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1 Introduction

Large-field chaotic inflation is an attractive scenario for describing the initial phase of the

universe [1]. The simple quadratic potential V = 1
2m

2
ϕϕ

2 predicts a scalar spectral index

of ns ≈ 0.967 and a tensor-to-scalar ratio of r ≈ 0.13 for 60 e-folds of inflation. Pure

quadratic inflation is disfavored at the 2σ-level by observations of the Cosmic Microwave

Background (CMB) [2, 3]. Here we embed quadratic inflation into supergravity with moduli

stabilization. This leads to modifications such that quadratic inflation remains a viable

possibility. The amplitude of scalar perturbations requires a small inflaton mass, mϕ ≈ 6×
10−6, and super-Planckian values of the inflaton field, ϕ . 15, during the slow-roll period.1

At such large energy scales there are several good reasons to believe that the underlying

theory should be space-time supersymmetric. However, the simplest implementations of

chaotic inflation in supergravity are subject to a number of subtleties.

In supergravity ϕ is part of a complex scalar field φ = 1√
2
(χ + iϕ). The supergravity

η-problem then requires the Kähler potential to have a symmetry to protect the inflaton

from becoming too heavy. A simple candidate seems to be the global shift symmetry

φ→ φ+ ic, first used in chaotic inflation in [4]. Clearly, the symmetry must be broken for

the inflaton to be massive. Naively, a simple supergravity model can be defined by

K =
1

2

(
φ+ φ̄

)2
, W =

1

2
mφ2 . (1.1)

There is, however, another problem. In this formulation the scalar potential is un-

bounded from below at large inflaton field values. Only for ϕ� 1 the potential defined by

eqs. (1.1) is approximately quadratic. This problem may be solved by invoking a second

chiral multiplet, sometimes called “stabilizer field”, denoted by S [4]. It is supposed to be

heavier than the inflaton and to have a vanishing, or very small, vacuum expectation value

during inflation. The simplest example is defined by

K =
1

2
(φ+ φ̄)2 + |S|2 − 1

Λ2
|S|4 + . . . ,

W = mSφ .
(1.2)

The quartic term in the Kähler potential is necessary for S to be heavy enough during

inflation. In particular, m2
S ∼

m2ϕ2

Λ2 ∼ H2

Λ2 , where H denotes the Hubble scale during

inflation. For Λ� 1 indeed mS � H, while 〈S〉 = 0. The inflaton potential is then simply

V (ϕ) =
1

2
m2ϕ2 . (1.3)

With such high energy scales involved it seems natural to study how a supergravity

model of chaotic inflation can be embedded in string theory. There has been substantial

progress in implementing chaotic inflation without a stabilizer, and related models, in

string theory. For recent discussions, cf. [5–13]. In particular, the authors of [10, 11] have

analyzed the effects of moduli stabilization in F-term axion monodromy inflation. A general

supergravity analysis comparing the scale of inflation and the gravitino mass has been

1Throughout this paper we work in units where MP = 1.
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performed in [14, 15]. On the other hand, it has proven difficult to implement the model

proposed in [4] in explicit string constructions. For recent treatments, cf. [6, 16], and for a

different approach, cf. [17]. Since string compactifications on Calabi-Yau (CY) manifolds

typically yield an abundance of scalar fields in four dimensions, such as geometric moduli

or the axio-dilaton, one may ask whether some of these fields can mitigate the problems of

the quadratic inflation model without a stabilizer field. In particular, it may be possible

that in no-scale supergravity setups involving moduli fields the negative term which makes

V unbounded from below is canceled. In the following we consider models which only

contain Kähler moduli, assuming all other moduli to be stabilized supersymmetrically.

A no-scale cancellation, however, can only happen when the moduli break supersymme-

try. In the absence of supersymmetry breaking, fields heavier than the Hubble scale can be

completely decoupled from the dynamics of inflation, as discussed in [18] and, for the case of

chaotic inflation without a stabilizer field, in [19]. On the contrary, supersymmetry break-

ing induces effects which do not decouple, in particular soft-breaking terms. Therefore,

moduli stabilization with broken supersymmetry affects inflation even if the involved fields

are heavy and can be integrated out. We divide moduli stabilization schemes in two classes.

1. The stabilization of moduli does not (or almost not) induce supersymmetry breaking.

This means the moduli masses and the inflaton mass are much bigger than the scale of

supersymmetry breaking, given by the gravitino mass m3/2. In this case, the moduli

can decouple with little effects on the dynamics of inflation, cf. [18]. Examples in

this class are those with “strong moduli stabilization”, treated in [20, 21], as well as

stabilization via world-sheet instanton couplings as discussed in [22]. In models of

this class chaotic inflation without a stabilizer does not work because the inflaton

potential remains unbounded from below for ϕ & 1.

2. The stabilization of moduli spontaneously breaks supersymmetry such that the scale

of supersymmetry breaking is larger than the inflaton mass. In this case, integrating

out the heavy moduli results in substantial effects on the dynamics of inflation. This

class is the main subject of this paper. As examples we study the model of KKLT [23],

Kähler Uplifting [24, 25], the Large Volume Scenario [26], and their interplay with

chaotic inflation as defined in (1.1). In all three examples inflation is possible if the

gravitino mass is larger than the Hubble scale. Many of the details are, however,

different in the three cases. Note that the considered models of moduli stabilization

are hardly compatible with the alternative inflation model of [4] which requires the

gravitino mass to be parametrically smaller than the inflaton mass [19].

Despite the differences in detail, all considered models reduce to an effective single-field

inflaton potential of remarkable universality. The moduli backreact on the inflaton, and

the flattened effective potential in all models is of the form

V =
1

2
m2
ϕ ϕ

2

(
1− ϕ2

2ϕ2
M

)
. (1.4)

This potential is characterized by the inflaton mass m setting the scale of the potential

and position ϕM of a local maximum induced by the negative quartic terms stemming from

– 3 –
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integrating out the moduli. Hence, all our setups share universal predictions for the CMB

observables, in particular r & 0.05, after imposing the Planck constraints.

This paper is organized as follows. In section 2 we discuss, in general terms, how

integrating out heavy moduli which break supersymmetry can have strong effects on the

effective inflaton potential. We derive explicit formulae for the latter, assuming that the

inflaton and moduli sectors interact only gravitationally. For the sake of completeness,

this is done in the cases with and without the stabilizer field. We illustrate these general

results with three examples — KKLT moduli stabilization, Kähler Uplifting, and the Large

Volume Scenario — in sections 3, 4, and 5, respectively. In each model we briefly review

the stabilization mechanism itself and provide different techniques which can be used to

integrate out the moduli. We derive bounds on the gravitino mass and the field value of

the inflaton arising from stability of the moduli. Furthermore, each one of the examples

is illustrated by means of a numerical example. In section 6 we discuss the universality

of the leading-order effective inflaton potential arising in all our examples and the shared

universal CMB observables this predicts. Finally, our results are discussed in section 7,

and technical details are summarized in the appendices A and B.

2 Integrating out supersymmetry-breaking moduli

2.1 Effects of supersymmetry breaking

We are interested in supergravity models in which the inflaton field ϕ, which is the imag-

inary part of a complex scalar field φ = 1√
2
(χ + iϕ), interacts with heavy moduli and su-

persymmetry breaking fields, collectively denoted by Tα. The effective action is defined by

K = K0(Tα, T ᾱ) +
1

2
K1(Tα, T ᾱ)(φ+ φ̄)2 ,

W = Wmod(Tα) +
1

2
mφ2 .

(2.1)

It can potentially reconcile chaotic inflation, moduli stabilization, and supersymmetry

breaking. We are interested in the regime where the moduli and the supersymmetry break-

ing fields Tα are much heavier than the inflaton. Such heavy fields usually decouple from

low-energy dynamics once they settle into their minima, denoted by Tα,0. The case without

supersymmetry breaking was studied in [18]. It was shown that for a single heavy modulus

T with K0(T, T ) = −3 ln
(
T + T

)
and K1(T, T ) = 1 the effects on the dynamics of inflation

can be expressed as

V ≈ Vinf(φα)

(2T0)3
− 3

2(2T0)9/2mT

{
Winf

[
Vinf(φα) + eKKαᾱ∂αWinfDᾱW inf

]
+ c.c.

}
− 3eK

(2T0)6m2
T

∣∣∣KαᾱDαWinf∂ᾱW inf

∣∣∣2 , (2.2)

up to terms suppressed by higher powers of the modulus mass mT . Here, Winf denotes

the superpotential of the inflaton sector, comprised of scalar fields φα. Vinf(φα) denotes

the inflaton scalar potential in the absence of a modulus sector. Evidently, all corrections

stemming from integrating out the heavy modulus disappear in the limit mT →∞.
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However, if any of the fields Tα break supersymmetry the picture changes. In this case,

there are well-known effects that do not decouple from inflation. In the context of low-

energy supersymmetric models these lead to soft-breaking terms whose size is controlled

by the gravitino mass. In particular, considering spontaneous supersymmetry breaking we

expect the effective inflaton potential to be of the form

V = VSUGRA +
c

2
m̃m3/2ϕ

2 + . . . , (2.3)

where c is a model-dependent real constant and VSUGRA is to be computed using

K =
1

2

(
φ+ φ̄

)2
, W =

1

2
m̃φ2 , (2.4)

with m̃ = K−1
1 e

1
2
K0(T0,T 0)m and the wave-function normalization φ → K

−1/2
1 φ to match

the notation of eq. (2.1). Notice that in eq. (2.3) a term proportional to m2
3/2ϕ

2 is absent

due to the shift symmetry φ → φ + iα, which is broken softly by the mass term in the

superpotential. Computing VSUGRA from eqs. (2.4) while imposing cancellation of the

cosmological constant at the end of inflation, ϕ = 0, and setting the heavy real scalar χ to

its minimum at 〈χ〉 = 0, we find

V =
1

2
m̃2ϕ2 +

c

2
m̃m3/2ϕ

2 − 3

16
m̃2ϕ4 + . . . . (2.5)

Apparently, the second term only decouples from inflation if m3/2 � m̃. The dots in

eqs. (2.3) and (2.5) denote sub-leading terms and higher powers in ϕ, for example terms

of order O(m̃m3/2ϕ
4). Usually, such terms can be discarded easily. In large-field inflation,

however, super-Planckian excursions of ϕ can make corrections relevant. Therefore, in the

following we systematically calculate corrections to the leading-order potential in eq. (2.5).

We are curious to find out if corrections from the modulus sector can cancel the third term in

the effective potential, which makes V unbounded from below. Furthermore, if the modulus

sector has an approximate no-scale symmetry we expect a cancellation of the bilinear soft

mass term, i.e., c� 1. We wish to discuss if, in this situation, chaotic inflation can proceed

via the supersymmetric mass term of ϕ without spoiling the stabilization of moduli.

2.2 Integrating out heavy moduli

In the following, we would like to generalize the results of [18], in particular eq. (2.2), to

more general supergravity Lagrangians. Starting from eqs. (2.1) we find for the Kähler

metric and its inverse

KIJ̄ =

(
K0,αβ̄ 0

0 K1

)
, KIJ̄ =

(
Kαβ̄

0 0

0 K−1
1

)
. (2.6)

The indices I and J run over the Tα and φ. Accordingly, the scalar potential is given by

V = eK0

{
Kαβ̄

0

[
Wα +K0,α

(
Wmod(Tα) +

1

2
mφ2

)][
W β̄ +K0,β̄

(
Wmod(T ᾱ) +

1

2
mφ̄2

)]

– 5 –
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+K−1
1 m2|φ|2 − 3

∣∣∣∣Wmod(Tα) +
1

2
mφ2

∣∣∣∣2
}
. (2.7)

Assuming the cosmological constant to be canceled at φ = 0, i.e., after inflation has ended,

means

Kαβ̄
0 [Wα +K0,αWmod]

[
W β̄ +K0,β̄Wmod

]
= 3 |Wmod(Tα,0)|2 . (2.8)

Furthermore, we assume that the moduli fields adiabatically trace the minimum of their

potential during inflation. This is justified as long as their masses are larger than the

Hubble scale. Specifically,

∇αV = 0 ⇒ GI∇αGI +Gα = 0 . (2.9)

Here ∇α denotes the covariant derivative on field space, i.e., ∇αGI = GαI − ΓJαIGJ in

terms of the Kähler function G = K + ln |W |2, where Γ is defined in appendix A.1.

We can now integrate out the heavy fields Tα to obtain an effective scalar potential for

the inflaton ϕ. Using eq. (2.8) and using that χ is heavy due to its soft mass and stabilized

at the origin we can expand V in powers of the inflaton field,

V = eK0

{
Kαβ̄

0

[
Wα +K0,α

(
Wmod(Tα)− 1

4
mϕ2

)][
W β̄ +K0,β̄

(
Wmod(T ᾱ)− 1

4
mϕ2

)]

+
1

2
K−1

1 m2ϕ2 − 3

∣∣∣∣Wmod(Tα)− 1

4
mϕ2

∣∣∣∣2
}

= V0(Tα, T ᾱ) +
1

2
V1(Tα, T ᾱ)mϕ2 +

1

4
V2(Tα, T ᾱ)m2ϕ4 . (2.10)

The explicit coefficients V0, V1, and V2 and other details of the computation are given in

appendix B. During inflation the fields Tα are displaced from their minima,

Tα = Tα,0 + δTα . (2.11)

We can expand the coefficients Vi in eq. (2.10) at leading order in δTα as long as |δTα| �
|Tα,0|. Introducing ρα = (Tα, T ᾱ) this can be written as

V =
1

2
δραM

2
αβδρβ +

1

2

(
V1 +

∂V1

∂ρα
δρα

)
mϕ2 +

1

4
V2m

2ϕ4 + . . . , (2.12)

where M2
αβ denotes the un-normalized mass matrix of the ρα. Again, details can be found

in appendix B. Minimizing this expression with respect to δρα we find for the displacement

of the moduli at leading order,

δρα = −1

2
(M−2)αβ

∂V1

∂ρβ
mϕ2 . (2.13)

Plugging this back into eq. (2.12) we obtain the effective potential in its most general form,

V =
1

2
V1

(
Tα,0, T ᾱ,0

)
mϕ2 +

1

4
V2

(
Tα,0, T ᾱ,0

)
m2ϕ4

− 1

2

(
∂V1
∂Tα

∂V1

∂T ᾱ

)((m−2)αβ̄ (m−2)αβ

(m−2)ᾱβ̄ (m−2)ᾱβ

)( ∂V1

∂T β̄
∂V1
∂Tβ

)
m2ϕ4 + . . . .

(2.14)

– 6 –
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To simplify this expression it is useful to consider a limit in which supersymmetry is

weakly broken, cf. the more detailed discussion in appendix A.2. This is the case when

the supersymmetric mass, i.e., the mass of the fermions associated with the scalars Tα, is

much larger than the gravitino mass.2 Specifically, when

Eigenvalues [(mF )αβ] = Eigenvalues

[
eG/2

(
∇αGβ +

1

3
GαGβ

)]
� m3/2 . (2.15)

Alternatively, one may consider the case where the supersymmetry breaking scale is large

but the supersymmetry breaking sector decouples from moduli stabilization. An example

for this is supersymmetry breaking in the O’Raifeartaigh model with a very heavy Polonyi

field. For both of these possibilities the effective inflaton potential becomes

V ≈ mϕ2

2
eK0

{
−1

2
Kαβ̄

0

(
K0,β̄DαWmod +K0,αDβ̄Wmod

)
+mK−1

1 +
3

2
(Wmod +Wmod)

}
+
m2ϕ4

16
eK0

{
− 3 + eK0/2

[
Kδ

(
m−1
F

)βδ [−Kεε̄
0 (Kβε +KβKε − ΓγβεKγ)Dε̄Wmod

+ 2DβWmod + 3KβWmod + 2mK−2
1 (K0,βK1 −K1,β)

]
+ h.c.

]}
, (2.16)

which is the desired generalization of eq. (2.2). Notice, however, that the quadratic term

is independent of the small-supersymmetry breaking approximation. It is simply the total

mass — supersymmetric and soft mass — of the inflaton in the true vacuum, computed

from the effective action defined by (2.1). Indeed, using the definition of the inflaton Imφ =

ϕ/
√

2 and the supergravity scalar masses in eqs. (A.1), we find that the inflaton mass is

m2
ϕ = m2

φφ̄ −
1

2

(
m2
φφ +m2

φ̄φ̄

)
. (2.17)

It is a straight-forward, though non-trivial exercise to prove that eq. (2.17) equals the mass

term in the first line of eq. (2.16).

Using this result we can, in principle, calculate the effective potential with corrections

for any model of moduli stabilization described by the ansatz eqs. (2.1). In practice, how-

ever, the approximation outlined above to obtain eq. (2.16) — more precisely, the quartic

term, as explained above — is not always applicable. In that case, either a more general

expression for the effective potential can be used, given by eq. (2.14), or the calculation can

be significantly simplified by expanding in small parameters while performing the above

analysis. Before demonstrating this in three popular examples of moduli stabilization with

spontaneously broken supersymmetry, we give a short remark on chaotic inflation with a

stabilizer field.

2.3 Chaotic inflation with a stabilizer field

Although the main focus of this paper is the simple chaotic inflation model with a quadratic

superpotential, we consider it worthwhile to make a couple of remarks about the scenario

with a stabilizer field. This model has been intensively studied in the literature, and its

2With the exception of the goldstino, of course.
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interplay with supersymmetric moduli stabilization has been treated in [18, 27, 28]. A

generalization of the results in [18] can be found analogously to the above analysis.

As a starting point we consider

K = K0(Tα, T ᾱ) +
1

2
K1(Tα, T ᾱ)(φ+ φ̄)2 +KSS̄ |S|2 +

1

4
KSS̄SS̄ |S|4 + . . . ,

W = Wmod(Tα) +mSφ .
(2.18)

As before, for simplicity we assume the superpotentials of the moduli sector and inflation

sector to be decoupled. The canonically normalized inflaton is ϕ =
√

2Imφ, and ψ =√
2ImS. The real parts of φ and S are assumed to be stabilized at the origin. The scalar

potential is given by

V =eK
{
Kαβ̄

0 [Wα +K0,α(Wmod +mSφ)]
[
W β̄ +K0,β̄(Wmod +mSφ)

]
+ K−1

1 m2|S|2

+
1

KSS̄+KSS̄SS̄ |S|2
∣∣(1+KSS̄ |S|2

)
mφ+KSS̄S̄Wmod

∣∣2−3 |Wmod+mSφ|2
}
. (2.19)

Imposing cancellation of the cosmological constant, eq. (2.8), and stabilization of all Tα
and S during inflation,

∇αV = 0 ⇒ GI∇αGI +Gα = 0 ,

∇SV = 0 ⇒ GI∇SGI +GS = 0 ,
(2.20)

we can again integrate out the heavy Tα. Details of this computation are given in ap-

pendix B.3. Expanding in powers of the inflaton we find

V = V0(Tα, S, Tα, S̄) + V1(Tα, S, Tα, S̄)mψϕ+
1

2
V2(Tα, S, Tα, S̄)m2ϕ2 . (2.21)

Expanding this in the moduli displacements and in δψ during inflation, with 〈S〉 = 0, yields

V =
1

2
δραM

2
αβδρβ +

1

2
δψ2

[
m2
S +

1

2
m2ϕ2eK0

(
Kαβ̄

0 K0,αK0,β̄ −
KSS̄SS̄

K2
SS̄

)]

+mϕδψ

(
V1 +

∂V1

∂ρα
δρα

)
+

1

2
m2ϕ2 e

K0

KSS̄

+ . . . ,

(2.22)

with ρα = (Tα, T ᾱ). Consequently,

δρα = −mϕ(M−2)αβ
∂V1

∂ρβ
δψ , (2.23)

with

δψ = − mϕV1

m2
S + 1

2m
2ϕ2eK0

(
Kαβ̄

0 K0αK0β̄ −
KSS̄SS̄
K2
SS̄

) . (2.24)

In the near-supersymmetric limit outlined in appendix A.2 we find for the effective

inflaton potential

V ≈ 1

2
m2ϕ2

(
K−1
SS̄
eK0 − V 2

1

m2
S

)
− V 2

1 e
K0

4m4
S

m4ϕ4

{
KSS̄SS̄

K2
SS̄

+ eK0/2

[
Kδ(m

−1
F )βδ (2.25)

– 8 –
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×
[
Kεε̄

0 (Kβε +KβKε − ΓγβεKγ)Dε̄Wmod −DβWmod −
1

2
KβWmod

]
+ h.c.

]}
,

where

V1 = V1

∣∣∣
S=0

= −1

2
eK
{
Kαβ̄

0

(
K0,β̄DαWmod +K0,αDβ̄Wmod

)
−2(Wmod +Wmod)

}
. (2.26)

Analogous to the case without stabilizer the quadratic term in ϕ is independent of the

small-supersymmetry breaking approximation.

Let us compare this result to the the case without stabilizer, eq. (2.16). Since V1 ∼
m3/2 and m2

S ∼ m̃2 + m2
3/2, the corrections to the chaotic scalar potential 1

2m̃
2ϕ2, with

m̃ = meK0/2, are negligible for m3/2 � m̃. For large gravitino masses m3/2 & m̃, on the

other hand, the quadratic inflaton term in eq. (2.25) becomes negative and stops inflation.

Simultaneously, the quartic term becomes sizeable. Thus, these generic results fit nicely

with the explicit analysis performed in [19]. However, remember that eq. (2.25) is only valid

in the near-supersymmetric limit. If the supersymmetry-breaking Tα can not be completely

decoupled in the fermion mass matrix, the appropriate quartic term in the scalar potential

is given by the more general result eq. (B.14). Since all moduli stabilization schemes with

supersymmetry breaking that we consider require a large gravitino mass, it is difficult to

reconcile these schemes with chaotic inflation with a stabilizer. Therefore, in the examples

treated in the following sections we restrict ourselves to the more interesting models with

no stabilizer field.

3 Chaotic inflation with KKLT moduli stabilization

As a first example we discuss stabilization of a single Kähler modulus T by the mecha-

nism of KKLT [23] and its interaction with chaotic inflation. Before treating the coupled

Lagrangian we discuss important properties of the original KKLT vacuum and its uplift.

Many of these are well-known facts, nonetheless it is instructive to review them before

discussing the interaction with inflation.

3.1 KKLT moduli stabilization and uplift

The possibly simplest setup to stabilize Kähler moduli via non-perturbative effects was

proposed in [23]. The original model assumes all complex structure moduli of a compact CY

manifold and the dilaton to be stabilized by fluxes, as first developed in [29]. The remaining

effective theory contains a single lightest Kähler modulus, in the following denoted by T ,

which parameterizes the volume of the compact manifold. T then has the following tree-

level Kähler potential,

K = −3 ln
(
T + T

)
, (3.1)

and does not appear in the flux superpotential, W0, responsible for stabilizing the complex

structure and the dilaton. Therefore, T is massless at perturbative tree-level and must

be stabilized to avoid a series of well-known problems. This is achieved by employing

non-perturbative corrections to the superpotential, so that W takes the form

W = W0 +Ae−aT . (3.2)
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We treat W0 and A as constants determined by fluxes and vacuum expectation values

of complex structure moduli. They are assumed to be real in what follows. A relative

phase between A and W0 can always be compensated by a field redefinition. Depending

on whether the non-perturbative term stems from a Euclidean D3 instanton or from a

gaugino condensate on a stack of D7 branes, a can be 2π or 2π
N , where N is the rank of the

condensing gauge group. The scalar potential

V = eK
(
KTTDTWDTW − 3|W |2

)
, (3.3)

has two extrema, ∂TV = 0, corresponding to

DTW = 0 . (3.4)

One extremum lies at T = ∞, where the potential vanishes. In addition there is a super-

symmetric AdS vacuum at T̃0 which is determined by

W0 = −Ae−aT̃0

(
1 +

2

3
aT̃0

)
. (3.5)

For real parameters of the superpotential T̃0 is real. ImT is stabilized at the origin at the

same mass scale as ReT .

To uplift the AdS vacuum to a Minkowski vacuum the authors of [23] introduced an

anti-D3 brane. To avoid explicit supersymmetry breaking3 we resort to uplifting via the

F-term of a Polonyi field X, with

Kup = k
(
|X|2

)
, Wup = fX . (3.6)

Uplifting of AdS vacua via F-terms of matter fields was first discussed in [31]. We assume

that the function k contains a quartic term so that X is stabilized close to the origin

at a high scale, and thus the field completely decouples from the dynamics of moduli

stabilization and inflation. Such a quartic term may effectively arise from couplings to

heavy fields, cf. [32].4 The only contribution of the Polonyi field to V is then its F-term,

Vup = eKf2 , (3.7)

which can be used to cancel the cosmological constant in the true vacuum defined by

eq. (3.5).

In addition to the extremum at T =∞ corresponding to DTW = 0, the uplifted scalar

potential has two further extrema which are determined by

DTW = −3W

4T

(
1±

√
1− 2f2

(aT + 2)W 2

)
. (3.8)

3See, however, [30] for a very recent treatment of this issue.
4For a more thorough treatment of the dynamics linking supersymmetry breaking and chaotic inflation,

cf. [19, 28].
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The negative sign yields the uplifted AdS minimum,

DTW = − 3f2

4aT 2
0 W |T0

+O(T−3
0 ) , (3.9)

where the value of the modulus T is shifted to T0 = T̃0 + δTup. The shift in T is easily

obtained by expanding DTW in δTup,

DTW |T̃0
≈ DTW |T0

− δTup ∂TDTW |T0

≈ DTW |T0
−δTup

(
(−a+KT ) DTW |T0

+((a−KT )KT +∂TKT ) W |T0

)
. (3.10)

Using eqs. (3.4) and (3.9) we find

δTup

T0
≈ f2

2a2T0W 2
0

+O(T−2
0 ) , (3.11)

where we have used W |T0
≈ W0. Using eqs. (3.3), (3.7), and (3.9) one finds that the

cosmological constant of the AdS vacuum is canceled by tuning f to

f =
√

3W0

(
1− 3

2aT0
+O(T−2

0 )

)
. (3.12)

Note that there is a sub-leading contribution of the modulus to supersymmetry breaking,

〈FT 〉 = eK/2
√
KTTDTW

∣∣∣
T0

≈ − 3
√

3W0

a(2T0)5/2
≈ −3〈FX〉

4aT0
. (3.13)

Since aT0 � 1 for consistency of the single-instanton approximation, the dominant contri-

bution to supersymmetry breaking stems from the Polonyi field. The gravitino mass in the

Minkowski vacuum is given by

m3/2 = eK/2W =
W0

(2T0)3/2

(
1− 3

2aT0
+O(aT0)−2

)
≈ W0

(2T0)3/2
. (3.14)

It is closely related to the mass of the canonically normalized modulus,

mT ≈ 2aT0m3/2 . (3.15)

The uplifted Minkowski vacuum is protected by a barrier from the run-away vacuum

at T = ∞. The height of the barrier can be found by choosing the positive sign in the

expression (3.8) for the covariant derivative, corresponding to the local maximum in the

scalar potential. For the field value of the modulus at the position of the barrier, TB, we find

VB = V
∣∣∣
TB

≈ f2

(2TB)3
∼ 3m2

3/2 . (3.16)

We are now ready to analyze the effect of chaotic inflation on the uplifted KKLT

vacuum. Since the F-term of T does not vanish, one may hope that it can cure the problem

of unboundedness which plagues the simplest variant of chaotic inflation. To analyze the

two-field system defined by the modulus and the inflaton, it is instructive to use both an

analytic and a numerical approach.
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3.2 KKLT and chaotic inflation: analytic approach

Treating the interaction between the modulus and inflaton sectors in the simplest way, we

assume that their superpotentials and Kähler potentials completely decouple. Thus, the

theory is defined by

W = W0 +Ae−aT + fX +
1

2
mφ2 , (3.17a)

K = −3 ln
(
T + T

)
+ k
(
|X|2

)
+

1

2

(
φ+ φ̄

)2
. (3.17b)

In particular, in the notation of section 2 we choose

Wmod(Tα) = W0 +Ae−aT + fX , (3.18)

K0(Tα, T ᾱ) = −3 ln
(
T + T

)
+ k
(
|X|2

)
(3.19)

K1(Tα, T ᾱ) = 1 . (3.20)

Note that the relative phase between W0 and m is physical. In the following we choose

all superpotential parameters to be real, so that only the real part of T is affected by

inflation. Therefore, we set T = T in the following discussion. Our results do not change

qualitatively if we allow for m and/or W0 to be complex. Moreover, the Polonyi field X

is treated in the way discussed in section 3.1. The canonically normalized inflaton field is√
2Imφ ≡ ϕ, which does not appear in the Kähler potential. On the inflationary trajectory

the superpotential reads

W = W0 +Ae−aT − 1

4
mϕ2 . (3.21)

A natural question to ask is the following: can the effective theory of inflation defined by

eqs. (3.17) resemble chaotic inflation, after integrating out T at a high scale?

Leading-order effective potential. To answer this question we solve the equation of

motion for T during inflation, ∂TV = 0, which yields for the covariant derivative

DTW = −3W

4T

[
1±

√
1− 2

(aT + 2)W 2

(
f2 +

1

2
m2ϕ2

)]
, (3.22)

which implicitly determines T as function of ϕ. In addition, there is the extremum at

T =∞ with DTW = V = 0. The negative sign in eq. (3.22) again yields the uplifted AdS

minimum,

DTW = − 3

4aT 2

f2 + 1
2m

2ϕ2

W
+O(T−3) . (3.23)

Using eqs. (3.21) and (3.23) we obtain for the effective inflaton potential

V (ϕ) =
1

(2T )3

(
f2 +

1

2
m2ϕ2 − 3W 2 +O(T−2)

)
=

1

2
m̃2ϕ2 +

3

2
m̃m3/2ϕ

2 − 3

16
m̃2ϕ4 +O

(
δT

T0

)
, (3.24)
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with m̃ = m
(2T0)3/2 and m3/2 given by eq. (3.14). The corrections of order δT/T0 are due

to the ϕ-dependent shift of the modulus, δT (ϕ) = T (ϕ) − T0. Thus, it seems that after

integrating out T the negative definite term proportional to m̃2ϕ4 still appears in the

potential, making it unbounded from below. This is related to the fact that the modulus

is only a sub-leading source of supersymmetry breaking. Notice that this way of obtaining

the leading-order potential is equivalent to the naive treatment outlined in section 2.1,

which resulted in eq. (2.5).

However, things are not quite as they seem by merely studying the result eq. (3.24).

For large values of ϕ, i.e., when the quartic term in the effective potential dominates, the

modulus can be destabilized by the potential energy of ϕ. In this case, the inflationary

trajectory becomes tachyonic and the modulus can no longer be integrated out. To see

when this point is reached, it suffices to consider the structure of eq. (3.22). A necessary

condition for the existence of real solutions for DTW is clearly W 2 & 0. For W 2 ≈ 0, the

uplifted AdS minimum and the maximum merge in a saddle point. Using eq. (3.21) we

then obtain an upper bound on allowed values of ϕ,

m̃ϕ2 . 4m3/2 . (3.25)

This is the well-known bound H < m3/2 stressed in [20], as will become more clear in our

numerical example in section 3.3. There, a more detailed analysis reveals that the modulus

is destabilized slightly before the above bound is saturated. In fact, the local maximum of

the effective inflaton potential eq. (3.24) is never reached while the modulus is stabilized.5

Corrections to the effective potential. The corrections to the effective potential are

determined by the shift of the modulus field δT (ϕ) = T (ϕ)−T0.6 Expanding the covariant

derivative in δT and ϕ2, analogous to eq. (3.10), we find

δT

T0
=

m̃ϕ2

4aT0m3/2
+O(T−2

0 ) . (3.26)

With this, the effective inflaton potential including the leading-order correction becomes,

at quartic order in ϕ and leading order in (aT0)−1 and m̃/m3/2

V (ϕ) =
1

2
m̃2ϕ2 +

3

2
m̃m3/2ϕ

2 − 3

16
m̃2ϕ4 − 3

4aT0

(
3m̃m3/2ϕ

2 +
3

4
m̃2ϕ4

)
+ . . . . (3.27)

To obtain higher-order corrections to the potential, the potential must be expanded to

higher orders in δT , and δT must be computed up to higher powers in T−1
0 .

So far we have analyzed the deformation of the Minkowski vacuum due to the inflaton

field starting from the covariant derivative. Alternatively, on can directly find the shift

δT (ϕ) by minimizing the scalar potential,

V = V |T0 + (∂TV )|T0δT +
1

2
(∂2
TV )|T0δT

2 +O(δT 3) , (3.28)

5In fact, the full potential defined by eqs. (3.17) is bounded from below at all points in field space.
6Notice that for real superpotential parameters the displacement of T is real as well.
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along the lines of the general analysis in section 2.2. One then expects that the shift δT

is inversely proportional to the modulus mass, cf. eq. (2.13). Eq. (3.26) can indeed be

rewritten in this form,
δT

T0
=
m̃ϕ2

2mT
+O(T−2

0 ) . (3.29)

In a manner similar to integrating out T , it is possible to verify that the displace-

ment δX of the Polonyi field during inflation gives negligible contributions to the inflaton

potential. For the particular choice

k
(
|X|2

)
= |X|2 − |X|

4

Λ2
, (3.30)

for example, the displacement of X is at leading order

δX = Λ2δT . (3.31)

Since Λ � 1 to stabilize X at a high scale with a small vacuum expectation value, the

contribution of integrating out X at eq. (3.31) is clearly negligible.

Among other things, this means that the sector which dominates supersymmetry break-

ing can be completely decoupled from the dynamics of inflation. In this case, it is possible

to obtain the effective potential eq. (3.27) essentially by applying the general expression

eq. (2.16). Details of this computation can be found in appendix B.2.

3.3 A numerical example

Let us now study whether 60 e-folds of inflation can be realized with the effective inflaton

potential eq. (3.27), and if the resulting predictions for the CMB observables resemble those

of chaotic inflation. It is worth noting that in the parameter regime where T is stabilized,

i.e., when m3/2 is very large, the bilinear term proportional to m̃m3/2 actually dominates

in V and drives inflation. In this case, the relevant terms in the inflaton potential are

V (ϕ) ≈ 3

2
m̃m3/2ϕ

2

(
1− 1

8

m̃

m3/2
ϕ2

)
. (3.32)

Consequently, inflation is only possible if m̃ and m3/2 have the same sign. With eq. (3.16)

the corrections can be interpreted as a power series in H2

VB
, the squared Hubble scale divided

by the barrier height of the modulus potential. This is a natural expansion parameter be-

cause the modulus is destabilized when the vacuum energy of ϕ lifts the modulus over the

barrier, cf. the bound found in eq. (3.25). Neglecting order-one coefficients, COBE normal-

ization imposes
√
|m̃m3/2| ∼ 3× 10−6. This puts a lower bound on the gravitino mass, i.e.,

m3/2 >
√
|m̃m3/2|ϕ? ∼ 5× 10−5 ∼ H , (3.33)

where ϕ? ≈ 15 denotes the inflaton field value at the beginning of the last 60 e-folds of

inflation. This means that the gravitino must be very heavy and there is a moderate hi-

erarchy between the gravitino and inflaton mass for 60 e-folds of chaotic inflation to be

possible. This is illustrated in figure 1 for a suitable set of parameters.
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φ

5.× 10-9

1.× 10-8

1.5× 10-8

V (φ)
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V (φ)
1

2

mφ2 φ2

Figure 1. Effective inflaton potential in KKLT for W0 = 0.009, A = −0.75, a = 2π
10 , and m =

1.67 × 10−5. With these parameters we find T0 = 10 and m3/2 = 10−4. The dotted line denotes

a purely quadratic potential with mϕ = 6 × 10−6 imposed by COBE normalization. The dashed

line is the effective potential eq. (3.27) evaluated at all orders in (aT0)−1. This potential is valid

only as long as the modulus remains stabilized. The solid line is obtained numerically by setting

the modulus to its minimum value at each value of ϕ. Evidently, above the critical value ϕc ≈ 24

the modulus is destabilized towards the run-away minimum at T = ∞ and the theory can not be

described by eq. (3.27) any longer.

Indeed, 60 e-folds of inflation can take place starting at ϕ? ≈ 15. The CMB observables

in our example are found to be

ns = 0.966 ,

r = 0.106 ,
(3.34)

which are slightly below the predictions of pure quadratic inflation. This is due to the

flattening of the quadratic potential by the negative quartic term. Notice that the modulus

is destabilized and the inflaton trajectory becomes tachyonic at the critical value ϕc ≈ 24,

corresponding to the bound in (3.25). Therefore, eq. (3.32) and the dashed line in figure 1

are only meaningful up to this point.

Moreover, the interplay between inflaton and modulus can be illustrated by means of

the full scalar potential as a function of T and ϕ, depicted in figure 2. The minimum in the

modulus direction is uplifted as ϕ increases, until the point where it disappears at ϕc ≈ 24.

4 Chaotic inflation with Kähler uplifting

4.1 Moduli stabilization by Kähler uplifting

Another instructive example for moduli stabilization with broken supersymmetry is Kähler

Uplifting, first proposed in [24, 25]. An appealing feature of this scheme is that Kähler
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Figure 2. Scalar potential as defined by eqs. (3.17) as a function of T and ϕ, for the same parameter

example as in figure 1. Apparently, a minimum for the modulus exists for ϕ . ϕc ≈ 24. Beyond

this point the modulus runs away towards T =∞ and can no longer be integrated out. For ϕ < ϕc

inflation may take place in the valley of the uplifted modulus minimum.

moduli can be stabilized in Minkowski or dS vacua without the need of an uplift sector. It is

based on the observation that the interplay between a non-perturbative term and a constant

term in the superpotential and the leading-order α′-correction in the Kähler potential can

produce local minima in the scalar potential with both negative and positive cosmological

constant. In particular, for a careful choice of parameters the Lagrangian defined by

W = W0 +Ae−aT , (4.1)

and

K = −2 ln
[(
T + T

)3/2
+ ξ
]
, (4.2)

can stabilize T in a suitable Minkowski vacuum. Here, ξ = − ζ(3)
4(2π)3χ〈ReS〉3/2 where χ

denotes the Euler number of the compactification manifold and S denotes the dilaton.

Throughout this work we assume the dilaton to be stabilized supersymmetrically at a high

scale so that ξ can be treated as a constant. We remark that this mechanism only works

if ξ is positive, hence we only consider negative Euler numbers.

The vacuum structure of this model can again be analyzed by means of the covariant

derivative. The extrema of the potential, found by solving ∂TV = 0, correspond to

DTW = 0 or DTW = YW , (4.3)
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where the function Y (T, T ) is given in appendix B.4. The second equation is of particular

interest because it allows a vacuum with vanishing cosmological constant, i.e.,

DTW = ±
√

3K
1/2

TT
W . (4.4)

Together with eq. (4.3) this yields

±
√

3K
1/2

TT
= Y . (4.5)

For the negative sign this equation has a solution at large T0 corresponding to η0 � 1,

where we have defined η = ξ
2(2T )3/2 and η0 = η(T0). Expanding both sides of eq. (4.5) in

powers of η, cf. eqs. (B.22) and (B.23), we find

aT0 =
5

2
− 27η0

8
+O(η2

0) , (4.6)

i.e., the vacuum expectation value of the modulus only depends on a and ξ.7 A relation

between the parameters W0 and A of the superpotential is then obtained from eq. (4.4),

which yields

W0 = − 4

3η0
aT0Ae

−aT0 − 1

3
Ae−aT0(3 + 7aT0) +O(η0) . (4.7)

Since η0 � 1 it follows W0 � A, contrary to the KKLT case. Therefore, similar to KKLT,

the superpotential in the vacuum is dominated by the constant, W (T ) ≈ W0. Clearly, T0

breaks supersymmetry and the gravitino mass is given by

m3/2 =
W0

(2T0)3/2

(
1− 23η0

10
+O(η0)2

)
≈ W0

(2T0)3/2
. (4.8)

The extremum with vanishing cosmological constant is a local minimum of the modulus

potential. The canonically normalized real and imaginary parts of T have the following

masses,

m2
ReT = 5m2

3/2η0 +O(η2
0) , m2

ImT =
25

2
m2

3/2η0 +O(η2
0) , (4.9)

respectively. Hence, this particular vacuum disappears if ξ → 0.

As in KKLT, the potential has an extremum at T = ∞ with DTW = ∂TV = V = 0.

Hence, there exists a local maximum at TB with

VB = eK(Y 2 − 3)|W |2
∣∣∣
TB

∼ η0m
2
3/2 . (4.10)

Thus, compared to KKLT, the barrier which separates the Minkowski vacuum from the

run-away vacuum is suppressed by a factor η0.

Furthermore, the model possesses an AdS minimum at a small value TAdS � ξ2/3.

Although this minimum is not viable from the point of view of supergravity, it is instructive

to study its properties in order to understand the differences between KKLT and Kähler

7Notice that the numerical value aT0 ≈ 2.5 is at the border of control over the single-instanton approx-

imation.
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Uplifting. The supersymmetric AdS minimum corresponds to a solution of DTW = 0. For

small T we can perform an expansion in powers of ξ−1 which yields, cf. eq. (B.25),

∂TW
∣∣∣
TAdS

= −aAe−aTAdS = −KTW |TAdS
≈ 3(2TAdS)1/2

2ξ
W0 . (4.11)

Since W0 � A, this implies TAdS � ξ2. The AdS minimum is protected by another

barrier, located at T̃B with a(T̃B − TAdS) ≈ ln 2. The AdS minimum is much deeper than

the local Minkowski vacuum, in the sense that its barrier is taller by a factor η−3
0 . Finally,

the AdS minimum and the associated local maximum are separated from the Minkowski

vacuum by a singularity at T = 1
2(3ξ

2 )2/3 which originates from a pole in the inverse

Kähler metric.8 Thus, the α′-correction to the Kähler potential allows for a separate local

Minkowski vacuum that, contrary to the KKLT scenario, is not an uplifted AdS minimum.

After this discussion of the vacuum structure produced by Kähler Uplifting, we can

again couple chaotic inflation and investigate the effective inflaton potential.

4.2 Kähler uplifting and chaotic inflation: analytic approach

As before, to simplify the discussion we assume that the interactions between modulus and

inflaton sector are purely gravitational. Hence, we study the theory defined by

W = W0 +Ae−aT +
1

2
mφ2 , (4.12a)

K = −2 ln
[(
T + T

)3/2
+ ξ
]

+
1

2

(
φ+ φ̄

)2
. (4.12b)

Again, since we choose real superpotential parameters only the real part of T is affected

by inflation. Hence, we set T = T in the scalar potential. The ϕ-dependence of the

superpotential leads to a deformation of the Minkowski vacuum and the associated local

maximum, which are now determined by the following equation for the covariant derivative,

DTW =
1

2
YW

(
1 +

√
1− Z

W 2
m2ϕ2

)

= −3W

2T
− 3

8aT 2

m2ϕ2

W
+O(T−3) ,

(4.13)

where the function Z = O(aT )−1 is defined in eq. (B.20). Again, this equation implicitly

determines T (ϕ) = T0 + δT (ϕ). Since the modulus F-term in this case is bigger than in

KKLT, at leading order it cancels the negative contribution to the inflaton potential. At

leading order in δT , η0 and T−1
0 it is simply

V =
1

2
m̃2ϕ2 +O(δT, η0, T

−1
0 ) . (4.14)

There are two upper bounds on the value of the inflaton field. First, the F-term potential

of the inflaton should not exceed the height of the modulus barrier. Second, the expression

8This is related to the fact that the dilaton is assumed to be integrated out.
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in eq. (4.13) should yield real values for DTW . Consequently,

m̃ϕ2 . 4m3/2 ,

m̃2ϕ2 . η0m
2
3/2 .

(4.15)

Starting from eq. (4.13) the shift in the modulus field can again be obtained by ex-

panding the covariant derivative in δT and η0. The leading-order result reads

δT

T0
=

m̃2ϕ2

5η0m2
3/2

− 9m̃ϕ2

20m3/2
+ . . . , (4.16)

where the dots denote higher-order terms in η0 and T−1
0 . Clearly, if the conditions (4.15)

are fulfilled the expansion converges. Expanding the inflaton potential in δT
T0

and η0, we

find at leading order

V (ϕ) ≈ 1

2
m̃2ϕ2 − 3η0

4
m̃m3/2ϕ

2 − 3

20η0

m̃4ϕ4

m2
3/2

+
27

40

m̃3ϕ4

m3/2
− 183η0

320
m̃2ϕ4 + . . . , (4.17)

which contains negative quartic terms in the inflaton field, analogous to the KKLT case.

This time, however, they are suppressed by factors of δT
T0

or η0.

As in section 3.2 we can obtain the same result by means of a Taylor expansion of

the scalar potential, i.e., by minimizing the expression eq. (3.28). The modulus shift is

inversely proportional to m2
T , and can be written as

δT

T0
=

4m̃2ϕ2 − 9η0m̃m3/2ϕ
2

4m2
T

+ . . . . (4.18)

The first term in the numerator is the leading order inflaton uplift of the potential and

the second terms arises due to the incomplete no-scale cancellation at the shifted modulus

vacuum expectation value,

δV ∝ KTT |DTW |2 − 3|W |2 ∼ η|W |2 . (4.19)

The procedure to find the effective potential is significantly simplified by expanding

all quantities in powers of η0. Since, in this case, T is the only field which contributes

to supersymmetry breaking in the vacuum and m3/2 is generically very large, the general

formula eq. (2.16) does not apply. However, it is possible to obtain eq. (4.17) by applying

the most general result eq. (2.14), which does not contain assumptions about the scale of

supersymmetry breaking.

In the following we study the phenomenology of inflation resulting from this effective

potential in two numerical examples. To this end, it is instructive to rewrite the effective

potential as

V (ϕ) ≈ 1

2
m̃2ϕ2

(
1− 3

10η0

m̃2

m2
3/2

ϕ2

)
− 3η0

4
m̃m3/2ϕ

2

(
1 +

61

80

m̃

m3/2
ϕ2

)
. (4.20)

At leading order V (ϕ) consists of two quadratic terms and one relevant correction to each,

suppressed by one power of H2

VB
. The second piece in eq. (4.20) is very similar to the
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leading-order potential found in the KKLT case, but is suppressed by one power of η0.

This means that the supersymmetric mass term for ϕ can drive inflation as well. Before

discussing inflation in more detail, let us remark that to guarantee stability of T we require

H2 < VB. Using eq. (4.10) this leads to a generic bound on the gravitino mass,

m3/2 >
H
√
η
∼ 10−4

√
η
. (4.21)

4.3 Numerical examples

Starting from the effective potential eq. (4.20) we can distinguish two cases. Inflation can

either be driven by the supersymmetric term proportional to m̃2ϕ2, or by the bilinear soft

term proportional to m̃m3/2ϕ
2.

The supersymmetric term dominates. If η0m3/2 � m̃ chaotic inflation may be

realized in the “traditional” sense. The leading-order potential in this parameter regime is

simply the first piece of eq. (4.20), i.e.,

V (ϕ) ≈ 1

2
m̃2ϕ2

(
1− 3

10η0

m̃2

m2
3/2

ϕ2

)
. (4.22)

The viable parameter regime in this scenario is particularly constrained. On the one hand,

η0m3/2 must be small for the soft term to be suppressed. On the other hand, η0m
2
3/2 must

be large enough to guarantee a high barrier in the modulus potential. Specifically, we find

m3/2 �
m̃2ϕ2

?

η0m3/2
� m̃ϕ2

? & 10H ∼ 10−3 . (4.23)

A suitable example is illustrated in figure 3. As expected, the parameter choices are

quite elaborate, especially from the perspective of string theory. Specifically, the hierarchy

between W0 and A as well as the size of η0 are rather particular. With such a small value of

ξ it is doubtful whether the string coupling can be small enough to allow for a perturbative

description of the theory.

If one ignores this problem inflation can be realized and we find for the solid line

ns = 0.966 ,

r = 0.116 ,
(4.24)

for ϕ? ≈ 15.2. The modulus is destabilized at ϕc ≈ 19.

The bilinear soft term dominates. In this respect, the scenario η0m3/2 � m̃ seems

slightly more appealing since it can be realized with more realistic choices for the input

parameters. The leading-order potential becomes

V (ϕ) ≈ −3η0

4
m̃m3/2ϕ

2

(
1 +

61

80

m̃

m3/2
ϕ2

)
. (4.25)

Notice the sign difference of the soft term compared to KKLT. Since η0 > 0 this means that

m̃ and m3/2 must have opposite signs for inflation to work in this parameter regime. COBE
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Figure 3. Effective inflaton potential in Kähler Uplifting for W0 = 4.67, A = −3.4×10−4, a = 2π
30 ,

m = 8 × 10−4, and ξ = 0.0047. With these parameters we find T0 = 11.9, m3/2 = 0.04, and

η0 = 2× 10−5. The dotted line denotes a purely quadratic potential with mϕ = 6× 10−6 imposed

by COBE normalization. The dashed line is the effective potential eq. (4.17) evaluated at all orders

in η. The solid line is obtained numerically by setting the modulus to its minimum value at each

value of ϕ. In this case, modulus destabilization occurs at ϕc ≈ 19. Again, eq. (4.17) and the

dashed line are only meaningful for ϕ < ϕc.

normalization imposes
√
|η0m̃m3/2| ∼ 5×10−6. Since η0 is allowed to be larger in this case,

the only bound on m3/2 is the generic one, (4.21). An example is depicted in figure 4.

The corresponding CMB observables are found to be

ns = 0.965 ,

r = 0.107 ,
(4.26)

at ϕ? ≈ 15. In this case, the modulus is destabilized at ϕc ≈ 20.

5 Chaotic inflation and the Large Volume Scenario

5.1 LVS moduli stabilization and uplift

Another well-known example of moduli stabilization with spontaneously broken supersym-

metry is the Large Volume Scenario developed in [26]. It is based on the observation that,

for certain types of CY compactifications with multiple Kähler moduli, the scalar potential

may have a non-supersymmetric AdS minimum at exponentially large volume. A partic-

ularly simple example of this type is given by a “swiss-cheese” CY manifold with a single

“hole”, i.e., a manifold whose volume is parameterized by

V = (Tb + T b)3/2 − (Ts + T s)
3/2 , (5.1)
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Figure 4. Effective inflaton potential in Kähler Uplifting for W0 = 0.23, A = −0.008, a = 2π
30 ,

m = −1.37 × 10−4, and ξ = 2.29. With these parameters we find T0 = 11.8, m3/2 = 0.002, and

η0 = 0.01. The dotted line denotes a purely quadratic potential with mϕ = 6 × 10−6 imposed by

COBE normalization. The dashed line is the effective potential eq. (4.17) evaluated at all orders

in η. The solid line is obtained numerically by setting the modulus to its minimum value at each

value of ϕ. In this setup, modulus destabilization occurs at ϕc ≈ 20. Again, eq. (4.17) and the

dashed line are only meaningful for ϕ < ϕc.

where Tb is the Kähler modulus of some big four-cycle, i.e., the “cheese”, and Ts controls the

volume of a small four-cycle, the “hole”. The simplest setup for a Large Volume Scenario

is then described by

W = W0 +Ae−aTs , (5.2)

and

K = −2 ln(V + ξ) , (5.3)

with ξ defined as in section 4. As in the previous examples we consider real superpotential

parameters, and hence restrict our attention to the real parts of the moduli, i.e., we set

Tb,s = T b,s in the following.

The extrema of the potential satisfy the two equations ∂Tb
V = ∂TsV = 0. Since the

superpotential does not depend on Tb, they lead to two quadratic equations for DTsW

which can be rewritten as

DTsW = Ỹ W , Z̃i = 0 . (5.4)

The functions Ỹ and Z̃i are given in appendix B.4. Assuming that V is large and expanding

KTs and Ỹ in powers of V−1, the equation for DTsW yields

∂TsW |T0
= aAe−aT0 ≈ 3(2T0)1/2

2V0
W0 . (5.5)

Remarkably, this equation coincides with eq. (4.11) for the AdS minimum in Kähler Up-

lifting after the replacement ξ → V0, which corresponds to the large volume limit in the
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LVS scenario. Eq. (5.5) determines the volume in terms of T0,

V0 ≈
3
√
T0e

aT0W0√
2aA

(
1− 3

4aT0

)
, (5.6)

at next-to-leading order in (aT0)−1. The second equation in (5.4) determines the value of Ts.

Using the large volume expansions for the functions Z̃i, cf. eqs. (B.44) and (B.45), we find

T0 ≈
ξ2/3

2

(
1 +

2

3aξ2/3

)
+O

(
(aξ2/3)−2

)
. (5.7)

At leading order in V−1, T0 only depends on ξ and a, as in Kähler Uplifting. Eqs. (5.6)

and (5.7) can also be obtained by considering the scalar potential in the large volume limit,

V ≈ 2
√

2 a2A2
√
Ts e

−2aTs

3V
− 4aAW0Ts e

−aTs

V2
+

3ξW 2
0

2V3
. (5.8)

To obtain this form the imaginary part of Ts has been fixed at 〈ImTs〉 = π
a . In this case, W0

and A must have the same sign for the stabilization mechanism to work. Minimizing V with

respect to V and Ts one finds the local AdS minimum with the values V0 and T0 given above.

The depth of the AdS vacuum is

VAdS ∼ −
W 2

0

V3
0

, (5.9)

rather than W 2
0 /V2

0 as one may naively expect. This is due to the approximate no-scale

cancellation between FTb
and W 2

0 . To achieve a complete uplift to a Minkowski vacuum we

employ, once more, a Polonyi field X as a toy example. Treating the uplift in the same way

as in KKLT moduli stabilization, we assume that X is stabilized with a nearly-vanishing

vacuum expectation value.9 However, in the LVS scheme the quartic term in the Kähler

potential is not required as X is stabilized by its soft mass term. The contribution of

the Polonyi field then amounts to a term Vup = f2

V2 in the scalar potential. To cancel the

cosmological constant in the vacuum, it must be

f2 ≈ χ0W
2
0 , χ0 =

9
√

2T0

2aV0
, (5.10)

up to terms suppressed by higher powers of V or aTs. Here, V0 and T0 denote the values

of the two real fields in the uplifted vacuum. Note that χ0 plays a role analogous to the

parameter η0 in Kähler Uplifting. The expression for the volume is still given by eq. (5.6),

where T0 is now the shifted modulus

T0 ≈
ξ2/3

2

(
1 +

2

aξ2/3

)
+O

(
(aξ2/3)−2

)
(5.11)

The F-terms of the fields in this vacuum are given by

FTb
≈ −
√

3
W0

V0
, FTs ≈

√
6aT0χ0

W0

V0
, FX ≈

√
χ0

W0

V0
. (5.12)

9Indeed it is possible to verify that, once coupled to chaotic inflation, the displacement of X is again

negligible compared to that of V and Ts.
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Clearly, the dominant contribution to supersymmetry breaking comes from the volume

mode. As expected, the uplift sector is important to cancel the cosmological constant but

its contribution to supersymmetry breaking is suppressed in the large volume limit. The

corresponding gravitino mass is, again,

m3/2 ≈
W0

V0
, (5.13)

up to terms suppressed by higher powers of the inverse volume or aT0. The masses of the

canonically normalized moduli are, schematically10

mTb
∼ W0

V3/2
0

, mTs ∼
W0

V0
. (5.14)

The uplifted vacuum is protected by a potential barrier of height

VB ∼
m2

3/2

V0
. (5.15)

Although the structure of this vacuum is more complicated than in the previous two

cases, the coupling of chaotic inflation works in the same way. As will become clear in the

following, the results are qualitatively similar.

5.2 LVS and chaotic inflation

Our starting point for the coupled model is this time

W = W0 +Ae−aTs + fX +
1

2
mφ2 , (5.16)

K = −2 ln
[(
Tb + T b

)3/2 − (Ts + T s

)3/2
+ ξ
]

+ k
(
|X|2

)
+

1

2

(
φ+ φ̄

)2
. (5.17)

The uplift sector is treated as described above, since it is safe to neglect its influence on

inflation. The scalar potential at leading order in V−1 reads

V =
2
√

2 a2A2
√
Ts e

−2aTs

3V
−

16aATs e
−aTs

(
4W0 −mϕ2

)
V2

+
3ξ
(
4W0 −mϕ2

)2
32V3

+
(V − 2ξ)

(
f2 + 1

2m
2ϕ2
)

V3
.

(5.18)

Comparing this expression to eq. (5.8) we observe that, in principle, the contribution of

the inflaton can be absorbed in a redefinition of W0 and f . As before, we treat inflation

as a perturbation of the true vacuum. Hence, we naively expect chaotic inflation to be

successful in LVS as long as

m2ϕ2 � f2 , mϕ2 �W0 , (5.19)

neglecting order-one coefficients. It will become clear in the following that these two condi-

tions precisely guarantee that the inflaton energy density does not destabilize the moduli.

10Note that the axion of Tb is exactly massless and thus irrelevant during inflation. The axion of Ts is

stabilized at the same mass scale as the real part of Ts.
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To compute the effective inflaton potential we have to take the displacements of both

moduli into account. Hence, we expand the potential around

δV = V − V0 , δTs = Ts − T0 . (5.20)

Minimizing the result with respect to both shifts yields

δV
V0
≈ m̃2ϕ2

χ0m2
3/2

+
m̃ϕ2

4m3/2
, (5.21a)

δTs

T0
≈ m̃2ϕ2

aT0χ0m2
3/2

+
m̃ϕ2

2aT0m3/2
, (5.21b)

up to terms suppressed by higher powers of V−1 or (aT0)−1. Note that the shifts have

the same form as in Kähler Uplifting, cf. eq. (4.16). Furthermore, the displacement of

Ts is relatively suppressed by one power of V0. This is to be expected because Ts is the

heavier of the two moduli. Nonetheless, δTs must be taken into account to find the correct

leading-order result.

Integrating out the displacements of both moduli, we are left with the leading-order

effective potential

V (ϕ) ≈ 1

2
m̃2ϕ2 +

χ0

4
m̃m3/2ϕ

2 − 1

2χ0

m̃4ϕ4

m2
3/2

− 1

4

m̃3ϕ4

m3/2
− χ0

16aT0
m̃2ϕ4 . (5.22)

We refrain from rewriting this unwieldy expression in terms of the moduli masses, but the

idea is the same as in our previous examples. Some of the correction terms are suppressed

by inverse powers of mTb
and mTs and vanish in the limit of very heavy moduli. Others,

like the supersymmetry breaking second term in eq. (5.22) grow with the moduli masses,

and hence do not vanish. As in the previous examples, the region where V (ϕ) is unbounded

from below is never reached since the moduli are destabilized at smaller values of ϕ.

As in our model with Kähler Uplifting we rewrite the effective potential to study

inflation. In particular,

V (ϕ) ≈ 1

2
m̃2ϕ2

(
1− 1

χ0

m̃2

m2
3/2

ϕ2

)
+
χ0

4
m̃m3/2ϕ

2

(
1− 1

4aT0

m̃

m3/2
ϕ2

)
. (5.23)

Again, V (ϕ) contains a supersymmetric mass term and a bilinear soft term — suppressed

by one power of χ0 –, both with a correction proportional to H2

VB
. By requiring the bar-

rier to be larger than the Hubble scale during inflation, the gravitino mass is generically

constrained as follows,

m3/2 > H
√
V0 ∼ 10−4

√
V0 . (5.24)

As before, this constraint is equivalent to demanding that ϕ is not large enough to uplift

the modulus minimum to a saddle point.

5.3 Numerical examples

Based on the effective potential eq. (5.23) we can distinguish two cases in which 60 e-folds

of inflation may be realized.
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The supersymmetric term dominates. If m̃ � χ0m3/2 ∼ m3/2/V0, in principle the

supersymmetric quadratic term in eq. (5.23) could dominate, yielding the leading-order

potential

V (ϕ) ≈ 1

2
m̃2ϕ2

(
1− 1

χ0

m̃2

m2
3/2

ϕ2

)
. (5.25)

However, this scenario is excluded by a consistency requirement of the LVS scheme. Specifi-

cally, the gravitino mass must not exceed the Kaluza-Klein scale which, as discussed in [33],

means that W0 � V1/3
0 . Requiring the supersymmetric term to be larger than the soft term

while both moduli are stabilized always violates this bound. For different effects related to

the Kaluza-Klein scale, cf. [34, 35].

The bilinear soft term dominates. If, on the other hand, m̃ � χ0m3/2 ∼ m3/2/V0,

the term proportional to m̃m3/2 may drive inflation. In this case, the leading-order inflaton

potential reads

V (ϕ) ≈ χ0

4
m̃m3/2ϕ

2

(
1− 1

4aT0

m̃

m3/2
ϕ2

)
. (5.26)

The gravitino mass is constrained by the generic requirement (5.24). Interestingly, by

requiring m3/2 < mKK for consistency, the volume of the compactification manifold is

bounded from above, V0 . 103. A numerical example for this scenario is depicted in figure 5.

The CMB observables in our example are found to be

ns = 0.964 ,

r = 0.116 ,
(5.27)

at ϕ? ≈ 15.2. Modulus destabilization towards the run-away minimum occurs at ϕc ≈ 18.

6 Universality and CMB observables

Let us consider the effective single-field inflaton potential arising in all three example

models as well as in the general discussion of section 2. We observe that a simple expression

captures all models and their flattening of the inflaton potential by moduli backreaction,

V (ϕ) =
1

2
m2
ϕ ϕ

2 − 1

4
λϕ4 , λ > 0 . (6.1)

This expression is valid at leading order in the modulus shift, and thus holds for a certain

range ϕ < ϕc until the moduli are destabilized.

Due to the negative quartic term the potential has a local maximum at ϕM = m/
√
λ.

All three scenarios share the property that the moduli destabilization point occurs to the

left of the maximum of the leading-order inflaton potential,

ϕc < ϕM . (6.2)

Hence, V (ϕ) is a good approximation for ϕ < ϕc. Two parameters determine the effective

potential, m/
√
λ gives the position of the maximum and m fixes the overall normalization
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Figure 5. Effective inflaton potential in LVS for W0 = 1, A = 0.13, a = 2π, m = 5.8 × 10−4,

and ξ = 1.25. With these parameters we find T0 = 0.75, V0 = 200, and m3/2 = 0.005. The dotted

line denotes a purely quadratic potential with mϕ = 6 × 10−6 imposed by COBE normalization.

The dashed line is the effective potential eq. (5.22) evaluated at all orders in aT0. The solid line is

obtained numerically by setting the modulus to its minimum value at each value of ϕ. Since the

barrier height and Hubble scale are the same as in the previous example, modulus destabilization

occurs at ϕc ≈ 18. Again, eq. (5.22) and the dashed line are only meaningful for ϕ < ϕc. Notice

that the difference between the dashed and the solid line is comparably large in this example. This

is because the relatively small value of V0 limits the precision of the expansion in V−1.

of V (ϕ). Thus, we can write the potential in terms of m and ϕM,

V (ϕ) =
1

2
m2
ϕ ϕ

2

(
1− ϕ2

2ϕ2
M

)
. (6.3)

As long as ϕM, ϕc � 1 inflation can occur to the left of the local maximum. For ϕM →∞
the potential asymptotes to the pure quadratic form. In this limit, the field value ϕ?
corresponding to Ne(ϕ?) e-folds of slow-roll before the end of inflation takes the limiting

value ϕ? = 2
√
Ne, which for Ne = 50− 60 is about 15.

For decreasing ϕM the 60 e-fold point lies increasingly close to the local maximum

and the destabilization point. Thus, for ϕc → ϕ? the inflationary dynamics changes con-

tinuously from the quadratic large-field behaviour to a nearly hill-top small-field model.

Correspondingly, the scalar spectral index and r are decreased compared to pure quadratic

inflation.

Inflaton potentials of this type arise in the context of non-minimally coupled quadratic

inflation [36] and more recently in subcritical models of D-term hybrid inflation [22, 37, 38].

As the leading-order scalar potential is the same for all our models, the CMB observables
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Figure 6. Prediction for the CMB observables ns and r of the leading-order effective inflaton

potential. In the limit ϕM → ∞ the observables asymptote to the predictions of pure quadratic

inflation. Decreasing ϕM brings the potential increasingly into the hill-top regime. This leads

to the green band of decreasing ns and r values spanned by the 60 and 50 e-fold curves. Note,

once more, that the regime of true hill-top inflation can actually never be reached because moduli

destabilization occurs to the left of the would-be local maximum in V (ϕ) at ϕM.

agree as well. Reproducing the particularly simple form given in [37, 38] one finds

ε =
2

ϕ2

 1− ϕ2

ϕ2
M

1− ϕ2

2ϕ2
M

2

, η =
2

ϕ2

 1− 3ϕ2

ϕ2
M

1− ϕ2

2ϕ2
M

 . (6.4)

Extracting ϕ? from Ne =
∫ ϕ?
ϕe

dϕ/
√

2ε we obtain

ϕ2
? = 4Ne + 2− 4N2

e

ϕ2
M

− 8N3
e

3ϕ4
M

+
4N4

e

3ϕ6
M

+ . . . (6.5)

where we have used the leading-order expression for the end-point of slow-roll inflation,

ϕe =
√

2−O(ϕ−2
M ). From this it is evident that all our models approach the quadratic

inflation limit as ϕM →∞.

Comparison with the full numerical solution for ϕ? reveals that the analytic expression

above must be given up to O(ϕ−6
M ) for sufficient accuracy. The terms with inverse powers
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of ϕM are given at leading order in Ne to allow for a compact expression. We find that for

ns & 0.94 this form approximates the ensuing values of ns and r to 5% numerical accuracy

compared to the exact coefficients given in [38]. Plugging back ϕ? into the expressions for

ε and η we can compute the spectral parameters of the curvature and tensor perturbation

power spectra

ns = 1− 6ε(ϕ?) + 2η(ϕ?) ,

r = 16ε(ϕ?) .
(6.6)

at horizon exit. Doing this numerically and comparing the result with the Planck data

results in the green band in figure 6 which is identical to the corresponding graph in [38].

Imposing the constraints on ns and r we find a lower bound on the tensor-to-scalar ratio,

r & 0.05, for Ne = 60.

Finally, we make an interesting observation. On the one hand, our effective inflation

potential arises for all three models studied here as an approximation of, for example, type

IIB string theory constructions of axion monodromy inflation with an F-term supergravity

description [5–13] as well as of models of D-term hybrid inflation [22, 37, 38]. Moreover,

we found in this work that all our models show a form of polynomial flattening of the naive

quadratic inflation potential by subtracting (at leading order) a higher-power monomial

term in ϕ

V (ϕ) ∼ ϕp0f(ϕ) , f(ϕ) = 1− cϕ2 + . . . , p0 = 2 . (6.7)

The flattening occurs in a regime with c� 1 and small higher-oder coefficients.

On the other hand, there is a large class of models of axion monodromy inflation

which feature a form of monomial flattening [39–43]. Some of these setups work without a

supergravity embedding or with inflation from a sector with non-linearly realized supersym-

metry arising from non-supersymmetric compactifications like Riemann surfaces [39, 43–46]

while another one involves F-term monodromy on D-branes [12]. In these constructions a

quadratic or quartic inflation potential flattens by suppressing the monomial power p < p0,

V (ϕ) ∼ ϕp0f(ϕ) , f(ϕ) = ϕ−∆p p0 = 2, 4 . (6.8)

The correlation between the two types of flattening — polynomial and monomial — may

be due to the different mechanisms of volume stabilization (non-perturbative versus per-

turbative). In particular, polynomial flattening seems to correlate with models showing

spontaneous bulk F-term supersymmetry breaking and non-perturbative volume stabiliza-

tion (implying CY compactification). We may speculate here that both of these correlations

hold more widely.

Moreover, the two types of flattening have quite different observational predictions,

with polynomial flattening corresponding to the green band and monomial flattening yield-

ing the red band in figure 6. Future CMB data may enable us to discriminate between the

two types of flattening — and hence maybe even between classes of string compactifications.
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7 Discussion and conclusion

The aim of this paper is to study the interplay between Kähler moduli stabilization and

large-field inflation in the context of string-effective supergravity models. We find that

if moduli stabilization breaks supersymmetry, the modulus sector never decouples from

inflation. On the one hand, supersymmetry breaking induces a bilinear soft mass term for

the inflaton which can potentially drive 60 e-folds of slow-roll inflation. On the other hand,

the potential contains dangerous terms which destabilize the moduli if the inflaton field

exceeds a critical value.

We have illustrated our results in three prominent models of moduli stabilization:

KKLT, Kähler Uplifting and the simplest Large Volume Scenario. In all three models we

have analyzed corrections to the inflaton potential from supersymmetry breaking and from

integrating out the moduli. Although the dominant source of supersymmetry breaking and

the structure of vacua differ in the three models, they share a number of common features.

First, we find that all of them give rise to an effective inflaton potential of the form

V (ϕ) =
1

2
m2
ϕ ϕ

2 − 1

4
λϕ4 ,

after the moduli have been integrated out. Hence, they share universal predictions for the

CMB observables, in particular r & 0.05. Second, in all models the stability of moduli

during inflation imposes a severe lower bound on the scale of supersymmetry breaking. In

KKLT this is the well-known bound m3/2 > H. In Kähler Uplifting and the Large Volume

Scenario, the moduli masses and the potential barrier are suppressed compared to m3/2 due

to an approximate no-scale symmetry. This leads to the more stringent constraint m3/2 >

H
√
V, where V denotes the volume of the compactification manifold. Unfortunately, this

implies that supersymmetry can no longer protect the flatness of the inflaton potential. This

is opposite to chaotic inflation with a stabilizer field, where the gravitino mass must be

parametrically smaller than the inflaton mass. Third, in all considered schemes the param-

eter choices required by successful inflation appear unnatural from the perspective of string

theory. Although our analysis is limited to specific examples we believe that this problem

is characteristic for a wide class of large-field inflation models coupled to a modulus sector.

Another important caveat is that the initial conditions of inflation must be chosen

very carefully. The moduli are destabilized if the energy density of the universe exceeds the

barrier protecting their local minimum. In this case, the desired regime of slow-roll inflation

is never reached. In this sense, the effective inflation models obtained after integrating out

the moduli are no longer “chaotic”.
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A Moduli masses

A.1 Supergravity mass formulae

Scalar masses in supergravity with zero cosmological constant are given by [47–50]

m2
αβ̄ = eG

(
Gαβ̄ −Rαβ̄γδ̄GγGδ̄ +∇αGγ̄∇β̄Gγ̄

)
,

m2
αβ = eG (2∇αGβ +Gγ∇α∇βGγ) ,

(A.1)

without taking canonical normalization into account. Here, Rαβ̄γδ̄ is the Riemann curvature

of the Kähler manifold and Γαβγ = Gαᾱ∂βGγᾱ. Notice that these expressions can be used

to compute physical masses in the ground state of the theory, but not during inflation.

The fermionic mass matrix, on the other hand, is given by

(m̃F )αβ = eG/2(∇αGβ +GαGβ) . (A.2)

After extracting the goldstino-gravitino mass mixing, the fermionic mass matrix becomes

(mF )αβ = eG/2
(
∇αGβ +

1

3
GαGβ

)
= eK/2

(
DαDβW −

2

3W
DαWDβW

)
. (A.3)

The fermionic masses also define the supersymmetric contribution to the scalar masses.

Hence, we can define the soft scalar mass matrix m0 by subtracting the fermionic mass

contribution,

m2
αβ̄ = (mFm

†
F )αβ̄ + eG

(
Gαβ̄ −Rαβ̄γδ̄GγGδ̄ +

1

3
GαGβ̄

)
≡
(
mFm

†
F

)
αβ̄

+
(
m2

0

)
αβ̄

,

m2
αβ = 2eG/2(mF )αβ + eG

(
−2

3
GαGβ +Gγ∇α∇βGγ

)
, (A.4)

where
(
mFm

†
F

)
αβ̄

= Gγγ̄(mF )αγ(mF )β̄γ̄ ≡
(
m2
S

)
αβ̄

. Furthermore, it is useful to define the

inverse supersymmetric mass matrix,

(
m−2
S

)ᾱδ
= Gβγ̄

(
mF
−1
)βδ (

m−1
F

)ᾱγ̄
, (A.5)

which satisfies the relations

(mF )αβ
(
m−2
S

)αβ̄
= Gβγ̄(m−1

F )β̄γ̄ ,
(
m−2
S

)αβ̄
(mF )β̄γ̄ = Gβγ̄

(
mF
−1
)βα

. (A.6)
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A.2 Nearly-supersymmetric stabilization

If the supersymmetric masses are much larger than the supersymmetry breaking scale,

mF � m3/2, we can expand the inverse mass matrix,

m2
αβ̄ =

(
m2
S

)
αγ̄

[
δγ̄
β̄

+
(
m−2
S

)γ̄δ (
m2

0

)
δβ̄

]
⇒

(
m−2

)ᾱβ ≈ (m−2
S

)β̄β [
δᾱβ̄ −

(
m−2
S

)ᾱδ (
m2

0

)
δβ̄

]
. (A.7)

In this limit the holomorphic terms m2
αβ are small, so that for the inverse of the mass

matrix

M2 =

(
m2
αβ̄

m2
αβ

m2
ᾱβ̄

m2
ᾱβ

)
, (A.8)

we find

M−2 ≈

(
(m−2)β̄γ −(m−2)β̄γm2

γβ(m−2)βγ̄

−(m−2)βᾱm2
ᾱβ̄

(m−2)β̄γ (m−2)βγ̄

)
. (A.9)

B Details of integrating out supersymmetry-breaking moduli

B.1 Obtaining the general result

The coefficients of the Taylor series in eq. (2.10) are given by

V0 =eK0

{
Kα,β̄

0 [Wα +K0,αWmod]
[
W β̄ +K0,β̄Wmod

]
− 3|Wmod|2

}
, (B.1a)

V1 =eK0

{
−1

2
Kαβ̄

0

(
K0,β̄DαWmod+K0,αDβ̄Wmod

)
+mK−1

1 +
3

2
(Wmod+Wmod)

}
, (B.1b)

V2 =
1

4
eK0

{
Kαβ̄

0 K0,αK0,β̄ − 3
}
, (B.1c)

where DαWmod = Wmod,α + K0,αWmod. Expanding these coefficients at leading order in

δTα � Tα,0 leads to

V0(Tα, T ᾱ) =
1

2

(
δTα δT ᾱ

)(m2
αβ̄

m2
αβ

m2
ᾱβ̄

m2
ᾱβ

)(
δT β̄
δTβ

)
+ . . . , (B.2a)

V1(Tα, T ᾱ) = V1(Tα,0, T ᾱ,0) +
∂V1

∂Tα
δTα +

∂V1

∂T ᾱ
δT ᾱ + . . . , (B.2b)

V2(Tα, Tα) = V2(Tα,0, T ᾱ,0) + . . . , (B.2c)

keeping only the leading-order terms up to fourth order in ϕ. m2
αβ̄

and m2
αβ denote the

mass matrices of the moduli fields in the true vacuum. They can be found in appendix A.

In the expansion of V0 we have used that the cosmological constant vanishes in the vacuum

and that the moduli trace their minima adiabatically. In particular,

V0(Tα,0, T ᾱ,0) = ∂αV0|T=T0 = 0 . (B.3)

Plugging the results eqs. (B.2a) back into V and introducing ρα = (Tα, T ᾱ) leads to the

expression given in eq. (2.12). From this, by minimizing we find the moduli displacements
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eq. (2.13), and subsequently the most general expression for the effective inflaton potential,

cf. eq. (2.14),

V =
1

2
V1

(
Tα,0, T ᾱ,0

)
mϕ2 +

1

4
V2

(
Tα,0, T ᾱ,0

)
m2ϕ4

− 1

2

(
∂V1
∂Tα

∂V1

∂T ᾱ

)((m−2)αβ̄ (m−2)αβ

(m−2)ᾱβ̄ (m−2)ᾱβ

)( ∂V1

∂T β̄
∂V1
∂Tβ

)
m2ϕ4 + . . . .

(B.4)

By a straight-forward computation, one can find

∂V1

∂Tα
|T=T0 = eK0

{
− 1

2
Kβγ̄

0

[
Kγ̄DαDβWmod + (Kαβ +KαKβ − ΓγαβKγ)Dγ̄Wmod

]
+DαWmod +KαWmod +mK−2

1 (KαK1 −K1,α)

}
,

(B.5)

where DαDβW = ∇αDβW +KαDβW .

Using the mass formulas of appendix A, the effective potential eq. (2.14) can be further

simplified. In particular, using the approximation that the supersymmetric mass scale is

much larger than m3/2, cf. appendix A.2, we find

(
∂V1
∂Tα

∂V1

∂T ᾱ

)((m−2)αβ̄ (m−2)αβ

(m−2)ᾱβ̄ (m−2)ᾱβ

)( ∂V1

∂T β̄
∂V1
∂Tβ

)

≈ ∂V1

∂Tα
(m−2)αβ̄

[
∂V1

∂T β̄
−m2

β̄γ̄(m−2)γ̄β
∂V1

∂Tβ

]
+ h.c.

≈ 1

2
eK0Kαβ̄

0 K0,αK0,β̄ −
1

2
e3K0/2

{
Kδ(m

−1
F )βδ

[
−Kεε̄

0 (Kβε +KβKε − ΓγβεKγ)Dε̄Wmod

+ 2DβWmod+3KβWmod+2mK−2
1 (K0,βK1−K1,β)

]
+h.c.

}
. (B.6)

Inserting this into V , we find the approximate effective potential eq. (2.16). We remark

that there are subtleties involved: when supersymmetry is broken, the fermion mass matrix

has a zero eigenvalue, corresponding to the goldstino direction. Therefore, it is necessary

to make the scalar partner of the goldstino very heavy, so that its entry in the inverse scalar

mass matrix can be neglected and eq. (2.16) indeed can be used to obtain the leading-order

result. However, it would be interesting to find an analogous expression to eq. (2.16) in

the case that this is not possible. Note that this problem can be avoided in the case where

the supersymmetry breaking field is nilpotent [51–54].

B.2 Applying the general result: KKLT moduli stabilization

In order to illustrate how this general result can be applied to specific examples, we consider

the effective action described by

K = −3 ln
(
T + T

)
+

1

2

(
φ+ φ̄

)2
+ |X|2 − |X|

4

Λ2
,

W = W0 +Ae−aT + fX +
1

2
mφ2 ,

(B.7)
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i.e., the example of section 3. As discussed before, if Λ is small enough the scalar in X is

heavy and its displacement during inflation δX negligible. In this case, we can safely omit

the sgoldstino and goldstino entries in the scalar and fermion mass matrices, respectively.

With f ∼
√

3W0 for cancellation of the cosmological constant, the leading-order vacuum

expectation value of T and its contribution to supersymmetry breaking are

aAe−aT0 +
3

2T0
W0 ≈ 0 , GT ≈ −

9

4aT 2
0

, GT ≈ −3

a
. (B.8)

A leading-order computation of the scalar and fermion masses in eqs. (A.1) and (A.3),

respectively, leads to

m2
TT
≈ 3a2m2

3/2 , m2
TT ≈

3a

2T0
m2

3/2 , (mF )TT ≈ −
3a

2T0
m3/2 . (B.9)

Notice that m2
TT � m2

TT
. Moreover, after canonical normalization of the kinetic terms the

scalar and fermion masses are, at leading order

m2
T ≈ |(mF )T |2 ≈ 4a2T 2

0m
2
3/2 . (B.10)

Therefore, in this case the “nearly-supersymmetric” approximation outlined in ap-

pendix A.2 applies. Thus, also the final result eq. (2.16) does apply. Actually, using

the assumption that the scalar X is heavy and that its vacuum expectation value is negli-

gibly small, all indices in eq. (2.16) turn out to be modulus indices only. A straight-forward

computation then yields

V =
1

16T 3
0

[(
m2 + 3mW0 −

9W0

aT0
m

)
ϕ2 − 3

8

(
1 +

6

2aT0

)
m2ϕ4

]
=

1

2

(
m̃2 + 3m̃m3/2 −

9

2aT0
m̃m3/2

)
ϕ2 − 3

16

(
1 +

3

aT0

)
m̃2ϕ4 , (B.11)

which, at leading-order, coincides with the naive expectation of section 2.1, and at next-

to-leading-order with the result of section 3.2.

B.3 Chaotic inflation with a stabilizer field

The coefficients of the Taylor series in eq. (2.22) are given by

V0 =eK
{
Kαβ̄

0 DαWmodDβ̄Wmod+K−1
1 m2|S|2+

|KSS̄WmodS|2

KSS̄+KSS̄SS̄ |S|2
−3|Wmod|2

}
, (B.12a)

V1 =−1

2
eK
{
Kαβ̄

0

(
K0,β̄DαWmod +K0,αDβ̄Wmod

)
+
KSS̄(Wmod +Wmod)(1 +KSS̄ |S|2)

KSS̄ +KSS̄SS̄ |S|2
− 3(Wmod +Wmod)

}
, (B.12b)

V2 =eK
{(

Kαβ̄
0 K0,αK0,β̄ − 3

)
|S|2 +

1 +KSS̄ |S|2

KSS̄ +KSS̄SS̄ |S|2

}
, (B.12c)
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where we have defined DαWmod = Wmod,α +K0,αWmod. Expansion of these coefficients in

δTα and δψ leads to

V0 =
1

2

(
δTα δT ᾱ

)(m2
αβ̄

m2
αβ

m2
ᾱβ̄

m2
ᾱβ

)(
δT β̄
δTβ

)
+m2

Sδψ
2 + . . . , (B.13a)

V1 = V1(T0α, T 0α) +
∂V1

∂Tα
δTα +

∂V1

∂T ᾱ
δT ᾱ + . . . , (B.13b)

V2(Tα, Tα) =
eK0

KSS̄

+ δψ2eK0

(
Kαβ̄

0 K0,αK0,β̄ −
KSS̄SS̄

K2
SS̄

)
+ . . . , (B.13c)

keeping only the leading-order terms at order ϕ4 in the scalar potential. Plugging the coef-

ficients back into V and minimizing with respect to the field displacements gives eqs. (2.23)

and (2.24). The most general result for the inflaton scalar potential then reads

V =
1

2
m2ϕ2

 eK0

KSS̄

− V 2
1

m2
S + 1

2m
2ϕ2eK0

(
Kαβ̄

0 K0αK0β̄ −
KSS̄SS̄
K2
SS̄

)


− m4ϕ4V 2
1

2

[
m2
S + 1

2m
2ϕ2eK0

(
Kαβ̄

0 K0αK0β̄ −
KSS̄SS̄
K2
SS̄

)]2

×
(
∂V1
∂Tα

∂V1

∂T ᾱ

)((m−2)αβ̄ (m−2)αβ

m−2)ᾱβ̄ (m−2)ᾱβ

)( ∂V1

∂T β̄
∂V1
∂Tβ

)
+ . . . (B.14)

Again we can rewrite

∂V1

∂Tα

∣∣∣∣
T=T0,S=0

= −1

2
eK0

{
Kβγ̄

0 [Kγ̄DαDβWmod + (Kαβ +KαKβ − ΓγαβKγ)Dγ̄Wmod]

−DαWmod −KαWmod

}
. (B.15)

In the near-supersymmetric limit, using the expressions in appendix A.2, we find

(
∂V1
∂Tα

∂V1

∂T ᾱ

)((m−2)αβ̄ (m−2)αβ

m−2)ᾱβ̄ (m−2)ᾱβ

)( ∂V1

∂T β̄
∂V1
∂Tβ

)

≈ 1

2
eK0Kαβ̄

0 K0,αK0,β̄ +
1

2
e3K0/2

{
Kδ(m

−1
F )βδ

[
Kεε̄

0 (Kβε +KβKε − ΓγβεKγ)Dε̄Wmod

−DβWmod −
1

2
KβWmod

]
+ h.c.

}
. (B.16)

Using this, we find the simplified inflaton scalar potential in eq. (2.25).

B.4 Details on Kähler uplifting and LVS

From the Kähler potential of the Kähler Uplifting scenario,

K = −2 ln
[
(T + T )3/2 + ξ

]
,
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we obtain for its derivative and the inverse Kähler metric,

KT = − 3(T + T )1/2

(T + T )3/2 + ξ
, (B.17)

KTT =
(T + T )1/2

3

((T + T )3/2 + ξ)2

(T + T )3/2 − ξ
2

. (B.18)

Note that KTT , and therefore the scalar potential, has a singularity at T +T = ( ξ2)2/3. To

analyze the vacuum structure it is convenient to define the functions

Y (T, T ) =
(−a+KT )KTTKT + 1

∂TKTT + (−a+ 2KT )KTT
, (B.19)

Z(T, T ) =
2

Y (T, T )2

KT

∂TKTT + (−a+ 2KT )KTT
. (B.20)

The Minkowski vacuum and the barrier to the run-away vacuum can be studied using an

expansion in η = ξ/(2(T + T )3/2),

KT = − 3

(T + T )
(1− 2η + . . .) , (B.21)

KTT =
(T + T )2

3
(1 + 5η + . . .) , (B.22)

Y = − 3

(T + T )

[
1− 2η

(
1 +

9

4(a(T + T ) + 4)

)
+ . . .

]
, (B.23)

Z =
2

a(T + T ) + 4

[
1− 3η

(
1− 9

2(a(T + T ) + 4)

)
+ . . .

]
. (B.24)

The AdS minimum and the associated local maximum lie to the left of the singularity11

where we can use an expansion for small T + T ,

KT = −3(2T )1/2

ξ

[
1− (2T )3/2

ξ
+ . . .

]
, (B.25)

Y = −3(2T )1/2

2ξ

[
1−10(2T )3/2

ξ
+ . . .

]
. (B.26)

The simplest Large Volume Scenario is closely related to Kähler Uplifting. From the

Kähler potential

K = −2 ln(V + ξ) , V = (Tb + T b)
3/2 − (Ts + T s)

3/2 ,

corresponding to compactification on a swiss-cheese manifold, we obtain,

Kb = −3(Tb + T b)1/2

V + ξ
, (B.27)

11Keeping in mind that this regime is not trustworthy from the perspective of supergravity and string

theory.
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Ks =
3(Ts + T s)

1/2

V + ξ
, (B.28)

Kbb̄ =
(Tb + T b)1/2

3

(V + ξ)
(
V + 3(Ts + T s)

3/2 + ξ
)

V − ξ
2

, (B.29)

Kbs̄ = (Tb + T b)(Ts + T s)
V + ξ

V − ξ
2

, (B.30)

Kss̄ =
1

3
(Ts + T s)

1/2 (V + ξ)
(
2V + 3(Ts + T s)

3/2 − ξ
)

V − ξ
2

, (B.31)

with ∂Ts ≡ ∂s, ∂Tb
≡ ∂b. Notice the partial no-scale cancellation

Kbb̄K2
b + 2Kbs̄KbKs +Kss̄K2

s = 3 +
3

2

ξ

V − ξ
2

. (B.32)

Since the superpotential does not depend on Tb the scalar potential takes the simple form

V = eK
[(
Kbb̄K2

b − 3
)
|W |2 +Kbs̄Kb

(
WDTsW +DTsWW

)
+Kss̄|DTsW |2

]
. (B.33)

Analogous to Kähler Uplifting the two equations for local extrema, ∂bV = ∂sV = 0, lead

to two quadratic equations for DTsW ,

AiW
2 +BiWDTsW + Ci(DTsW )2 = 0 , i = 1, 2 , (B.34)

where we have assumed real parameters. If W 2 6= 0 these can be rewritten as

DTsW = Ỹ W , Z̃i = 0 ,

where

Ỹ =
A1C2 −A2C1

B2C1 −B1C2
, Z̃i = Ai +BiỸ + CiỸ

2 , (B.35)

and

A1 = Kb(Kbb̄K2
b + 2Kbs̄Kbs̄ − 3) + ∂b(Kbb̄K2

b) , (B.36)

B1 = 2(Kbs̄K2
b +Kss̄Kbs̄ + ∂b(Kbs̄Kb)) , (B.37)

C1 = KbK
ss̄ + ∂bK

ss̄ , (B.38)

A2 = ∂s(K
bb̄K2

b) +Kbs̄Kb(aKs −K2
s + 2Kss̄) , (B.39)

B2 = 2(Kbs̄KbKs + ∂s(K
bs̄Kb)) +Kbb̄K2

b − 3

− aKbs̄Kb +Kss̄(aKs −K2
s + 2Kss̄) , (B.40)

C2 = Kss̄(2Ks − a) +Kbs̄Kb + ∂sK
ss̄ . (B.41)

In the large volume expansion we obtain, with Tb = T b, Ts = T s,

Ks =
3(2Ts)

1/2

V

[
1− ξ

V
+ . . .

]
, (B.42)

Ỹ =
3(2Ts)

1/2

V

[
1 +

ξ

2(2Ts)3/2
− ξ

4a(2Ts)5/2
+ . . .

]
, (B.43)
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Z̃1 =
9ξ

4V5/3

[
1− ξ

(2Ts)3/2
− 1

aTs
+

ξ

a(2Ts)5/2
+ . . .

]
, (B.44)

Z̃2 =
3aξ

2V

[
1− ξ

(2Ts)3/2
− 5

4aTs
+

3ξ

2a(2Ts)5/2
+ . . .

]
. (B.45)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].

[2] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on

inflation, Astron. Astrophys. 571 (2014) A22 [arXiv:1303.5082] [INSPIRE].

[3] BICEP2 and Planck collaborations, P. Ade et al., Joint analysis of BICEP2/Keck Array

and Planck data, Phys. Rev. Lett. 114 (2015) 101301 [arXiv:1502.00612] [INSPIRE].

[4] M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity,

Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].

[5] E. Palti and T. Weigand, Towards large r from [p, q]-inflation, JHEP 04 (2014) 155

[arXiv:1403.7507] [INSPIRE].

[6] F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, JHEP 09

(2014) 184 [arXiv:1404.3040] [INSPIRE].

[7] A. Hebecker, S.C. Kraus and L.T. Witkowski, D7-brane chaotic inflation, Phys. Lett. B 737

(2014) 16 [arXiv:1404.3711] [INSPIRE].

[8] T.W. Grimm, Axion inflation in F-theory, Phys. Lett. B 739 (2014) 201 [arXiv:1404.4268]

[INSPIRE].
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