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1 Introduction

The Hubbard model [1] is one of the classic integrable models of condensed matter physics,

especially useful in describing the transition from conducting to insulating systems and vice

versa. Its symmetry is of Yangian type [2], but is insufficient to fix its R-matrix [3], which

possesses a very atypical structure — it cannot be written as a function of the difference

of the spectral parameters.

This model has aroused a lot of interest recently due to its connections with integrable

systems in the worldsheet scattering picture of the AdS/CFT correspondence. Remarkable

results [4, 5, 18] include the identification of the Hubbard model R-matrix with the centrally

extended su(2|2) (or ‘AdS/CFT’) S-matrix, and the connection between the closed and

open q-deformed Hubbard chain and the Uq(su(2|2)) spin chain. This has been shown

to be a consequence of the Hubbard model’s symmetry being the bosonic subalgebra of

su(2|2), which may be enhanced to the full superalgebra when certain conditions on the

AdS/CFT variables are satisfied [7].

In this paper we explain how the key to this enhancement is the generator of the

particle-hole transformation (PHT), which relates the left and right su(2) symmetries of

the model. Although the PHT is neither a symmetry of the hamiltonian nor the R-matrix,

it does allow for a more specific solution of Shastry’s ansatz to be invariant under the full

superalgebra. In addition, this transformation provides us with a boundary theory that

possesses a twisted Yangian, further improving our knowledge of the integrable structure

governing particle scattering in the Hubbard model.
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This paper is organized as follows. First, we review the symmetry algebra of the

Hubbard model and its Yangian extension. Secondly, we show the role of the particle-hole

transformation in upgrading the bosonic su(2)2 to su(2|2) and how it can be identified a a

linear combination of the supercharges in su(2|2). In addition, we will show it is possible to

obtain the AdS/CFT S-matrix from Shastry’s R-matrix, even when the sign of the coupling

constant changes under the particle-hole transformation. Then, we will review briefly the

theory of twisted Yangians in the presence of achiral boundaries — an algebraic structure

which also appears in integrable boundary theories in the AdS/CFT correspondence [10].

Finally, we will construct the twisted Yangian symmetry for a half-infinite Hubbard chain

with a boundary that reflects a particle as a hole, proving two crucial properties: that

it commutes with the Hamiltonian and that it forms a coideal subalgebra of the original

Yangian. The details of these calculations, together with the su(2|2)⋉R2 defining relations,

are presented in an appendix.

2 Symmetries of the Hubbard model

The Hubbard model [1] is an approximate theory used in solid state physics to describe

how interactions between electrons can give rise to conducting and insulating systems. It

is a spin chain with N sites with Hamiltonian

H = −
N∑

i=1

∑

σ=↑,↓
c
†
iσci+1σ + c

†
i+1σciσ + U

N∑

i=1

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
(2.1)

where c†iσ and ciσ are the usual fermionic creation and annihilation operators acting on site

i and satisfying the only nonvanishing anticommutation relation

{
c
†
iσcjτ

}
= δστδij , (2.2)

U is the coupling constant for the on-site interaction and niσ = c
†
iσciσ is the number

density operator. There are four fundamental states per spin site, two bosonic |φa〉 and

two fermionic |ψα〉:

|φ1〉 = |0〉 , |ψ1〉 = c
†
↓ |0〉 , |ψ2〉 = c

†
↑ |0〉 , |φ2〉 = c

†
↑c

†
↓ |0〉 . (2.3)

This model was shown to be quantum integrable when imposing both periodic and open

boundary conditions [1, 11], the latter leading to a twisted Yangian symmetry [9]. Its

R-matrix, which we shall denote as R, can be identified as a linear combination of tensor

products of two free fermion model R-matrices, one for each spin layer [17]. R is a function

of U and the rapidity at site k, θk, and these are usually grouped in functions ak = a(θk),

bk = b(θk) and hk = h(U, θk). Interestingly, one can relate R to the S-matrix of the

AdS5 × S5 superstring, which possesses su(2|2)⋉R2 symmetry, via a similarity transforma-

tion. It then is not surprising how much interest this model and its quantum deformation

have recently aroused in the study of integrable systems in the AdS/CFT correspondence.

The key to these connections is the su(2)L × su(2)R ⊂ su(2|2) symmetry of the model [4],
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with the left and right copies of su(2) acting on the fermionic and bosonic states respec-

tively. However, this does not explain how the scattering picture of a nonsupersymmetric

model — unlike extensions of (2.1) [16] — can lead to one of a supersymmetric theory,

especially when the R-matrix must commute with the existing supercharges. Indeed, one

needs an additional constraint to accomplish this [7]. Specifically, if the AdS/CFT variables

x−, x+ and g are identified with the Hubbard variables as follows

g =
1

U
, x+ =

ib

aU
e2h, x− =

a

ibU
e2h, (2.4)

then su(2)L × su(2)R can be enhanced to su(2|2) if
(
x+

x−

)L/2

= 1 , (2.5)

where L is the length of the chain. This condition is derived using the Bethe ansatz method

for a spin chain with su(2|2)⋉R2 symmetry before identifying variables according to (2.4).

Clearly, there must also be an explanation for this condition coming from the Hubbard

model itself. This requires a slightly deeper study of the full symmetry algebra of the

Hubbard model and the intertwiner which relates the two copies of su(2). If one defines

the following operators:

En
iL = c

†
i↑ci+n↓, Fn

iL = c
†
i↓ci+n↑, Hn

iL = c
†
i↑ci+n↑ − c

†
i↓ci+n↓ , (2.6)

where i is the spin chain site and n ∈ Z, then su(2)L is generated by {E0L, F0L, H0L}

E0L =
1√
2

∑

i

E0
iL, F0L =

1√
2

∑

i

F0
iL, H0L =

1

2

∑

i

H0
iL , (2.7)

where i runs over all possible spin chain sites and the operators satisfy [H0L, E0L] =

E0L, [H0L, F0L] = −F0L and [E0L, F0L] = H0L. The su(2)R algebra, also known as the

eta-pairing symmetry [8], is generated by {E0R, F0R, H0R}, which can be obtained through

the “partial” particle hole transformation P↓:

P↓ :
(
ci↓, c

†
i↓, ci↑, c

†
i↑

)
7→
(
(−1)ic†i↓, (−1)ici↓, ci↑, c

†
i↑

)
. (2.8)

Similarly, one can also obtain the generators of su(2)R via the following equivalent map,

which we shall denote by P↑:

P↑ :
(
ci↓, c

†
i↓, ci↑, c

†
i↑

)
7→
(
ci↓, c

†
i↓, (−1)ic†i↑, (−1)ici↑

)
. (2.9)

One must note that the eta-pairing symmetry is only present at the global level if the

length of the chain is even [7]. Similarly, su(2|2)⋉R2 is only present locally — a mismatch

of phases in the spin chain will break it globally. As expected from integrability, the

model also possesses a Yangian symmetry [2], which includes the original — or grade 0 —

generators of the algebra and a second set of generators in the vector representation —

the grade 1 generators. This Yangian was constructed [2] for N → ∞ and, as expected, it

– 3 –
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is composed of two copies of Y (su(2)) related by Pσ, σ =↓, ↑. Y (su(2)L) is generated by

{EkL, FkL, HkL}k=0,1, where the grade 1 generators are given by

E1L =
1√
2

∑

i

(
E1
iL − E−1

iL

)
− U

2
√
2

∑

i<j

(
E0
iLH0

jL − E0
jLH0

iL

)
,

F1L =
1√
2

∑

i

(
F1
iL −F−1

iL

)
+

U

2
√
2

∑

i<j

(
F0
iLH0

jL −F0
jLH0

iL

)
,

H1L =
1

2

∑

i

(
H1

iL −H−1
iL

)
+
U

2

∑

i<j

(
E0
iLF0

jL − E0
jLF0

iL

)
. (2.10)

Pσ is a map between representations of the same algebra, but it is not necessarily a sym-

metry of the theory. In the case of the Hubbard model, however, both the hamiltonian and

the fermionic R-matrix Rf [8] satisfy

Pσ : Z(θ, U) 7→ Z(θ,−U), Z = H,Rf , (2.11)

and hence the map Pσ combined with a change of sign in U is an additional symmetry of

the model — more specifically, a supersymmetry.

The R-matrix R from which one can obtain the AdS/CFT S-matrix is related to Rf

in the following way:

(Rf )12 =W−1R12(a1, a2, b1, b2)W |aj=cos(θj),bj=−i sin(θj) (2.12)

where W is the matrix:

W = diag(1, 1,−i,−i,−i,−i, 1, 1,−1,−1, i, i, i, i,−1,−1) (2.13)

and R for such values of aj and bj corresponds to Shastry’s R-matrix [3]. Here we will

consider R for general aj and bj . Since the Hubbard model can be interpreted as two

coupled XX models — each one corresponding to a different spin — R can be written as a

linear combination of tensor products of two types of XX-model R-matrices R±
12σ [5, 17]:

R12 = A12

(
R+

12↑ ⊗R+
12↓ +R−

12↑ ⊗R−
12↓

)
+R+

12↑ ⊗R−
12↓ +R−

12↑ ⊗R+
12↓ , (2.14)

where

A12 =
− b1

a1

√
1 + U

4 (a1b1)
2 + a2

b2

√
1 + U

4 (a2b2)
2 − U

2 (b
2
1 + a22)

− b2
a2

√
1 + U

4 (a2b2)
2 + a1

b1

√
1 + U

4 (a1b1)
2 − U

2 (b
2
2 + a21)

(
a1b2

a2b1

)
. (2.15)

Since this R-matrix can be related to the AdS/CFT S-matrix via a similarity transfor-

mation, we will show it to be supersymmetric under an identification among its variables

given by the PHT.

Now we shall proceed to use (2.8), (2.9) and (2.11) to construct the form of Pσ. Then

we will check that this supersymmetry is enough to enhance the bosonic symmetry of the

model to su(2|2). In addition, we will show that this enhancement imposes a condition

in R equivalent to (2.5), which makes the U -dependence disappear. This explains why, in

this case, R is supersymmetric though the Hubbard model is not.
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3 The Particle Hole Transformation: from su(2)2 to su(2|2) ⋉ R2

Recall the standard 2 × 2 su(2)-triple
{

1√
2
e, 1√

2
f, 12h

}
, where

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
. (3.1)

If one computes matrices M which commute with the fermionic R-matrix as given in [8],

(M ⊗M)Rf = Rf (M ⊗M), (3.2)

one obtains

M =




R1 0 0 R2

0 L1 L2 0

0 L3 L4 0

R3 0 0 R4


 (3.3)

where the entries satisfy R1R4 − R2R3 = L1L4 − L2L3 = ∆. We can set ∆ = 1 since it

does not affect integrability, and we have:

ML =

(
L1 L2

L3 L4

)
∈ SU(2)L MR =

(
R1 R2

R3 R4

)
∈ SU(2)R. (3.4)

Then one obtains a representation of the su(2) algebra given by su(2)L = {E0L, F0L, H0L} ={
1√
2
(e⊗ f), 1√

2
(f ⊗ e), 14(h⊗ 1− 1⊗ h)

}
and an additional, commuting copy given by

su(2)R = {E0R, F0R, H0R} =
{

1√
2
(e⊗ e), 1√

2
(f ⊗ f), 14(h⊗ 1 + 1⊗ h)

}
. Now one finds

that the partial particle hole transformations, which map the copies of su(2) to one an-

other and satisfies (2.11), are each divided into two possible choices:

P±
↓ (a1) = a1(1⊗ (e± f)), (3.5)

P±
↑ (a2) = a2((e± f)⊗ 1), (3.6)

where a1 and a2 are nonzero complex numbers. We shall proceed to relate these to the

supersymmetry charges Q and G of su(2|2)⋉R2. Using the representation of the bosonic

subalgebra given above, and the defining relations in the appendix A, the supercharges are

Q1
1(a,b) = (bef + afe)⊗ f, Q2

2(a,b) = (aef + bfe)⊗ e,

Q1
2(a,b) = e⊗ (aef − bfe), Q2

1(a,b) = −f ⊗ (bef − afe),

G1
1(c,d) = Q2

2(c,d), G2
2(c,d) = Q1

1(c,d),

G1
2(c,d) = −Q1

2(c,d), G2
1(c,d) = −Q2

1(c,d), (3.7)

where the bold variables are nonzero complex numbers satisfying ad − bc = 1. It is now

easy to see that the operators P±
σ are sums of these supercharges with a specific choice of

variables:

P±
↓ (a) = Q1

1(a,±a) +Q2
2(a,±a) = G2

2(a,±a) +G2
2(a,±a), (3.8)

P±
↑ (c) = Q1

2(c,∓c) +Q2
1(c,∓c) = G1

2(c,∓c) +G2
1(c,∓c), (3.9)
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and hence the supercharges can be obtained by computing commutators of the particle

hole transformation with the generators of the bosonic subalgebra. In this case however,

imposing the condition ad − bc = 1 is equivalent to the following relation among the free

parameters:

c = ± 1

2a
. (3.10)

Consequently, the superalgebra generated by su(2)L × su(2)R and P±
σ is su(2|2). This

symmetry lacks the central extension that governs the scattering of the AdS5 × S5 super-

string. Instead, the possible central charges C, P and K generated by the supersymmetries

(see A) are

〈C,P,K〉 = 〈 ad+ bc

2
, ab, cd 〉 = 〈 0,∓a2,± 1

4a2
〉. (3.11)

We can see that the relations b = ∓ a and d = ± c are equivalent to condition (2.5), which

is ultimately due to the existence of the particle-hole transformation.

If one now takes R as given in (2.13) and imposes condition bj = ±aj , one obtains

R12(bj = ±aj) =
(
R+

12↑ +R−
12↑

)
⊗
(
R+

12↓ +R−
12↓

)
, (3.12)

which is now invariant under the change of sign in U , and hence possesses P±
σ as an

additional symmetry. Furthermore, this also occurs in the U → ∞ limit and in the trivial

U = 0 case. Thus we conclude that the existence of Pσ and a careful choice of parameters

is what allows us to connect the Hubbard model, which lacks supersymmetry, with the

integrable structure of the AdS5 × S5 superstring.

Interestingly, the particle-hole transformation also provides us with a boundary theory

which possesses a remnant of the bulk Yangian symmetry. Before constructing the genera-

tors of such symmetry, it is necessary to review the theory of twisted Yangians and achiral

boundaries.

4 Twisted Yangian symmetry in the presence of achiral boundaries

Suppose a 1+1D physical theory has a Lie symmetry algebra g generated by Qa
0, a =

1, . . .,dim(g) satisfying [
Qa

0, Q
b
0

]
= fabcQ

c
0 . (4.1)

For this system to be integrable, it must possess additional conserved charges, and hence it

is expected to be invariant under an extension of g: the Yangian Y (g) [6]. This is generated

by {Qa
0} — also called the grade-0 generators — and a second set of operators {Qa

1} which

form a vector representation of g

[
Qa

0, Q
b
1

]
= fabcQ

c
1 , (4.2)

and satisfy the so called Drinfel’d relations [20]. A commutator of grade-1 generators

gives grade-2 generators, and iterating this process one can construct an infinite tower of

– 6 –
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conserved charges. Y (g) possesses a coproduct structure, which defines the action of its

generators in 2-particle states through the following map

∆ : Ug → Ug⊗ Ug

Qa
0 7→ Qa

0 ⊗ 1 + 1⊗Qa
0 (4.3)

Qa
1 7→ Qa

1 ⊗ 1 + 1⊗Qa
1 +

1

2
fabcQ

c
0 ⊗Qb

0 , (4.4)

where Ug is the universal enveloping algebra. Finite dimensional representations of Y (g)

are realized in one-parameter families via the automorphism

ψµ : Y (g) → Y (g)

(Qa
0, Q

a
1) 7→ (Qa

0, Q
a
1 + µQa

0) . (4.5)

If a model which possesses Y (g) is put on the half-line, the boundary condition will break

g to a subalgebra h. To determine whether this system possesses a remnant of the original

Yangian symmetry referred to as the twisted Yangian Y (g, h) [12–14], one must check that

g and h form a symmetric pair: if g = h⊕m, then

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h . (4.6)

This, together with orthogonality with respect to the killing form of g, is a requirement for

the system to satisfy the coideal property:

∆Y (g, h) ⊂ Y (g)⊗ Y (g, h). (4.7)

Now suppose a 1+1D physical theory has symmetry algebra gL× gR, where gL and gR are

generated by
{
JL
0

}
and

{
JR
0

}
respectively. One can also decompose this symmetry into

g+ ⊕ g−, where J
±
0 = JL

0 ± JR
0 . If we were to impose an achiral boundary condition on

the real line [10], which satisfies α
(
JL
0

)
= JR

0 and α2 = id, gL × gL would break to the

subalgebra g+.

One can check that gL × gR and g+ form a symmetric pair, and hence an integrable

system with this type of boundary condition is expected to possess a remnant of the original

Y (g× g) symmetry. This is not Y (g), but rather, the twisted Yangian Y (gL× gR, g+) [10].

Now the task is to construct its generators. It is generated by g+ and a deformation of the

grade 1 generators J−
1 = JL

1 − JR
1 [10] given by:

Ĵ−
1 = J−

1 + k
[
C+, J

−
0

]
, (4.8)

where k is a deformation parameter fixed by the theory and C+ is the quadratic Casimir

operator of g restricted to g+.

5 Twisted Yangian of the Hubbard chain with an achiral boundary

The so(4) algebra may be generated by operators Aa and Ba, a = +,−, Z, satisfying the

following relations
[
Aa, Ab

]
= fabcA

c,
[
Ba, Bb

]
= fabcA

c,
[
Aa, Bb

]
= fabcB

c, (5.1)
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where fabc are the su(2) structure constants. Note that {Aa} generate a full su(2) algebra.

Since so(4) ∼= su(2)2, Aa and Bb can be constructed via the su(2)L × su(2)R generators in

the following way

A+
0 = E0L + E0R, A−

0 = F0L + F0R, AZ
0 = H0L +H0R , (5.2)

B+
0 = E0L − E0R, B−

0 = F0L − F0R, BZ
0 = H0L −H0R . (5.3)

The level 1 generators of the Yangian symmetry are constructed similarly, changing the

grade label from 0 to 1. Now consider the following hamiltonian for a half-infinite

Hubbard chain:

HA = −
N−1∑

i=−∞

∑

σ=↑,↓
c
†
iσci+1σ + c

†
i+1σciσ + U

N∑

i=−∞

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
+ pP+

N↓(1) . (5.4)

The boundary term pP+
N↓(1) = P+

N↓(p) acts on the fundamental states by reflecting a

particle with a hole and vice versa at site N . In doing this, the states gain a factor of

p, which is interpreted as a change in phase, requiring |p|= 1. Since this specific PHT

maps JL ∈ su(2)L to JR ∈ su(2)R via P+
N↓(1)J

L
(
P+
N↓(1)

)−1
= JR, this model is no longer

invariant under the full so(4) algebra, but the symmetry is broken to the diagonal su(2)

generated by {Aa}, which we shall denote by su(2)+. This is then an achiral boundary

condition, and since so(4) and su(2)+ form a symmetric pair, the model is expected to

possess a twisted Yangian symmetry Y (so(4), su(2)+). Naively, one would attempt to

construct the deformed level 1 generators using (4.8) and obtain, for example,

B̂+ = B+
1 − U

8

(
B+

0 A
Z
0 −BZ

0 A
+
0

)
. (5.5)

However, just as in the case of other integrable open boundaries [9], there exists a subtlety:

one must make use of the Yangian automorphism J1 7→ J1 + µJ0. In addition, the right

Yangian copy is obtained not only through the map (2.8) but also by changing U to −U .

One then finds that the following operator

B̃+ = A+
1 +

U

2
√
2
B+

0 − U

4
√
2

(
B+

0 A
Z
0 −BZ

0 A
+
0

)
(5.6)

commutes with HA. Simlarly, the other twisted level 1 charges are:

B̃− = A−
1 − U

2
√
2
B+

0 +
U

4
√
2

(
B−

0 A
Z
0 −BZ

0 A
−
0

)
(5.7)

B̃Z = AZ
1 +

U

2
BZ

0 +
U

4

(
B+

0 A
−
0 −B−

0 A
+
0

)
.

Their coproducts are

∆B̃+ = B̃+ ⊗ 1 + 1⊗ B̃+ − U

2
√
2

(
B+

0 ⊗AZ
0 −BZ

0 ⊗A+
0

)

∆B̃− = B̃− ⊗ 1 + 1⊗ B̃− +
U

2
√
2

(
B−

0 ⊗AZ
0 −BZ

0 ⊗A−
0

)

∆B̃Z = B̃Z ⊗ 1 + 1⊗ B̃Z +
U

2

(
B+

0 ⊗A−
0 −B−

0 ⊗A+
0

)
(5.8)

thus (4.7) is satisfied and hence Y (so(4), su(2)+) =
{
Aa

0, B̃
b
}

forms a coideal subalgebra

of Y (so(4)).
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6 Concluding remarks

In this paper we have shown that the particle-hole transformation plays a crucial role in

relating the integrable structure of the Hubbard model to that of the AdS5×S5 superstring.
Furthermore, we have shown that a particle-hole reflection is an achiral boundary in the

half-infinite Hubbard chain, and constructed its corresponding twisted Yangian symmetry.

These results raise the possibility of studying supersymmetric integrable systems

— especially those relevant in the AdS/CFT correspondence — using manifestly non-

supersymmetric ones. It would be interesting to see if extended Hubbard chains — pos-

sessing an arbitrary symmetry group [15] — or those with variable range hopping [19] can

give rise to interesting integrable boundary theories, and whether these have any relation

to other integrable structures in AdS/CFT.

As for the Hubbard model, the tetrahedron algebra is used to obtain the conditions

necessary for Shastry’s ansatz to satisfy the Yang Baxter equation. The question of whether

this algebra is physically relevant in this case remains a mystery.
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A The su(2|2) ⋉ R2 relations

The centrally extended su(2|2) superalgebra is generated by six bosonic operators {Lα
β ,R

a
b}

and eight supersymmetric generators
{
Qα

a,G
b
β

}
, satisfying the following relations

[
Lα

β,L
γ
ξ

]
= δ

γ
βL

α
ξ − δαξ L

γ
β , [Ra

b,R
c
d] = δcbR

a
d − δadR

c
b

[
Lα

β ,Q
γ
b

]
= δ

γ
βQ

α
b −

1

2
δαβQ

γ
b,

[
Lα

β ,G
a
γ

]
= −δαγGα

β +
1

2
δαβG

a
γ

{
Qα

a,Q
β
b

}
= ǫαβǫabP,

{
Ga

α,G
b
β

}
= ǫabǫαβK

{
Qα

a,G
b
β

}
= δbaL

α
β + δαβR

b
a + δbaδ

β
αC (A.1)

where C, P and K are central elements. The superalgebra acts on two bosonic |φa〉 and

two fermionic |ψα〉 states, a, α = 1, 2 in the following way:

Ra
b |φa〉 = δcb |φa〉 −

1

2
δab |φc〉 , Lα

β |ψγ〉 = δ
γ
β |ψα〉 − 1

2
δαβ |ψγ〉 (A.2)

Qα
a |φb〉 = aδba |ψα〉 Qα

a |ψβ〉 = bǫαβǫab |φb〉 (A.3)

Ga
α |ψβ〉 = cǫabǫαβ |ψβ〉 Ga

α |φb〉 = dδβα |ψα〉 (A.4)

where a,b,c and d are complex numbers and the closure of the algebra requires that

ad− bc = 1, which implies

C =
ad+ bc

2
, P = ab, K = cd . (A.5)

– 9 –



J
H
E
P
0
4
(
2
0
1
5
)
0
6
3

B Commutation with the Hamiltonian

We will proceed to show that B̃+ commutes with the achiral Hamiltonian HA. Here we will

construct the half-infinite Hubbard chain by folding an infinite one at a spin site, say N ,

and identifying sites N +n and N −n. Such identification commutes with the particle-hole

transformation. Hence, since all components of B̃+ are already conserved charges of an

infinite Hubbard chain, we only need to show that
[
P+
N↓, B̃

+
]
= 0 . (B.1)

It is helpful to divide the commutator into components. First, let us compute
[
P+
N↓, A

+
1

]

by dividing A+
1 into an U -independent and dependent components A+0

1 and A+U
1 . For the

commutator with A+0
1 , it is convenient to write P+

N↓ in the fermionic representation:

P+
N↓ = c

†
N↓ − (−1)NcN↓ . (B.2)

Then we find that
[
P+
N↓, A

+0
1

]
=
[
c
†
N↓ − (−1)NcN↓, c

†
N−1↑cN↓−c†N↑cN−1↓+(−1)N

(
c
†
N−1↑c

†
N↓+c

†
N↑c

†
N−1↓

)]

= −
(
c
†
N−1↑ − (−1)2Nc†N−1↑

)

= 0 . (B.3)

For A+U
2 , as we will see, it is not necessary to compute the commutator of P+

N↓ with the

different operators, but rather it is sufficient to know that
[
P+
N↓, B

+
0

]
= 2
[
P+
N↓, E0L

]
, which

can be inferred by the relation
(
P+
N↓
)−1

E0RP
+
N↓ = E0L. We find that

[
P+
N↓, A

+U
2

]
=

U

2
√
2

∑

i<N

([
P+
N↓, E0

NL

] (
H0

iL +H0
iR

)
−
[
P+
N↓,H0

NL

] (
E0
iL + E0

iR

))
. (B.4)

If one makes the ansatz that the quadratic modification must be of the form X+
B = µB+

0 −
k
(
B+

0 A
Z
0 −BZ

0 A
+
0

)
, then[

P+

N↓, X
+

B

]
=−(4k + 2µ)

[
P+

N↓, E0
NL

]
+ 2k

∑

i<N

([
P+

N↓, E0
NL

](
H0

iL+H0
iR

)
−
[
P+

N↓,H0
NL

](
E0
iL+E0

iR

))
.

(B.5)

Hence we arrive at the conclusion that
[
P+
N↓, A

+
1 +X+

B

]
= 0 if

k = − U

4
√
2
, µ =

U

2
√
2
. (B.6)

C Computation of coproducts

We will proceed to compute ∆B̃+. Defining B+
0 =

∑
iB

+(0)
i where B

+(n)
i = En

iL − En
iR and

A+
0 =

∑
iA

+(0)
i where A

+(0)
i = En

iL + En
iR, we can rewrite

A+
1 =

1√
2

∑

i

(
E1
iL − E−1

iL + E1
iR − E−1

iR

)
− U

2
√
2

∑

i,j

tij
(
E0
iLH0

jL − E0
iRH0

jR

)

=
∑

i

(
A

+(1)
i +A

+(−1)
i

)
− U

4
√
2

∑

i,j

tij

(
B

+(0)
i A

z(0)
j −A

+(0)
i B

z(0)
j

)
(C.1)
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where tij is 1 when j > i, −1 when j < i and 0 when i = j. Using the appendix A in [9],

one can show that

∆A+ = A+
1 ⊗ 1 + 1⊗A+

1 − U

4
√
2

(
B+

0 ⊗Az
0 +A+

0 ⊗Bz
0 −Az

0 ⊗B+
0 −Bz

0 ⊗A+
0

)
. (C.2)

Since ∆ is a homomorphism,

∆Ã+ = ∆A+
1 − U

2
√
2
∆B+

0 − U

4
√
2

(
∆B+

0 ∆A
Z
0 −∆BZ

0 ∆A
+
0

)

= A+
1 ⊗ 1 + 1⊗A+

1 − U

4
√
2

(
2B+

0 ⊗Az
0 − 2Bz

0 ⊗A+
0 +

(
B+

0 A
z
0 −B+

0 A
z
0

)
⊗ 1

+ 1⊗
(
B+

0 A
z
0 −B+

0 A
z
0

))
− U

2
√
2

(
B+

0 ⊗ 1 + 1⊗B+
0

)

= B̃+ ⊗ 1 + 1⊗ B̃+ − U

2
√
2

(
B+

0 ⊗AZ
0 −BZ

0 ⊗A+
0

)
. (C.3)
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