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1 Introduction

Holographic techniques have recently been applied to probe novel phases of matter and

materials whose unconventional behavior is tied to strong coupling, and is therefore poorly

understood. In turn these efforts have led to the discovery of new classes of gravitational

solutions and instabilities, hinting at a rich structure of infrared (IR) phases. We have

seen the emergence of vacua characterized by a number of broken symmetries, and scaling

geometries that incorporate a dynamical critical exponent and hyperscaling violation, an

anomalous scaling of the free energy. There is a program under way to classify such solu-

tions and to understand how they might arise via renormalization group (RG) flow from an

ultraviolet (UV) CFT. Bottom-up gravitational models have been used to generate a variety

of these systems. Top-down models have then served as a concrete framework for testing

these ideas, confirming many of the features observed in the bottom-up constructions, and

giving insight into the competition between different phases.
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In this paper we shall work with a non-supersymmetric but consistent truncation of the

newly discovered one-parameter family of inequivalent N = 8 gauged SO(8) supergravities.

The N = 8 supergravities are characterized by a real parameter ω that lies in the range

0 ≤ ω ≤ π/8 [1, 2]. The non-supersymmetric truncation we shall consider was previously

studied in [3] as a certain SO(4)-invariant truncation of the standard [4] undeformed N = 8

theory (it was called the SO(4)′ truncation in [3]). The truncation involves setting to zero

certain scalar fields that play a role in restricting the range of inequivalent values of the

ω parameter in the deformed N = 8 theory, and in fact after the truncation it turns out

that the range of ω for inequivalent theories is extended to 0 ≤ ω ≤ π/4. When ω = 0 the

truncated theory can, of course, be obtained as a truncation of the dimensional reduction of

eleven-dimensional supergravity on a seven-dimensional sphere, since the latter gives rise to

the standard ω = 0 supergravity. On the other hand, the ω = π/4 truncated theory can be

obtained via a reduction from eleven-dimensions on a seven-dimensional Sasaki-Einstein

manifold [5]. The higher-dimensional origin of the general ω-deformed theories, and in

particular, whether they can be embedded in eleven dimensions, is still not understood

(see [2] for a discussion).

The truncation we consider here retains a U(1) gauge field and three scalars, of which

two are neutral and one charged. The ω-deformation parameter controls the couplings of

the scalars to the gauge field, and also the structure of the scalar potential. We shall choose

the form of the gauge field so that the (2+1) dimensional UV CFT is at finite density, with

chemical potential µ and magnetic field B, and then examine the possible ground states of

the theory. Throughout the paper our main interest will be in a further truncation of the

system in which only one of the neutral scalars is retained. When the charged scalar field

is also set to zero it is straightforward to construct numerically solutions both at zero and

at non-zero temperatures, and to examine their properties as one varies the magnetic field

and temperature in the system.

As we shall see, the behavior of the ω-deformed black holes is highly sensitive to the

strength of the magnetic field. Depending on |B|, as T → 0 the IR geometry will approach

either a dyonic AdS2 × R2 or a solution exhibiting hyperscaling violation and Lifshitz-

like scaling. For the latter the dynamical critical exponent and the hyperscaling violating

exponent are, respectively, z = 3/2 and θ = −2, independent of the value of the ω parameter

because of the particular structure of the gauge coupling and scalar potential.1 When the

magnetic field lies within a certain range, the thermodynamically preferred black hole

solutions will jump between branches that have different IR behaviors as the temperature

is changed. This transition will then give rise to a sudden jump in the magnetization of

the system, resulting in (a line of) first order metamagnetic phase transitions. The latter

will eventually end at a critical point — where the phase transition becomes second-order

or higher — when the magnetic field is tuned to a particular critical value. Metamagnetic

1There could also be purely hyperscaling violating solutions (z = 1) for which the electric and magnetic

fields are perturbatively small, as in the neutral solutions of [6] and [7] (also see [8] for an investigation of

scaling solutions in gauged supergravity). Moreover, our theory could allow for scaling solutions supported

by the charged scalar field (or a combination of the neutral and charged scalars), as in the cases studied

in [9]. For such solutions the scaling exponents z and θ could depend on the ω-deformation parameter.
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transitions of this type occur in a variety of materials, including rare earth and transition

metals and strongly correlated electron systems. Holographic studies of metamagnetism

have appeared in [10–13]. Here we will follow closely the analysis of [13], which corresponds

to ω = π/4 in our construction. Finally, when the black holes are cooled down to zero

temperature, they become dyonic domain-wall solutions interpolating between AdS4 in

the UV and the two types of IR geometries that we just described. In particular, when

the deep IR is AdS2 × R2, the system exhibits either paramagnetism or diamagnetism

depending on the value of B. Interestingly, for certain choices of ω the magnetic field can

be tuned so that the system will go from being paramagnetic to diamagnetic, within the

same thermodynamically preferred branch.

The well-known extensive zero temperature entropy associated with AdS2×R2 suggests

that the latter should not describe — generically — the true ground state of the system.

Rather, one expects the corresponding black holes to suffer from instabilities at sufficiently

low temperatures, leading to the formation of new phases. In the extremal geometry,

such instabilities would be signaled by the existence of tachyonic modes violating the

Breitenlöhner-Freedman (BF) bound for AdS2. Indeed, in the theories we are considering

the charged scalar field can condense, spontaneously breaking the U(1) symmetry and

triggering a superfluid instability as in [14–16]. Towards the end of the paper we shall

study the onset of this instability in a limit in which the scalar does not back react on the

geometry. In particular, we shall determine the critical temperature at which the instability

sets in, and how it depends on the value of the magnetic field. When B < 0, we shall see

that the charged scalar stops condensing when the field reaches a sufficiently large value,

consistent with the Meissner effect. On the other hand, for B > 0 the instability will

stop only when the thermodynamically preferred black hole background is hyperscaling-

violating in the IR. The asymmetry between positive and negative values of B is generic

for the ω-deformations of the ω = 0 theory. In an appropriate range of values for B, we

also expect to find spatially modulated instabilities — hinting at the presence of striped

phases — which are well known to be associated with geometries with an IR AdS2 × R2

description [17–20]. Indeed, striped phases have been experimentally observed to compete

with superconductivity in e.g. certain high Tc superconductors [21]. We shall discuss briefly

the range in which we expect spatially modulated instabilities to be present and possibly

dominate over the superfluid phase, and leave a more detailed analysis to future work.

Finally, we should mention that the truncations of the ω-deformed theories that we are

considering in this paper also admit new AdS4 vacua. These have linearized instabilities

within the the full SO(4)′ truncation, resulting from the occurrence of scalar flucuations

whose masses lie below the Breitenlöhner-Freedman bound. In one of the new AdS4 vacua

there is a single such unstable mode, and the associated scalar could in fact itself be

consistently truncated, leaving a stable AdS4 solution of the further-truncated theory. It

would be interesting to construct domain-wall geometries which interpolate between two

AdS4 fixed points, along the lines of [22, 23]. Moreover, given the structure of the scalar

potential and gauge couplings in our truncation — and in particular, the fact that they

generically give rise to hyperscaling violating solutions — we wonder whether there may be

some overlap with the construction of [24], where the intermediate geometry was associated

– 3 –



J
H
E
P
0
4
(
2
0
1
5
)
0
7
4

with a scaling regime. We leave these questions to future work.

The outline of the paper is as follows. section 2 introduces the truncation we shall

work with, and the relevant equations of motion, while section 3 describes the geometries

that arise in the IR. In section 4 we discuss the thermodynamics and construct numerically

the dyonic black hole solutions of the theory. We focus on the behavior of the free energy

and magnetization as a function of temperature. In section 5 we cool down our dyonic

black hole solutions to temperatures of order T/µ ∼ 10−5 and describe properties of the

resulting geometries. We expect these to describe to a very good approximation domain-

wall solutions, which of course have zero temperature. We analyze superfluid instabilities

triggered by the condensation of the charged scalar field in section 6, and discuss the

competition with striped phases. Concluding remarks are relegated to section 7. Finally,

appendix A contains a brief discussion of the duality rotation one can perform in the theory,

while appendix B contains a description of new AdS4 vacua together with a linearized

stability analysis.

2 Non-supersymmetric ω-deformed truncation

In this paper we shall study a theory obtained from the ω-deformed N = 8 gauged su-

pergravity by first performing a consistent truncation to an SO(4)-invariant subsector of

the SO(8) gauged supergravity. This truncation, referred to as the SO(4)′-invariant theory

in [3], can be described conveniently in the symmetric gauge, where the E7/SU(8) scalar

coset representative of the SO(8) gauged theory is parameterised as

V = exp

(
0 − 1

2
√

2
φijk`

− 1
2
√

2
φmnpq 0

)
, (2.1)

where φijk` are complex scalar fields, totally antisymmetric in the rigid SU(8) indices, and

obeying the complex self-duality constraint

φijk` =
1

4!
εijk`mnpq φ

mnpq . (2.2)

Note that in the symmetric gauge SU(8) and SO(8) indices are identified. Introducing

coordinates xi on R8, the 35 complex scalar fields can be written as

Φ =
1

4!
φijk`dx

i ∧ dxj ∧ dxk ∧ dx` . (2.3)

The truncation to the SO(4)′-invariant subsector is described in detail in section 6 of

reference [3]. For our purposes it is convenient to view the R8 introduced above as C4,

with complex coordinates defined by

z1 = x1 + ix3 , z2 = x2 + ix4 , z3 = x5 + ix7 , z4 = x6 + ix8 . (2.4)
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The SO(4)′-invariant truncation in [3], which retains six real scalar fields that we shall

parameterise as (λ0, x, ρ, χ, λ4, λ5), is then given by

Φ = − λ0

8
√

3
dzα ∧ dzβ ∧ dz̄α ∧ dz̄β +

x

16
εαβγδ dz

α ∧ dzβ ∧ dz̄γ ∧ dz̄δ

+
ρ

4

[
eiχ dz1 ∧ dz2 ∧ dz3 ∧ dz4 + c.c

]
+

1

48

[
(λ4 + iλ5) εαβγδ dz

α ∧ dzβ ∧ dzγ ∧ dz̄δ + c.c
]
. (2.5)

Note that the SO(4)′ symmetry is contained within the SU(4) that acts on C4, and so it

preserves not only the SU(4) invariants δαβ̄ , εαβγδ and εᾱβ̄γ̄δ̄ of complex geometry but also

δαβ and δᾱβ̄ . Thus we do not need to distinguished between barred and unbarred indices

in the expression (2.5) for Φ, which is SO(4)′-invariant but not SU(4)-invariant.

There is just a single U(1) gauge symmetry that commutes with SO(4)′, namely the

U(1) factor in the U(4) = SU(4) × U(1) that acts on C4. The surviving gauge field Aµ is

embedded within the original 28 gauge fields AIJµ of SO(8) as

1

2
AIJµ dx

I ∧ dxJ =
i

2
Aµ dz

α ∧ dz̄α . (2.6)

We can equivalently express the embedding of the gauge file as

AIJµ = Aµ(σ0 ⊗ iσ2 ⊗ σ0)IJ . (2.7)

It is evident from (2.6) that the charges of the remaining fields under the residual

U(1) gauge symmetry are proportional to (n − n̄), where n and n̄ count the number of

holomorphic and anti-holomorphic coordinate differentials dzα and dz̄α in their expansions

as differential forms in C4. Normalising the charges to be Q = 1
2(n− n̄), we see from (2.5)

that the scalars λ0 and x are uncharged; ρeiχ describes a complex scalar with charge 2 and

(λ4 + iλ5) describes a complex scalar of charge 1.

With these charge assignments we see that we can make a further consistent truncation

in which we set

λ4 = λ5 = 0 , (2.8)

since retained fields with charges 0 and ±2 can never act as sources for fields of charge ±1.

In terms of the notation in section 6 of [3], where the scalar fields in the SO(4)′-invariant

truncation were denoted by (λ0, λ1, λ2, λ3, λ4, λ5), the four scalars (σ, x, ρ, χ) that we are

retaining correspond to

λ0 = σ , λ1 =

√
3

2
(x− ρ cosχ) , λ2 = ρ sinχ , λ3 =

1

2
(3x+ ρ cosχ) . (2.9)

Having obtained the form of the scalar 56-bein V for the consistent truncation we are

considering, it is a mechanical, if somewhat involved, procedure to substitute it into the

expressions given in [2] for the various terms in the Lagrangian of the ω-deformed N = 8

gauged supergravity. We find that the ω-deformed scalar potential is given by

V = −f(R, x, ρ) cos2 ω − f(R−1, x, ρ) sin2 ω , (2.10)
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where

f =
3

4
g2R−1 (cosh 2x+ 3) + 3g2R coshx cosh ρ− 1

2
g2R3 sinh2 ρ , (2.11)

and we have also defined

R = e−σ/
√

3 . (2.12)

The scalar kinetic terms are constructed as − 1
48A

ijk`
µ Aµijk`, where Aijk`µ is given by [2]

DµV V−1 = − 1

2
√

2

(
0 Aijk`µ

Aµ ijk` 0

)
. (2.13)

The SO(8) gauged covariant derivative of the scalar coset is defined as

Dµu IJ
ij = ∂µu

IJ
ij − 1

2
Bkµ iu

IJ
kj − 1

2
Bkµ ju

IJ
ik − g(AKIµ u JK

ij −AKJµ u IK
ij ) , (2.14)

where 1
2B

i
j is the composite SU(8) connection and is determined by requiring that (2.13)

hold. Plugging in the ansatz, we obtain

e−1Lkin = −1

2
(∂ρ)2 − 1

2
sinh2 ρ (∂χ− 2gA)2 − 1

2
(∂σ)2 − 3

2
(∂x)2 . (2.15)

The kinetic term of the U(1) gauge field is given by

e−1LF = −
(e√3σ cosω − i sinω

cosω − ie
√

3σ sinω
F+µνF+

µν + h.c.
)

= −U(σ)FµνFµν −W (σ)Fµν ∗Fµν , (2.16)

with the gauge kinetic couplings taking the form

U(σ) =
1

cosh
√

3σ − cos 2ω sinh
√

3σ
, W (σ) =

sin 2ω sinh
√

3σ

cosh
√

3σ − cos 2ω sinh
√

3σ
. (2.17)

Combining the ingredients above, the bosonic Lagrangian for our system becomes

L = − 1

2
(∂ρ)2 − 1

2
sinh2 ρ (∂χ− 2gA)2 − 1

2
(∂σ)2 − 3

2
(∂x)2

− U(σ)FµνFµν −W (σ)Fµν ∗Fµν − V (σ, x, ρ) , (2.18)

with the scalar potential given by

V = −3g2

[
1

4
eσ/
√

3 (cosh 2x+ 3) + e−σ/
√

3 coshx cosh ρ− 1

6
e−3σ/

√
3 sinh2 ρ

]
cos2 ω

−3g2

[
1

4
e−σ/

√
3 (cosh 2x+ 3) + eσ/

√
3 coshx cosh ρ− 1

6
e3σ/

√
3 sinh2 ρ

]
sin2 ω . (2.19)

Notice that when x = ρ = 0 the entire ω-dependence drops out of the scalar potential.

There is still, however, ω-dependence in the coupling of the scalar field σ to the gauge field

kinetic terms.

– 6 –
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It is important to establish the range of the deformation parameter ω that characterises

inequivalent theories. In the full N = 8 gauged supergravity, one can see that each value of

ω in the line interval 0 ≤ ω ≤ π/8 describes an inequivalent theory [1, 2]. As is discussed

there in detail, there is a symmetry under ω → ω + π/2, under which certain scalar fields

undergo sign reversal transformations. There is also a symmetry under ω → −ω, combined

with a parity reversal. These two symmetries alone would imply that inequivalent theories

would correspond to points in the line interval 0 ≤ ω ≤ π/4. However there is also another

rather more subtle symmetry in the N = 8 theory, under the translation ω → ω + π/4 [2].

This symmetry requires making phase transformations of some of the (complex) scalar

fields. It is this symmetry, combined with ω → −ω, that results in the 0 ≤ ω ≤ π/8 interval

for inequivalent N = 8 theories. In the truncation that we are making, the imaginary parts

of some of the complex scalars of the original N = 8 theory are set to zero. In particular,

we have the real scalar field σ that is retained in the truncation. As a consequence, it is no

longer possible to implement the required complex phase transformations on the retained

fields that would compensate the translation ω → ω+π/4. The upshot is that the interval

of ω corresponding to inequivalent theories in the truncations we are considering here is

0 ≤ ω ≤ π

4
. (2.20)

Note that one can indeed see from the gauge-field kinetic terms given by (2.16) and (2.17)

that the theory with ω = π/4 is inequivalent to the theory with ω = 0.

Finally, the equations of motion following from (2.18) are

� ρ = sinh ρ cosh ρ (∂χ− 2gA)2 +
∂V

∂ρ
,

�σ =
∂V

∂σ
+
∂U

∂σ
FµνFµν +

∂W

∂σ
Fµν ∗Fµν , �x =

1

3

∂V

∂x
,

0 = ∇µ
(

sinh2 ρ (∂µχ− 2gAµ)
)
,

0 = ∇µ
(
U(σ)Fµν +W (σ) ∗Fµν

)
+
g

2
sinh2 ρ (∂νχ− 2gAν) ,

Rµν =
1

2
∂µρ∂νρ+

1

2
∂µσ∂νσ +

3

2
∂µx∂νx+

1

2
sinh2 ρ (∂µχ− 2gAµ)(∂νχ− 2gAν)

+2U(σ)

(
FµρF

ρ
ν −

1

4
F 2 gµν

)
+

1

2
V gµν . (2.21)

2.1 Restricting to two scalar fields

In the ω-deformed theories discussed above it is consistent to set the neutral scalar field x

to zero and retain only σ and the charged scalar field ρ e iχ. Moreover, for the cases we will

consider2 the gauge choice ∇µAµ = 0 allows to set the phase χ to zero. With x = χ = 0

2When χ = 0, the third equation in (2.21) becomes ∇µ(sinh ρ2Aµ) = Aµ ∂
µ(sinh ρ2)+sinh ρ2∇µAµ = 0.

For a gauge field with Ar = 0 (as it will be for us) this is satisfied when ρ = ρ(r) and ∇µAµ = 0. This is no

longer true if ρ depends on all coordinates. However, we will ultimately focus on linearized perturbations

of ρ, i.e. ρ = ρ̄ + δρ(t, r, x, y), with the leading order value being ρ̄ = 0. To linear order in δρ, it is still

consistent to set χ = 0 with the gauge choice ∇µAµ = 0 .

– 7 –
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and ∇µAµ = 0, the equations of motion become

�ρ = 4g2 sinh ρ cosh ρA2 +
∂V

∂ρ
,

�σ =
∂V

∂σ
+
∂U

∂σ
FµνFµν +

∂W

∂σ
Fµν ∗Fµν ,

0 = ∇µ
(
U(σ)Fµν +W (σ) ∗Fµν

)
− g2 sinh2 ρAν ,

Rµν =
1

2
∂µρ∂νρ+

1

2
∂µσ∂νσ + 2g2 sinh2 ρAµAν

+2U(σ)

(
FµρF

ρ
ν −

1

4
F 2 gµν

)
+

1

2
V gµν , (2.22)

where the scalar potential depends on the ω-deformation through

V = −3g2

[
eσ/
√

3 + e−σ/
√

3 cosh ρ− 1

6
e−
√

3σ sinh2 ρ

]
cos2 ω

−3g2

[
e−σ/

√
3 + eσ/

√
3 cosh ρ− 1

6
e
√

3σ sinh2 ρ

]
sin2 ω . (2.23)

Again, notice that the ω-dependence cancels when ρ = 0.

2.1.1 Domain-wall and black hole ansatz

We conclude this section with the particular background ansatz which will be convenient

for studying domain-wall and black hole solutions in the rest of the paper. We take the

background to be given by

ds2 = −e−β(r)f(r)dt2 +
dr2

f(r)
+ r2d~x2 ,

A = φ(r) dt+
1

2
B(xdy − ydx) , σ = σ(r) , (2.24)

for which we have

A2 =
B2

4r2
(x2 + y2)− eβφ2

f
, F 2 =

2B2

r4
− 2eβφ′ 2 , Fµν ∗Fµν =

4 eβ/2

r2
Bφ′ . (2.25)

The scalar equations of motion then take the form

� ρ = 4g2 sinh ρ cosh ρ

[
B2

4r2
(x2 + y2)− eβφ2

f

]
+
∂V

∂ρ
,

�σ =
∂V

∂σ
+

[
2B2

r4
− 2eβφ′ 2

]
∂U

∂σ
+

[
4 eβ/2

r2
Bφ′

]
∂W

∂σ
, (2.26)

while the gauge field equations of motion become

0 = fUφ′′ + φ′
[
fU ′ +

1

2
fUβ′ +

2

r
fU

]
− g2 sinh ρ2φ2 − f

eβ/2r2
BW ′ , (2.27)

0 = −B
2
g2 y sinh ρ2 , (2.28)

0 =
B

2
g2 x sinh ρ2 , (2.29)
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where U ′ = ∂U
∂σ

∂σ
∂r and similarly W ′ = ∂W

∂σ
∂σ
∂r .

It is apparent that the choice ρ = 0 is consistent with the equations above, and in

particular with (2.28) and (2.29) when B 6= 0. Notice that these two equations can also be

satisfied by working to linear order in perturbations of ρ,

ρ = ρ̄+ δρ , (2.30)

assuming that the background value is ρ̄ = 0. The remaining equation (2.27) then fixes φ.

Finally, the diagonal components of Einstein’s equations are given by

fβ′′−f ′′+2

[
3

4
f ′β′+

fβ′

r
− 1

4
β′ 2f− f

′

r

]
= V − 2U

[
eβφ′ 2 +

B2

r4

]
− 4g2 e

β sinh ρ2

f
,

ρ′ 2 + σ′ 2 +
2β′

r
+ 4g2 e

β sinh ρ2

f2
φ2 = 0 ,

1

r2

[
2f + 2rf ′ − rfβ′

]
=−V −2U

[
eβφ′ 2+

B2

r4

]
− g2

2r2
B2 sinh ρ2(x2+y2) ,

B2g2

fr2
sinh ρ2(x2 − y2) = 0 . (2.31)

The off-diagonal (xt, yt, xy) components are all proportional to sinh ρ and therefore vanish

trivially if ρ = 0, as well as with the linearized perturbation (2.30) provided again ρ̄ =

0. The last equation in (2.31) is satisfied under the same conditions. As we will see

explicitly in section 6 by working with the linearized perturbation δρ, below a certain

critical temperature the charged scalar field ρ can condense. However, notice from (2.28)

and (2.29) that when B 6= 0 the homogeneous ansatz (2.24) is not consistent with a fully

back-reacted solution for ρ. We expect that in the presence of a magnetic field the full

non-linear background will be inhomogeneous — with a striped phase being a possible

ground state.

Before closing we would like to note that the following transformations connect theories

with different values of ω,

ω → −ω , B → −B ; (2.32)

ω → ω + π/2 , σ → −σ . (2.33)

When ω = π/4, because of the combination of (2.32) and (2.33), the theory has the

additional symmetry,

σ → −σ , B → −B . (2.34)

Moreover, when ω = 0 the theory is invariant under B → −B. There is another symmetry

that needs to be mentioned, which is the sign change of the vector field,

φ → −φ , B → −B , (2.35)

under which T/µ changes sign. We will return to the role of these transformations when

we discuss the behavior of the solutions to the ω-deformed theories.
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3 The infrared geometry

Our main interest in this paper is in constructing domain-wall and black hole geometries

with AdS4 asymptotics in the class of ω-deformed SUGRA theories we have just discussed.

However, before doing so we would like to ask what types of solutions can arise in the far

infrared of the geometry, with an eye on better understanding the possible ground states of

the system. The Lagrangian we have constructed above admits a class of dyonic AdS2×R2

solutions, as we will show in detail below. While these are exact solutions, they also

describe the IR of the domain wall solutions we will construct in section 5, as well as the

zero temperature, near-horizon limit of their non-zero temperature generalizations — the

dyonic black holes we will construct in section 4. In addition to AdS2×R2, we will also find

zero temperature Lifshitz-like, hyperscaling violating solutions in the IR of the geometry.

These, however, are not exact solutions, and break down as one moves slightly towards

the UV of the geometry. We will discuss new AdS4 vacua of the ω-deformed theories in

appendix B.

3.1 AdS2 × R2 solutions

It is evident from (2.21) and the form of the potential (2.19) that we can perform a con-

sistent truncation of the theory where we set the neutral and charged scalars to zero,

x = 0 , ρ = 0 , χ = 0 . (3.1)

We may then seek AdS2 × R2 solutions where we take the ansatz

ds2 = −`2 r2 dt2 +
`2 dr2

r2
+ dx2

1 + dx2
2 ,

A = −`2E rdt+
1

2
B (x1dx2 − x2dx1) ,

σ = σ0 , (3.2)

with σ0 denoting the constant value of the scalar.

In the vielbein basis

e0 = `rdt , e1 =
`dr

r
, e2 = dx1 , e3 = dx2 , (3.3)

the non-vanishing spin connection and curvature components are given by

ω01 = −`−1 e0 , R0101 = `−2 , R00 = −R11 = `−2 , (3.4)

and the non-vanishing vielbein components of F = dA are given by F01 = E and F23 = B.

The equations of motions then imply that

`−2 = −V , E2 +B2 = − V

2U(σ0)
,

0 = 2(B2 − E2)U ′(σ0)− 4EBW ′(σ0) + V ′(σ0) , (3.5)
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Figure 1. Electric (blue line) and magnetic (red line) families of solutions for ω = π/8. The left

(right) panel shows the dependence of the electric (magnetic) field on the value of σ0, expressed as

a function of tanh σ0 for convenience.

where a prime denotes a derivative with respect to σ. These equations imply three condi-

tions on the four constants of integration E, B, ` and σ0. It is convenient to view them as

determining E, B and ` as functions of the free parameter σ0.

The dependence of E and B on the value of σ0 for our AdS2 × R2 solutions is shown

in figure 1, where we have taken the ω-deformation parameter to be ω = π/8. Notice that

for the blue line the electric field never vanishes (as visible from the left panel), while for

the red line it is the magnetic field which is never zero (as shown in the right panel). For

this reason, and to facilitate the comparison with [13], we will refer to the class of solutions

which contain the purely electric (magnetic) AdS2 × R2 geometry as being the electric

(magnetic) family. In figure 1, then, the blue line describes the electric family, while the

red line refers to the magnetic one.

As already visible from figure 1, in our setup a dyonic AdS2×R2 solution is also possible

when σ0 = 0, i.e. when the scalar is not sourced. In this case the conditions (3.5) become

`−2 = −V , E2 +B2 = −V
2
, tan 2ω =

B2 − E2

2EB
. (3.6)

This is in sharp contrast with the truncation studied in [5], which can be obtained by

setting ω = π/4 in our setup. In that case σ0 = 0 implied EB = 0, i.e. having both

electric and magnetic fields sourced the (pseudo) scalar field. This is no longer true in the

presence of a generic ω-deformation — the more complicated structure of the gauge kinetic

functions (2.17) when ω 6= π/4 allows for a solution with vanishing σ. As a result, the

standard dyonic AdS RN black hole is a solutions to the ω deformed theories, provided the

constraints (3.6) are met.

3.2 Lifshitz and hyperscaling violating solutions

Next, we would like to ask whether our model supports zero temperature (non-relativistic)

hyperscaling violating solutions in the deep IR of the geometry, i.e. at leading order in r as

r → 0. Using our metric parametrization (2.24), geometries which describe Lifshitz scaling
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and hyperscaling violation take the form3

ds2 = −r
2(θ−2z)
θ−2 dt2 + r

4
θ−2dr2 + r2 d~x2 , (3.8)

and are typically supported by a running dilatonic scalar. We consider purely magnetic so-

lutions4 in which the charged scalar field is not present, and therefore take our ansatz (2.24)

to be of the form

f(r) = f0 r
p , σ(r) =

1√
3

log σ0 + κ log r , φ(r) = 0 , ρ(t, r, x, y) = 0 , (3.9)

where we have anticipated that we expect the scalar to run logarithmically in the hyper-

scaling violation background.

An appropriate combination of Einstein’s equations then takes the simple form

σ′ 2 +
2β′

r
=
κ2

r2
+

2β′

r
= 0 , (3.10)

whose solution is

β(r) = −κ
2

2
log r + C1 , (3.11)

where we are allowing for an arbitrary constant. Thus, it will be the parameters {κ, p}
which will determine the scaling exponents {z, θ} through the relations

θ = 2− 4

p
, z =

θ

2
− 1 +

κ2

8
(2− θ) . (3.12)

By solving the remaining equations of motion for the system and ensuring that they are

satisfied to leading order in r, we find that we are forced to set (assuming for now κ > 0)

p = 1 , κ =
√

3 (3.13)

together with

B2 =
g2 cos2 ω

6σ
4/3
0

, f0 =
16g2

33σ
1/3
0

. (3.14)

Note that (3.13) implies the following values for the scaling exponents,

z =
3

2
, θ = −2 . (3.15)

So far we have assumed that the scalar σ was positive. There is another branch of

solutions on which it is negative,

σ(r) = − 1√
3
σ0 − κ log r , (3.16)

3The more standard parametrization is

ds2 = −Rθ−2zdt2 +Rθ−2 (dR2 + d~x2
)
. (3.7)

4The electric field diverges as one approaches the IR in these solutions.
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with the same scaling exponents but with a rotated value for the magnetic field,

p = 1 , κ =
√

3 , B2 =
g2 sin2 ω

6σ
4/3
0

, f0 =
16g2

33σ
1/3
0

. (3.17)

The scaling exponents (3.15) are the same as the ones found in [13] for the SUGRA

truncation studied in [5], which corresponds to taking ω = π
4 and g = 2. The main

difference here is the ω dependence appearing in (3.14) and (3.17). Recall that in our model

the couplings of the scalar σ to the gauge field and the scalar potential depend on various

combinations of exponentials of the form e±
√

3σ as well as e
± σ√

3 , whose arguments do not

depend on ω. Since it is precisely the structure of the argument of the exponentials that

fixes the scaling exponents, our construction unfortunately does not allow for ω-dependent

values for {z, θ}.

4 Black hole solutions

We are now ready to study the behavior of dyonic black hole solutions in the ω-deformed

theories described by (2.18), for the case in which the neutral and charged complex scalars

vanish, x = ρ = χ = 0. We are interested in geometries which are asymptotic to AdS4, so

that the dual gauge theory will be a CFT in 2 + 1 dimensions. We also want the latter

to be at finite density, with chemical potential µ and magnetic field B. We work with the

background ansatz (2.24), which we include again here for convenience,

ds2 = −e−β(r)f(r)dt2 +
dr2

f(r)
+ r2d~x2 ,

A = φ(r) dt+
1

2
B(xdy − ydx) , σ = σ(r) , (4.1)

and we start constructing the solutions by writing down the expansions for the geometry

about the boundary and the horizon.

UV expansion. At the boundary, as r →∞, the metric should approach AdS4 and the

system should be at finite density. We solve the equations of motion perturbatively in 1/r

(setting G = 1/16π) and find the following expansion,

f = g2r2 +
g2σ2

1

4
− 1

2r

(
ε− 4

3
σ1σ2

)
+ . . . ,

β = β0 +
σ2

1

4r2
+

2σ1σ2

3r3
+ . . . ,

φ = e−β0/2
(
µ− q

r
−
√

3Bσ1 sin 2ω −
√

3qσ1 cos 2ω

2r2

)
+ . . . ,

σ =
σ1

r
+
σ2

r2
+

5σ3
1

72r3
+ . . . . (4.2)

The parameters σ1 and σ2 represent, respectively, the source and VEV of the operator Oσ
dual to the scalar. Thus, we have seven parameters describing the UV expansion of the

geometry, {ε, σ1, σ2, β0, µ, q, B}. In our numerics we will turn off the source σ1 for Oσ and

take its scaling dimension to be ∆ = 2, corresponding to a relevant deformation of the UV

CFT. This will leave us with six UV parameters.
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IR expansion. The near-horizon r ∼ r+ behavior of the background takes the form

f = f+(r − r+) + . . . ,

β = β+ + . . . ,

φ = φ+(r − r+) + . . . ,

σ = σ+ + . . . . , (4.3)

described by the four parameters {β+, φ+, σ+, r+}, with

f+ = 3r+g
2 cosh

σ+√
3
−

B2 + φ2
+r

4
+e

β+

r3
+(cosh

√
3σ+ − cos 2ω sinh

√
3σ+)

. (4.4)

The higher order terms in the IR expansion are somewhat involved and will therefore not

be included here. The numerical analysis will take them into account.

Counting the number of IR and UV parameters (and imposing the choice σ1 = 0)

we find ten parameters, {ε, σ2, β0, µ, q, B, β+, φ+, σ+, r+}. The equations of motion (two

first order and two second order equations) will determine six of these, leaving us with

four. Finally, similarly to [13], the equations of motion for our dyonic black hole ansatz

are invariant under the two scaling symmetries

t→ λt, eβ → λ2eβ , φ→ λ−1φ ;

r → λr, (t, x, y)→ λ−1(t, x, y), f → λ2f, φ→ λφ, B → λ2B. (4.5)

After using these two symmetries, we are left with two parameters, T/µ, B/µ2 with which

we will label inequivalent solutions.

4.1 Thermodynamics

Following the discussion of [5], we analytically continue by setting t = −iτ , and I = −iS.

We can then obtain two expressions for the on-shell action for the class of the solutions we

are studying. The first expression is given by the integral of a total derivative

Ibulk =
∆τvol2
16πG

∫ ∞
r+

dr[r2e−β/2(f ′ − fβ′ − 4U(σ)eβφφ′) + 4BW (σ)φ]′, (4.6)

where vol2 ≡
∫
dx1dx2. The second can be written as

Ibulk =
∆τvol2
16πG

∫ ∞
r+

dr{[2rfe−β/2]′ + 4B2r−2e−β/2U(σ) + 4BW (σ)φ′}. (4.7)

The total action includes the Gibbons-Hawking surface term supplemented by counterterms

Itot = Ibulk + Isurf + Ict, (4.8)

where

Isurf =
1

8πG

∫
∂M

dτd2x
√
hK ,

Ict =
1

8πG

∫
∂M

dτd2x
√
h
(2

`
+
`

2
R
)

+
1

48πG

∫
∂M

d3x
√
h
(
σnµ∂µσ −

1

2`
σ2
)
. (4.9)
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In the equation above Kµν ≡ −1
2(∇µnν +∇νnµ) is the extrinsic curvature of the boundary

surface, with nµ being the outward unit normal vector. The curvature radius of AdS

is ` = 1/g, and R is the Ricci scalar of the boundary metric. It should be mentioned

that here we use the counterterms given in [29], which are different from the ones used

in [13]. The reason is that the counterterms chosen by [13] apply specifically to the cases

where the scalar σ satisfies Dirichlet or Neumann boundary conditions, corresponding to

σ1 = 0 or σ2 = 0. However, from the dyonic black holes found in [29], one can see that

the system studied here also admits black hole solutions in which σ satisfies the mixed

boundary condition σ2 ∝ σ2
1 corresponding to turning on a triple trace deformation in the

dual theory. It was shown in [31] that the boundary condition σ2 ∝ σ2
1 preserves all the

asymptotic AdS symmetries, therefore the holographic stress tensor should be traceless

in this case. As we show below, while the stress tensor calculated using the boundary

term [29] has such a property.5

Using these counterterms, the renormalized energy-momentum tensor is given by

Tµν ≡ (2/
√
−h) δI/δhµν , yielding

Tµν =
1

8πG

(
Kµν−Khµν−

2

`
hµν + `

(
Rµν−

1

2
Rhµν

)
+

1

6
hµν

(
σnρ∂ρσ−

1

2`
σ2

))
. (4.10)

The stress tensor τ ij of the dual boundary theory can be calculated as

τ ij = 2r3T ij |r=∞, (4.11)

from which we find

τ tt = −ε, τxx = τyy =
ε

2
. (4.12)

We notice that the energy density coincides with the AMD mass density [32, 33], and the

stress tensor of the dual CFT is traceless as expected.

Next, we define the thermodynamic potential W ≡ T [Itot] ≡ vol2w, where the temper-

ature of the black hole is given by

T =
e(β0−β+)/2f+

4π
. (4.13)

5More generally, we can parameterise with constants α and β a family of counterterms

Ict =
1

8πG

∫
∂M

dτd2x
√
h
(2

`
+
`

2
R+

1

2
(1− α)σnµ∂µσ +

1− 2α

4`
σ2 +

β

3`
σ3
)

that give rise to finite expressions for the renormalised action, stress tensor and mass. Specifically, we find

that the trace of the stress tensor and the mass are given by

τµµ =
(

2α− 4

3

)
g2σ1σ2 +

4

3
g2βσ3

1 , M = MAMD +
(2

3
− α

)
g2σ1σ2 −

2

3
g2βσ3

1 .

Our choice, α = 2
3
, β = 0, gives a traceless stress tensor and M = MAMD, the AMD value for the mass.

An alternative choice would be α = 1, β = 0, for which σ1 would acquire a more standard holographic

interpretation as a source term J . Any assignment of values for α and β would give a valid definition of

an “energy” of a black hole, with one differing from another by a Legendre transformation. Our prefer-

ence for the present purposes of discussing black-hole thermodynamics is to choose the energy functional

that coincides with the AMD definition, and which gives a trace-free boundary stress tensor. Since, by

contrast, our holographic discussions are all concerned with solutions where σ1 = 0, for which the ther-

modynamic quantities are then independent of α and β, the choice of counterterm becomes immaterial for

those purposes.
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Using the expression (4.6) and the expansions (4.2) and (4.3), we obtain

w = ε− 4µq − Ts , (4.14)

where the s is the entropy density given by

s = 4πr2
+ . (4.15)

On the other hand, making use of (4.7), we obtain

w = −ε
2

+ 4eβ0/2
∫ ∞
r+

dr{B2r−2e−β/2U(σ) +BW (σ)φ′}. (4.16)

Equating this expression with (4.14) would give a Smarr type formula. Following the Wald

procedure, the first law of thermodynamics takes the form

δε = Tδs+ 4µδq −mδB +
1

3
g2(σ1δσ2 − 2σ2δσ1), (4.17)

where m is the magnetization per unit volume

m = −4eβ0/2
∫ ∞
r+

dr{Br−2e−β/2U(σ) +W (σ)φ′}. (4.18)

Finally, using the formulae given in appendix A, we would like to show how the free

energy of the ω-deformed theory differs from that of the undeformed theory. Recall that

the U(1) field strength in the ω-deformed theory is related to the undeformed one by a

duality rotation,

Fω = cosωF0 − sinωe
√

3σ ∗ F0 . (4.19)

Plugging in the dyonic black hole ansätz for F ,

F = −φ′dt ∧ dr +Bdx ∧ dy , (4.20)

we obtain

φ′ω = cosωφ′0 + sinωe
√

3σe−β/2B0/r
2, Bω = cosωB0 − r2eβ/2e

√
3σ sinωφ′0 . (4.21)

Using the UV expansion of the fields (4.2), we can derive

qω = cosωq0 + sinωB0, Bω = cosωB0 − sinωq0, µω = cosωµ0 −
1

4
sinωm0. (4.22)

Under the duality rotation the energy, temperature and entropy of the black hole solutions

do not change, but the free energy does, so that

wω = ε− 4µωqω − Ts 6= w0 = ε− 4µ0q0 − Ts . (4.23)
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4.2 Magnetic field induced transitions

We have constructed dyonic black hole solutions to our ω-deformed theories numerically

by building on the UV and IR expansions (4.2) and (4.3). The solutions have AdS4 asymp-

totics, to ensure that in the UV the dual theory is described by a three-dimensional CFT.

Moreover, we have taken the source σ1 for the operator Oσ dual to σ to be zero — to

avoid deforming the UV CFT — and chosen its conformal dimension to be ∆ = 2, cor-

responding to a relevant perturbation. We expect to find a rich phase structure as one

varies the magnetic field and temperature in the system. In particular, from the analysis

of [13] (corresponding to the deformation choice ω = π/4) we expect to find a line of first

order metamagnetic transitions when the magnetic field becomes sufficiently large. Indeed,

this will be a generic feature of our ω-deformed theories. Moreover, as we cool the ther-

modynamically preferred black holes down to zero temperature, the resulting domain-wall

solutions will approach either AdS2 × R2 or a hyperscaling violating solution in the IR,

depending on the strength of B. To facilitate the comparison with [13], we will adopt their

notation from here on.

Let’s start by discussing how the temperature dependence of the free energy is affected

by the magnetic field. In figure 2 we show a typical plot of the free energy as a function of

temperature for a moderately low value of B, which we take to be in the range6

0 <
B

µ2
<

(
B

µ2

)
I

, (4.24)

with
(
B/µ2

)
I

to be defined shortly. We have chosen ω = π/8, but the structure seen in

the figure is insensitive to the specific value of the ω parameter. We find three branches of

solutions, only one of which can seemingly be heated up to arbitrarily high temperatures.

The solid lines describe black hole geometries whose zero temperature limit are domain-

walls approaching dyonic AdS2 × R2 solutions in the IR. The latter belong to the electric

family7 we described in section 3 and are denoted by dots in the plot. On the other hand,

the (thick) dashed line describes a black hole whose zero temperature, deep IR limit is a

hyperscaling violating solution8 of the type discussed in section 3.2. In all the figures in

this section the thin dashed lines are a naive extrapolation of the numerics (thick dashed

lines) to very low temperatures.

We see from the figure that there are two distinct dyonic AdS2×R2 geometries at T = 0,

denoted by the two dots.9 The black hole branch which is thermodynamically preferred is

6When B < 0 we denote the corresponding range by
(
B
µ2

)neg
I

< B
µ2 < 0.

7We expect the magnetic family of solutions to have higher free energy, as we will discuss in section 5.
8We have verified numerically that the scaling of the entropy with temperature as we approach T ∼ 0

matches that of a Lifshitz geometry with hyperscaling violation, i.e. s(T ) ∼ T 8/3 when the exponents are

z = 3/2 and θ = −2.
9 The geometries corresponding to the dots were obtained by cooling down the black hole solutions

to nearly zero temperature. However, the numerical shooting method employed to construct these low-

temperature solutions is slightly different from the one used for the higher-temperature black holes (in

particular, the IR data was extracted using the analysis of section 3.1). The small gap in figure 2 between the

finite temperature line and the (nearly) zero temperature dot reflects the numerical limitations associated

with cooling down the finite temperature solutions beyond a certain point.
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Figure 2. Typical plot of the free energy as a function of temperature for ω = π/8 and g = 2 when

the magnetic field is in the range (4.24). The solid lines describe black holes whose zero temperature

limits are domain-walls approaching in the IR AdS2×R2 (denoted by dots). The thick dashed line

describes black holes whose domain-wall limit approach hyperscaling violating solutions in the IR.

The thin dashed line is a naive extrapolation of the numerical data (thick dashed line) to very low

temperatures.

the one whose temperature can be arbitrarily high, and approaches the AdS2×R2 with the

lower free energy. The phase structure shown in figure 2 turns out to be typical as long as

the magnetic field is in the range (4.24). In this discussion we will assume that B > 0 but

the same argument goes through for a negative field. The value B
µ2

=
(
B
µ2

)
I

(which is ω-

dependent) is defined to be such that, at zero temperature, the bottom AdS2×R2 solution

overlaps with the hyperscaling violating one — the two geometries have the same free

energy. Thus, if the magnetic field is any larger, at very low temperatures the hyperscaling

violating branch becomes thermodynamically preferred. The temperature dependence of

the magnetization m when the field is within the range (4.24) is shown by the red curve in

figure 4. In the left panel the thermodynamically preferred black hole branch corresponds

to the bottom (red) curve, along which B > 0 and m becomes more negative as the

temperature is raised. Thus, the system is becoming more ordered as it is heated, with the

magnetization opposing the direction of the magnetic field. On the other hand in the right

panel it is the top (red) curve which is favored, along which both B and m are negative, and

the latter becomes less negative as T increases. In this case the magnetization is aligned

with the field, and the system becomes less ordered as the temperature is raised.

As B/µ2 is raised above
(
B/µ2

)
I
, the two zero temperature AdS2×R2 solutions become

closer to each other, and overlap when the ratio reaches a critical value10 which we denote

by
(
B/µ2

)
max

. At this point there is only a single domain-wall solution whose IR is a dyonic

AdS2 × R2 geometry belonging to the electric family. This behavior is visible in figure 3,

where we plot the free energy as a function of temperature for increasing values of magnetic

field and for ω = π/8. In the left panel we have taken B > 0 and the field increases from

10The analogous critical value for B < 0 will be denoted by
(
B/µ2

)neg
max

.
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Figure 3. Free energy as a function of temperature for ω = π/8 and g = 2, for different values of

B/µ2. In the left (right) panel the magnetic field is positive (negative), and B increases (decreases)

from bottom to top. The solid/dashed lines and the dots are the same as in figure 2. The open

circles mark the point at which the thermodynamically preferred branch switches from the one with

AdS2 × R2 in the IR to the hyperscaling violating branch.

bottom to top. On the other hand in the right panel B < 0 and becomes more negative

from top to bottom. In figure 3 the overlap of the two T = 0 AdS2×R2 geometries occurs

for the choice of magnetic field shown in the blue curve, i.e.
(
B/µ2

)
max

= 0.350 in the left

panel and
(
B/µ2

)neg
max

= −0.163 in the right panel. Thus, when the field is such that11(
B

µ2

)
I

<
B

µ2
≤
(
B

µ2

)
max

, (4.25)

the branch which is thermodynamically favored at low temperatures is the hyperscaling

violating one. As the temperature is raised, we eventually cross over to the black hole

branch with an associated T = 0 AdS2×R2 IR description, which dominates at sufficiently

high temperatures. We emphasize that this behavior is typical when the magnetic field is

within the range (4.25).

The transition between the two branches is first order, as visible from the cusp in the

free energy plot where the two lines meet. This is also confirmed by the behavior of the

magnetization, displayed in figure 4. As we move from one black hole branch to the other

by following the blue curve in the figure, the magnetization suffers a sudden, discontinuous

jump, i.e. it undergoes a metamagnetic first order phase transition. This was already seen

in [13] for the particular ω = π/4 case, and is generic in our ω-deformed theories.

Metamagnetic transitions occur in a number of materials [25, 26], including strongly

correlated electrons systems. An example is the layered ruthenate metal Sr3Ru2O7, which

exhibits — for a sufficiently large value of magnetic field — a line of first order, non-zero

temperature metamagnetic phase transitions which end at a critical point. In the particu-

lar Sr3Ru2O7 compound the critical point can become quantum critical12 by appropriately

tuning the magnetic field [27] (for a related holographic study see [11]). Another interest-

ing feature we notice from figure 4 is that in all the curves with B/µ2 >
(
B/µ2

)
I

the

11When the field is B < 0 the range becomes
(
B
µ2

)neg
max
≤ B

µ2 <
(
B
µ2

)neg
I

.
12Note that in these systems there is no spontaneous symmetry breaking.
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Figure 4. Magnetization as a function of temperature for ω = π/8 and g = 2, for different values of

B/µ2. In the left (right) panel the magnetic field is positive (negative). The solid/dashed lines and

the dots are the same as in figure 2. The open circles mark the point at which the magnetization

undergoes a sudden jump, denoting a first order metamagnetic phase transition.

magnetization saturates to a nearly constant value at low temperatures. We emphasize

that the saturation lines correspond to the cases for which the dominant T = 0 geometry

is hyperscaling violating. Such low-temperature plateaus also occur in systems which ex-

hibit metamagnetic phase transitions (see e.g. [28]). It would be interesting to make the

connection to real metamagnetic materials more concrete.

When the magnetic field becomes larger than Bmax, the domain walls with AdS2×R2

in the deep IR cease to exist, and the only black hole branch which can be cooled down

to zero temperature always exhibits hyperscaling violation in the IR. The magnetization

suffers a discontinuous jump until we reach a critical value of the magnetic field, Bc > Bmax

at which we find only one black hole solution and the magnetization starts changing in a

continuous matter. Thus, the line of first order phase transitions stops at a critical point,

where the phase transition becomes continuous. This is visible in the black line shown in

figure 4, which corresponds to the critical point B = Bc and therefore to the black hole

branch exhibiting hyperscaling violation at T = 0. Following the behavior of m along

the black line as the temperature increases, we note that there is a critical temperature

at which the derivative of m/µ with respect to T/µ is infinite, i.e. the phase transition is

second order (or higher). Finally, when B > Bc we no longer have a phase transition as

we vary T/µ. Before we conclude this discussion we would like to point out that, unlike in

the special case ω = π/4, the curves we have displayed are not anti-symmetric as B → −B
(remember that when ω = π/4 (2.32) and (2.32) combine to become a symmetry).

To summarize the results of this section, we have seen three distinct regimes, depending

on the strength of the magnetic field:

1. For 0 < B
µ2
≤
(
B
µ2

)
I

the thermodynamically preferred black holes can always be

cooled down to domain-wall solutions with a dyonic AdS2 × R2 geometry in the IR.

The magnetization associated with such black holes changes smoothly and monoton-

ically as a function of temperature.
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2. When
(
B
µ2

)
I
< B

µ2
≤
(
B
µ2

)
max

the black holes favored at low temperatures approach

a hyperscaling violating solution in the IR, as they are cooled to T = 0. On the

other hand the black holes which are favored at higher temperatures are those whose

domain-walls have an AdS2 × R2 IR description. The latter domain-wall solutions

no longer exist when B
µ2

>
(
B
µ2

)
max

. The magnetization undergoes a first order

metamagnetic phase transition as a function of temperature when
(
B
µ2

)
I
< B

µ2
<(

B
µ2

)
c
, where the ratio

(
B
µ2

)
c
>
(
B
µ2

)
max

denotes the value at which the transition

becomes continuous.

3. Above
(
B
µ2

)
c

there is only one black hole branch, whose T → 0 limit approaches a

hyperscaling violating solution in the IR. The magnetization no longer undergoes a

phase transition as we vary the temperature of the system.

The behavior we have discussed is generic, independently of the of the ω-deformation

parameter, and its main features agree with the ω = π/4 case studied in [5].

5 Domain wall solutions

The zero-temperature description of the black holes we constructed in section 4 should

be domain-wall geometries with AdS4 asymptotics, approaching either dyonic AdS2 × R2

solutions or hyperscaling violating geometries in the IR, depending on the value of the

magnetic field. In this section we will focus on the former case, and construct numerically

geometries with an IR AdS2 × R2 description by cooling down the corresponding black

holes to very low temperatures. In particular, in our numerical code we have decreased

the temperature of the black hole solutions to T/µ ∼ 10−5 and have checked that the IR

expansion of the resulting geometry is consistent with that expected for the AdS2 × R2

background we discussed in section 3. Thus, we expect the solutions we have constructed

numerically in this section to describe to a very good approximation zero-temperature

domain-wall geometries.13 Our main goal here is to discuss briefly the phase space of the

solutions, and the dependence of the free energy and magnetization on the magnetic field

B in the system. We are particularly interested in features that may be entirely due to the

ω-deformation.

We start by discussing solutions which belong to the electric family we introduced in

section 3, displayed in figures 5 and 6. The left panel of figure 5 shows the magnetic field

dependence of the IR value σ0 of the scalar field, for several choices of ω-deformation. The

red (left-most) line corresponds to the ω = π/4 case studied in [13], and is symmetric

under (2.34). As the deformation parameter ω is lowered towards ω = 0 the solutions shift

to the right and the symmetry (2.34) is lost. The dots denote the appearance of tachy-

onic fluctuations which violate the BF bound for AdS2 and are responsible for triggering

superfluid instabilities, as we will see in detail in section 6.

13Some of our solutions were cooled down even further. For temperatures in the range T/µ ∼ 10−5−10−7

we did not see any appreciable difference in the behavior of the geometry or in the structure of our results,

thus lending support to the idea that these are indeed reliable approximations to domain-wall solutions.
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Figure 5. Domain-wall solutions belonging to the electric family for various choices of ω. Left

panel: dependence of the horizon value of the scalar on the magnetic field. The dots denote the

appearance of tachyonic modes which violate the AdS2 BF found. Right panel: free energy as a

function of magnetic field. The branches that are thermodynamically preferred are the ones which

extend to B = 0.
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Figure 6. Magnetic field dependence of the magnetization for the electric family of solutions, for

different choices of ω. Left panel: when B > 0 on the thermodynamically preferred branches we

have m > 0 when ω = π/4, and m < 0 for the other choices of ω-deformations. Right panel: the

ω-deformation is chosen so that the magnetization changes sign on the thermodynamically preferred

branch when B > 0.

The right panel of figure 5 shows the dependence of the free energy on the magnetic

field for each family of solutions. Each line (corresponding to a distinct value of ω) has

two branches, with the thermodynamically favored one extending all the way to B = 0

for each choice of deformation parameter. It is visible from this figure that the symmetry

between positive and negative values of the magnetic field is lost once we move away from

the special deformation ω = π/4.

Finally, figure 6 displays the behavior of the magnetization as the magnetic field

changes, for each family of solutions. Let us discuss the left panel first, and for sim-

plicity restrict our attention to the B > 0 sector. The red (top) line is the ω = π/4 case,

for which the magnetization is always positive and aligned with the magnetic field, hence

the system displays paramagnetism. In the remaining lines we find m < 0 on the thermo-
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Figure 7. Domain wall solutions belonging to the magnetic family, for different values of ω and

for g = 2.

dynamically preferred branches, i.e. the magnetization opposes the magnetic field and the

system is diamagnetic. Moreover, notice that for all the cases for which ω 6= π/4, we see a

residual magnetization at zero magnetic field.

Interestingly, for certain values of the deformation parameter it is possible to find

thermodynamically preferred branches on which the magnetization can change sign, even

though B does not. This is shown in the right panel of figure 6 for the specific choice

ω = 24π/100. There m changes sign, starting out positive at the maximum value of B and

becoming smaller and eventually negative as B decreases towards zero. Thus, the system

is paramagnetic for large values of the magnetic field, and becomes diamagnetic as B is

tuned to smaller values. We emphasize that this behavior is not possible in the ω = π/4

truncation. Here we also see a residual magnetization when B = 0.

We now switch to discussing the domain-wall solutions which belong to the magnetic

family, which we display in figures 7, 8 and 9. We would like to revisit the expectation

from [13] that solutions in the electric family would always be thermodynamically preferred,

compared to those in the magnetic family. We will provide some argument supporting this

expectation, even in the case of general ω-deformations. As before, we have constructed

the domain-wall solutions numerically by cooling the black holes of section 4 to low tem-

peratures, reaching T/µ ∼ 10−5. Figure 7 displays the dependence of σ0 on the magnetic

field.14 We find that when tanh(σ0/
√

3) is very close to one it is difficult to construct

the solutions numerically. Thus, we were not able to obtain the ω = π/8, π/10 branches

which should appear in the first quadrant. Finally, figures 8 and 9 show, respectively,

the free energy and magnetization as a function of magnetic field. We were able to probe

only a small region where both electric and magnetic families coexist. In this region, the

domain-walls in the electric family are always thermodynamically preferred. Moreover, as

we heat up the solutions, the free energy of the black holes coming from the magnetic

(electric) family increases (decreases). This provides further evidence which indicates that

14In this figure we have made use of the symmetry (2.35) to ensure that T/µ is always positive.
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Figure 8. Free energy of the domain-wall solutions belonging to the magnetic family, for different

values of ω g = 2.
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Figure 9. Magnetization as a function of magnetic field for the the domain-wall solutions belonging

to the magnetic family, for different values of ω g = 2.

the electric branch is always thermodynamically favored. Clearly it would be valuable to

confirm this with further studies.

6 Superfluid instability

So far we have restricted our attention to solutions for which the charged complex scalar

field vanishes, ρ eiχ = 0. However, when the background geometry is described by black

holes whose extremal limit has a near-horizon AdS2×R2, we expect the field to condense at

some critical temperature Tc, spontaneously breaking the U(1) and triggering a superfluid

phase transition [14–16]. In this section we will examine the appearance of such superfluid

instabilities in the dyonic black hole backgrounds we constructed in section 4, when the

magnetic field is in the range (4.24). However, the presence of unstable modes can already
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be anticipated by considering linearized fluctuations δρ of the charged scalar about the

AdS2 × R2 solutions15 of section 3, for which ρ = 0. The system will be unstable when

there are tachyonic modes which violate the BF bound for AdS2. To see this more explicitly,

we examine the equation of motion for the scalar perturbation16 δρ on this background,

which takes the form

�δρ− 4g2A2 δρ− ∂2V

∂ρ2
δρ = 0 , (6.1)

and hence

�δρ = g2

[
B2(x2

1 + x2
2)− 4`2E2 +

(
cosh(

√
3σ0)− 3 cosh

σ0√
3

+ 4 cos 2ω sinh3 σ0√
3

)]
δρ .

We take the fluctuation to describe the first Landau level, which we expect to condense

first [16],

δρ = u(t, r) e−
1
2
g|B|(x21+x22) . (6.2)

It then follows that

�AdS2 u = M2 u , (6.3)

where �AdS2 is the d’Alembertian on the AdS2 spacetime and

M2 = 2g |B| − 4g2`2E2 − 3g2 cosh
σ0√

3
+ g2 cosh(

√
3σ0) + 4g2 cos 2ω sinh3 σ0√

3
. (6.4)

Superfluid instabilities are triggered when the mass of the fluctuation becomes smaller than

the BF bound for AdS2, i.e. when M2 < m2
BF = −g2/4, which in our case is

2g |B| − 4g2`2E2 − 3g2 cosh
σ0√

3
+ g2 cosh(

√
3σ0) + 4g2 cos 2ω sinh3 σ0√

3
< −g

2

4
. (6.5)

Notice that stronger (weaker) electric (magnetic) fields enhance the instability window.

In figure 10 we show the mass of the fluctuation δρ (more precisely, the shifted mass

M2/g2 + 1/4) in the AdS2 ×R2 background as a function of the IR value σ0 of the scalar,

as given in (6.5). Different curves corresponds to different choices of ω-deformation. Su-

perfluid instabilities are expected when each curve becomes negative, corresponding to the

fluctuation violating the BF bound for AdS2. The onset of the instability is denoted by a

dot in the figure, and occurs when a line crosses the horizontal axis. Inspecting figures 5

and 10, we note that when tanh(σ0/
√

3) < 0 (which corresponds to B/µ2 > 0) the BF

bound is always violated for the curves with ω = π/5, π/8, π/10. We will return to this

point shortly.

What we are really interested in, however, are superfluid instabilities appearing in

the dyonic black holes we studied in section 4, with an IR AdS2 × R2 zero temperature

description. Recall that the latter are always thermodynamically preferred when the field

is relatively low, and in the range (4.24). Thus, our instability analysis will only describe

the regime B/µ2 ≤
(
B/µ2

)
I
. To determine whether the charged scalar field can condense

15We will only consider solutions belonging to the electric family, since they should be thermodynamically

favored.
16We can set the phase to χ = 0 by a gauge choice.
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Figure 10. Dependence of M2/g2 + 1/4 on tanh(σ0/
√

3) for the domain-wall solutions shown in

figure 5, for different values of the ω-deformation and with g = 2. When the curves cross zero and

become negative, the mass of the charged scalar fluctuation violates the AdS2 BF bound, causing

the zero temperature domain-wall to be unstable. The dots denote the point at which the instability

sets in.

at non-zero temperature, we will ask whether a normalizable mode of ρ appears at some

critical temperature denoted by Tc, for an appropriate range of magnetic field. Since we

are interested in breaking the abelian gauge symmetry spontaneously, we do not want to

generate a non-normalizable mode for ρ, corresponding to a source for the dual operator

Oρ. To this end, we want to solve for the linearized fluctuation δρ assuming a background

of the form of (2.24). We take the fluctuation to be of the form

δρ = R(r) e−
1
2
g|B|(x21+x22) . (6.6)

Substituting it into the equation of motion for ρ and working to linear order, we find

r−2e
β(r)
2

(
r2f(r)e−

β(r)
2 R′(r)

)′
−

(
2g |B|
r2

+G(σ)− 4g2eβ(r)φ(r)2

f(r)

)
R(r) = 0 (6.7)

where

G(σ) = g2

(
−4 cos(2ω) sinh3

(
σ(r)√

3

)
− 3 cosh

(
σ(r)√

3

)
+ cosh

(√
3σ(r)

))
.

At the horizon, the radial perturbation R(r) has an expansion of the form

R(r) = c1 + c2 log(r − r+) + . . . . (6.8)

We set c2 = 0 to ensure that R(r) is regular . On the other hand, the boundary behavior

of R(r) is given by

R(r) =
R1

r
+
R2

r2
, (6.9)

with R1 and R2 denoting, respectively, the source and the VEV of the operator dual to

the charged scalar.
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Figure 11. Critical temperature at which the superfluid phase transition sets in, for different

choices of ω and for g = 2. The ω parameter for each curve decreases from top to bottom. The dots

on the horizontal axis denote the points at which the mass of the charged scalar field fluctuation

about the T = 0 AdS2 × R2 IR geometry violates the AdS2 BF bound, as shown in figure 10.

By varying T/µ, we find a solution for the δρ perturbation which has R1 = 0 and R2 6=
0, indicating that the field indeed condenses and the symmetry breaking is spontaneous,

as desired. Our results are shown in figure 11, where we plot the critical temperature Tc at

which the field starts to condense as a function of the external magnetic field, for different

choices of ω. We would like to highlight a few features of this analysis. First, as Tc → 0

we expect the curves to approach the dots denoting superfluid instabilities of the zero

temperature AdS2×R2 geometry. Notice that there is a slight deviation between the dots

and the low-Tc regime of some of the curves. We expect this discrepancy to be a reflection

of the fact that we are working in a linearized approximation, and that a fully back-reacted

analysis would resolve it. In fact, recall that in [16], taking into account back-reaction lead

to a suppression of Tc compared to the probe limit result. The disagreement between the

two cases became more important as Tc → 0, i.e. away from the regime of validity of the

probe approximation.

An interesting feature is that as we move ω away from π/4 while keeping |B| very

small, Tc is suppressed (the suppression is not always present in the regime where the

magnetic field is large). Thus, as ω decreases one has to reach lower temperatures in order

to access the superfluid phase. We expect this to be especially a factor for the ω = 0 case,

for which we were not able to reach Tc in our numerics.

When B < 0, we can easily see from figure 11 that there is a range of magnetic field

for which a condensate does not form. In particular, if the magnitude of the field is too

large, it will prevent the formation of a superfluid phase, consistent with expectations from

the Meissner effect. On the other hand, when B > 0 as we decrease ω (moving from

top to bottom in the figure) the range of B which allows for a superfluid instability is

seemingly becoming larger. In fact, the curves seem to flatten out as B/µ2 increases. This

is consistent with the structure of figure 10, where we saw that the blue and green curves
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always violated the AdS2 BF bound for B > 0. Thus, the superconducting phase naively

seems to survive even in very strong magnetic fields. However, we should keep in mind that

our instability analysis assumes that the magnetic field is in the range (4.24), and breaks

down when B/µ2 =
(
B/µ2

)
I
, at which point the thermodynamically preferred background

is hyperscaling violating.17 Let’s return briefly to the behavior of the ω = 0 curve. By

combining figures 5 and 10 we see that, when ω is nearly zero, the value of B for which

the fluctuation δρ is tachyonic is already very close to Bmax. Thus, there is a very narrow

window in which the superfluid instability can occur. Moreover, this corresponds to a very

low Tc, making it even harder to observe numerically.

6.1 Competition with stripe instabilities

As we already stressed in the introduction, AdS2 × R2 solutions are also known to be

unstable to the formation of spatially modulated phases, triggered by modes which violate

the AdS2 BF bound and break translational symmetry (see the analysis of [13] for the

dyonic case). Thus, we expect the domain-walls we constructed in section 5 — which

have an AdS2 factor in their IR description — to also suffer from striped instabilities.

By the same token, there should be spatially modulated tachyonic modes in the non-zero

temperature generalizations of these solutions — the dyonic black holes of section 4 —

provided18 the magnetic field is in the range (4.24).

The authors of [13] discussed the competition between superfluid and spatially mod-

ulated instabilities in the context of the ω = π/4 theory. In particular, for the class of

dyonic AdS2×R2 solutions to the theory they found that the existence of striped instabili-

ties was independent of the value of the magnetic field. As a result, increasing the magnetic

field should act to suppress the superfluid instabilities compared to the striped ones. In

particular, a priori at non-zero temperature one expects both types of instabilities to be

generically present19 as long as the field is in the range 0 < |B| < |BSC
c | < |BI |, where

BSC
c denotes the point at which the charged scalar no longer condenses (i.e. the critical

temperature for the superfluid phase transition becomes Tc = 0). On the other hand, when

|BSC
c | < |B| < |BI | the superfluid phase is no longer accessible and only striped instabilities

should survive.

For the ω-deformed case the analysis of spatially modulated perturbations of the dyonic

AdS2×R2 solutions is analogous to that of [13]. In particular, the spectrum of the scaling

dimensions for the fluctuations is the same, since a duality rotation relates the solutions

of the ω-deformed theory to those of [13], when the charged scalar field is turned off. The

main difference in the ω-deformed case comes from the behavior at non-zero temperature,

and is due to the fact that the theory is no longer invariant under B → −B. In particular,

recall from figure 11 that when B > 0 the charged scalar naively appears to condense

17Note that the hyperscaling violating geometries in the IR may also be unstable to e.g. superfluid

instabilities. This would be an interesting avenue to explore in future work. However, it is beyond the

scope of this paper, where our main focus was the behavior of the AdS2 × R2 solutions.
18In this regime the thermodynamically preferred black holes always approach AdS2 × R2 in the IR as

T → 0.
19Clearly one should also determine which instability is triggered first, by comparing their critical tem-

peratures at a given vale of B.
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for arbitrarily high values of B, in contrast with expectations from the Meissner effect.

However, since the instability analysis is only valid up to B = BI , the latter value sets a

natural cutoff for the existence of a superfluid phase. Still, for the ω-deformed theories we

expect to have both stripe and superfluid phases in the entire range 0 < B < BI , unlike

for the ω = π/4 theory. On the other hand the behavior when B < 0 is analogous to that

of [13], with both instabilities present when −|BS.C.
c | < B < 0 and striped ones alone in

−|BI | < B < −|BS.C.
c |.

It would be useful to determine the temperature at which the spatially modulated

instabilities are triggered, and in particular whether it is above or below the one associ-

ated with the onset of the superfluid instability. Answering this question would be a first

step towards better understanding the ultimate ground states of the ω-deformed theories.

Clearly, the question of back-reaction on the geometry is even more important, although

challenging to investigate. We should also mention that the hyperscaling violating ge-

ometries themselves are believed to suffer, in certain cases, from striped instabilities. For

discussions of this question we refer the reader to e.g. [34–36]. Thus, it is possible that we

would find spatially modulated tachyonic modes even when the zero temperature geometry

in the deep IR exhibits hyperscaling violation, for |B| > |BI |.

7 Conclusions

The ω-deformed supergravity truncations we have studied in this paper admit a rich variety

of phases, which can be accessed by appropriately tuning the magnetic field of the system

and varying its temperature. An interesting structure already emerges when we consider

truncations which retain, in addition to a U(1) gauge field, a single neutral scalar. Dyonic

black hole solutions in this case exhibit a line of first order metamagnetic phase transitions

— describing a sudden change in the magnetization — once B is sufficiently strong. More-

over, as they are cooled down to zero temperature, they behave either as a diamagnetic or

a paramagnetic material, depending again on the strength of B and the particular choice

of ω. In these truncations the deep IR region of the extremal geometries is described by

either dyonic AdS2 × R2 or a solution with a non-trivial dynamical critical exponent and

hyperscaling violation. It is precisely the tension between black hole branches with these

different IR descriptions which is responsible for the metamagnetic phase transition.

In less restrictive truncations the presence of a complex scalar charged under the U(1)

allows for the existence of low-temperature superconducting phases, which are expected in

models of this type when the magnetic field is not too large. However, in the ω-deformed

theories the mechanism by which the superconducting instability ceases to exist is different

depending on whether the magnetic field is positive or negative. In particular, when B < 0

the charged scalar stops condensing in the black hole background at a critical value of B,

consistent with intuition from the Meissner effect that a strong enough magnetic field should

destroy superconductivity. The corresponding extremal near-horizon AdS2×R2 geometries

exhibit superfluid instabilities only within a certain range for B, which is typically smaller

than the range in which the AdS2 solution exists. This behavior is visible in figures 10

and 11, and was also observed in the ω = π/4 truncation studied in [13]. When B > 0,
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however, the mechanism that halts the superconducting phase is different. As long as the

value of ω is not too close to π/4, the tachyonic modes of the extremal IR AdS2 × R2

are present for arbitrarily strong values of the field (see for example the ω = {π/5, π/8, 0}
curves in figures 10 and 11). As a result, in these theories the superconducting phase ceases

to exist only when the extremal geometry is no longer described by a domain-wall with an

IR AdS2 × R2.

This asymmetry between positive and negative values of B also affects in an interesting

way the interplay between superconducting and striped phases, with the latter triggered

by spatially modulated modes which violate the AdS2 BF bound. In analogy with [13], in

our truncation striped instabilities should be insensitive to the strength of the magnetic

field, as long as it lies within the range specified in (4.24). Thus, while for B < 0 there will

be a window in which only striped phases are present, when B is positive and within the

range (4.24) we expect to find both classes of instabilities. Which instability is triggered

first will of course depend on the competition between their critical temperatures.

Clearly one of the more challenging questions associated with these theories is the

issue of back reaction. It would be valuable to determine the fully non-linear backgrounds

associated with such phases, to shed light on the vacuum structure of the theory. A related

question is which features, if any, are due entirely to the presence of the ω-deformation. A

hint could come from the asymmetry between B and −B, which affects the competition

between striped and superconducting phases and therefore the geometric properties of the

ground state. We would also like to gain a better understanding of the new set of AdS4

vacua that we identified in appendix B. These have instabilities due to the occurrence

of linearised scalar fluctuations that violate the BF bound, but in one of the cases one

could consider a consistently-truncated sub-theory within which the new AdS4 vacuum

would be stable. In particular, it would be interesting to construct domain-wall geometries

which interpolate between two AdS4 fixed points, and ask whether any intermediate scaling

behavior is possible along the flow, as in the construction of [24]. Finally, while some of the

features we have observed in this paper have analogs in the behavior of strongly correlated

materials in the presence of a magnetic field, we would like to refine these ideas further

and make these connections more concrete. We leave these questions to future work.
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A Duality rotation of physical quantities

In this appendix we show that when the charged scalar field is turned off, the solutions of

the ω-deformed theory can be obtained from the undeformed, ω = 0 theory. The latter is

described by the Lagrangian

e−1L0
F = −U0(σ)FµνFµν −W0(σ)Fµν ∗Fµν U0(σ) = e

√
3σ, W0(σ) = 0. (A.1)

If we define a 2-form G through

G = U0
∗F −W0F , (A.2)

the equation of motion derived from (A.1) and the Bianchi identity can be summarized as

dG = 0, dF = 0 . (A.3)

As discussed in [30], the above set of equations is invariant under an Sp(2,R) transforma-

tion. In other words, after an Sp(2,R) rotation,(
FΛ

GΛ

)
= Λ

(
F

G

)
, Λ ∈ Sp(2,R), (A.4)

the quantities FΛ and GΛ still satisfy

dGΛ = 0, dFΛ = 0 . (A.5)

Meanwhile, GΛ can be expressed as

GΛ = UΛ(σ)∗FΛ −WΛ(σ)FΛ, (A.6)

where UΛ(σ) and WΛ(σ) are scalar functions of σ. In particular, if we choose the duality

rotation matrix to be in the U(1) subgroup of Sp(2,R),

Λ =

(
cosω − sinω

sinω cosω

)
, (A.7)

the corresponding scalar functions UΛ(ω) and WΛ(ω) are given by

U(σ) =
1

cosh
√

3σ − cos 2ω sinh
√

3σ
, W (σ) =

sin 2ω sinh
√

3σ

cosh
√

3σ − cos 2ω sinh
√

3σ
. (A.8)

Therefore, dGω = 0 and dFω = 0 are just the equation of motion and Bianchi identity of

the ω-deformed theory whose Lagrangian is given in section 2.

From the analysis above we see that one can generate a solution to the ω-deformed

theory by performing a U(1) rotation of a solution in the undeformed theory. For instance,

to obtain the electromagnetic fields for an AdS2 × R2 geometry in the ω-deformed theory

we first solve (E,B) from the ω = 0 theory, where (E,B) satisfy

`−2 = −V , E2 +B2 = −V
2
e−
√

3σ0 ,

0 = 2
√

3(B2 − E2) e
√

3σ0 + V ′(σ0) . (A.9)
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From these relations we can easily solve for E0 = E(ω = 0) and B0 = B(ω = 0) in terms

of σ0. The solution in the ω-deformed theory can then be obtained via

Eω = cosωE0 − sinωe
√

3σ0B0, Bω = cosωB0 + sinωe
√

3σ0E0 . (A.10)

Modulo the overall sign change of (E,B), there are two families of solutions. To match

with the convention used in [13], we choose the solution in the electric family to be,

E
(e)
0 /g =

√√√√(3− tanh σ0√
3
)(1− tanh σ0√

3
)

2(1 + tanh σ0√
3
)2

,

B
(e)
0 /g = −

√√√√(3 + tanh σ0√
3
)(1− tanh σ0√

3
)

2(1 + tanh σ0√
3
)2

; (A.11)

while the one in the magnetic family is given by

E
(m)
0 /g = −

√√√√(3− tanh σ0√
3
)(1− tanh σ0√

3
)

2(1 + tanh σ0√
3
)2

,

B
(m)
0 /g = −

√√√√(3 + tanh σ0√
3
)(1− tanh σ0√

3
)

2(1 + tanh σ0√
3
)2

. (A.12)

B Additional AdS4 vacua

In the four-scalar truncation that we we are considering in this paper, the scalar potential

V for the ω-deformed theory is given by eq. (2.10). Note that it depends on the three

scalars (σ, ρ, x), but is independent of the fourth scalar χ. We may seek AdS4 vacua by

looking for stationary points of the potential. We first note that the condition ∂V/∂x = 0

implies

[(R2 cos2 ω + sin2 ω) cosh ρ+ (cos2 ω +R2 sin2 ω) coshx] sinhx = 0 . (B.1)

Since the quantity in the square brackets is always positive for real values of the fields and

ω parameter, it follows that we must have

x = 0 (B.2)

at all stationary points. Setting x = 0, we then find from ∂V/∂ρ = 0 that

[(R6 cos2 ω + sin2 ω) cosh ρ− 3R2 (R2 cos2 ω + sin2 ω) cosh ρ] sinh ρ = 0 . (B.3)

This then gives either the trivial stationary point

ρ = 0 , R = 1 , x = 0 , (B.4)
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(i.e. the standard AdS4 vacuum that is supersymmetric in the full N = 8 theory), or else

the square bracket in (B.3) vanishes, implying

cosh ρ =
3R2 (R2 cos2 ω + sin2 ω)

(R6 cos2 ω + sin2 ω)
. (B.5)

We shall focus on the ρ 6= 0 non-trivial stationary points from now on.

Inserting (B.5), together with x = 0, into the potential then gives from ∂V/∂R = 0 a

factorised equation that implies either

R6 (R4 − 5) cos2 ω − (5R4 − 1) sin2 ω = 0 , (B.6)

or else

R8 − 2R2 (R6 −R4 + 1) sin2 ω + (R2 − 1)3 (R2 + 1) sin4 ω = 0 . (B.7)

In the undeformed theory, with ω = 0, only the first possibility (B.6) gives a stationary

point, which is well known, namely

R = 51/4 , ρ = arccosh

(
3√
5

)
, x = 0 . (B.8)

As ω increase above zero, two valid stationary points arise from (B.6), one of which is a

continuous deformation of (B.8), and the other of which is a new stationary point that is

absent at ω = 0. It is not possible to give analytic expressions for the values of R at the

stationary points for generic ω, owing to the high degree of the polynomial. However, it is

fairly straightforward to see that for each of the two solutions the value of R at the station-

ary point increases monotonically as ω increases through its range ω = 0 to ω = π/4, with

Solution 1 : 0 ≤ R ≤
√

5− 1

2
, for 0 ≤ ω ≤ π

4
,

Solution 2 : 51/4 ≤ R ≤
√

5 + 1

2
, for 0 ≤ ω ≤ π

4
. (B.9)

The alternative factor (B.7) in the stationarity condition ∂V/∂R = 0 gives rise to just

one branch of valid solutions for R. Again, R at the stationary point turns out to be

monotonically increasing as ω increases from 0 to π/4, with

Solution 3 : 0 ≤ R ≤ 1 , for 0 ≤ ω ≤ π

4
. (B.10)

For all three of the solutions in (B.9) and (B.10) the value of ρ at the stationary point is

given by (B.5), and they all have x = 0.

It is a simple matter to calculate the masses of the scalar fluctuations around the

various AdS4 vacua. Since the scalar χ does not appear in the potential it is massless, and

we shall not include it in the subsequent discussion. For the remaining scalars it is useful

first to define a rescaled field in place of x, so that all three of the scalars have the same

canonically-normalised kinetic terms. Thus we may define

φ1 = σ , φ2 = ρ , φ3 =
√

3x . (B.11)
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The relevant parts of the Lagrangian for our present discussion then give

L =
√
−g
(
R− 1

2

3∑
i=1

(∂φi)
2 − V (φ)

)
. (B.12)

We may determine the masses of the scalar fluctuations, by calculating the eigenvalues of

the Hessian matrix of second derivatives of V , evaluated at the chosen stationary point.

Since the value of the potential at the stationary point, and hence the cosmological constant

Λ, depends on the choice of solution in (B.9) or (B.10), and also on the value of the

deformation parameter ω, it is advantageous to rescale the Hessian appropriately. Since

Λ = 1
2V (φ̄), where V (φ̄) denotes the value of the scalar potential at the stationary point

φi = φ̄i, it is convenient to calculate the rescaled Hessian matrix

Mij =
8

3V (φ̄)

∂2V

∂φi∂φj

∣∣∣
φk=φ̄k

. (B.13)

The eigenvalues of this matrix will give the three scalar masses normalised by the mass

mBF of the Breitenlöhner-Freedman bound, which is given by

m2
BF =

3

4
Λ . (B.14)

Thus eigenvalues of Mij that are greater than or equal to −1 obey the Breitenlöhner-

Freedman bound.

The usual AdS4 solution gives an Mij that is already diagonal, with

Mij = diag

(
−8

9
, −8

9
, −8

9

)
, (B.15)

and so, as is well known, the scalar masses are all equal and above the BF bound.

For Solution 1 and Solution 2, arising from the real positive roots of (B.6), we find
8
15 ± 16

5
√

3
0

± 16
5
√

3
16
15 0

0 0 −16
15

 , (B.16)

where the plus signs arise for Solution 1 and the minus signs for Solution 2. Remarkably,

the matrix is independent of the value of the parameter ω. The upper left 2×2 sub-matrix

must be diagonalised to obtain the masses. Upon doing this, we find

mass2 =

(
8

3
, −16

15
, −16

15

)
. (B.17)

Thus two of the scalars have masses that violate the BF bound. Although the cosmological

constant of the AdS4 solution depends on the value of ω, the masses of the fluctuations,

normalised with respect to the cosmological constant, do not. A similar phenomenon was

encountered in [37] for AdS4 vacua in the SU(3)-invariant sector of the N = 8 theory.
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For Solution 3 we find that the matrix Mij is already diagonal, with

Mij = diag

(
8

3
,

8

3
, −4

3

)
. (B.18)

Thus the scalar field x violates the BF bound, while ρ and σ have positive mass-squared

in this AdS4 vacuum. Again, the normalised masses are independent of the value of the

deformation parameter ω. If the scalar field x were (consistently) truncated from the

theory, this AdS4 vacuum would then be stable.
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[29] H. Lü, Y. Pang and C.N. Pope, AdS Dyonic Black Hole and its Thermodynamics, JHEP 11

(2013) 033 [arXiv:1307.6243] [INSPIRE].
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