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1 Introduction

Rare flavour-violating Z decays, as is the case of those violating lepton flavour conservation

Z → eµ, µτ, eτ , provide a clear evidence for new physics beyond the Standard Model (SM).

In the SM, these decays are forbidden due to the GIM mechanism [1], and their rates remain

extremely small (below 10−50) when the SM is minimally (ad-hoc) extended to incorporate

flavour violation in the neutral lepton sector (neutrino masses and mixings) [2–5].

Sizeable rates for Z → `∓1 `
±
2 processes reflect the existence of new particles, either

coupling with sub-weak strength to the SM particles, or then sufficiently heavy to have

escaped direct detection at current high-energy searches. Among these feebly interacting

particles, potentially at the origin of Z → `∓1 `
±
2 decays, are sterile (gauge-neutral) fermions,
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arising in several minimal extensions of the SM, as for instance in those aiming at address-

ing the origin of neutrino masses and mixings. The existence of sterile states is further

supported by current data from neutrino experiments (Gallium [6, 7], reactor [8–10] and

accelerator [11–14] anomalies). Sterile neutrinos are also a popular solution for the dark

matter (DM) problem [15–19], and can potentially alleviate some tensions regarding struc-

ture formation observations [20–23]. (Although there is still a tension between the most

recent Planck results on extra light neutrinos (relics) and reactor anomalies, in this work

we focus on the rôle of (heavier) sterile fermions, which are not expected to contribute as

light relativistic degrees of freedom [24].) Rare charged lepton flavour violating (cLFV)

Z decays have been extensively discussed in the context of SM extensions involving mas-

sive (Majorana and/or Dirac) neutrinos [3, 5, 25–28]; similar studies were carried using

an effective theory approach [29–32], some also exploring a possible complementarity with

low-energy cLFV searches.

The current bounds on the branching ratios (BRs) for cLFV Z decays,

BR(Z → `∓1 `
±
2 ) =

Γ(Z → `±1 `
∓
2 )

ΓZ
, (1.1)

were established by LEP, performing as a Z factory; recently, the ATLAS experiment

established new bounds on the corresponding BRs, significantly improving the bound for

eµ final states:

BR(Z → e∓µ±) < 7.5× 10−7 [33] , (1.2)

BR(Z → e∓τ±) < 9.8× 10−6 [34, 35] , BR(Z → µ∓τ±) < 1.2× 10−5 [35, 36] . (1.3)

A future circular collider, running in electron-positron mode, FCC-ee (TLEP) [37], will

constitute a true high-luminosity Z factory, with an expected production of 1012 Z bosons

(1013 with the “crab-waist”), when operating at the Z mass pole. Such large statistics

(above Tera-Z) will thus allow to better determine the properties of the Z boson, and to

probe new physics (NP) scenarios through the above cLFV processes. The clean nature of

the cLFV Z → `∓1 `
±
2 decays (only charged leptons — especially muons — in the final state)

implies that the sensitivity to these rare processes is essentially only constrained by the

expected luminosity; one can thus foresee a significant improvement in the experimental

sensitivity at FCC-ee to rare cLFV Z decays, for instance, BR(Z → e∓µ±) ∼ 10−13.

Revisiting cLFV Z decays in the presence of extra sterile fermions is particularly

timely given the present experimental context: not only we have reached an unprecedented

precision in the determination of several neutrino oscillation parameters [38–43], and new

bounds on low-energy cLFV observables (for instance MEG [44]), but we are also entering

a challenging era, where many ambitious (post-LHC) experimental projects are being put

forward. Given their rôle in a vast array of observables (see, for instance [45–47] and

references therein), sterile neutrinos are becoming strong candidates for the physics case of

several post-LHC facilities, as is the case of the FCC-ee (TLEP). It is also worth mentioning

that direct searches for (nearly) sterile fermions, as right-handed (RH) neutrinos, relying

on their comparatively long lifetime, have recently been studied in the context of high-

luminosity Z-factories like the FCC-ee [48].
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The present work focuses on the potential of the FCC-ee to explore the rôle of cLFV

decays of the Z boson as indirect probes of sterile fermions [37], emphasising the comple-

mentarity of these searches with respect to low-energy cLFV observables such as µ → eγ

and µ→ eee decays and µ− e conversion in nuclei. We consider SM extensions via sterile

neutrinos, with a non-negligible mixing to the light (mostly) active neutrinos, for a wide

range of masses of the sterile mass spectrum. In particular, we address three scenarios:

a simple toy-model extension of the SM with one sterile fermion (the “3 + 1 model”),

and two well motivated frameworks for neutrino mass generation, the νMSM [49] and one

realisation of the Inverse Seesaw [50, 51].

Our analysis (conducted for each of the above mentioned scenarios, which are con-

fronted to all observational and experimental constraints, especially those from low-energy

cLFV observables), reveals that sterile neutrinos can indeed give rise to contributions to

BR(Z → `∓1 `
±
2 ) within reach of the FCC-ee.

This work is organised as follows: in section 2 we consider the general formulation of

the lepton flavour violating (and lepton flavour conserving) BR(Z → `∓`±) in terms of

the sterile masses and mixings to the active neutrinos. We also discuss the experimental

prospects. In section 3 we motivate this class of extensions and discuss the different obser-

vational (mainly the cosmological ones) and experimental bounds on sterile states. In the

following three sections, we describe and discuss in detail the prospects of different exten-

sions of the SM regarding Z → `∓1 `
±
2 decays at a high-luminosity Z factory, also addressing

the complementarity with respect to other low-energy observables.

2 Leptonic Z decays in the presence of sterile neutrinos

In the original formulation of the SM with massless neutrinos and no mixing in the lep-

ton sector, the couplings of the gauge bosons to neutral and charged leptons are strictly

flavour conserving, lepton-flavour changing Z decays being forbidden due to the GIM

mechanism [1]. Moreover, the couplings are flavour universal, so that in the SM one

has g`iνiW ∝ gw, g`i`iZ ∝ gw, as well as gνiνiZ ∝ gw, where gw denotes the weak cou-

pling constant. These rates remain extremely small even in the case in which the SM is

“ad-hoc”-extended to incorporate three massive and mixing neutrinos [2–5, 28]:

BR(Z → µ∓τ±) ∼ 10−54 , BR(Z → e∓µ±) ∼ BR(Z → e∓τ±) . 4× 10−60 . (2.1)

Let us now consider the extension of the SM via nS additional sterile neutral (Majorana)

fermions, mixing with the active neutrinos. In the physical lepton (or mass) basis, the SM

Lagrangian is modified as follows:1

LW± = − gw√
2
W−µ

3∑
l=1

3+nS∑
j=1

Ulj
¯̀
lγ
µPLνj + H.c. ,

LZ0 = − gw

2 cos θW
Zµ

3+nS∑
i,j=1

ν̄iγ
µ
(
PLCij − PRC∗ij

)
νj ,

1See e.g. [28] for a detailed derivation starting from explicit lepton mass matrices.
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LH0 = − gw

2MW
H

3+nS∑
i,j=1

Cij ν̄i (PRmi + PLmj) νj + H.c. ,

LG0 =
igw

2MW
G0

3+nS∑
i,j=1

Cij ν̄i (PRmj − PLmi) νj + H.c. ,

LG± = − gw√
2MW

G−
3∑
l=1

3+nS∑
j=1

Ulj
¯̀
l (miPL −mjPR) νj + H.c. , (2.2)

where PL,R = (1 ∓ γ5)/2. As is clear from the above equations, flavour is violated by

mixings in both charged and neutral current interactions. Denoting by l = 1, . . . , 3 the

flavour of the charged leptons, and by i, j = 1, . . . , 3 + nS the physical neutrino states,

the mixing in charged current interactions is parametrized by a rectangular 3 × (3 + nS)

mixing matrix, Ulj . Notice that in the case of three neutrino generations, and assuming

alignment of the charged lepton’s weak and mass basis, U corresponds to the (unitary)

PMNS matrix, UPMNS. For nν > 3 (nS ≥ 1), the mixing between the left-handed leptons,

which we will subsequently denote by ŨPMNS, corresponds to a 3× 3 block of U. One can

parametrize the ŨPMNS mixing matrix as [52]

UPMNS → ŨPMNS = (1− η)UPMNS , (2.3)

where the matrix η encodes the deviation of ŨPMNS from unitarity [53, 54], due to the

presence of extra fermion states. It is also convenient to introduce the invariant quantity

η̃, defined as

η̃ = 1− |Det(ŨPMNS)| , (2.4)

particularly useful to illustrate the effect of the new active-sterile mixings (corresponding

to a deviation from unitarity of the ŨPMNS).

As can be seen from above, the mixing in the neutral lepton sector induced by the

Majorana states also opens the possibility for flavour violation in neutral currents; this is

encoded in a square (3 + nS)× (3 + nS) mixing matrix

Cij =

3∑
l=1

U∗li Ulj . (2.5)

2.1 Rare lepton flavor violating Z decays revisited

One of the main features of the SM extended by sterile Majorana neutrinos, which mix

with the active ones, is thus the possibility of flavour violating Zνiνj interactions (flavour-

changing neutral currents), coupling both the left- and right- handed components of the

neutral fermions to the Z boson. Together with the charged-current lepton flavour violating

couplings (∝ ŨPMNS), these interactions will induce an effective charged lepton-flavour

violating vertex Z`∓1 `
±
2 . We depict the full set of one-loop diagrams in figure 1.

Taking into account the contributions of all above higher order processes, the branching

ratio for cLFV Z decays (cf. eq. (1.1)) is given by [5, 25, 28–31]:

BR(Z → `∓1 `
±
2 ) =

α3
W

192π2c2
W

MZ

ΓZ
|F(M2

Z)|2 ≈ 10−6 |F(M2
Z)|2, with `1 6= `2. (2.6)
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Figure 1. Feynman diagrams for the charged lepton-flavour changing Z decay. From left to

right, top to bottom: vWνν(i, j), vWWν(i), vφνν(i, j), vφφν(i), vWφν(i). The last row contains the

self-energy corrections to the external fermion legs, vSelfE(i).

The form factor F(Q2) encodes the details of the new interaction and therefore the

contribution of the sterile neutrinos:

F(Q2) =

nν∑
i,j=1

Ul1iU
∗
l2j VZ(xi, xj , xQ) , (2.7)

where VZ(xi, xj , xQ) is the vertex function, fully describing the amplitude, and which de-

pends quadratically on the neutrino masses. In the previous expression, we have intro-

duced the mass ratios2 xi = m2
νi/M

2
W and the virtuality of the Z boson xQ = Q2/M2

W

(i.e., xZ = M2
Z/M

2
W when it is on-shell). In the ’t Hooft-Feynman gauge, all diagrams of

figure 1 [5, 25, 28–31] contribute to the amplitude VZ :

VZ(xi, xj , xQ) = vWνν(i, j) + vWWν(i) + vφνν(i, j) + vφφν(i) + vWφν(i) + vSelfE(i) , (2.8)

with the different contributions given in terms of dimensionless one-loop tensor integrals3

C0, C̄0, Cab, C̄ab and B1 [57, 58], listed in appendix A,

vWνν(i, j) = −Cij

[
xQ(C0 + C11 + C12 + C23)− 2C24 + 1

]
+ C∗ij

√
xixj C0 , (2.9)

vWWν(i) = 2c2
W (2IiL3 )

[
xQ (C̄11 + C̄12 + C̄23)− 6C̄24 + 1

]
, (2.10)

vφνν(i, j) = −Cij
xixj

2
C0 + C∗ij

√
xixj

2

[
xQC23 − 2C24 +

1

2

]
, (2.11)

vφφν(i) = −(1− 2s2
W ) (2IiL3 ) xi C̄24 , (2.12)

2The negligible effect of the final state charged lepton masses is ignored for simplicity here.
3The tensor integrals are numerically evaluated via LoopTools [55], based on the FF [56] package, which

are linked to a private fortran code.
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vWφν(i) = −2s2
W (2IiL3 ) xi C̄0 , (2.13)

vSelfE(i) =
1

2
(vi + ai − 4c2

Wai) [(2 + xi)B1 + 1] . (2.14)

In the above, the weak neutral vector and axial-vector couplings are defined as

vi = IiL3 − 2Qis
2
W , (2.15)

ai = IiL3 , (2.16)

with sW (cW ) denoting sin θW (cos θW ), Qi the electric charge and IiL3 the third component

of weak isospin.

2.2 Lepton flavour universality in Z decays

As mentioned before, in the SM the charged lepton couplings to the Z boson are strictly

flavour universal. Due to the τ lepton mass, Γ(Z → τ+τ−) slightly differs from Γ(Z →
`+`−), with ` = e, µ (see, e.g. [59])

Γ(Z → `+`−) = 0.08397 , Γ(Z → τ+τ−) = 0.08378 . (2.17)

The current experimental bound from LEP regarding (non-)universality of Z decays into

electrons and muons is [60]

Γµµ,SM
Z

Γee,SM
Z

= 1.0009± 2.8× 10−3 . (2.18)

Assuming that the electron- and muon- partial widths are equal (Γee,SM
Z = Γµµ,SM

Z ) we can

define the following observable

∆Rlep
Z = 1−

(
1 +

Γµµ,NP
Z

Γµµ,SMZ

)
(

1 +
Γee,NP
Z

Γee,SMZ

) , (2.19)

where Γ``,NP
Z refers to the contribution induced by the sterile neutrinos.

In our study, we will also investigate the contributions of the sterile states to the width

Γ``,NP
Z , or equivalently to the flavour conserving BR(Z → `+`−), given by the diagonal

contribution of eq. (2.6), in order to address the possibility of violation of lepton flavour

universality (LFU).

2.3 A high-luminosity Z-factory

Following the first evidence for a new (SM-like Higgs) bosonic resonance with a relatively

low mass, the case for a high luminosity circular e+e− collider, operating at centre-of-mass

energies ranging from the Z pole up to the top quark pair threshold is being actively

studied [61]. These initial investigations are serving as a starting basis for a four-year

design study of a ∼ 100 km circumference e+e− collider, which defines the framework of

the experimental prospects envisaged in this work. The baseline design of this machine

– 6 –
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assumes a layout similar to LEP/LHC with a number of equal-length arcs and long straight

sections, in which the two beams must circulate in separate vacuum chambers, leading to

O(104) bunches for an operation at the Z pole. These characteristics should allow to obtain

a typical peak luminosity at the Z pole of ∼ 1036cm−2s−1. A year of operation at the Z

pole centre-of-mass energy would then yield ∼ 1012 Z boson decays to be recorded. An

alternative scheme, referred to as “crab-waist” scheme, could further increase the number

of Z decays by an order of magnitude.

The cLFV Z decays under scrutiny in this work imply a priori very clean experimental

signatures. For instance, the decay Z → e±µ∓ exhibits two and only two back-to-back

oppositely charged leptons originating from a unique vertex. The decays Z → e±(µ±)τ∓

could lead to somewhat more ambiguous final states, depending on the subsequent τ decays.

They can actually proceed leptonically (BR(τ → `ν`) ∼ 17.5%) or hadronically, being

dominated in the latter case by one- or three-prong decays. The direction of the τ particle

is given by the momentum of the opposite lepton and hence can be used to kinematically

constrain the decay. At least, experimental studies with a realistic detector simulation and

the consideration of the relevant backgrounds are required to estimate the performance of

the reconstruction of the decays involving τ leptons. In the following, we assume that the

experimental reach for these cLFV decays is fully driven by the accessible luminosity. We

consider two bounds for the sensitivity: one ∼ O(10−9) inspired by previous prospective

studies at a Giga Z factory [62, 63] (or for a Linear Collider) and another ∼ O(10−13)

corresponding to the highest foreseen luminosity scheme (1013 Z).

The parameter space of the models considered in this work is constrained in particular

by the present electroweak precision measurements at the Z pole. The unprecedented

statistics which could be obtained at FCC-ee are expected to improve significantly the

determination of some of these key constraints. Other expected precision improvements

concern observables also used in this work as is the case of the ratio of the partial widths of

the Z decays into electrons and muons. The current precision on this ratio is at the level of

2.8× 10−3 [64] and could be increased by two orders of magnitude, O(5× 10−5) [61]. The

uncertainty of the partial decay width of Z → τ+τ− must accordingly decrease. Moreover,

the uncertainty on the invisible Z width (expressed as the number of light active neutrinos

Nν) should also decrease from 0.008 to 0.00004, by only a scaling of the uncertainty with the

expected statistics. Nevertheless, the main systematic limitation comes from the luminosity

measurement and must be accordingly evaluated. A reasonable target for the uncertainty

on the number of neutrinos at FCC-ee is estimated at O(0.001) [61].

3 Constraints on sterile neutrino extensions of the SM

In order to account for neutrino masses and mixings, many extensions of the SM call

upon the introduction of RH neutrinos (giving rise to a Dirac mass term for the neutral

leptons) and/or other new particles. Independently of the model under consideration,

and for all regimes of sterile masses investigated, we ensure that theoretical constraints as

perturbativity of the active-sterile couplings, are verified. The phenomenological impact of

the new sterile fermions can be important if the sterile states are not excessively heavy, and
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have sizeable mixings to the light (mostly active) neutrinos. For instance, this is the case

of the νMSM [49], the Inverse Seesaw (ISS) [50] and the low-scale type-I seesaw [65]. Many

observables will be sensitive to the active-sterile mixings, and their current experimental

values (or bounds) will thus constrain such SM extensions. In what follows we proceed to

discuss the most relevant constraints on models with sterile fermions.

Neutrino oscillation data. The most important constraint on any model of massive

neutrinos is to comply with ν-oscillation data [38–43]. In our analysis, we consider both

normal and inverted hierarchies for the light neutrino spectrum [41]; the corresponding

best-fit intervals in the case of normal hierarchy (NH) are

sin2 θ12 = 0.323 , sin2 θ23 = 0.567 , sin2 θ13 = 0.0234 ,

∆m2
21 = 7.60× 10−5 eV2 , |∆m2

31| = 2.48× 10−3 eV2 , (3.1)

whereas for an inverted mass hierarchy (IH) the values are

sin2 θ12 = 0.323 , sin2 θ23 = 0.573 , sin2 θ13 = 0.024 ,

∆m2
21 = 7.60× 10−5 eV2 , |∆m2

31| = 2.38× 10−3 eV2 . (3.2)

The value of the CP violating Dirac phase δ is still undetermined, although the com-

plementarity of accelerator and reactor neutrino data starts reflecting in a better sensitivity

to the CP violating phase δ [41, 66] (and to the hierarchy of the light neutrino spectrum).

These constraints on neutrino oscillation parameters will be systematically imposed in all

scenarios considered in this work.

Unitarity constraints. The introduction of fermionic sterile states can give rise to non-

standard neutrino interactions with matter. Bounds on the non-unitarity matrix η (cf.

eq. (2.3)), have been derived in [67, 68] by means of an effective theory approach. We

apply them in our numerical analysis for the cases in which the latter approach is valid,

generically for sterile masses above the GeV, but below the electroweak scale, ΛEW.

Electroweak precision data. Electroweak (EW) precision constraints on sterile fermi-

ons were firstly addressed in [69] with an effective approach (and therefore valid only for

multi-TeV singlet states). The impact of sterile neutrinos on the invisible Z-decay width

has also been addressed in [46, 70, 71], where it has been shown that Γ(Z → νν) can be

reduced with respect to the SM prediction. Indeed, the addition of sterile states to the

SM with a sizeable active-sterile mixing may have an impact on the electroweak precision

observables either at tree-level (charged currents) or at higher order. In particular, the

non-unitarity of the active neutrino mixing matrix, eq. (2.3), implies that the couplings

of the active neutrinos to the Z and W bosons are suppressed with respect to their SM

values. Complying with LEP results on Γ(Z → νν) [60] will then also constrain these

sterile neutrino extensions. In addition, we further require that the new contributions to

the cLFV Z decay width do not exceed the present uncertainty on the total Z width [60]:

Γ(Z → `∓1 `
±
2 ) < δΓtot.
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cLFV Process Present Bound Future Sensitivity

µ→ eγ 5.7× 10−13 [44] 6× 10−14 [89]

τ → eγ 3.3× 10−8 [90] ∼ 3× 10−9 [91]

τ → µγ 4.4× 10−8 [90] ∼ 3× 10−9 [91]

µ→ eee 1.0× 10−12 [92] ∼ 10−16 [93]

τ → µµµ 2.1× 10−8 [94] ∼ 10−9 [91]

τ → eee 2.7× 10−8 [94] ∼ 10−9 [91]

µ−,Ti→ e−,Ti 4.3× 10−12 [95] ∼ 10−18 [96]

µ−,Au→ e−,Au 7× 10−13 [97]

µ−,Al→ e−,Al 10−15–10−18 [98]

Table 1. Current experimental bounds and future sensitivities for the low-energy cLFV observables

considered in our study.

LHC constraints. The presence of a new Higgs boson decay channel with (heavy) neu-

trinos in the final state can enlarge the total Higgs decay width, thus lowering the SM

predicted decay branching ratios. LHC data already allows to constrain regimes where

the sterile states are below the Higgs mass, due to the potential Higgs decays to an active

and heavier (mostly) sterile neutrinos. In our analysis we apply the constraints derived

in [72–74].

Leptonic and semileptonic meson decays. Further constraints arise from leptonic

and semileptonic decays of pseudoscalar mesons K, D, Ds, B (see [75, 76] for kaon

decays, [77, 78] for D and DS decay rates, and [79, 80] for B-meson observations). These

decays have been addressed in [45, 46] in the framework of the SM extended by sterile

neutrinos, and it was found that the most severe bounds arise from the violation of lepton

universality in leptonic kaon decays (parametrized by the observable ∆rK), which can

receive important contributions from the new sterile states, due to the new phase space

factors, and as a result of deviations from unitarity of the ŨPMNS.

Laboratory searches. Negative searches for monochromatic lines in the spectrum of

muons from π± → µ±ν decays [81, 82] also impose robust bounds on sterile neutrino

masses in the MeV-GeV range.

Lepton flavour violation. Depending on the sterile neutrino mass regime, and on the

active-sterile mixings, the new states will contribute to several charged lepton flavour vio-

lating processes such as `→ `′γ, `→ `1`1`2 and µ− e conversion in muonic atoms. In our

analysis we compute the contribution of the sterile states to all these observables [28, 54, 83–

88], imposing compatibility with the bounds summarised in table 1, also considering the

impact of the future experimental sensitivities.

Neutrinoless double beta decay. The introduction of singlet neutrinos with Majorana

masses allows for new processes like lepton number violating interactions, among which
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Experiment Ref. |mee| (eV)

EXO-200 (4 yr) [102, 103] 0.075–0.2

nEXO (5 yr) [105] 0.012–0.029

nEXO (5 yr + 5 yr w/ Ba tagging) [105] 0.005–0.011

KamLAND-Zen (300 kg, 3 yr) [104] 0.045–0.11

GERDA phase II [101] 0.09–0.29

CUORE (5 yr) [106, 107] 0.051–0.133

SNO+ [108] 0.07–0.14

SuperNEMO [109] 0.05–0.15

NEXT [110, 111] 0.03–0.1

MAJORANA demo. [112] 0.06–0.17

Table 2. Future sensitivity of several 0ν2β experiments.

neutrinoless double beta decay remains the most important one [99]. In the SM extended

by nS sterile states, the effective neutrino mass mee is given by [100]:

mee '
3+nS∑
i=1

U2
ei p

2 mi

p2 −m2
i

'

(
3∑
i=1

U2
eimνi

)
+ p2

(
3+nS∑
i=4

U2
ei

mi

p2 −m2
i

)
, (3.3)

where p2 ' −(100 MeV)2 is an average estimate over different values depending on the

decaying nucleus of the virtual momentum of the neutrino.

The neutrinoless double beta decay process is being actively searched for by several experi-

ments, by means of the best performing detector techniques: among others, GERDA [101],

EXO-200 [102, 103], KamLAND-ZEN [104] have all set strong bounds on the effective mass,

to which the amplitude of 0ν2β process is proportional. The sensitivities of current exper-

iments put a limit on the effective neutrino Majorana mass — determining the amplitude

of the neutrinoless double beta decay rate — in the range

|mee| . 140 meV− 700 meV . (3.4)

In table 2, we summarise the future sensitivity of ongoing and planned 0ν2β experiments.

In our analysis, we consider this observable using the most recent constraint from [103];

concerning the future sensitivity we take |mee| . 0.01 eV.

Cosmological bounds. A number of cosmological observations [81, 113] put severe con-

straints on sterile neutrinos with a mass below the TeV. While CMB analysis with the

Planck satellite disfavour very light sterile neutrinos (with a mass . eV) [24], a ∼ keV

sterile neutrino may instead be a viable DM candidate, also offering a possible explanation

for the observed X-ray line in galaxy clusters spectra at an energy ∼ 3.5 keV [114, 115]

and for the origin of pulsar kicks, or even to the baryon asymmetry of the Universe (for a

review see [116]).
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The cosmological bounds are in general derived by assuming the minimal possible

abundance (in agreement with neutrino oscillations) of sterile neutrinos in halos consistent

with standard cosmology. However, the possibility of a non-standard cosmology with a

very low reheating temperature or a scenario where the sterile neutrinos couple to a dark

sector [117], could allow to evade some of the above bounds, as argued in [118]. In this

analysis, aiming at being conservative, we will allow for the violation of these cosmological

bounds in some scenarios, explicitly stating it.

4 A minimal “3 + 1 toy model”

The most simple approach to studying the phenomenological impact of sterile fermions lies

in considering a minimal model, where one extra sterile Majorana state is added to the

three light active neutrinos of the SM. This allows for a first, generic, evaluation of the

impact of the sterile fermions for these processes.

4.1 The “3 + 1” framework

In the present framework, no assumption is made on the underlying mechanism of neutrino

mass generation. In addition to the three (light) active masses and corresponding mixing

angles, it is only assumed that the leptonic sector contains extra degrees of freedom: the

mass of the new sterile state, m4, three active-sterile mixing angles θi4, two new (Dirac)

CP phases and one extra Majorana phase. This leads to the definition of a 4 × 4 mixing

matrix Uij , whose 3× 4 sub-matrix Ulj appears in eq. (2.2).

Although the experimental and observational constraints mentioned in section 3 put

no upper limit on the mass of the heavy neutrino, we notice however that the decay

of the (mostly) sterile heavy states should comply with the perturbative unitary condi-

tion [119–124],
Γνi
mνi

<
1

2
(i ≥ 4) . (4.1)

Assuming that the sterile mass is indeed sufficiently large to allow for its 2-body decay into

a W± boson and a charged lepton, or into a light (active) neutrino and either a Z or a

Higgs boson, the total decay width of such a state (i ≥ 4) is given by

Γνi =

3∑
j=1

[Γ(νi → `jW ) + Γ(νi → νjZ) + Γ(νi → νjH)] ≈ αw

4M2
W

Cii , (4.2)

where αw = g2
w/4π, and Cii as given in eq. (2.5). Since the dominant contribution arises

from the charged current term, one is led to the following bound on the sterile masses and

their couplings to the active states [119–124]:

m2
νi Cii < 2

M2
W

αw
(i ≥ 4) . (4.3)

In our analysis, and for both NH and IH light neutrino spectra, we scan over the

following range for the sterile neutrino mass

10−9 GeV . m4 . 106 GeV , (4.4)

– 11 –
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Figure 2. The “3+1 model”: on the left BR(Z → eµ) and on the right BR(Z → µτ), as a function

of the mass of the (mostly) sterile state, m4, for a NH light neutrino spectrum. Blue points are in

agreement with cosmological bounds, while the red ones would require considering a non-standard

cosmology. In grey we denote points already excluded by other (non-cosmological) bounds (see text

for a description). The upper horizontal dashed line corresponds to the expected sensitivity for a

GigaZ facility as a Linear Collider, O(10−9), the lower one to the FCC-ee ∼ O(10−13).

while the active-sterile mixing angles are randomly varied in the interval [0, 2π], always

ensuring that the condition of eq. (4.3) is respected. All CP phases are also taken into

account, and likewise randomly varied between 0 and 2π.

4.2 LFU violation: Z → `` decays in the “3 + 1 model”

We begin by addressing the contributions of the additional sterile state to the violation of

flavour universality, considering the observable ∆Rlep
Z , introduced in eq. (2.19). Although

one could have a non-negligible violation of LFU ∼ O(10−3), a number of experimental

bounds (cLFV constraints, complying with UPMNS data, . . . ) preclude this possibility, and

one has at most ∆Rlep
Z . 10−10, clearly beyond experimental sensitivity.

4.3 cLFV Z decays in the “3 + 1 model”

We proceed to discuss the impact of the additional sterile state regarding lepton flavour

violating Z decays. In figure 2 we illustrate our results regarding the observation of

BR(Z → eµ) and BR(Z → µτ) at a future high-luminosity Z-factory, considering a NH

light neutrino spectrum (the results for an IH spectrum do not exhibit any significant

qualitative nor quantitative difference in what concerns the branching fractions, and so

we will not display them here). As already mentioned in section 3, we identify in red the

points that are typically disfavoured from standard cosmology arguments. Grey points

denote failure to comply with (at least) one of the following constraints: ν-oscillation data,

bounds on the UPMNS matrix, bounds from EW precision data, LHC bounds, laboratory

bounds, constraints from rare leptonic meson decays; conflict with bounds from cLFV de-

cays, neutrinoless double beta decays or Z-boson decay width data (invisible and lepton

flavour conserving). Blue points are in agreement with all imposed constraints.
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As can be seen from figure 2, such a minimal extension of the SM can indeed account4

for values of BR(Z → `∓1 `
±
2 ) within the sensitivity of a high luminosity Z-factory, such as

the FCC-ee. (We notice that we have only displayed here values of the (mostly) sterile

state mass m4 & 10−3 GeV, since smaller values are associated to BR(Z → `∓1 `
±
2 ) . 10−28).

Despite the potential of this simple “toy-model” to account for significant cLFV Z

decay branching fractions (which could be as large as O(10−6)), these cannot be reconciled

with current bounds on low-energy cLFV processes (see table 1), to which the sterile states

also contribute. While the recent MEG bound on µ→ eγ decays excludes important regions

of the parameter space,5 the contribution of the Z penguin diagrams to cLFV 3-body decays

and µ − e conversion in nuclei severely constrains the flavour violating Z`∓1 `
±
2 vertex (see

also [29–31]). This is especially manifest in the case of Z → eµ decays, since the severe

constraints from BR(µ→ 3e) and CR(µ− e, Au) typically preclude BR(Z → eµ) & 10−13;

however, and for a regime of very heavy sterile states (m4 & 104 GeV), the “3 + 1 model”

can nevertheless account for BR(Z → eµ) within FCC-ee reach.

The comparatively less stringent bounds for cLFV in the µ− τ sector allow for larger

BR(Z → µτ): values above O(10−13) can be found for m4 & 50 GeV, and even larger

branching fractions, O(10−8) (within reach of a GigaZ facility as a Linear Collider) for

m4 & 500 GeV. Although not displayed here, the predictions of the “3 + 1 model” for the

BR(Z → eτ) exhibit a similar behaviour to what is observed for Z → µτ decays.

The rôle of the different mixing angles is displayed in figure 3, where we present

BR(Z → eµ) and BR(Z → µτ), respectively as a function of the active-sterile mixing

angles, θ14 and θ34. For completeness, we single out in these plots another observable,

which is the effective neutrino mass in neutrinoless double beta decays given in eq. (3.3).

Dark yellow regions correspond to values of |mee| within future sensitivity, i.e. 0.01 eV .
|mee| . 0.1 eV (see table 2).

As can be verified from figure 3, the maximal values of BR(Z → `∓1 `
±
2 ) are associated

with larger values of the active-sterile mixing angle. (In each panel, the more dense “diago-

nal” band corresponds to contributions arising from configurations where the active-sterile

mixing angle depicted in the x-axis is much larger than the other two.) As visible in the

left panel of figure 3, for a regime of large θ14, one can be indeed within reach of near

future 0ν2β decay dedicated experiments (in agreement with the findings of [47]). How-

ever, the associated BR(Z → eµ) lies beyond FCC-ee expected sensitivity. Although this

region would indeed be larger in the case of an IH for the light neutrino spectrum, the

corresponding BR(Z → eµ) would still remain below 10−13.

The prospects regarding the observation of a Z → `∓1 `
±
2 decay at a high-luminosity Z-

factory for the full sterile neutrino parameter space studied in our analysis are summarised

in figure 4, where we display the (sin2 θi4,m4) plane. (We notice that in agreement with

eq. (4.3) the upper regions, corresponding to a regime of heavy masses and large active-

sterile mixings, are precluded due to perturbativity arguments.)

4In addition to being experimentally ruled out, we notice that very large branching fractions, associated

with a regime of masses above the TeV, would be precluded due to the perturbativity bound of eq. (4.3),

which significantly constraints the sterile-active mixings for heavy sterile states.
5The flavour violating Z`∓1 `

±
2 vertex might induce higher order (2-loop) contributions to radiative muon

decays [30]; however, in the present study, we do not take such contributions into account.
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Figure 3. The “3 + 1 model”: BR(Z → eµ) as a function of the active-sterile mixing θ14 (left)

and BR(Z → µτ) as a function of θ34 (right) for a NH light neutrino spectrum. Blue points are in

agreement with cosmological bounds, while the red ones would require considering a non-standard

cosmology. In grey we denote points already excluded by other (non-cosmological) bounds (see text

for a description); dark-yellow points denote an associated |mee| within experimental reach (i.e.

0.01 eV . |mee| . 0.1 eV). Dark green points are associated with 10−13 . BR(Z → `∓1 `
±
2 ) . 10−9,

while light green ones correspond to BR(Z → `∓1 `
±
2 ) & 10−9.
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Figure 4. The “3 + 1 model”: on the left (sin2 θ14,m4) parameter space of the sterile state,

displaying the regimes for BR(Z → eµ) for a NH light neutrino spectrum. Line and colour code as

in figure 3 (dark green points are associated with 10−13 . BR(Z → eµ) . 10−9, while light green

ones correspond to BR(Z → eµ) & 10−9). On the right, (sin2 θ34,m4) displaying with the same

colour code the corresponding regimes for BR(Z → µτ).

As can be confirmed, and in agreement with the previous discussion, the largest values

of the lepton flavour violation Z-decays correspond to regimes of large sterile masses, in

association with sizeable mixing angles. The (sin2 θ14,m4) parameter space is strongly con-

strained by the current bounds from BR(µ→ 3e) — as would be the case of (sin2 θ24,m4),

not displayed here — and from CR(µ− e, Au), while sin2 θ34 & 10−4 are excluded due to

constraints arising from BR(τ → 3µ).

We conclude the analysis of the “3+1 model” by investigating the complementary rôle

of a high-luminosity Z-factory with respect to low-energy (high-intensity) cLFV dedicated

experiments. From the above discussion, it is clear that low-energy cLFV processes play a

constraining rôle in the maximal values of BR(Z → `∓1 `
±
2 ); we now explore which facility
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Figure 5. The “3 + 1 model”: on the upper panels BR(Z → eµ) versus BR(µ → 3e) (left) and

CR(µ− e, Al) (right), on the lower panels BR(Z → µτ) versus BR(τ → 3µ) (left) and BR(τ → µγ)

(right) for a NH light neutrino spectrum. Line and colour code as in figure 2. When present, the

additional green vertical lines denote the current bounds (solid) and future sensitivity (dashed),

and dark-yellow points denote an associated |mee| within experimental reach.

has the greater potential to probe cLFV in the “3+1 model”. This is illustrated in figure 5,

where we display the sterile neutrino contributions to BR(Z → `∓1 `
±
2 ) versus different low-

energy cLFV observables.

As can be inferred from the upper panels of figure 5, low-energy cLFV dedicated

facilities offer much better prospects to probe lepton flavour violation in the µ − e sector

of the “3 + 1 model” than a high-luminosity Z-factory. In particular, Mu3e (PSI) [93] and

COMET (J-PARC) [98] will be sensitive to regions in parameter space associated with

BR(Z → eµ) ∼ 10−17÷−13, beyond the reach of FCC-ee. Interestingly, the situation is

reversed for the case of the µ− τ sector: as can be seen from both lower panels of figure 5,

a high-luminosity Z-factory such as FCC-ee allows to probe much larger regions of the

“3 + 1 model” than low-energy facilities (searching for radiative and 3-body τ decays). In

particular, we draw the attention to a small subset of the parameter space, which can be

simultaneously probed via Z → µτ and τ → 3µ decays, and which is also within reach of

near future 0ν2β decay searches (especially in the case of an IH light neutrino spectrum,

not displayed here), opening the door for a three-fold experimental test of this minimal SM

extension.
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5 The neutrino minimal SM: νMSM

The νMSM consists in a truly minimal extension of the SM via the inclusion of three RH

neutrinos, aiming at simultaneously addressing the problems of neutrino mass generation,

the baryon asymmetry of the Universe (BAU) and providing a viable DM candidate [49,

125–127]. In its most successful realisations, the thermally produced lightest sterile state

accounts for the DM relic density, while the two heavier states generate the masses of

the active neutrinos. The CP violating oscillations of the latter states produce a lepton

asymmetry via flavoured leptogenesis [128], which is converted into a baryon asymmetry.

(For a detailed discussion, see [49, 125].) More relaxed νMSM realisations forego a full (or

partial) explanation of the DM relic density.

5.1 Sterile neutrinos in the νMSM

The addition of three generations of RH Majorana states νR to the SM particle content

allows to add the following terms to the leptonic Lagrangian:

LνMSM
mass = −Y ν

ij ν̄Ri H̃
†Lj −

1

2
ν̄RiMMij ν

c
Rj + H.c. , (5.1)

where i, j = 1, 2, 3 are generation indices, L is the SU(2)L lepton doublet and H̃ = iσ2H
∗;

Y ν denotes the Yukawa couplings, while MM is a Majorana mass matrix (leading to the

violation of total lepton number, ∆L = 2). After EW symmetry breaking, the neutral

lepton spectrum is composed of six Majorana fermions: the active (mostly left-handed)

light states, and three heavier sterile neutrinos. The light neutrino masses, mν1−3 are given

by a type I seesaw relation,6

mν1−3 = −mT
D (MM)−1mD , where mD = Y ν v , (5.2)

with v = 174 GeV the Higgs vacuum expectation value. The heavier spectrum, correspond-

ing to mν4–6 is given by [127]

mν4–6 = MM +
1

2

(
1

MM
(m∗Dm

T
D) + (m∗Dm

T
D)∗

1

MM

)
(5.3)

where corrections of second order in mD/MM are taken into account.

In order to be a good DM candidate, the couplings of ν4 to the other active and sterile

states must be very small. This translates into associated tiny Yukawa couplings, and

negligible mixings with the heavier steriles, ν5 and ν6. In addition to light neutrino mass

generation (in which ν4 plays no rôle), the latter two states, are responsible for generating

lepton asymmetries: on the one hand, the asymmetries produced at early times will give

rise to BAU, while those at late times can account for the correct rate of thermal ν4

production [129]. In both cases, the leptonic asymmetry generation in general relies on a

resonant amplification [130], and the heavier steriles, ν5 and ν6, exhibit a certain amount

of degeneracy.

6Despite the comparatively low seesaw scale of the νMSM, working in the seesaw limit, i.e. mD/MM � 1

is still a valid approximation.
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There are several possible parametrizations of the physical νMSM degrees of freedom.

Drawing from the analysis of the “3+1 model” discussed in section 4, we prefer to carry our

discussion in terms of the six mass eigenvalues, while encoding all physical mixing angles

and CP violating phases (Dirac and Majorana) in an effective 6×6 unitary mixing matrix,

U, as it allows to readily implement the already well-established bounds on the νMSM

parameter space. The angles θlj , l = 1, 2, 3, j = 4, 5, 6 encode the active-sterile mixings,

while the mixings between the sterile states are given by three additional angles θ45,46,56.

The matrix U is further parametrized by 3 additional Majorana and 9 Dirac phases. The

heavier masses can be written as:

mj = diag(mDM,M − δM ,M + δM ) (5.4)

with j = 4, 5, 6. In the above m4 = mDM is the mass of the DM candidate.

In addition to the general constraints on sterile neutrino extensions of the SM, the

peculiar features of the νMSM (generation of the BAU and a viable DM candidate) lead

to a very constrained parameter space. Here we rely on the results of [127], where the

most relevant constraints are translated into bounds on the (U2,M) planes, as well as

on the splitting δM , which is of the order ∼ 10−4 eV–1 keV. The quantity U2 encodes

the experimentally relevant combination of couplings; in the limit of small active-sterile

mixings, and in analogy to [127], we will use

U2
4 = U2

e4 + U2
µ4 + U2

τ4 =
∑
l

sin2 θl4,

U2
4–6 =

∑
l

sin2 θl4 + sin2 θl5 + sin2 θl6 , with l = e, µ, τ. (5.5)

We recall that the perturbative unitarity condition, see eq. (4.1) is always fulfilled

throughout the νMSM investigated parameter space.

Dark matter constraints. As reported in [127], observations of the matter distribu-

tion in the Universe constrain the DM free streaming length; realistic scenarios (includ-

ing combinations of X-ray bounds and Lyα forest reconstruction, among others) suggest

10 keV . m4 . 50 keV; combining the latter bounds with a successful production of

the required DM abundance, one is led to bounds on the corresponding mixing angles,

θ2
l4 ∼ O(10−13–10−8), l = 1, 2, 3. In our analysis we will not exclude regions in which

the lightest sterile would have a relic density below the observed value (i.e., smaller values

of θ2
l4).

Heavy sterile parameter space. As discussed in [127], the allowed (U2
4–6,M) plane

corresponds to a well-defined region: the regime of very small mixings is excluded by

the impossibility of correctly reproducing the active neutrino mass differences (seesaw ex-

clusion), while larger mixings preclude the generation of a baryon asymmetry from RH

neutrino oscillations; the BAU exclusion surface extends to the seesaw exclusion, effec-

tively constraining the average ν5,6 masses to lie below the EW scale. Finally, the small

mass regime (i.e., mν5,6 . 0.1 GeV) is also ruled out due to conflict with BBN bounds and
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Figure 6. νMSM model: (U2
4 ,mDM) and (U2

4–6,M) parameter spaces (as identified in [127]),

respectively on the left and right panels, for a NH light neutrino spectrum.
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Figure 7. νMSM model: on the left, maximal values of BR(Z → `∓1 `
±
2 ) on the (U2

4–6,M) parameter

space, from larger (dark blue) to smaller (orange) values. Cyan denotes values of the branching

fraction below 10−23. On the right BR(Z → eµ) as a function of M , for the points in the allowed

(U2
4–6,M) parameter space. Both cases correspond to a NH light neutrino spectrum.

direct searches (at PS191 [131, 132]). Although we have used the BAU-derived constraints

on the magnitude of the distinct mixing angles, we have not attempted at doing the same

for the CP violating phases, which for simplicity were set to zero in this analysis.

In figure 6, and for completeness, we summarise the νMSM parameter space investi-

gated in our analysis, closely following the dedicated studies of [127], and assuming a NH

for the light neutrino spectrum.

5.2 Leptonic Z decays in the νMSM

We begin by discussing the expected BR(Z → `∓1 `
±
2 ) within the νMSM. In figure 7, we

display the range of cLFV Z boson decays across the allowed parameter space.

As expected from the results of section 4, the maximal values of BR(Z → `∓1 `
±
2 ) occur

for a regime where sizable RH neutrino masses are accompanied by the maximally allowed

active-sterile mixings. Nevertheless, and as can be directly inferred from the left panel

of figure 7, one can have, at best, BR(Z → `∓1 `
±
2 ) . O(10−16). Larger values would

indeed be possible, but are excluded by the requirement of generating the observed BAU.
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m4 (keV) M (GeV) U2
4 U2

4–6 BR(Z → eµ) BR(Z → µτ) BR(Z → eτ)

11.8 26.2 4 ×10−25 1.8 ×10−9 10−16 7 ×10−18 2 ×10−21

1.1 34.4 1.3 ×10−16 5.4 ×10−10 3 ×10−25 2 ×10−17 8 ×10−17

Table 3. Example of two points in νMSM parameter space with associated BR(Z → `∓1 `
±
2 )&10−17.

A clearer insight can be drawn from the right panel of figure 7, where one verifies that, for

instance, BR(Z → eµ) . O(10−16). Similar ranges are obtained for the other lepton flavour

violating final states. Although we do not display the corresponding analysis here, we have

numerically verified that similar results are obtained for a IH light neutrino spectrum.

We also notice that the ranges for the cLFV Z-decays BRs are in fair agreement7 with the

analysis carried for the truly minimal “3+1 model” in section 4, considering the appropriate

mass and sterile mixing regime.

Regarding the departure from unitarity of the ŨPMNS matrix in the surveyed parameter

space, we notice that (as expected) it is comparatively small: η̃ . 10−6. In what concerns

low-energy (charged) lepton flavour observables, due to the smallness of the active-sterile

mixings, the contributions are typically very small, as already suggested in [133] regarding

µ − e conversion in Nuclei. Finally, and concerning the violation of lepton universality in

Z-decays, the contributions of the new sterile states of the νMSM are truly negligible.

For completeness, we summarise in table 3 two examples of points in the νMSM pa-

rameter space that would account for “maximal” values of BR(Z → `∓1 `
±
2 ).

It has been recently pointed out that high-luminosity Z-factories (such as FCC-ee) offer

a promising set-up for direct searches of RH (nearly) sterile neutrinos, as those present in

the framework of the νMSM [48]. The small active-sterile mixing angles lead to long

lifetimes, with decay lengths comprised between 100 microns and 5m; this would allow to

cover a large region of the phase-space for heavy neutrino masses between 10 and 80 GeV,

reaching down to a mixing as small as U2
4–6 ≈ 10−12 (thus complementing [48] the probing

power of the SHIP experiment [134]). Lepton flavour violating Z decays do not allow a

further synergy with the above mentioned searches for light RH neutrinos, as those present

in the νMSM. However, the observation of cLFV Z decays at a high-luminosity Z-factory

would suggest that sources of lepton flavour violation - other than the νMSM — are present.

Conversely, the interpretation of displaced vertices in association of a long-lived RH state

of the νMSM should not be accompanied by a BR(Z → `∓1 `
±
2 ) within FCC-ee sensitivity.

6 The Inverse Seesaw scenario

The Inverse Seesaw mechanism [50] consists in an appealing extension of the SM via RH

and sterile neutrinos. Contrary to most (type I) low-energy seesaw realisations, the ISS

7It is worth mentioning that our study of the νMSM — based on a “3+3” analysis along the lines of

the “3 + 1 toy model”- leads to a conservative estimate of the corresponding BR(Z → `∓1 `
±
2 ). The effective

6 × 6 unitary mixing matrix whose entries are thus scanned allows to cover, and even go beyond, regions

of parameter space strictly arising in the type-I seesaw of the νMSM. Hence, we are not under-estimating

the cLFV Z decays.
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allows to accommodate neutrino data with natural values of the Yukawa couplings for

a comparatively low seesaw scale. The possibility of having sizeable mixings between the

active and sterile states renders the model phenomenologically rich, with a potential impact

for a number of observables.

Depending on its actual realisation, the ISS does allow to accommodate the observed

DM relic abundance and (potential) indirect DM detection hints [135, 136].

6.1 The (3,3) ISS realisation

In the ISS, nR ≥ 2 generations of RH neutrinos νR and nX generations of extra SU(2)

singlets fermions X (such that nR +nX = nS), are added to the SM content. Both νR and

X carry lepton number L = +1 [50]. Here we consider a specific ISS realisation in which

nR = nX = 3, the so-called (3,3) realisation. The SM Lagrangian is thus extended as

LISS = LSM − Y ν
ij ν̄Ri H̃

† Lj −MRij ν̄RiXj −
1

2
µXij X̄

c
i Xj + H.c. , (6.1)

where i, j = 1, 2, 3 are generation indices and H̃ = iσ2H
∗. Notice that U(1)L (i.e., lepton

number) is broken only by the non-zero Majorana mass term µX , while the Dirac-type RH

neutrino mass term MR does conserve lepton number. In the (νL, ν
c
R, X)T basis, and after

EW symmetry breaking, the (symmetric) 9× 9 neutrino mass matrix M is given by

M =

 0 mT
D 0

mD 0 MR

0 MT
R µX

 , (6.2)

with mD = Y νv the Dirac mass term, v being the vacuum expectation value of the SM

Higgs boson. Under the assumption that µX � mD �MR, the diagonalization ofM leads

to an effective Majorana mass matrix for the active (light) neutrinos [137],

mν ' mT
DM

T
R
−1
µXM

−1
R mD . (6.3)

The remaining (mostly) sterile states form nearly degenerate pseudo-Dirac pairs, with

masses

mS± = ±
√
M2

R +m2
D +

M2
R µX

2 (m2
D +M2

R)
. (6.4)

It proves convenient to introduce the following matrix M = MR µ
−1
X MT

R , which is diago-

nalized as DMDT = M̂ . The eigenvalues of M are thus the entries of the diagonal matrix

M̂ . In order to write the neutrino Yukawa couplings, it is useful to use a generalization of

the Casas-Ibarra parametrization [138], which allows to cast Y ν as

Y ν =
1

v
D†
√
M̂ R

√
m̂ν U

†
PMNS . (6.5)

In the above,
√
m̂ν is a diagonal matrix containing the square roots of the three

light neutrino mass eigenvalues mν , R is an arbitrary 3 × 3 complex orthogonal matrix,

parametrized by 3 complex angles, encoding the remaining degrees of freedom. (Without
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loss of generality, one can choose to work in a basis where MR is a real diagonal matrix,

as are the charged lepton Yukawa couplings.) The full neutrino mass matrix is then di-

agonalized by the 9 × 9 unitary mixing matrix U as UTMU = diag(mi). In the basis

where the charged lepton mass matrix is diagonal, the leptonic mixing matrix is given by

the rectangular 3 × 9 sub-matrix corresponding to the first three columns of U, with the

3× 3 block corresponding to the (non-unitary8) ŨPMNS.

In the following numerical study, the contributions to the distinct observables are

derived through the following general scan: leading to the construction of the 9 × 9 mass

matrix in eq. (6.2), the modulus of the entries of the matrices MR and µX are randomly

taken to lie on the intervals 0.1 MeV . (MR)i . 106 GeV and 0.01 eV . (µX)ij . 1 MeV,

with complex entries for the lepton number violating matrix µX ; we also take complex

angles for the R matrix, randomly varying their values in the interval [0, 2π]. The modified

Casas-Ibarra parametrization for Y ν , eq. (6.5), ensures that constraints from neutrino

oscillation data are satisfied. Moreover, perturbativity of the Yukawa couplings, i.e. Y ν <

4π is verified in the ISS model, thus fulfilling the condition of eq. (4.1).

6.2 ISS: violation of flavour universality in Z decays

Despite the contributions of the several additional states of the ISS to the violation of

lepton flavour universality observable ∆Rlep
Z , see eq. (2.19), the ISS also remains short of

the future sensitivity. Although in regions of the surveyed parameter space one could in

principle have ∆Rlep
Z ∼ 10−3, this regions are experimentally excluded, as there are strong

conflicts with numerous bounds, especially those arising from low-energy cLFV observables.

6.3 cLFV Z decays in the ISS

We first consider the cLFV decays Z → µτ , displaying the corresponding BRs on figure 8

as a function of η̃ (see eq. (2.4)), and as a function of the average of the absolute masses

of the mostly sterile states,

〈m4−9〉 =
∑
i=4...9

1

6
|mi| . (6.6)

The results collected in figure 8 reveal that the present ISS realisation can account for

sizeable values of cLFV Z-decay branching ratios: this in general requires the presence of

sterile states with a mass & ΛEW, and can occur even for very mild deviations from unitarity

of the ŨPMNS. Other cLFV decays, Z → eµ and Z → eτ have somewhat smaller BRs

. O(10−11), but still within experimental sensitivity. (Notice that points with associated

BR(Z → `∓1 `
±
2 ) within FCC-ee reach are cosmologically disfavoured in contrast to what

was encountered in the study of the simple toy model of section 4.) Again, even though

we only display the NH for the light neutrino spectrum, our numerical results show that

the corresponding prospects for BR(Z → `∓1 `
±
2 ) would be similar in an IH case.

Just as previously done, we summarise the prospects for the observation of cLFV Z

decays in the framework of the ISS by considering the (η̃, 〈m4−9〉) parameter space of this

specific realisation; this is illustrated in figure 9, for a NH light neutrino spectrum.

8For further studies on non-unitarity effects in the Inverse Seesaw see, for instance, [139–141].
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Figure 8. ISS realisation: BR(Z → µτ) as a function of η̃ (left) and of the average value of the

mostly sterile state masses (right), 〈m4−9〉, for a NH light neutrino spectrum. Line and colour code

as in figure 2.
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Figure 9. ISS realisation: maximal values of BR(Z → `∓1 `
±
2 ) on the (η̃, 〈m4−9〉) parameter space

for a NH light neutrino spectrum, from larger (dark blue) to smaller (orange) values. Cyan denotes

values of the branching fractions below 10−18.

The complementarity of low-energy cLFV observables and cLFV Z decays at a high-

luminosity Z factory for this ISS realisation is displayed in figure 10, where we further

highlight points that can potentially account for a 0ν2β rate within sensitivity of future

experiments. The results are in agreement with the findings for the “3 + 1 model”: low-

energy experiments — as COMET looking for µ− e conversion in Al nuclei — are better

probes of cLFV in the µ− e sector of this (3,3) ISS realisation; on the other hand, a future

high-luminosity Z factory has a stronger power to probe lepton flavour violation in the

µ− τ sector via Z decays.

7 Overview

In this work we have explored indirect searches for sterile neutrinos at a future circular

collider running in the electron positron mode. In particular, we have considered the

impact of sterile neutrinos for (very) rare cLFV Z decays, which can be probed by the
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Figure 10. ISS realisation: on the left, BR(Z → eµ) versus CR(µ − e, Al) and on the right

BR(Z → µτ) versus BR(τ → 3µ) , for a NH light neutrino spectrum. Line and colour code as in

figure 2. When present, the additional green vertical lines denote the current bounds (solid) and

future sensitivity (dashed), and dark-yellow points denote an associated |mee| within experimental

reach.

FCC-ee (TLEP) running close to the Z mass threshold, with an expected sensitivity to

BR(Z → `∓1 `
±
2 ) as low as 10−13.

While these rare decays are forbidden in the SM (and have tiny BRs in its ad-hoc

extensions where neutrino masses and mixings are put by hand), in models where the SM

is extended via additional neutral sterile fermions, which have non-negligible mixings with

the active (light) states, one can have significant contributions to cLFV Z decays.

We have considered here three scenarios with sterile neutrinos: a minimal “3 + 1 toy

model”, and two frameworks for neutrino mass generation, the νMSM and the ISS. In our

analysis we have conducted a thorough (numerical) exploration of the parameter space of

the different models: we take into account recent data on neutrino oscillations, as well as

numerous experimental and observational constraints on the sterile states. As hinted by

early analytical studies, and as a consequence of the common lepton flavour violating Z`∓1 `
±
2

vertex, low-energy cLFV observables receiving contributions from Z-mediated penguins

impose strong constraints on the sterile neutrino induced BR(Z → `∓1 `
±
2 ).

The very minimal sterile extension of the SM — the “3 + 1 model” - clearly illustrates

the potential of the FCC-ee to probe the sterile neutrino contributions to cLFV Z decays:

both BR(Z → µτ) and BR(Z → eτ) are well within reach, especially for sterile masses

& 100 GeV, and for sterile mixing angles θi4 > 10−6. Our analysis further emphasised

the underlying synergy between a high-luminosity Z factory and other dedicated (low-

energy) facilities: regions in “3 + 1 model” parameter space can be probed via cLFV Z

decays at FCC-ee, through cLFV low-energy decays (τ → 3µ) and neutrinoless double

beta decays within reach of future dedicated facilities (the latter especially in the case of

an IH light neutrino spectrum); moreover, a high-luminosity Z factory could probe lepton

flavour violation in the µ− τ sector, clearly going beyond the reach of low-energy facilities.

Similar prospects were found for a (3,3) Inverse Seesaw realisation. In contrast, the νMSM

parameter space favoured by a successful generation of the observed BAU turns out to

be associated to very small values of BR(Z → `∓1 `
±
2 ), beyond the reach of the FCC-ee.
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Nevertheless, direct searches for νMSM sterile states can be carried at FCC-ee (for instance

displaced vertices associated to long-lived RH neutrinos [48]). We have also considered the

violation of lepton flavour universality in Z decays, as encoded by the quatity ∆Rlep
Z . Still,

in all the models here considered, the estimated contributions of the sterile fermions to this

observable lie beyond experimental reach.

Our analysis reveals that sterile neutrinos can indeed give rise to contributions to

BR(Z → `∓1 `
±
2 ) within reach of the FCC-ee; this is expected to occur for sufficiently heavy

sterile states (mi & MZ), with non-negligible mixings to the light, mostly active ones.

Since the associated constraints from low-energy cLFV observables are less stringent in the

µ−τ sector, the prospects for observing rare Z → µτ decays are in general more promising.

Studies for rare Z → `∓1 `
±
2 decays, in parallel with other direct searches, have the potential

to integrate the physics case of FCC-ee (TLEP). Nevertheless, the results summarised here

consisted only of a first theoretical study: a full discussion and estimation of the different

backgrounds, accompanied by simulations of the events and the detector(s) will be required

to ascertain whether or not one can indeed have cLFV signals above the background. This

will be done in a subsequent work.
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A Loop integrals

The two- and three-point one-loop dimensionless functions are defined as:

B1(xi) ≡ B1(0;m2
i ,M

2
W ), (A.1)

C̄..(xi) ≡ M2
W C..(0, Q

2, 0;m2
i ,M

2
W ,M

2
W ), (A.2)

C..(xi, xj) ≡ M2
W C..(0, Q

2, 0;M2
W ,m

2
i ,m

2
j ), (A.3)

from the usual loop integrals [57, 58] with the tensor decomposition (Minkowski metric):

Bµ(p2;m2
0,m

2
1) = pµB1, (A.4)

Cµ(p2
1, Q

2, p2
2;m2

0,m
2
1,m

2
2) = pµ1C11 + pµ2C12, (A.5)

Cµν(p2
1, Q

2, p2
2;m2

0,m
2
1,m

2
2) = pµ1p

ν
1C21 + pµ2p

ν
2C22 + (pµ1p

ν
2 + pµ2p

ν
1)C23 + gµνM2

WC24.

(A.6)
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