Let us assume from now on that it appeared to be possible to secure by the above

method that the system is Fuchsian and normalized at all points. Then we have a system

∂xJ =
∑
k

Mk(ε)

x− xk
J , (6.1)

and the eigenvalues of all matrices Mk are proportional to ε. Clearly, this does not neces-

sarily mean that matrices Mk themselves are proportional to ε. If we had only one matrix

M1(ε), we could have factorized ε by making a transformation which transforms M1(ε)/ε

to Jordan form. In general case we need to find an x-independent transformation matrix

which simultaneously transforms all matrices Mk(ε) to the form εSk, where Sk are constant

matrices.3 Let T(ε) be such a matrix. Then we have

T−1(ε)
Mk(ε)

ε
T(ε) = Sk = T−1(µ)

Mk(µ)

µ
T(µ) . (6.2)

Multiplying this equation by T(ε) from the left and by T−1(µ) from the right, we obtain a

linear system

M1(ε)

ε
T(ε, µ) = T(ε, µ)

M1(µ)

µ
,

...

Mm(ε)

ε
T(ε, µ) = T(ε, µ)

Mm(µ)

µ
(6.3)

for the elements of the matrix T(ε, µ) = T(ε)T−1(µ). If the general solution of this system

(found routinely) determines an invertible matrix, the transformation we are looking for

can be chosen as T(ε) = T(ε, µ0), where µ0 is some arbitrarily chosen number, provided

T(ε, µ) is nonsingular at µ = µ0.

7 Using block-triangular form

The size n of the matrices M(ε, x) appearing in the differential equations for master integrals

may be quite large (∼ several tens). This may constitute computational complications

3Note that any x-dependent rational transformation necessarily has at least one singular point and

shifts the eigenvalues of the matrix residue in this point thus spoiling normalization. Normalization, in

turn, necessarily holds for the ε-form.
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Input : Matrix M(x) appearing in the right-hand side of the differential equation,

having zero Poincaré rank at all singular points.

Output: Transformation matrix T(x) transforming M(x) to M̃(x), such that M̃(x)

is normalized at as many points as possible.

1 begin

2 M̃←−M(x)

3 T←− identity matrix

4 Detect apparent singularities using the transformations (3.32)

5 Select a singular point x0 which is not an apparent singularity. If there are only

apparent singularities, let x0 be one of them.

6 while there is a pair of points which can be mutually balanced or there is a

point which can be balanced with x0 do

7 if there is a pair of singular points x1 and x2, which can be mutually

balanced then

8 Let x1 and x2 can be mutually balanced via T0.

9 M̃←− T−10 M̃T0 − T−10 ∂xT0

10 T←− TT0

11 else

12 Let x1 can be balanced with x0 via T0.

13 M̃←− T−10 M̃T0 − T−10 ∂xT0

14 T←− TT0

15 return T

Algorithm 3. Normalization.

for the transformations that we need. Fortunately, the very process of the derivation of

the differential equations, the IBP reduction, shows that M(ε, x) contains a lot of zeros.

Namely, the integral J1 may enter the right-hand side of the differential equation for the

integral J2 only if the graph corresponding to J1 can be obtained from that corresponding

to J2 by contraction of some edges. In particular, this means that the matrix M(ε, x) has

a block-triangular form with diagonal blocks corresponding to the integrals with a given

set of denominators (= integrals of a given sector).

Let us show that we can use this block-triangular form to essentially alleviate the

process of reduction. Suppose from now on that we have already reduced all diagonal

blocks of M(ε, x) to ε-form. Basically, the idea of further reduction is simple. In order to

reduce the pole order of the off-diagonal elements we redefine the integrals by adding some

suitable combination of the simpler integrals, similar to the approach of refs. [13, 14]. Let

us prove that it is always possible to make this redefinition in order to reduce the Poincaré

rank at a given point to zero without changing both the block-triangular structure of the

system and the Poincaré rank at other points. Therefore, it gives one a tool to reduce the

system to Fuchsian form.
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We prove by the induction over sectors. Without generality loss, we may assume that

we are interested in reducing the Poincaré rank to zero at x = 0.4 Suppose J1 is a column-

vector of master-integrals in a certain sector θ. By the induction hypothesis the differential

system for the integrals in the subsectors of θ already has zero Poincaré rank and thus no

master in the subsectors will not be changed at this and later steps. We can write the

differential system for J1 in the form

x∂xJ1 = εA(x)J1 + x−rB(ε)J2 + . . . , (7.1)

where J2 is the column-vector of the master integrals in the most complex subsector of

θ entering the right-hand side of the equation with singular coefficient, whose Laurent

expansion starts with x−rB(ε) with r > 0. By the assumption, A(x) is regular at x = 0.

Naturally, the number of entries in J1 and J2 is not required to be the same, so, in general,

B is a rectangular matrix. In eq. (7.1) the dots denote terms which are either nonsingular,

or contain integrals in the less complex sectors than the sector of J2, or contain integrals

J2 with coefficients less singular than x−r. The differential equation for J2 has the form

x∂xJ2 = εC(x)J2 + . . . , (7.2)

where C(x) is regular at x = 0. The dots denote contribution of the subsectors. Let us

make the substitution

J1 = J̃1 + x−rDJ2 , (7.3)

where D is a constant matrix. We have

x∂xJ̃1 = εA(x)J̃1 + x−r [B(ε) + rD + εA(x)D− εDC(x)] J2 + . . . . (7.4)

Therefore, in order to cancel x−r singularity, we need to find such D that

D +
ε

r
[A(0)D− DC(0)] = −1

r
B(ε) . (7.5)

This is a system of linear equations for the matrix elements of D. This system obviously

has a solution since the linear operator acting on D in the right-hand side is arbitrarily

close to unity. Note that this line of reasoning does not work when the diagonal blocks

are not in ε-form and/or when r = 0. Therefore, starting from the most complex integrals

in the right-hand side and from the highest poles in their coefficients, we can eliminate

singular coefficients in the right-hand side, step-by-step. Note that the substitution (7.3)

corresponds to the transformation generated by

T = I +
N
xr
, (7.6)

where N is a matrix whose nonzero elements coincide with the elements of D. It is easy to

see that N2 = 0, so that the inverse matrix has the form

T−1 = I− N
xr
. (7.7)

Therefore, this transformation is regular everywhere, except x = 0.

4In what follows, when speaking about singularity and Poincaré rank we often omit references to x = 0

for brevity.
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p1

p4p2

p3

Figure 1. Three-loop “XX-box” topology. Internal dashed lines denote massless propagators,

p21 = p22 = p23 = p24 = 0, (p1 + p2)2 = s, (p1 − p3)2 = t.

Now we may assume that we have a Fuchsian block-triangular matrix M(ε, x) such

that each diagonal block is in ε-form. Since the characteristic polynomial of this matrix

is a product of those of the diagonal blocks, the eigenvalues of M(ε, x) are proportional

to ε and we have a system of the form (6.1). In order to find a transformation matrix

T(ε) from (6.2), which, in addition, preserves the block-triangular form of M(x), we may

nullify in all elements of T(ε, µ), corresponding to zero elements of M(ε, x), before solving

the system (6.3).

8 Example

Let us demonstrate in some details how our method works for the master integrals in the

topology shown in figure 1. There are 28 master integrals shown in figure 2. We use an

experimental version of LiteRed, [30, 31], for the IBP reduction. Unfortunately, due to

the complexity of the IBP reduction, we have not been able to obtain starting differential

equations for the 3 master integrals in the highest sector, shown in the last row, so we had

to limit ourselves to the differential equations for 25 master integrals J = (J1, . . . , J25)
T .

They depend nontrivially on the dimensionless variable x = t/s. The differential system

has the form (1.1) where the explicit form of the matrix M(ε, x) is not presented here

to save space and to avoid cluttering. There are three singular points of the system,

x = 0,−1,∞. Note that these points correspond to the conditions t = 0, u = 0, and

s = 0, respectively. Nontrivial diagonal blocks of M have indices {9, 10}, {11, 12}, {16, 17},
{18, 19}, {20, 21, 22}, {23, 24, 25}. Let us explain how our algorithm works on the example

of the block spanned by indices {23, 24, 25}. It has the form

M{23−25}(ε, x) = A(ε)/x+ B(ε)/(x+ 1) , (8.1)

where

A(ε) =


−ε− 1 0 − ε+1

5ε+1

2(4ε+ 1)(5ε+ 1) −3ε− 1 2(ε+ 1)
(2ε+1)(4ε+1)(5ε+1)

ε+1 0 5ε+ 1

 , B(ε) =


3ε − ε

5ε+1
ε+1
5ε+1

0 −ε− 1 −2(ε+ 1)

0 − ε(2ε+1)
ε+1 −ε

 .

(8.2)

Since M{23−25}(ε, x) already has a Fuchsian form, we skip steps described in algorithm 2

and pass to the algorithm 3. From now on let us denote the matrix residue at infinity
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J1 J2 J3 J4 J5 J6 J7 J8

J9 J10 J11 J12 J13 J14 J15 J16 J17

J18 J19 J20 J21 J22 J23 J24 J25

J26 J27 J28

Figure 2. Master integrals of the topology in figure 1. Integrals J26−28 are determined with the

help of Mint.

as C(ε),

C(ε) = −A(ε)− B(ε). (8.3)

The eigenvalues of the matrices A, B, and C are, respectively

A : {−3ε− 1, ε, 3ε} , B : {3ε, ε,−3ε− 1} , C : {−4ε− 1, 1, 2ε+ 2} . (8.4)

As it should be, the sum of all eigenvalues is zero. The right and left eigenvectors of the

matrices A and C, corresponding to the eigenvalues −3ε− 1 and 2ε+ 2, respectively, are

u = (0, 1, 0)T , v† = (−2(1 + 5ε), 1, 0) . (8.5)

Since v†u=1 6= 0, the points x=0 and x=∞ can be mutually balanced via B(uv†, 0,∞, x).

After the transformation we have the same form (8.1) with

A(ε)=


ε− 1 − ε

5ε+1
−ε−1
5ε+1

40ε2 − 2ε− 2 −5ε −2ε− 2
(2ε+1)(5ε+1)(6ε+1)

ε+1 − ε(2ε+1)
ε+1 5ε+ 1

 , B(ε)=


−ε ε

5ε+1
ε+1
5ε+1

20ε+ 4 3ε− 1 6ε+ 6

−4ε(2ε+1)(5ε+1)
ε+1

ε(2ε+1)
ε+1 −ε

 .

(8.6)

The eigenvalues of A, B, and C are now

A : {−3ε, ε, 3ε} , B : {3ε, ε,−3ε− 1} , C : {−4ε− 1, 1, 2ε+ 1} . (8.7)

Note that a pair of eigenvalues has been shifted towards the interval [−1/2, 1/2). Now

the right and left eigenvectors of the matrices B and C, corresponding to the eigenvalues

−3ε− 1 and 2ε+ 1, respectively, are

u = (0, ε+ 1,−ε)T , v† = ((5ε+ 1)(8ε+ 3),−3ε− 1, 2ε+ 2) . (8.8)
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Again, v†u 6= 0, therefore, we can mutually balance x = −1 and x = ∞ via B(uv†/(v†u),

−1,∞, x). After the transformation we have the form (8.1) with

A(ε) =


ε− 1 − ε

5ε+1
− ε+1

5ε+1

2(4ε− 1)(5ε+ 1) −5ε −2(ε+ 1)

(2ε+1)(5ε+1)(6ε+1)
ε+1

− ε(2ε+1)
ε+1

5ε+ 1

 , B(ε) =


−ε ε

5ε+1
ε+1
5ε+1

−32ε2 − 6ε ε(21ε+4)
5ε+1

(ε+1)(16ε+3)
5ε+1

−88ε3−48ε2−6ε
ε+1

ε(34ε2+17ε+2)
(ε+1)(5ε+1)

−11ε2−2ε
5ε+1

 .

(8.9)

The eigenvalues of A, B, and C are

A : {−3ε, ε, 3ε} , B : {3ε, ε,−3ε} , C : {−4ε− 1, 1, 2ε} . (8.10)

Now the system is normalized at x = 0 and x = −1, but not in x = ∞. In order

to normalize the system at all points, we need to perform intermediate transformation

moving one unnormalized eigenvalue to another point. In particular, we may use the right

and left eigenvectors of the matrices C and B, corresponding to the eigenvalues −4ε − 1

and ε, respectively, which are

u = (0, ε+ 1, 4ε+ 1)T , v† = (−16ε− 3, 1, 0) , (8.11)

and make the transformation B(uv†/(v†u),∞,−1, x). After the transformation we have

A(ε) =


ε− 1 − ε

5ε+1
− ε+1

5ε+1

2(4ε− 1)(5ε+ 1) −5ε −2(ε+ 1)

(2ε+1)(5ε+1)(6ε+1)
ε+1

− ε(2ε+1)
ε+1

5ε+ 1

 , B(ε) =


3(5ε+ 1) − 4ε+1

5ε+1
ε+1
5ε+1

2(4ε+ 1)(19ε+ 4) −7ε− 3 2(ε+ 1)

− (4ε+1)(118ε2+29ε+1)
ε+1

8ε(4ε+1)
ε+1

−7ε− 1

 .

(8.12)

The eigenvalues of A, B, and C are

A : {−3ε, ε, 3ε} , B : {3ε, ε− 1,−3ε} , C : {−4ε, 1, 2ε} . (8.13)

Now it is easy to check that x = −1 and x =∞ can be mutually balanced via B(uv†/(v†u),

−1,∞, x), where

u = (0, ε+ 1, 4ε+ 1)T , v† = (−2(6ε+ 1), 1, 0) (8.14)

are the corresponding eigenvectors of B and C. After that we have

A(ε) =


ε− 1 − ε

5ε+1 − ε+1
5ε+1

2(4ε− 1)(5ε+ 1) −5ε −2(ε+ 1)

(2ε+1)(5ε+1)(6ε+1)
ε+1 − ε(2ε+1)

ε+1 5ε+ 1

 ,

B(ε) =


3ε+ 1 ε

5ε+1
ε+1
5ε+1

2(2ε+ 1)(6ε+ 1) ε(17ε+3)
5ε+1

2(ε+1)(6ε+1)
5ε+1

− (3ε+1)(6ε+1)(8ε+1)
ε+1

ε(3ε+1)(6ε+1)
(ε+1)(5ε+1) −

27ε2+10ε+1
5ε+1


(8.15)
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with the eigenvalues

A : {−3ε, ε, 3ε} , B : {3ε, ε,−3ε} , C : {−4ε, 0, 2ε} . (8.16)

At this stage we have succeeded to normalize all matrix residues A, B, and C. Finally, we

solve the system of linear equations

A(ε)

ε
T = T

A(µ)

µ
,

B(ε)

ε
T = T

B(µ)

µ
(8.17)

with respect to the matrix elements of T. We obtain

T(ε, µ) =


(ε+ 1)µ(5µ+ 1) 0 0

−2(ε+ 1)(ε− µ)(5µ+ 1) ε(ε+ 1)(5µ+ 1) 0

(7ε+ 1)(ε− µ)(5µ+ 1) −ε(ε− µ) ε(5ε+ 1)(µ+ 1)

 (8.18)

up to an arbitrary factor. We can now put µ to any constant number provided T remains

invertible (in particular, we can not put µ to 0, −1, or −1/5). We choose µ = 1. Making

the transformation with T(ε, 1) we finally obtain the desired ε-form:

M{23−25}(ε, x) = ε


4

x+1 − 1
6x(x+1) −

1
3x(x+1)

6(13x+6)
x(x+1) −

5(x+3)
3x(x+1)

2(x−6)
3x(x+1)

−63(x−1)
x(x+1)

5x−9
6x(x+1) −

x−18
3x(x+1)

 . (8.19)

At this stage one may want to make yet another transformation with a constant matrix,

which reduces one of the matrix residues to diagonal form. E.g., we can take the matrix,

transforming A to diagonal form

T =

 1 1 1

24 12 12

−3 −15 −9

 . (8.20)

The resulting matrix has a somewhat simpler form:

M{23−25}(ε, x) = ε


− x+3
x(x+1) 0 1

3(x+1)

0 2x+3
x(x+1)

8
3(x+1)

5
x+1

2
x+1

1
x

 . (8.21)

In a similar way we reduce all diagonal blocks to ε-form. Finally, using the approach

of section 7, we obtain the system

∂xJ̃ = ε

[
S1
x

+
S2

x+ 1

]
J̃ , (8.22)

where S1 and S2 are presented in the appendix. To avoid clutter, we do not present here

the transformation matrix T. Both this matrix and the original form of the system are

available upon request from the author.
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9 Conclusion

We have presented a practical algorithm of the reduction of differential system to ε-form.

The main tool of our approach is the transformation (2.6) which we call balance. We have

shown how to construct a balance which does not increase the Poincaré rank of the system

at any point on the extended complex plane. Moreover, we have shown how to construct

the balances which can be used to lower the Poincaré rank p at the point with p > 0 and

to normalize the eigenvalues of the matrix residue at the point with p = 0. The reduction

to ε-form can be divided into three stages

1. Reduction to Fuchsian form, algorithm 2.

2. Normalizing eigenvalues, algorithm 3.

3. Factoring out ε, section 6.

We have also shown how to use the block-triangular form of the system to alleviate com-

putation. Namely, we first apply the above three step to each diagonal block and find

the corresponding matrices Ti transforming each block to ε-form. After the block-diagonal

transformation T = diag(T1,T2, . . .) the diagonal blocks of the transformed system are in

ε-form. Then we use prescriptions of section 7 and, finally, factor out ε from the whole

system. The latter can be done in such a way as to preserve the block-diagonal structure

of the system, as explained in the end of section 7.

There may be obstructions to the construction of the appropriate balance due to the

orthogonality of the left and right eigenvectors. However, the appearance of obstructions

is expected due to the negative solution of the 21st Hilbert problem by Bolibrukh [27]. For

a Fuchsian system with normalized eigenvalues we have shown how to find the constant

transformation reducing the system to ε-form. We have successfully applied our method

to the reduction of several differential systems. We have also checked that for the case of

three-loop all-massive sunrise propagator master integrals the obstruction to the reduction

appears. This obstruction naturally corresponds to the fact that these master integrals can

not be expressed in terms of harmonic polylogarithms [32].

The example presented in section 8 did not require the reduction of the system to

Fuchsian form, as described by algorithm 2, since all diagonal blocks have been already

in Fuchsian form. Though it may be considered as a poor choice of the example, we

underline, that the reduction to a Fuchsian form can, in principle, be done solely by means

of the Barkatou & Pflügel algorithm [24, 25]. Thus, a demonstration of the viability of our

algorithm for this stage is not very crucial. On the other hand, the system (8.1) is not

of the form assumed in refs. [14, 21] and, therefore, its reduction to ε-form with the tools

developed in the present paper seems to be quite expository.

Finally, we note that, though it is possible to make the reduction manually, it is very

desirable to automatize the process as much as possible. A dedicated Mathematica package

is being developed now and will be presented elsewhere.
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Note added in proof. After this paper has been finished, lecture notes on differential

equations method by Henn [33] have been published. These lecture notes contain extended

review of the approach of ref. [9]. In particular, the choice of the integrals with homogeneous

transcendental weight is discussed in detail.

A The form of matrices S1 and S2.

S1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −6 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

0 0 0 0 0 −6 0 −12 0 0 2 0 0 0 0 0 0 0 0 −3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2

0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 −3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



,

S2 =



−3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−2 0 0 1 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2
3

0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−6 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 4
3

− 2
3

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2
3

− 1
3

0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 −2 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 −9 −6 0 0 0 0 0 0 0 0

−36 0 0 18 −3 0 −72 0 0 0 0 0 0 0 0 12 9 0 0 0 0 0 0 0 0

0 0 0 −4 4 0 0 12 0 0 0 0 0 0 0 0 0 2 −2 0 0 0 0 0 0

0 0 0 −4 2 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 −12 0 0 0 3
25

0 0 0 0 0 0 0 0 7
6

− 1
2

1
3

0 0 0

− 24
25

80
7

0 −4 0 − 78
5

−36 −36 16 16 127
15

158
75

0 0 0 0 0 0 0 − 5
2

− 7
2

1 0 0 0

− 306
5

60
7

0 2 0 − 54
5

−48 −48 12 12 658
75

22
75

0 0 0 0 0 0 0 − 10
3

−2 1
3

0 0 0

0 0 0 0 − 11
27

− 5
6

1
2

− 29
36

0 0 0 0 − 1
2

17
72

5
36

0 − 1
36

1
24

29
216

0 0 0 2 0 1
3

0 − 10
9

− 65
9

0 5
9

5
3

−10 0 0 0 0 0 − 25
3

5
3

5
9

4
3

5
9

5
9

0 0 0 0 0 −1 8
3

0 35
36

5
36

5
18

5
36

− 13
6

− 27
2

49
72

0 0 0 0 − 35
6

− 145
72

− 5
36

2 43
36

145
432

− 25
36

0 0 0 5 2 0



.

– 24 –



J
H
E
P
0
4
(
2
0
1
5
)
1
0
8

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams

calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

[2] A.V. Kotikov, Differential equations method: The Calculation of vertex type Feynman

diagrams, Phys. Lett. B 259 (1991) 314 [INSPIRE].

[3] A.V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams,

Phys. Lett. B 267 (1991) 123 [INSPIRE].

[4] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997)

1435 [hep-th/9711188] [INSPIRE].

[5] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl.

Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

[6] F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group

Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

[7] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate

β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[8] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations,

Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

[9] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.

110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[10] J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point

integrals from a Knizhnik-Zamolodchikov equation, JHEP 07 (2013) 128 [arXiv:1306.2799]

[INSPIRE].

[11] J.M. Henn and V.A. Smirnov, Analytic results for two-loop master integrals for Bhabha

scattering I, JHEP 11 (2013) 041 [arXiv:1307.4083] [INSPIRE].

[12] J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar

diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].

[13] S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014)

114 [arXiv:1404.2922] [INSPIRE].

[14] T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals

for qq → V V , JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].

[15] A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three Loop Cusp Anomalous

Dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].

[16] S. Di Vita, P. Mastrolia, U. Schubert and V. Yundin, Three-loop master integrals for

ladder-box diagrams with one massive leg, JHEP 09 (2014) 148 [arXiv:1408.3107]

[INSPIRE].
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[24] M.A. Barkatou and E. Pflügel, On the Moser-and super-reduction algorithms of systems of

linear differential equations and their complexity, J. Symbolic Comput. 44 (2009) 1017.
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