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1 Introduction

The integrability properties of string theory in AdS5 × S5 background [1] together with

the AdS/CFT correspondence [2] allows for obtaining exact results for various observables

in N = 4 Super-Yang-Mills (SYM) theory for any value of the gauge theory coupling in

the planar, large Nc limit. Currently this program is very well developed for the spectral
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problem, namely for the determination of the scaling dimensions of all local operators [3]–

[8]. For other observables we have currently only partial results like various strong and weak

coupling expansions or exact answers but restricted to some particular concrete observables

like generalized cusp Wilson loops, circular loops or for some ingredients of scattering

amplitudes.

A class of observables for which it would be crucial to obtain a similar level of under-

standing as for the scaling dimensions are the OPE coefficients or, equivalently, the 3-point

correlation functions of local operators. Namely, these quantities provide the remaining

fundamental data for any conformal field theory (CFT). Indeed, higher point functions do

not carry any independent dynamical content and can be reduced to scaling dimensions,

OPE coefficients and conformal blocks determined by conformal symmetry alone.

On the string side of the AdS/CFT correspondence these quantities are also interesting

for their own sake, namely the AdS/CFT string diagram corresponding to a 3-point function

can be interpreted as a three string interaction. In fact, the first wave of interest in

OPE coefficients of (unprotected) operators in N = 4 SYM theory [9]–[12] came from the

proposed link with the 3-string string field theory vertex in the pp-wave [13] string field

theory (SFT) [14]–[19]. The SFT vertex is also interesting as it is related to the first 1/Nc

corrections to the string hamiltonian/scaling dimensions, too.

Unfortunately, there is practically no information on generalizing the pp-wave SFT

to the full AdS5 × S5 case. This is not an issue of technical or calculational complexity

but rather a more fundamental one. A unique feature of the pp-wave geometry is that,

although it is curved, the worldsheet quantum field theory of the string in an appropriate

light cone gauge reduces to free massive bosons and fermions [20], thus allowing for the

use of mode expansions in implementing continuity conditions for the SFT (light cone)

vertex [14] similarly as for the flat space SFT vertex [21]. For an interacting worldsheet

QFT, as is the case for the full AdS5 × S5 geometry, we do not have any techniques so far

for finding the SFT vertex.

Thus the main goal of the present paper is to provide a new formulation for the problem

of determining the (light cone) SFT vertex in the case when the worldsheet theory is a

generic integrable QFT, which includes as a key special case the AdS5 × S5 background.

We propose an integrable bootstrap formulation of the SFT vertex, namely a set of coupled

functional equations for the SFT amplitudes understood as the value of the vertex with

specific string excited states on each of the three legs. The dependence on the concrete

background/worldsheet QFT enters through the appearance of the S-matrix in the SFT

vertex axioms. This formulation should be valid up to exponential ‘wrapping corrections’.

The bootstrap approach for obtaining various physical quantities in two dimensional

integrable quantum field theories has already a long and successful history. Basically it

amounts to implementing very general functional and analyticity properties of the various

observables and using in addition key properties of integrability like factorized scatte-

ring etc.

Initially, the bootstrap program was developed for determining the scattering ampli-

tudes (and at the same time the particle content, hence the name bootstrap) for a theory

on a two-dimensional plane [22]–[24]. The result is the explicit knowledge of the 2-particle

scattering S-matrix and the mass spectrum of the theory, e.g. the masses of bound states
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Figure 1. The geometry of the worldsheet for the cubic light cone string field theory vertex.

in terms of the masses of the fundamental particles. Subsequently this information was

used to obtain the spectrum of such a theory on a cylinder of finite size [25, 26].

Since then, the bootstrap program was extended to cover theories with integrable

boundary conditions [27], providing exact formulas for reflection factors; as well as for

theories with integrable defects [28].

A whole new field of research started when bootstrap was applied to more fine-grained,

and in a certain sense off-shell observables such as form factors [29]–[31]. Here, in contrast

to ordinary scattering amplitudes the number of incoming and outgoing particles does not

need to be balanced. All the above developments appeared within the context of ordinary

relativistic integrable quantum field theories and reflected the main questions of interest in

such contexts.

One of the most intriguing features of the AdS/CFT correspondence is that it pro-

vides a mapping between observables in a 4-dimensional gauge theory and in the 2-

dimensional string worldsheet quantum field theory. As such, some natural questions in the

4-dimensional gauge theory suggest completely novel problems/geometrical configurations

in the dual 2-dimensional integrable QFT, which were never investigated hitherto by the

relativistic integrable QFT community.

Some prime examples of such problems involve, on the classical level, strong coupling

scattering amplitudes (equivalently null polygonal Wilson loops) [32], classical solutions

with the topology of a thrice-punctured sphere relevant for the OPE coefficients of (classi-

cal) operators at strong coupling [33]–[36].

The first application of bootstrap ideas in such a novel geometrical context was the

very interesting work [37], which provided bootstrap equations for (excited) pentagonal

scattering amplitudes relevant for general multigluon scattering amplitudes in N = 4 SYM.

The goal of this work is to apply the bootstrap methodology to the classic string pants

diagram (see figure 1) relevant for the (light cone) SFT vertex.

In the following section, which is still a continuation of the introduction, we provide

an explanation of the main ideas and motivations behind our approach and then give an

outline of the remaining parts of the paper.
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2 Insight from the spectral problem and form factors

The spectral problem for an integrable quantum field theory is defined as finding the energy

levels of the theory defined on a cylinder of arbitrary size.

As a first step in solving this problem, one passes to the same theory but defined

in infinite volume — on the whole two-dimensional plane. There we have well defined

asymptotic states so we can consider the S-matrix. What is crucial, however, is that only

in this setting we have at our disposal analyticity properties of the S-matrix, especially

crossing. Thus one first solves the theory in infinite volume by implementing the symmetries

of the problem, solving the Yang-Baxter equation together with unitarity and crossing,

and determining any remaining possible CDD factors. At this stage one obtains the exact

analytical form of the S-matrix. This procedure is commonly called the S-matrix bootstrap.

In the second step, one considers the same theory defined on a large cylinder of cir-

cumference L. A multiparticle state on the cylinder can be considered just as a quantum

mechanical multiparticle state parametrized by the particles momenta {pi}. These mo-

menta are quantized by the Asymptotic Bethe Ansatz quantization condition1

eiΦk({pi}) ≡ eipkL
∏
i 6=k

S(pk, pi) = 1 (2.1)

which essentially amounts to the single valuedness condition for the wave function. The

energy of the relevant state is then given by the sum of the particles’ energies

E =

N∑
k=1

E(pk) . (2.2)

As we decrease the size of the cylinder, quantum-field-theoretical virtual effects be-

come important (so-called wrapping corrections) with the leading terms being described

by (generalized) Lüscher corrections [38, 39], again in terms of infinite volume data. These

corrections give additional terms of order e−mL in the energy formula (2.2) and quan-

tization conditions (2.1). Subsequent multiple wrapping terms are much more involved

(although progress has recently been made [40]) but surprisingly the whole infinite set of

wrapping corrections can be effectively resummed through the so-called Thermodynamic

Bethe Ansatz, which provides the exact spectrum for any size of the cylinder. In the

nondiagonal case, this last step is, however, quite involved (this is especially true in the

AdS5 × S5 setup [3]–[8]).

In the above description we would like to emphasize two points. Firstly, the neccessity

of having an infinite volume description in order to formulate functional equations for the

S-matrix. Here the existence of crossing invariance is of particular importance. Secondly,

the simplicity of the finite volume answer as long as we neglect the exponential wrapping

corrections ∼ e−mL. The obtained answer is valid for any value of the coupling in the inte-

grable QFT. Ultimately we would like to have a similar framework for the OPE coefficients.

A suggestion has been made for the use of form factors in this context [41]–[44].

1With appropriate nested Bethe Ansatz structure in case of nondiagonal S-matrices.
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Form factors are expectation values of a local operator on the worldsheet sandwiched

between multiparticle in and out states.

out

〈
θ′1, . . . , θ

′
m|O (0) |θ1, . . . , θn

〉
in
. (2.3)

In infinite volume one may use crossing to put all particles into the in state

〈0|O (0) |θ1, . . . , θn〉 ≡ Fn(θ1, . . . , θn) (2.4)

and formulate functional equations for these quantities. Assuming for simplicity a theory

with just one species of particles and no bound states, the equations take a very transpa-

rent form:

Fn(θ1, . . . , θi, θi+1, . . . , θn) = Fn(θ1, . . . , θi+1, θi, . . . , θn)S(θi, θi+1) (2.5)

Fn(θ1 + 2πi, θ2, . . . , θn) = Fn(θ2, . . . , θn, θ1) (2.6)

−iResθ′=θ Fn+2(θ′ + iπ, θ, θ1, . . . , θn) = (1−
n∏
i=1

S(θ, θi))Fn(θ1, . . . , θn) . (2.7)

Equation (2.5) can be understood as a simple consequence of the commutation relation

between Zamolodchikov-Faddeev creation operators. Equation (2.6) is very important as

it involves in a crucial way crossing properties. Last particle with rapidity θ1 gets crossed

up to the out state, then it will get crossed back on the other side. Equation (2.7) is the

so-called kinematical singularity axiom and is the crossed version of the fact that the form

factor has a singularity once an outgoing and an incoming particle have the same rapidity.

These axioms are the form factor counterpart of the S-matrix bootstrap and similarly

allow for an exact explicit solution. Indeed, the form factor axioms have been solved

exactly for numerous relativistic integrable quantum field theories, [45, 46] including ones

with nondiagonal scattering [30, 31].

If we again would be content with neglecting wrapping corrections, the finite volume

form factors can be expressed in a very simple way through the infinite volume ones [47]

〈0|O (0) |θ1, . . . , θn〉L =
1√

ρn ·
∏
i<j S(θi, θj)

· Fn(θ1, . . . , θn) . (2.8)

Here the finite volume rapidities θ1, . . . , θn are constrained to obey the Bethe Ansatz

quantization condition and ρn is the Gaudin norm

ρn = det

∣∣∣∣∂Φk

∂pj

∣∣∣∣ (2.9)

which accounts to the difference between the natural finite volume normalization and the

continuum normalization in infinite volume. Finally, the square root of the product of S-

matrices, which is just a phase, ensures that the finite-volume form factor is a completely

symmetric function of the rapidities in contrast to the infinite volume one which obeys (2.5).

Thus we see a similar pattern as for the spectral problem — functional equations in

infinite volume and a simple passage to finite volume up to wrapping corrections.
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Form factors seem to be a promising framework for OPE coefficients in the special case

of so-called HHL (Heavy-Heavy-Light) diagonal 3-point functions, where two operators

correspond to a specific multiparticle state (with large anomalous dimension at strong

coupling) while the light operator does not carry any conserved R-charges. In this case the

strong coupling classical formula ([48, 49] modified in [44]) denoted schematically by

CHHL ∼
∫
Moduli

∫
d2σVL[XI(σa)] (2.10)

coincides exactly with a classical computation of a ‘diagonal’ form factor (here we integrate

over the moduli space of the classical 2-point correlation function solution of the Heavy op-

erator). This has a distinctive pattern of finite volume dependence (a bit more complicated

than (2.8) due to diagonality and disconnected terms. See [44, 50] for details). However

this hypothesis has been so far tested only at strong coupling.

The form factor formulation in the context of OPE coefficients has both significant

advantages as well as disadvantages. On the positive side, through the existence of infinite

volume axioms and simple finite volume reduction, they have the potential to work at any

coupling up to wrapping corrections. On the negative side, they are potentially applicable

only if the initial and final volume remain the same (i.e. the third ‘light’ operator does not

carry any J charge), and probably only if the two ‘heavy’ operators are conjugate to each

other. This is not a generic situation as typically we have J1 +J2 = J3 with all Ji’s distinct

from zero. The case Ji = 0 is an important albeit very special case. Another difficulty

with the form factor formulation is that the three gauge theory operators are treated very

asymetrically. Two gauge theory operators are considered as external multiparticle in and

out states, while the third operator is represented by a specific ‘effective’ worldsheet vertex

operator which corresponds, in the form factor language, to a particular solution of the

form factor axioms. It is for the moment a-priori not clear how to associate the specific

solution of form factor axioms to a particular gauge theory operator/massive string state.

Of course this is still premature as currently we do not have at our disposal any solution

of the form factor axioms in the case of the worldsheet AdS5 × S5 string theory, which

remains an outstanding open problem.

In this paper we will pursue an alternative formulation which involves the study of the

cubic (light-cone) string field theory vertex. An AdS5×S5 string diagram corresponding to

a 3-point correlation function has the topology of two strings joining into a third one and

certainly involves the cubic vertex as an essential ingredient. In fact this line of approach

was widely used in the pp-wave limit with a formula of the kind

C123 = f(∆1,∆2,∆3) · 〈1| 〈2| 〈3|V3〉pp−wave (2.11)

where 〈i| represent the appropriate BMN operators described using pp-wave string ex-

citations and |V3〉pp−wave is the pp-wave cubic string vertex constructed in [14–16, 18].

Various concrete formulas were put forward [9, 18, 19] but we do not have currently a clear

generalization of this formula to the full AdS5 × S5 context.2

2Some problems were recently encountered in [51].
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Leaving this issue aside, in this paper we will concentrate on proposing an integrable

approach for computing the cubic vertex

〈1| 〈2| 〈3|V3〉X (2.12)

which would be applicable in principle for a curved background X such that the worldsheet

string QFT is integrable. Our formulation is a-priori restricted up to wrapping corrections

relative to the sizes of the three closed strings.3 We will provide functional equations for

the above quantities (2.12) in a certain decompactification limit (to be defined later in the

paper) and provide a recipe for obtaining the physical finite volume version of (2.12) along

the lines of the relation (2.8).

Since we will not control the overall normalization of the vertex in this paper, the

function f(∆1,∆2,∆3) may be incorporated into the vertex so the functional equations

may be potentially interpreted as functional equations directly for the OPE coefficients

(although this interpretation should be treated with care as the relation between the AdS5×
S5 vertex

〈1| 〈2| 〈3|V3〉AdS5×S5 (2.13)

and the OPE coefficient C123 may will be of a more general form than (2.11)).

The chief obstacle in defining the string vertex for an interacting worldsheet theory is

that the hitherto applied constructions of the string field theory vertex used in an essential

way mode expansions of the worldsheet fields and operator continuity conditions [14, 21].

In the interacting context we do not have such tools at our disposal4 so we apply a form of

an integrable bootstrap approach by isolating a decompactification limit allowing to define

functional equations incorporating crossing and a subsequent finite volume reduction which

should be straightforward as long as we are neglecting wrapping corrections. We thus adopt

the same philosophy which was so successful both in the case of the spectral problem and

for form factors in relativistic theories.

In the remaining part of the paper we will first recall some information about the

pp-wave string field theory and its exact solution, then define the decompactified vertex

and propose the string vertex functional equations. Then we will analyze these equations

in the case of the massive free boson and compare with the pp-wave results in order to get

insight into the required analyticity structure of the solution. In particular we will show

how the very nontrivial special functions appearing in the exact pp-wave solution of [52]

can be obtained easily from our functional equations. Then we will proceed to define the

program for the finite volume reduction and give the string vertex axioms in the general

nondiagonal case. Finally, we will also show that some of the general properties of our

axioms can be observed in direct weak coupling computations of OPE coefficients in the

su(2) and su(1|1) sectors. We relegate various technical details to the appendices.

3Although wrapping corrections for a single string may be incorporated in this approach.
4Although expansions into Zamolodchikov-Faddeev operators may in principle exist, they seem to be

impossible to control even in the simplest interacting contexts.
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Figure 2. The geometry of the worldsheet for the cubic light cone string field theory vertex in two

different representations. The embedded left figure is flattened on the right by cutting along the

various lines, which are identified on the right picture.

3 The pp-wave light cone string field theory vertex

A unique feature of the pp-wave limit of AdS5 × S5 is that when the Green-Schwarz

superstring action is considered in an appropriate light-cone gauge, the worldsheet theory

reduces to a set of noninteracting massive boson and fermion fields. Hence in this geometry

the superstring can be easily quantized exactly [20]. Similarly, the light cone string field

theory vertex can also be formulated in a direct generalization of the well known flat

space case [21] (although there are several significant subtleties in implementing target

space supersymmetry [15, 17, 21] in order to determine the so-called ‘prefactor’ part of the

SFT vertex).

The light cone string field theory cubic vertex describes the splitting (or joining) of

an incoming string into two outgoing strings (see figure 2 (left)). The sizes of the strings,

which are proportional to conserved charges add up, hence we have

L1 + L2 = L3. (3.1)

(or J1 + J2 = J3 — we will often identify the J charge with the size of the cylinder and

use one or the other notation depending on whether we want to be closer to the AdS5×S5

string context or whether we want to emphasize a generic integrable QFT point of view).

The pp-wave vertex consists of two distinct parts. One is a universal exponential part

which follows from putting the worldsheet QFT onto the geometry shown in the right of

figure 2, while the second part is the so-called ‘prefactor’ which is an operator inserted at the

splitting point, and takes the form of a quadratic polynomial in creation and annihilation

operators. The latter part is required by target-space supersymmetry algebra, while the

former part basically implements just the continuity equations for the worldsheet QFT at

the string splitting. Here we will concentrate the discussion on this universal part, although

our methods should be applicable also to the full vertex.

Technically, the (bosonic) universal exponential part of the vertex is obtained in the

following way. The free massive boson is expanded into cosine and sine modes in the three

regions corresponding to strings #1, #2 and #3, with coefficients being the appropriate

creation and annihilation operators of the modes. Then one requires the continuity of φ

– 8 –
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and Π ≡ ∂τφ at the string splitting time to obtain linear relations between the relevant

creation and annihilation operators:

3∑
r=1

Xr
nm√
ωrm

(
a+(r)
m − a(r)

m

)
= 0 ;

3∑
r=1

sgnrX
r
nm

√
ωrm

(
a+(r)
m + a(r)

m

)
= 0 . (3.2)

In the above formula a
+(r)
m is the creation operator for string r with mode number m, ωrm

is proportional to the energy of that mode (see below), while Xr
nm is a purely geometric

overlap between mode m on string r and modes defined on the whole interval (and thus

coinciding with modes of string #3). sgnr is a sign which is opposite for ingoing and

outgoing strings.

The above equations are implemented as operator equations acting on a state |V 〉 ∈
H1 ⊗H2 ⊗H3 which represents the SFT vertex. The simplest solution of these equations

is an exponential of a quadratic form in the creation operators:

|V 〉 = exp

1

2

3∑
r,s=1

∑
n,m

N̄ rs
nm a

+(r)
n a+(s)

m

 |0〉 . (3.3)

The coefficients N̄ rs
nm are the famous Neumann coefficients5 and the problem of finding

their explicit form is surprisingly intricate. This comes from the fact that they involve

finding the inverse of an infinite dimensional matrix defined through (3.2). In the case of

the pp-wave, the solution has been found in two steps. Firstly, the Neumann coefficients

where shown to obey a factorization property:

N̄ rs
nm = − mnα

1− 4µαK

N̄ r
mN̄

s
n

αsωrn + αrωsm
(3.4)

where

α1 =
J1

J3
; α2 =

J2

J3
; α3 = −1 ; α = α1α2α3 (3.5)

and µ is a parameter of the pp-wave background while K and the Neumann vector N̄ r
m

are the nontrivial quantities. Then the Neumann vectors and K have been ultimately

determined in the impressive works [53] and [52]. The latter paper (to which we will often

refer by the shorthand LSNS) provides a very explicit form for the exact answer which we

will discuss at length in section 5.

Before we finish this section with some comments, let us emphasize that the standard

approach to the string field theory vertex outlined above is almost impossible to generalize

to the case of an interacting worldsheet QFT (as would be the case for AdS5 × S5). In

the interacting case, we do not have a workable analog of mode expansions hence it is

extremely difficult to imagine how to implement continuity relations. Moreover, the above

formulation using integer mode numbers seems to be intrinsically tied to a finite volume

5The bar in N̄rs
nm comes form the fact that we are dealing here with cosine and sine modes. When we

pass to modes with definite worldsheet momentum, which will be the case relevant for this paper, we will

use unbarred notation.
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Figure 3. The string field theory vertex with some incoming and outgoing particles in each of the

three strings.

setup which makes matters even more complicated. The goal of this paper is to find an

alternative approach which bypasses these problems.

Let us now comment on various properties and features of the pp-wave SFT vertex

which will be important for our subsequent considerations.

The form of the exponential vertex (3.3) provides for us a clear physical interpretation

of the Neumann coefficients. N̄ rs
nm is just the amplitude of a free massive scalar theory

on the pants diagram (figure 2 (right)) with just two particles/modes — one on string r

with mode number n, the other on string s with mode number m, and vacuum on the

remaining string(s). The exponential form of the vertex (3.3) means essentially that all

amplitudes with a higher number of particles distributed on the pants diagram, see figure 3,

are expressible in a simple way in terms of the 2-particle ones (i.e. in terms of the Neumann

coefficients). We expect that in the interacting case the relation between the amplitudes

with higher number of particles and lower ones will be less trivial so the goal of formulating

the vertex corresponds to finding (equations for) amplitudes with all possible distributions

of particles among the three strings and not just generalizing Neumann coefficients to the

interacting case.

Let us now introduce some general notation for a generic SFT amplitude with particles

with rapidities6 θ1, . . . , θn on string #3, θ′1, . . . , θ
′
m on string #2 and θ′′1 , . . . , θ

′′
l on string

#1. We also explicitly mark the sizes of the respective strings:

N
3|2;1
L3|L2;L1

(
θ1, . . . , θn

∣∣∣∣ θ′1, . . . , θ′m ; θ′′1 , . . . , θ
′′
l

)
. (3.6)

For the case of the pp-wave SFT vertex, these quantities can be directly expressible in

terms of the Neumann coefficients. Assuming for the moment the absence of the prefactor,

we would have

N
3|2;1
L3|L2;L1

(
θ1, θ2

∣∣ ∅ ; ∅
)
≡ N33

n1n2
N

3|2;1
L3|L2;L1

(
θ1

∣∣ θ2 ; ∅
)
≡ N32

n1n2
(3.7)

6For the sake of clear notation here we parametrize the particles by relativistic rapidities, but the

definitions will go over verbatim either to a parametrization in terms of momenta or in terms of complex

AdS rapidities.
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where ni are mode numbers corresponding to particular momenta/rapidities and the empty

set ∅ just denotes the vacuum. A more complicated example is

N
3|2;1
L3|L2;L1

(
θ1, θ2

∣∣ θ3 ; θ4

)
≡ N33

n1n2
N12
n3n4

+N32
n1n3

N31
n2n4

+N32
n2n3

N31
n1n4

. (3.8)

When we give formulas for the pp-wave case, we will alternatively use the conventional

notation of Neumann coefficients, but always recall (3.7).

Another interesting observation comes from analyzing some important parameter

regimes appearing in the pp-wave case. µ is a parameter which is essentially the inverse of

the ‘t Hooft coupling. It appears in the frequency of the appropriate mode as

ωrm =
√
m2 + µ2α2

r . (3.9)

For our purposes it is convenient to reformulate all formulas by trading the integer mode

numbers for physical worldsheet momenta. The momenta are given by p = ±2πm/Jr, and

thus the frequency becomes

ωrm =
|αr|J

2π

√
p2 +M2 (3.10)

where J ≡ J3 and the mass of the scalar field is related to µ through

M =
2π

J
µ . (3.11)

In the pp-wave times, people were mostly interested in comparison with gauge theory per-

turbative computations and thus concentrating on an expansion around µ =∞ in inverse

powers of µ. In particular they employed simpler asymptotic versions of the Neumann

coefficients which neglected terms of the type

e−2πµ|αr| . (3.12)

It is interesting to realize that this term, when expressed in terms of the physical mass of

the free boson (3.11), becomes

e−MJr (3.13)

which is exactly the scale of wrapping corrections associated to string r. In fact this

nicely explains the observation made in [52] about the similarity of the formulas of the

leading exponential corrections to the Neumann coefficients with Casimir energy of the

free massive boson.

In the following, we will also need expressions corresponding to modes with definite

worldsheet momentum — thus the so-called BMN modes instead of the cosine and sine

modes used in the derivation of the Neumann coefficients. The explicit relations are given

e.g. in [16], in particular we have

N rs
mn =

1

2
(N̄ rs

mn − N̄ rs
−m−n) (3.14)

for positive mode numbers.
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We will be mostly, but as it will turn out not exclusively, concentrated on the string

vertex when neglecting wrapping corrections. In this limit, the expression for N rs
mn no

longer involves special functions but is still apparently quite cumbersome [53]:

N rs
mn ∝

[√
(ωrm + µαr)(ωsn + µαs)

ωrm + ωsn
−
√

(ωrm − µαr)(ωsn − µαs)
ωrm + ωsn

]
srmssn (3.15)

with

s1m = s2m = 1 s3m = −2 sin(πmα1) . (3.16)

Surprisingly enough, once we parametrize the modes by rapidities p = M sinh θ, the above

expression simplifies drastically:7

N33(θ, θ′)asympt ∝ −2
sin pL1

2 sin p′L1

2

cosh θ−θ′
2

(3.17)

where we extracted simple factors related to the normalization condition for the modes

and some overall constant factor. The subscript asympt denotes the fact that we neglected

all exponential wrapping corrections in e−ML1 .

Let us make some comments on the above expression (3.17). Firstly, we see that the

discrete nature of the finite volume integer modes does not play here any important role.

In fact the above expression is extremely simple when expressed in terms of infinite volume

rapidities. The passage to finite volume amounts here8 just to evaluating the above expres-

sion (3.17) for rapidities corresponding to quantized momenta i.e. p = M sinh(θ) = 2πn/L.

This is in direct correspondence with the finite volume evaluation of form factors (2.8).

Secondly, the analytic structure of this function is also quite appealing as there is a

pole at θ = θ′+ iπ, which is exactly the characteristic position of the so-called kinematical

singularity for form factors, with the iπ intimately related to crossing properties.

Thirdly, there are nevertheless still some surprising features of the expression (3.17).

Two-particle form factors typically have vanishing residue at the kinematical pole

(see (2.7)), while here9 the residue is nonzero and is in fact quite bizarre. The sin pL
2

factors are also quite surprising by themselves. They are almost of the ‘wrapping’ type,

however instead of being exponentially suppressed, they are oscillatory.

Moreover, if one would consider the asymptotic form of N32

N32(θ, θ′)asympt ∝
sin pL1

2

sinh θ−θ′
2

(3.18)

one would see that (3.17) and (3.18) are related by a surprisingly modified form of crossing

relation

N33(θ, θ′ − iπ)asympt = −2i sin
p′L1

2
N32(θ, θ′)asympt (3.19)

7We provide more formulas and discuss various intriguing features of this limit in section 5.3.
8Recall that we are always neglecting exponential wrapping corrections.
9Recall from the discussion above that Neumann coefficients can be interpreted as two particle ampli-

tudes.
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Figure 4. The decompactified string field theory vertex in two different geometrical representations.

which, incidentally bears a striking resemblance to the modified crossing observed

in [54, 55].

So to conclude this section, we see that the asymptotic form of the pp-wave Neumann

coefficients very strongly suggests the existence of an infinite volume formulation based on

analyticity properties such as crossing, kinematical singularity etc. In the remaining part

of the paper we will indeed provide such a formulation and also show that the apparent

modification of crossing in (3.19) is in fact an artefact of the large volume limit and the

true crossing property should be different.

4 The decompactified string vertex and the SFT axioms

As emphasized before, in order to be able to formulate functional equations incorporating

crossing property it is crucial to define a decompactified version of the SFT vertex. We

show such a construction in figure 4, where we cut strings #2 and #3 and extended their

boundaries to infinity. The right hand side of this figure shows the resulting pattern of

identifications in the two-dimensional plane. Here string #1 remains of finite size L ≡ L1

and there will be a nontrivial dependence on the dimensionless product mL. In partic-

ular, we expect that the decompactified vertex amplitudes will incorporate all wrapping

corrections associated with string #1.

Of course, we could have just as well made the cut along string #1 and #3, leaving

string #2 at finite size. In fact in order to find the physical finite volume SFT vertex

from integrability we will advocate considering simultaneously both possibilities, solving

the associated two sets of functional equations and then requiring that the finite volume

reductions of both solutions will coincide. We will describe this in more detail in section 7.

Finally, we note that unfortunately we cannot decompactify both outgoing strings,

because then the ingoing string #3 would split into two disconnected pieces. In fact we

will find that the size of the leftover finite size string L will play a crucial role in formulating

the SFT axioms.

4.1 The decompactified SFT axioms

In the following we cut string #2 and string #3 and extend their boundaries to infinity as

shown on the left of figure 2. On the right, one can see the full infinite spacetime domain
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of string #3 on the lower part, while the infinite spacetime domain of string #2 with a

missing strip of size L on the upper part of the figure. The two sides of the strip are

identified to form the space-time cylinder of string #1. The other identification on the

figure makes the space-time for string #2 continous, i.e. leaving from left to right on the

left of the strip we appear immediately on the right of the strip.

The aim of this section is to propose functional equations for the amplitude with

prescribed number and momenta of particles on the decompactified strings #2 and #3,

while the particle content in the compact string #1 may be arbitrary. Since these string

#1 excitations will not enter the equations at all, we will denote them by • below.

As the decompactified SFT vertex amplitude has slightly different properties10 from

the finite volume one discussed in section 3, we introduce some specific notation in this

case. We thus denote the decompactified SFT vertex amplitude by

N
3|2
•,L

(
θ1, . . . , θn

∣∣∣ θ′1, . . . , θ′m) (4.1)

which contains particles with rapidities {θi} in domain #3 and with rapidities {θ′j} in

domain #2.

The superscripts denote the noncompact ingoing and outgoing strings, L is the size of

the remaining closed string #1 and • denotes its specific state as well as any local operator

inserted at the string splitting point (like the prefactor in the pp-wave SFT vertex), see

figure 5 for a graphical notation.

In the following, we will sometimes suppress the lower subscript •,L as long as it

remains unchanged. We assume that the particles scatter on each other diagonally with

the scattering matrix S(θi, θj). We will cover the general non-diagonal case in section 6.

This S-matrix does not necessarily depend on the differences of the rapidities but satisfies

unitarity

S(θi, θj) = S(θj , θi)
−1 . (4.2)

When particles pass through each other they scatter with the S-matrix, thus their ordering

is essential. States in domain #3 are preparated at t = −∞ and contain particles with

ordered rapidities θi > θi+1, i.e. the fastest is on the leftmost. We call these states initial

states. States in domain #2 contain ordered particles with rapidities θ′i+1 < θ′i, in which

the fastest is the rightmost. These states are called final states. The coefficient N
3|2
•,L above

describes the transition amplitude from an initial to a final state. Clearly if there were no

space deficiency, L = 0, (and trivial operator insertion), N
3|2
•,L would be nothing but the

scattering matrix element, nonvanishing only for coinciding sets of rapidities. If, however,

L 6= 0, or there is an operator insertion the corresponding N
3|2
•,L is similar to a form factor:

that is to a matrix element of an operator. This operator is local for L = 0 but is non-local

for L 6= 0. In the following we focus on the L 6= 0 case. This is similar to the situation,

when we analyze the form factors of an operator, which is nonlocal with respect to the

particles. Moving a particle around the space deficiency would pick up a phase factor

10This is exactly as for the relation between finite volume and infinite volume form factors which differ

by a Jacobian factor and a product of S-matrices neccessary to ensure symmetry of the finite volume one

cf. (2.8).
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θ θ

θ
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...

1

θ θ1m 2

2 θn

Figure 5. Graphical notation for the SFT vertex. Domain #3 is below the dashed line and contains

incoming particles {θi}, while domain #2 is above the line and contains outgoing particles {θi}.
The emission of string #1 is represented by the circle, which can be understood as a partly nonlocal

operator insertion in the form factor language. It introduces a discontinuity which is distributed

symmetrically on the border of the two domains indicated by dashed lines.

proportional both to L and to its momenta: eipL. This bears some similarity with the form

factor axioms with nonzero index of mutual locality [56]. Note, however, that here the

analogous index is momentum dependent which is a completely novel and unique feature

of the string vertex. By the choice of the bases in domains #3 and #2 we can freely place

this nonlocality wherever we want. To be in accordance with the pp-wave conventions we

distribute the nonlocality in an equal way on the border of domains #3 and #2, which we

indicate by dashed lines on the figures.

This means we define the crossing equations as

N
3|2
•,L
(
θ1, . . . , θn

∣∣ θ′1, . . . , θ′m) = eip(θ
′
1)L

2 N
3|2
•,L
(
θ1, . . . , θn, θ

′
1 − iπ

∣∣ θ′2, . . . , θ′m) (4.3)

N
3|2
•,L
(
θ1, . . . , θn

∣∣ θ′1, . . . , θ′m) = e−ip(θ
′
m)L

2 N
3|2
•,L
(
θ′m + iπ, θ1, . . . , θn

∣∣ θ′1, . . . , θ′m−1

)
. (4.4)

They are represented graphically on figure 6.

In these equations it is understood that no rapidites in the initial and final states

coincide θi 6= θ′j as otherwise disconnected terms can arise.11 Crossing all particles to

domain #3 we can define the elementary SFT vertex

N•,L(θ1, . . . , θn) ≡ N
3|2
•,L
(
θ1, . . . , θn

∣∣∅) (4.5)

which obviously contains all the information.12 This vertex is represented graphically on

figure 7.

11Let us note that it is possible to introduce a sign in both equations (4.3) and (4.4) to accommodate

different normalization conventions. This does not change, of course, any physical content.
12Recall that the empty set ∅ denotes the vacuum (no particles) while • stands for any particle content.
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1

θ θ1m 2

2 θn θ θ

θ

...

...

1

2θm

2 θn

θ1

θ1−iπ

θ θ
...

1

θ1θm−1

2 θn

θm ...

θm π+i

Figure 6. Crossing transformations for the SFT vertex.

θ θ1 n
...θ 2

Figure 7. Elementary SFT vertex.

θ θ1 n
... ...θθ i i+1 θ θ1 n

... ...θ i θ i+1

Figure 8. Permutation axiom of the SFT vertex.

Now we formulate the axioms it should satisfy. As the initial state is a scattering

state exchanging two neighbouring particles leads to the factor of the scattering matrix,

see figure 8:

N•,L(θ1, . . . , θi, θi+1, . . . , θn) = S(θi, θi+1)N•,L(θ1, . . . , θi+1, θi, . . . , θn) . (4.6)

Crossing the first particle to domain #2 and crossing back to the last position we

obtain the monodromy relation

N•,L(θ1, θ2, . . . , θn) = e−ip(θ1)L N•,L(θ2, . . . , θn, θ1 − 2iπ) (4.7)

which expresses the nonlocality of the “operator insertion”, see figure 9. Here we used that

p(θ1 + iπ) = −p(θ1).
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θ θ1 n
...θ 2 θ 2

... θnθ1

θ1−2iπ

Figure 9. Monodromy axiom of the SFT vertex.

θ θ
...

+iπθ 1 θn

−i Res

θ = θ

θ θ θ
...

n+iπθ 1 θ θ θ
...

n+iπθ 1

Figure 10. Kinematical singularity axiom of the SFT vertex.

The above two relations provide functional equations which enable to determine the

coefficient N•,L once its analytical structure is known. N•,L must be a meromorphic

function of the rapidites, whose poles have physical origins. There are poles which have

kinematical and others which have dynamical origins. A kinematical singularity can appear

whenever, after crossing, an initial particles’ rapidity coincides with a final one. The residue

of the pole is proportional to the amplitude where the two particles are missing as:

− iResθ′=θN•,L(θ′ + iπ, θ, θ1, . . . , θn) =
(

1− eip(θ)L
n∏
i=1

S(θ, θi)
)
N•,L(θ1, . . . , θn) . (4.8)

The proportionality factor expresses the fact that the on-shell particle can pass the other

particles and the defect on both sides as shown on figure 10.

The dynamical singularity axiom is related to the existence of boundstates and ex-

presses the SFT vertex of the boundstate in terms of that of the fundamental particles. As

this axiom does not provide any restriction on the elementary SFT vertex we do not write

out explicitly here, but spell out the details in the nondiagonal case in section 6 below.

Let us finish this part by specifying the kinematical singularity axiom for the case

when there are particles both in the initial and final states, as this equation will show up

in the weak coupling limit of the OPE coefficients:

−iResθ′=θN
3|2
•,L(θ, θ1, . . . , θn|θ′1, . . . , θ′m, θ′) = e−ip(θ)L/2

(
1−eip(θ)L

n∏
i=1

S(θ, θi)
n∏
j=1

S(θ′j , θ)
)
×

N
3|2
•,L(θ1, . . . , θn|θ′1, . . . , θ′m) . (4.9)
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Finally, note that the above equations do not depend in any way on the state of the

compact string (string #1 here). This is in fact very natural and is analogous to the

well known form factor axioms which have exactly the same form for any local operator.

The form factor axioms do not have a unique solution, however, and various solutions

correspond to form factors of various local operators. We expect the situation to be similar

here — the axioms for N•,L(θ1, . . . , θn) will have many solutions depending on the particle

content of string #1 and on the choice of prefactor operator in the SFT vertex inserted at

the splitting point.

However, this time in contrast to the ordinary form factor case, we will be able to

provide additional information which will severely restrict the dependence on the string

#1 state. This will be discussed in detail in section 7, where we complete the formulation

of our program for the SFT vertex.

5 The free massive boson example (or the pp-wave SFT vertex)

In this section we will discuss the simplest case for which our integrable approach should

work i.e. a free massive boson. This is precisely the case of the pp-wave SFT vertex,13 the

Neumann coefficients of which are known exactly.

The consideration of the pp-wave vertex is interesting for a variety of reasons. Firstly,

we may check that the proposed booststrap axioms are indeed satisfied. Secondly, we may

analyze the analytical structure of the pp-wave Neumann coefficients to put forward some

‘empirical’ analyticity requirements for the solutions of the bootstrap SFT vertex axioms

in the general interacting case. Thirdly, we may investigate directly their asymptotic

limit neglecting wrapping corrections, which limit turns out to have surprisingly subtle

properties. Finally, we may see how to reconstruct the exact (decompactified) pp-wave

Neumann coefficients directly from our axioms together with the analyticity assumptions

mentioned above.

5.1 A review of LSNS formulas

Let us start by reviewing the known exact solution for the pp-wave Neumann coefficients

as given by [52]. These formulas involve quite a lot of notation and new special functions

Γµ(z) introduced by LSNS, whose properties and definitions we recall in appendix B. We

also pass here to rapidity variables instead of integer mode numbers and introduce some

modifications of the special functions — which we denote by Γ̃µ(θ) — which are more

convenient for our purposes.

Recall from section 3 that the Neumann coefficients in the cosine-basis have the struc-

ture

N̄ rs
mn = ρ

mn

αsωrm + αrωsn
N̄ r
mN̄

s
n (5.1)

13Since the treatment of massless particles in the integrable S-matrix language is in general quite subtle,

together with the importance of wrapping, a discussion of the flat space SFT vertex of [21] would require

a lot of care.
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where we focused on the dependence on the quantization numbers n,m and put the rest

into the normalization constant ρ. The Neumann vectors N̄ r
m are defined in terms of the

function f
(r)
m as

N̄ r
m =

√
ωrm
m

ωrm + αrµ

αrm
f (r)
m . (5.2)

The Neumann matrix above is related to the cosine basis. The coefficients for the sine

basis can be obtained as

N̄ rs
−m−n = −ω

r
m − αrµ
m

ωsn − αsµ
n

N̄ rs
mn . (5.3)

The Neumann coefficients in the exponential basis relevant for our considerations follow

through (3.14)

N rs
mn =

1

2

(
1 +

ωrm − αrµ
m

ωsn − αsµ
n

)
N̄ rs
mn . (5.4)

As we explained earlier, the rapidity parametrization considerably simplifies the formulas.

Thus we express ωrm and the mode number m in terms of the rapidity θm as:

ωrm =
√
m2 + α2

rµ
2 = |αr|µ cosh θm ; m = |αr|µ sinh θm . (5.5)

In the following we introduce formulas, which are valid for any signs of αr. However, the

expressions will depend on this sign, which we denote by sgnr. Using the formulas above

we get
ωrm − αrµ

m

ωsn − αsµ
n

=

(
tanh

θm
2

)sgnr
(

tanh
θn
2

)sgns

(5.6)

and the general Neumann matrix can be written as:

N rs
mn=

ρ

2

µ sinh θm sinh θn
sgns cosh θm + sgnr cosh θn

1

αsαr

[
1 +

(
tanh

θm
2

)−sgnr
(

tanh
θn
2

)−sgns
]

(5.7)

×
√

cosh θm
sinh θm

√
cosh θn
sinh θn

f (r)
m f (s)

n

Let us spell out the details in the three distinct cases. For α3 = −1 we have

N33
mn = −ρd

(3)(θm)d(3)(θn)

cosh 1
2(θm − θn)

; d(3)(θm) = −√µ sinh
θm
2

√
cosh θm
sinh θm

f (3)
m (5.8)

while for the other cases with i = 1, 2

N3i
mn = N i3

nm = −ρd
(3)(θm)d(i)(θn)

sinh 1
2(θm − θn)

; d(i)(θn) =

√
µ

αi
cosh

θn
2

√
cosh θn
sinh θn

f (i)
n (5.9)

N ij
mn = ρ

d(i)(θm)d(j)(θn)

cosh 1
2(θm − θn)

; i, j = 1, 2 . (5.10)

The d(r)(θ) are closely related to the Neumann vectors, but are more convenient in the

following. We now analyze the expressions d(r)(θ) one by one by starting with d(3)(θ). We
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recall from [52] that14

f (3)
m =

√
m

π
sin(mπα2)

eτ0(µ−ω3
m)

ω3
m

Γµα1(mα1)Γµα2(mα2)

Γµ(m)
M(0+) (5.11)

where

τ0 = α1 logα1 + α2 logα2 = α1 logµα1 + α2 logµα2 − logµ (5.12)

and Γµ(z) is defined in appendix B. We move eτ0µM(0+) to ρ, as it appears in all f

coefficients. Using the renormalized deformed Γ̃µ functions introduced in appendix B,

together with the rapidity parametrization, we obtain

d(3)(θm) = −
sinh θm

2 sin(µπα2 sinh θm)

π
√

cosh θm

Γ̃µα1(θm)Γ̃µα2(θm)

Γ̃µ(θm)
. (5.13)

After a similar manipulation on d(i)(θ) for i = 1, 2 we can turn

f (i)
n =

e
τ0(µ+ω n

αi
)
αi

ω n
αi

√
nα1α2

Γµ( nαi )

Γα2µ(α2n
αi

)Γα1µ(α1n
αi

)
M(0+) (5.14)

with ωz =
√
z2 + µ2 into the expression

d(i)(θn) =
1

2µ
√
αiα1α2

√
cosh θn sinh θn

2

Γ̃µ(θn)

Γ̃α2µ(θn)Γ̃α1µ(θn)
. (5.15)

These expressions together with equations (5.8)–(5.10) provide the exact finite Li expres-

sions for the Neumann coefficients.

5.2 The decompactification limit of the LSNS formulas and their analyticity

properties

In order to make contact with the SFT vertex axioms introduced in section 4, let us take

the same decompactification limit, in which we send L3, L2 → ∞ and keep L1 = L3 − L2

finite. Moreover we will also keep the mass of the scalar field and the particle rapidities

fixed. This entails sending also µ and the integer mode number m to ∞, such that

2πµ

L3
≡M 2πmi

|αi|L3
≡M sinh θ (5.16)

are kept fixed. In this limit

α1 =
L1

L3
→ 0 ; α2 → 1 (5.17)

while the quantities

µα1 =
ML1

2π
; m3α1 =

pL1

2π
=
ML1 sinh θ

2π
= µα1 sinh θ (5.18)

14There is also an extra factor (−1)m+1 for d(1), which we choose to be 1 to unify the notation for d(1)

and d(2).
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stay finite. In the following formulas we will drop the subscript in L1 and use the notation

L ≡ L1 as in the SFT vertex axioms of section 4.

The key quantities appearing in the Neumann coefficient formulas (5.8)–(5.10) now

have the following finite decompactified limits:15

d(3)(θ) = −
sinh θ

2 sin pL
2

π
√

cosh θ
· Γ̃ML

2π
(θ) · e−

θ
2π
pL (5.19)

and

d(2)(θ) =
π

ML
√

cosh θ sinh θ
2

· 1

Γ̃ML
2π

(θ)
· e

θ
2π
pL (5.20)

where here and from now on p = M sinh θ. We must still address, however, one minor

detail. In the decompactified case, the external states are conventionally normalized to

a Dirac delta function in rapidities, while the finite volume mode states are normalized

to Kronecker deltas in mode numbers. So we have to factor out the 1/
√

cosh θ terms16

into the Jacobian. This yields finally the decompactified expressions in the natural infinite

volume normalization:

d(3)(θ) = − sin
pL

2
·

sinh θ
2

π
· Γ̃ML

2π
(θ) · e−

θ
2π
pL (5.21)

d(2)(θ) =
π

ML sinh θ
2

· 1

Γ̃ML
2π

(θ)
· e

θ
2π
pL . (5.22)

It is important to note that the above expressions contain an infinite set of exponential

wrapping corrections w.r.t. the size of the string #1, i.e. terms of the form e−nML. Later

we will describe the asymptotic limit defined by neglecting these exponential corrections

which turns out to be surprisingly subtle.

In appendix A we will directly formulate the continuity conditions for the decompact-

ified SFT vertex for the massive free scalar and check that the above limit of the LSNS

expression (5.21) is indeed a solution. This is important to make sure that the puzzling

terms like sin pL
2 appearing in the Neumann coefficients indeed exist directly for the decom-

pactified vertex and do not arise from some unknown subtlety in finite volume reduction.

We can now verify that the decompactified Neumann coefficients, defined

through (5.8)–(5.10) in terms of (5.21)–(5.22) satisfy the SFT vertex axioms of section 4.

In the present case the symmetry (4.6) is satisfied trivially and we are left with checking

the monodromy (4.7), crossing (4.3)–(4.4) and the kinematical singularity axioms (4.8).

The monodromy property is seen to be easily implemented in terms of the last factor

in (5.21) as Γ̃ML
2π

(θ) is 2πi-periodic. Note that the additional signs generated by sinh θ
2 get

canceled by signs coming from the denominators of (5.8)–(5.10).

Using the crossing property of the deformed gamma functions

Γ̃ML
2π

(θ + iπ) sinh θ sin
pL

2
= − 2π2

Γ̃ML
2π

(θ)ML
(5.23)

15We choose again the factor (−1)m+1 to be 1.
16Since in any case we are not controlling the overall normalization here, we absorb any remaining 1/

√
M

factors in the normalization ρ.
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one can see the crossing relation between d(3) and d(2) is

d(3)(θ ± iπ) = ∓ie±ip(θ)
L
2 d(2)(θ) . (5.24)

Inserting this into (5.8)–(5.10) we get in particular the crossing properties

N32(θ, θ′) = eip(θ
′)L/2N33(θ, θ′ − iπ) N22(θ, θ′) = eip(θ)L/2N32(θ − iπ, θ′) . (5.25)

Finally let us consider the kinematical singularity axiom (4.8) for N33(θ, θ′). It is seen

to be satisfied using the property

d(3)(θ + iπ)d(3)(θ) = − 1

2ML

(
1− eipL

)
. (5.26)

An analogous property for N22(θ, θ′) follows from

d(2)(θ + iπ)d(2)(θ) =
1

2ML

(
1− e−ipL

)
. (5.27)

Let us note some important features of the analytical properties of the (decompactified)

Neumann coefficients in the complex rapidity plane. A notable feature of the functional

equations (5.26) and (5.27) is that they are (almost) identical, while the explicit solu-

tions (5.21) and (5.22) are clearly quite different. The difference lies in the location of

zeroes in the physical strip. Due to the factor sin pL
2 , all the zeroes of d(3)(θ) lie on the line

of real θ’s, while in the case of d(2)(θ), they lie on the line =m(θ) = π. This directly carries

over to the different location of zeroes in the Neumann coefficients N rs(θ, θ′). Note that

the physical difference between strings #2 and #3 is that string #2 is accompanied by the

emission of string #1. Thus the Neumann coefficient of string #3 vanishes exactly at the

rapidities which are allowed by the asymptotic BA equations for the finite size string #1

or by quantization around that string. We do not have currently a physical understanding

of this property but expect similar features to occur for the generic interacting case.

5.3 Asymptotic limit

Let us now describe the asymptotic large L limit of the (decompactified) Neumann co-

efficients or equivalently of the elementary d(r)(θ) functions defined in (5.21) and (5.22).

Recall that L is the size of the third finite string, and the asymptotic limit is defined by

neglecting all exponential e−ML corrections. Since this corresponds exactly to neglecting

wrapping corrections, such a limit is of chief interest for the subsequent reconstruction of

the finite volume SFT vertex, which we describe in section 7, and for potential applications

to OPE coefficients in N = 4 SYM theory. Incidentally, this was also exactly the rele-

vant limit used when comparing pp-wave SFT vertex with perturbative OPE coefficients

of BMN operators.

To this end, let us quote the large ML asymptotics (B.10) of Γ̃ML
2π

(θ) which follows

from the properties derived in the LSNS paper [52].

Γ̃ML
2π

(θ) ∼
√

2π2

ML

e
θ
2π
pL

sinh θ
2

. (5.28)
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It is extremely important to emphasize that the above formula holds only on an open subset

|=m(θ)| < π. In particular, it does not hold on the ‘crossing line’ =m(θ) = π. A very

intriguing feature of the above expression is that it has a monodromy when θ → θ + 2πi

which is in apparent contradiction with the 2πi periodicity of Γ̃ML
2π

(θ). Of course, there is

no real contradiction due to the fact that this asymptotic formula breaks down on the line

=m(θ) = π.

The above mentioned apparent monodromy has, however, very important consequences

for the behaviour of the asymptotic Neumann coefficients. It cancels exactly the explicit

monodromies in (5.21) and (5.22) and one obtains

d(3)(θ)asympt = −
√

2

ML
· sin pL

2
(5.29)

d(2)(θ)asympt =
1√

2ML
. (5.30)

This leads to the following asymptotic Neumann coefficients17 (valid for |=m(θ)| < π and

|=m(θ′)| < π):

N33(θ, θ′)asympt = − 2

ML

sin pL
2 sin p′L

2

cosh θ−θ′
2

(5.31)

N32(θ, θ′)asympt =
1

ML

sin pL
2

sinh θ−θ′
2

(5.32)

N22(θ, θ′)asympt =
1

2ML

1

cosh θ−θ′
2

. (5.33)

Despite the simplicity of the above expressions, one should keep in mind that they are in

fact equivalent to the all order 1/µ formulas in the pp-wave SFT vertex.

The asymptotic expressions (5.31)–(5.33) are quite intriguing. Firstly, we loose the

nontrivial monodromy of the exact formulas (5.21) and (5.22) and obtain simple antiperi-

odic functions. We believe that this property may be necessary in the general case for

solving the consistency equation (7.7) when using the decompactified formulas for con-

structing the finite volume SFT vertex up to wrapping corrections. Secondly, if we were

to extend the above asymptotic formulas by analytical continuation to the whole complex

plane, the kinematical singularity axiom and crossing property would be modified. The

case of this effective asymptotic crossing is particularly intriguing as we get e.g.

N33(θ, θ′ − iπ)asympt = −2i sin
p′L

2
N32(θ, θ′)asympt (5.34)

which bears quite striking resemblance to the recently discovered modifications of crossing

in Chern-Simons theories [54, 55].

We do not want to make here any statement about the effective asymptotic crossing

and kinematical axioms in the general interacting case and leave this problem for future

investigation.

17Recall that we factor out some constant normalization.
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5.4 Reconstruction of Γ̃µ(θ) from the SFT axioms

In the final part of this section, let us see how to reconstruct the known LSNS solution

directly from solving the SFT vertex axioms of section 4. Firstly, we will see that obtaining

the solution in this way is very simple, and definitely much simpler than the direct approach

of [53] and [52]. Secondly, we will see that by themselves, the functional equations are

not restrictive enough and one needs additional input about the analytical structure, in

particular the location of zeroes, in order to fix the solution.

Let us concentrate on the N33(θ, θ′) Neumann coefficient which is equal to our function

N•,L(θ, θ′) with vacuum on string #1 (i.e. • ≡ ∅ here). The functional equations in this

case read

N∅,L(θ, θ′) = N∅,L(θ′, θ) (5.35)

N∅,L(θ + 2πi, θ′) = e−ipLN∅,L(θ, θ′) (5.36)

N∅,L(θ + iπ + ε, θ) =
i

ε

(
1− eipL

)
N∅,L +O

(
ε0
)

(5.37)

and we take N∅,L with no arguments to be equal to 1 (i.e. we normalize the answer w.r.t.

taking the amplitude with vacuum on all three strings). We further assume that the large

real θ asymptotics of the solution is bounded.

It is convenient to solve first the monodromy axiom by factoring out

e−
θ
2π
pL− θ′

2π
p′L (5.38)

from N∅,L(θ, θ′) ≡ N33(θ, θ′). Also we may implement the kinematical singularity by

introducing a denominator eθ + eθ
′
, i.e.

N33(θ, θ′) =
e−

θ
2π
pL− θ′

2π
p′L

eθ + eθ′
Q(θ, θ′) . (5.39)

The kinematical singularity axiom implies the following functional equation for Q(θ, θ′):

Q(θ + iπ, θ)ie−θ = e−ip
L
2 − eip

L
2 . (5.40)

Let us introduce a simple factorizable ansatz for Q(θ, θ′):

Q(θ, θ′) =
2h(θ)

1 + e−θ
2h(θ′)

1 + e−θ′
. (5.41)

Then we have

h(θ)h(θ + iπ) = − sinh θ sin
pL

2
. (5.42)

We recover thus the functional equation for 1/Γ̃ML
2π

(θ) up to a normalization factor. It is

nevertheless instructive to try to solve this directly in order to rederive the special function

Γ̃µ and also to understand its space of solutions. In particular, we can verify directly that

1

Γ̃ML
2π

(θ + iπ)
∝ sinh θ sin

pL

2
· Γ̃ML

2π
(θ) (5.43)

is also a solution (up to an appropriate overall constant).
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We can rewrite the functional equation (5.42) as

h(p)h(−p) = −p sin
pL

2
(5.44)

and expand the sine into an infinite product sinπz = πz
∏∞
n=1

(
1− z2

n2

)
. We can find a

solution in terms of a product of elementary solutions solving

f(p)f(−p) =

(
1− p2L2

4π2n2

)
. (5.45)

The right hand side has two zeroes and a-priori we are free to distribute them either into

the first or second factor on the left hand side or into both of them. This corresponds to

the choice whether the zeroes lie on the line =m(θ) = 0 or =m(θ) = π. From the exact

LSNS solution for N33(θ, θ′) discussed in section 5.2, we see that both zeroes should be

on the real line. The simplest and most obvious solution f(θ) = 1 − pL/(2πn) does not

provide the right location of zeroes as it leads to zeroes lying on both of the two lines and

we need a slightly more involved factorization:(√
M2 +

4π2n2

L2
− E(θ)

)(√
M2 +

4π2n2

L2
− E(θ + iπ)

)
=

4π2n2

L2
− p2 (5.46)

where E(θ) = M cosh θ. We are now free to include either of the two factors into f(θ)

and consequently into h(θ). If we choose the right hand factors for all n, the solution

will not have zeroes on the real line. The consistent choice of the left hand factor would

conversely ensure that all the zeroes lie on the real axis — this choice will lead to the

second solution (5.43) relevant for N33(θ, θ′). However, we could have made different

choices for any n constructing many (nonphysical) solutions of (5.42). This shows that the

assumptions on the location of zeroes are of crucial importance.

Introducing appropriate exponential factors for convergence leads to the infinite prod-

uct representation of the Γ̃µ(θ) following from the formulas in appendix B.

6 Axioms for the nondiagonal case

In this section we formulate axioms for the SFT vertex in the case when the integrable

worldsheet theory contain particles of different types: additionally to the rapidity, θ, the

particles are characterized also by their particle type: i. In general, the scattering matrix

is non-diagonal, but due to integrability, the multiparticle scatterings factorize into two

particle scatterings, and the S-matrix satisfies crossing symmetry:

Sklij (θ1, θ2) = Ckk̄S l̄ijk̄(θ2, θ1 − iπ)Cīi = C ll̄S j̄k
l̄i

(θ2 + iπ, θ1)Cj̄j (6.1)

where Cij is the charge conjugation matrix and its inverse is Cjk: CijC
jk = δki . The crossing

transformation connects anti-particles in the initial state to particles in the final state and

vica versa. The graphical representation of the crossing symmetry of the scattering matrix

is demonstrated on figure 11.
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Figure 11. Crossing transformation of the scattering matrix.
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θn

Figure 12. SFT vertex in the generic case. The initial state contains particles with rapidities

θ1, . . . , θn and particle content i1, . . . , in, while the final state, has rapidities θ′1, . . . , θ
′
m and particle

content i′1, . . . , i
′
m .

The decompactified SFT vertex, additionally to the rapidities, depends also on the

types of the particles which we denote as

N
3|2
•,L(θ1, . . . , θn|θ′1, . . . , θ′m)

i′1,...,i
′
m

i1,...,in
(6.2)

where θ1, . . . , θn are the rapidities of the initial state in domain #3 with particle content

i1, . . . , in, while the final state, in domain #2, has rapidities θ′1, . . . , θ
′
m and particle content

i′1, . . . , i
′
m . The placement of the indices and their orderings reflect the geometry of the

amplitude as shown on figure 12.

By keeping the previous convention we distribute the space discontinuity equally on

the border of domains #3 and #2. The space deficiency has no effect on the particles type

so the generalized crossing relations take the form

N
3|2
•,L(θ1, . . . , θn|θ′1, . . . , θ′m)

i′1,...,i
′
m

i1,...,in
=eip(θ

′
1)L/2N

3|2
•,L(θ1, . . . , θn, θ

′
1 − iπ|θ′2, . . . , θ′m)

i′2,...,i
′
m

i1,...,in,j̄
C j̄i

′
1

(6.3)

N
3|2
•,L(θ1, . . . , θn|θ′1, . . . , θ′m)

i′1,...,i
′
m

i1,...,in
=e−ip(θ

′
m)L/2N

3|2
•,L(θ′m − iπ, θ1, . . . , θn|θ′1, . . . , θ′m−1)

i′1,...,i
′
m−1

j̄,i1,...,in
C j̄i

′
m

(6.4)

Graphically they can be represented as we show on figure 13. These crossing relations

are valid if the incoming and outgoing particle states have no overlaps, as otherwise sin-

gularities can appear. We explain later these disconnected terms, which are related to
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Figure 13. Graphical representation of the crossing transformation in the nondiagonal case. Cross-

ing a particle from outgoing to incoming comes with a charge conjugation matrix, which replaces

the particle with its antiparticle.

θ θ
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i
1

i
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i
n

θn

Figure 14. The elementary SFT vertex in the generic case.

amplitudes with less particles. By crossing all particles into the initial state we can define

the elementary SFT vertex

N•,L(θ1, . . . , θn)i1,...,in = N
3|2
•,L(θ1, . . . , θn|∅)i1,...,in (6.5)

which we represent graphically on figure 14.

This elementary SFT vertex satisfies several axioms. The permutation axiom expresses

that exchanging two particles comes with an S-matrix factor:

N•,L(θ1, . . . , θj , θj+1, . . . , θn)i1,...ij ,ij+1,...,in

= Sklijij+1
(θj , θj+1)N•,L(θ1, . . . , θj+1, θj , . . . , θn)i1,...l,k,...,in . (6.6)

Graphically it takes the form shown on figure 15. By crossing the leftmost incoming particle

to an outgoing antiparticle and crossing back again to the rightmost particle we obtain the

monodromy property

N•,L(θ1, . . . , θn)i1,...,in = e−ip(θ1)LN•,L(θ2, . . . , θn, θ1 − 2iπ)i2,...,in,i1 (6.7)

which is shown on figure 16.
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Figure 15. Permutation axiom for the SFT vertex. Exchanging two neighbouring particles intro-

duces an S-matrix factor.
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Figure 16. Monodromy property for the generic SFT vertex.
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Figure 17. Kinematical singularity axiom for the generic SFT vertex.

The crossing relation is valid if none of the incoming particles coincides with any

of the outgoing particles. Otherwise, the amplitude is singular, but the residue of the

pole is related to an onshell propagation of the particle passing the reduced amplitude on

both sides:

− iResθ′=θN•,L(θ′ + iπ, θ, θ1, . . . , θn)̄i,i,i1,...,in (6.8)

= (δj1...jni1...in
− eip(θ)LSk1j1ii1

(θ, θ1) . . . Sijnkn−1in
(θ, θ1))×N•,L(θ1, . . . , θn)j1,...,jn .

This axiom is called the kinematical singularity axioms, which connects the amplitude with

n + 2 particles to an amplitude with n particles. This process is indicated on figure 17

Singularities of the SFT vertex always correspond to some kinematically allowed onshell

propagation of the particles. If, for example, two particles with labels i and j, with ra-

pidities θ − iν and θ + iν, can form a boundstate of type k with rapidity θ, then the SFT
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Figure 18. Dynamical singularity axiom for the SFT vertex.

vertex is singular and its residue is related to the SFT vertex of the boundstate as

− iResθ′=θN•,L(θ′ − iν, θ + iν, θ1, . . . , θn)i,j,i1,...,in = ΓkijN•,L(θ, θ1, . . . , θn)k,j1,...,jn (6.9)

where Γkij is the strength of the coupling, which is related to the residue of the pole in the

scattering matrix

− iResθ′=θS
kl
ij (θ′ + iν, θ − iν) = ΓmijΓ

kl
m . (6.10)

This singularity axiom is called the dynamical singularity axiom and is represented graph-

ically on figure 18. Generally, for any onshell propagation we have a singularity of the SFT

vertex. This is similar to how the singularities of the scattering matrix can be explained

by Coleman-Thun diagrams.

In formulating the nondiagonal SFT vertex axioms we used rapidity parametrizations θ,

with crossing transformations θ → θ± iπ, but we did not assume any relativistic invariance

for the scattering matrix. The generalizations of these formulas for the AdS/CFT integrable

model can be obtained by using its rapidity parametrizations θ → z and its crossing

transformations z → ±ω2. These axioms are very similar to the form factor axioms for

world-sheet operators, [42], except the factor eipL appearing in the monodromy/periodicity

equations.

7 The program for the finite volume string vertex

Let us now formulate our program for the general finite volume string field theory vertex

up to wrapping corrections. As explained before, we do not expect a-priori an exponential

form of the vertex expressed in terms of some generalized Neumann coefficients18 so what

we are after is a general amplitude with any prescribed multiparticle state on each string.

In the limit that we are considering, i.e. neglecting wrapping corrections, these states will

be parametrized by momenta solving Asymptotic Bethe Ansatz equations for each string

individually.19 We thus want to determine

N
3|2;1
L3|L2;L1

(
{p(3)
i }

∣∣∣ {p(2)
j } ; {p(1)

k }
)

(7.1)

where we explicitly indicated the sizes of the respective strings.

18Although a-posteriori a generalization might exist in analogy to similar structures for boundary states

in integrable relativistic QFT’s [27].
19And of course the standard additional Bethe roots associated to nesting. In the following, for brevity,

we just explicitly indicate only the momenta.
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Our program consists of first solving the SFT functional equations derived in section 4

for the two distinct decompactified versions of (7.1), namely

N
3|2
{p(1)k },L1

(
{p(3)
i }

∣∣∣ {p(2)
j }
)

(7.2)

and

N
3|1
{p(2)j },L2

(
{p(3)
i }

∣∣∣ {p(1)
k }
)
. (7.3)

It is important to note that in (7.2), the momenta {p(3)
i } and {p(2)

j } are assumed to be

unconstrained and that the relevant SFT axioms involve explicitly only these momenta.

There is no dependence in these axioms on the {p(1)
k }, however there is certainly a huge

freedom in the choice of a particular solution which may depend on the {p(1)
k }. This is in

direct analogy to the case of form factors where the axioms do not depend on the particular

choice of local operator. They allow, however, for many solutions associated to different

choices of local operators. In the SFT vertex case we will soon show how to strongly

constrain this dependence.

Similarly, in the case of (7.3), the axioms involve explicitly only momenta {p(3)
i } and

{p(1)
k }, and the particular solutions should a-priori depend on the {p(2)

j } this time.

Our main point is now that performing finite volume reduction from (7.2) and (7.3)

should yield exactly the same expression, which will be the original quantity of inte-

rest (7.1).

Since we are working only up to wrapping corrections, we should neglect20 wrapping

corrections (w.r.t. respectively L1 and L2) in the decompactified solutions (7.2) and (7.3).

We denote the resulting asymptotic solutions with a subscript asympt e.g.

N
3|2
{p(1)k },L1

(
{p(3)
i }

∣∣∣ {p(2)
j }
)

asympt
. (7.4)

This is the direct counterpart of the asymptotic formulas of section 5.3 which were given

for the case of the massive free boson (the pp-wave case). Note that these expressions will

typically still have some oscillatory L1,2 dependence in factors like sin pL1

2 . Now again up

to wrapping corrections, the finite volume reduction should just amount to multiplying by

the same factors as for finite volume form factors. We thus get (up to wrapping corrections)

N
3|2;1
L3|L2;L1

(
{p(3)
i }

∣∣∣ {p(2)
j } ; {p(1)

k }
)

=
1√
ρ̃3ρ̃2

N
3|2
{p(1)k },L1

(
{p(3)
i }

∣∣∣ {p(2)
j }
)

asympt
(7.5)

where ρ̃ is the same factor as in (2.8), involving the Gaudin norm together with a product

of S-matrices. It is important to note, that we could have equally well obtained the same

expression from the second decompactification

N
3|2;1
L3|L2;L1

(
{p(3)
i }

∣∣∣ {p(2)
j } ; {p(1)

k }
)

=
1√
ρ̃3ρ̃1

N
3|1
{p(2)j },L2

(
{p(3)
i }

∣∣∣ {p(1)
k }
)

asympt
. (7.6)

20It is possible that keeping the full decompactified solution in the following steps will yield lot of infor-

mation on some wrapping corrections for the OPE coefficients. However then the matching of the finite

volume reductions might require some care. We leave this possibility for future investigation.
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Figure 19. The program for obtaining the finite volume string field theory vertex up to wrapping

corrections.

The consistency of these two expressions provides for us the key final equation

1√
ρ̃2

N
3|2
{p(1)k },L1

(
{p(3)
i }

∣∣∣ {p(2)
j }
)

asympt
=

1√
ρ̃1

N
3|1
{p(2)j },L2

(
{p(3)
i }

∣∣∣ {p(1)
k }
)

asympt
(7.7)

which should very strongly constrain the {p(1)
k }-dependent choice of particular solution of

the SFT axioms for (7.2) and the {p(2)
j }-dependent choice of solution of the SFT axioms

for (7.3). The resulting expression yields the final finite volume amplitude (7.1). We

illustrate pictorially this strategy in figure 19.

7.1 The program for the simplest plane wave SFT vertex

Let us see how to implement the program above for the simplest pp-wave SFT vertex,

namely for the asymptotic value of N33(θ, θ′), which is denoted by

N
3|2,1
L3|L2,L1

(
p, p′

∣∣∅;∅
)

asympt
. (7.8)

We use the previously calculated results but put into the context of the general program.

As a first step we decompactify L2 and L3 and determine N
3|2
∅|L1

(θ, θ′|∅) from our

axioms as

N
3|2
∅,L1

(θ, θ′|∅) = n(L1) sin
pL1

2
sin

p′L1

2

sinh θ
2 sinh θ′

2

π2 cosh 1
2(θ − θ′)

· Γ̃ML1
2π

(θ)Γ̃ML1
2π

(θ′) · e−
L1
2π

(pθ+p′θ′)

(7.9)

where n(L1) is a normalization factor depending on the state in the finite string #1.

In the next step we take the L1 →∞ limit and neglect all exponentially small, e−mL1

corrections:

N
3|2
∅,L1

(θ, θ′|∅)asympt = n(L1) sin
pL1

2
sin

p′L1

2

1

cosh 1
2(θ − θ′)

. (7.10)

Now we repeat the same calculations for L2. We decompactify L1 and L3 and solve the

functional equations for N
3|1
∅|L2

(θ, θ′|∅). The result is the same as (7.9) but L1 is exchanged
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with L2. After taking the L2 → ∞ limit and neglecting wrapping corrections we obtain

the asymptotic form:

N
3|1
∅,L2

(θ, θ′|∅)asympt = n(L2) sin
pL2

2
sin

p′L2

2

1

cosh 1
2(θ − θ′)

. (7.11)

Using that there are no particles in strings #1 and #2, thus ρ1 = ρ2 = 1, we demand that

n(L1) sin
pL1

2
sin

p′L1

2

1

cosh 1
2(θ − θ′)

= n(L2) sin
pL2

2
sin

p′L2

2

1

cosh 1
2(θ − θ′)

. (7.12)

Recall that L3 = L1 + L2 and that both p and p′ satisfy the asymptotic BA equations

eipL3 = 1 = eip
′L3 together with the level matching condition21 p = −p′. This implies that

sin
pL1

2
sin

p′L1

2
= sin

p(L3 − L2)

2
sin

p′(L3 − L2)

2
= sin

pL2

2
sin

p′L2

2
(7.13)

and we are forced to take n(L1) = n(L2) = n. The asymptotic SFT vertex is then

N
3|2,1
L3|L2,L1

(
p, p′

∣∣∅;∅
)

asympt
=

1
√
ρ1ρ3

N
3|2
∅,L1

(θ, θ′|∅)asympt =
n′√

cosh θ cosh θ′

sin pL1

2 sin p′L1

2

cosh 1
2(θ − θ′)

(7.14)

where we used that ρ1 = 1 ; ρ3 = M2L2
1 cosh θ cosh θ′ and absorved 1/ML1 into the

normalization n′. Clearly this answer agrees with the asymptotic form of the relevant

pp-wave finite volume Neumann coefficient.

8 Weak coupling cross-checks with OPE coefficients

In this section we comment on how the kinematical singularity axiom is satisfied at weak

coupling directly for the OPE coefficient. More details can be found in appendix C. We

investigate the 3-point functions in the su(1|1) and su(2) sectors up to 1-loop based on

the available explicit results obtained from direct gauge theory calculations in [57, 58]. As

we do not know the exact relation between the 3-point functions and the SFT vertex we

neglect the proper infinite volume normalization factors and check the axioms only up to

some proportionality factor.

Even this comparision is not straightforward in two respects: firstly, at weak coupling

the kinematical domains of the crossed amplitudes are infinitely far from each other and

no longer connected analytically. Secondly, the weak coupling results were calculated for

operators of finite sizes (Li), however our axioms are valid when two volumes (L3 and L2)

were sent to infinity by keeping the third volume (L1 = L3 − L2) finite.

We can circumvent these problems: first, by formulating the kinematical singularity

axioms directly for the crossed process, that is, when we have the same type of particles in

the initial state (operator O3) and in the final state (operator O2), and second, by taking

a careful limit of the finite volume formulas. To spell out the details let us denote the

21Here we used the level matching condition to get rid of the extra factor (−1)m, with m being the BA

quantization number.
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momenta of the initial state by p
(3)
j and those of the final state by p

(2)
i . The reformulation of

the kinematical singularity axiom into this setting means that the OPE coefficient C123({p})
must have a pole whenever p

(3)
n = p

(2)
m with the residue

− i ResC123({p}) ∝ (1− eip
(3)
n L1

N2∏
j

S(p
(2)
j , p(3)

n )

N3∏
k

S(p(3)
n , p

(3)
k ))× C123({p} \ {p(3)

n , p(2)
m })

(8.1)

where S(p1, p2) is the scattering matrix, which we choose to be diagonal. This motivates

us to analyze the su(2) and su(1|1) closed diagonal subsectors of the theory. Observe that

by sending L3 and L2 to infinity we went off-shell with the momenta, which is crucial to

have the singularity. For finite L3 and L2 volumes the BA equations

eip
(3)
n L3

∏
j:j 6=n

S(p(3)
n , p

(3)
j ) = 1 ; eip

(2)
m L2

∏
k:k 6=m

S(p(2)
m , p

(2)
k ) = 1 (8.2)

kill the singularity. Let us emphasize that the power of the clear analytical properties

shows up only in the infinite volume limit.

In the following we explain how to extract the infinite volume limit of the 3-point

functions in the su(1|1) and su(2) cases. In both cases the explicit volume (L2 or L3)

dependence comes from a term of the form

1− e−ip
(3)
n L2

N2∏
j:j 6=n

S(p
(2)
j , p(3)

n ) (8.3)

which prevents us to take the L2 →∞ limit. The idea is to use the Bethe Ansatz equation

for p
(3)
n to replace the expression above with

1− eip
(3)
n L1

N2∏
j

S(p
(2)
j , p(3)

n )

N3∏
k

S(p(3)
n , p

(3)
k ) (8.4)

where L1 = L3 − L2 is kept finite in the required limit, which now exists. Using this

procedure and some renormalization of the states we obtained the infinite volume 3-point

function in the two sectors as follows.

8.1 The su(1|1) sector

The infinite volume limit of the OPE coefficient22 in the su(1|1) sector up to 1-loop takes

the form:

C123({p})∝
∏2
r=1

∏Nr
i<j f(p

(r)
i , p

(r)
j )∏N3

i

∏N2
j f(p

(3)
i , p

(2)
j )

N3∏
l

1−eip
(3)
l L1

N2∏
i

S(p
(2)
i , p

(3)
l )

N3∏
j

S(p
(3)
l , p

(3)
j )

 (8.5)

where the momenta p(3) and p(2) no longer satisfy any quantization condition, S denotes the

scattering matrix in the su(1|1) sector and f is a known function, (displayed in appendix C),

22More precisely of its complex conjugate w.r.t. the form written in [57].
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whose explicit form is not relevant for us now, except that it vanishes at coinciding argu-

ments.

In order to check the kinematical residue axiom at p
(3)
k = p

(2)
j we calculate

−iRes
p
(3)
k =p

(2)
j

C123({p})

C123({p} \ {p(3)
k , p

(2)
j })

. (8.6)

The prefactor containing f provides the required pole and its remaining part nicely cancels

in the ratio. The product for l not agreeing with k contains two extra terms in the

numerator compared to the same term in the denominator, however they cancel by the

unitarity of the scattering matrix. The l = k’th factor in the product exactly reproduces the

term required by the kinematical singularity axiom. More details are given in appendix C.

8.2 The su(2) sector

Here we explain the kinematical residue axioms at the tree level for the su(2) 3-point-

function. The 1-loop calculation is relegated to appendix C. It is convenient to parametrize

the momenta by the rapidities, p(u), in terms of which the infinite volume limit of the 3-

point function takes the form

C123({u}) ∝=

∏N2
j=1

Q(3)(u
(2)
j )

(u
(2)
j −

i
2

)N1

∏N3
j=1(u

(3)
j −

i
2)N1∏N3

j<k(u
(3)
j − u

(3)
k + i)

∏N2
j<k(u

(2)
j − u

(2)
k + i)

D[0,1] (8.7)

where D[0,1] is given by an N3 × (N2 +N1) determinant

D[0,1] =

∣∣∣∣∣∣∣∣∣
∂
u
(3)
1

T (3)(u
(2)
1 ) . . . ∂

u
(3)
1

T (3)(u
(2)
N2

) q2(u
(3)
1 ) . . . qN1(u

(3)
1 ) qN1+1(u

(3)
1 )

...
...

...
...

...
...

...

∂
u
(3)
N3

T (3)(u
(2)
1 ) . . . ∂

u
(3)
N3

T (3)(u
(2)
N2

) q2(uN1) . . . qN1(u
(3)
N3

) qN1+1(u
(3)
N3

)

∣∣∣∣∣∣∣∣∣ (8.8)

and we used Baxter’s Q-function:

Q(i)(u) =

Ni∏
j=1

(u− u(i)
j ) . (8.9)

The derivative of the transfer matrix can be written in terms of the su(2) scattering ma-

trix as

∂
u
(3)
k

T (3)(u
(2)
j ) =

eip(u
(2)
j )L3

u
(2)
j − u

(3)
k

i

u
(2)
j − u

(3)
k + i

Q(3)(u
(2)
j + i)

Q(3)(u
(2)
j )

×1− eip(u
(2)
j )L1

∏
m:m 6=j

S(u(2)
m , u

(2)
j )

∏
l:l 6=k

S(u
(2)
j , u

(3)
l )

 .
In this formula it is legitimate to send L3 and L2 to infinity and keep L1 = L3 − L2

finite such that the rapidities no longer satisfy the BA equations. As a consequence,
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the expression is singular for u
(2)
j = u

(3)
k and we can calculate its residue to check the

kinematical singularity axiom. One non-trivial requirement is that the result should be

proportional to the 3-pointfunction with two particles less, when u
(2)
j = u

(3)
k were removed.

Clearly the overall factors, which depend only on the particles u
(1)
j factor out. The only

singularity at u
(2)
j = u

(3)
k comes from the matrix element ∂

u
(3)
k

T (3)(u
(2)
j ). When we expand

the determinant w.r.t. this element the subdeterminant is nothing but the determinant,

which appears in the reduced 3-point functions and the prefactor is exactly the required one:

−iRes
u
(2)
j =u

(3)
k

C123({u})

C123({u} \ {u(2)
j , u

(3)
k })

∝

1− eip(u
(2)
j )L1

∏
m:m6=j

S(u(2)
m , u

(2)
j )

∏
l:l 6=k

S(u
(2)
j , u

(3)
l )

 . (8.10)

Finally, let us mention that the su(2) OPE coefficients exhibit also the bound state

pole singularities required by the dynamical singularity axiom.

9 Conclusions

In the paper we developed a new framework to determine the (light cone) SFT vertex for

integrable worldsheet theories, including as a key special case the AdS5 × S5 background.

Our main idea was to use the integrable bootstrap approach to formulate functional

relations for the SFT amplitudes incorporating crossing properties and including the scat-

tering matrix of the theory. To achieve this aim we decompactified the worldsheet of the

process in which one big string (big J-charge) splits into two smaller ones in two alterna-

tive ways. By sending to infinity the sizes of the big string together with any of the other

smaller strings allowed to define asymptotic states. The remaining finite string served as

a nonlocal operator insertion appearing in the crossing equation in a nontrivial way. The

solutions of these functional equations contain exponentially small (wrapping) corrections

in the finite string size. After carefully getting rid of these wrapping corrections and ap-

plying a straightforward finite size reductions in all of the string sizes we would arrive at

a formula valid for any coupling, which incorporates all finite size corrections which are

polynomial in the inverse powers of the sizes, but neglects exponentially small corrections.

The fact that we can perform this finite size reduction procedure in two different ways, by

starting with a finite size for any of the two small strings, gives very strong restrictions for

the solutions of the functional relations.

The feasibility of the program was demostrated by reproducing the results for the

pp-wave SFT vertex. There, to fix the analytical structure of the solution, we had to

assume that the amplitude vanishes for those rapidities of the big string, which were the

allowed finite volume states for the undecompactified small string. We do not have a

physical explanation for this property but expect similar features for interactive theories.

In the asymptotic limit of the SFT vertex we found some effective crossing formulas which

bear striking resemblance to the recently discovered modification of crossing in Chern-

Simons theories.

Although we do not have control of the overall normalization of the SFT vertex, nor

do we know the precise general relation between the SFT vertex and OPE coefficients,
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nevertheless we could check some of our diagonal functional equations for the 3-point

functions in the weak coupling limit of the AdS/CFT correspondence by comparing them

to explicit gauge theory calculations of the OPE coefficients.

We also formulated the axioms for the generic non-diagonal case. For simplicity, and

for being in accordance with the rest of the paper, we used rapidity parametrizations θ, with

crossing transformations θ → θ± iπ, however, we did not assume any relativistic invariance

for the scattering matrix. The generic formulas for the AdS/CFT integrable model can be

obtained simply by using its rapidity parametrizations θ → z and together with its crossing

transformations z → z ± ω2. These axioms are very similar to the form factor axioms

for world-sheet operators except the factor eipL appearing in the monodromy/periodicity

equations and the kinematical singularity axiom. Thus our axioms for the L = 0 case

reduces to them.

An interesting dual line of investigation coming from the weak coupling gauge theory

side develops the concept of spin vertex [60–62] (but see also [12]). One qualitative differ-

ence between that concept and the functional equations presented in the present paper for

the SFT amplitude is that in the worldsheet formulation the wavefunctions of the external

states are in a natural way already incorporated into the SFT amplitude (as it deals with

multiparticle asymptotic states). On the other hand, the weak coupling approach through

the spin vertex concentrates on contractions and loops in the interaction region leaving

aside the scalar product with the external states.

There are numerous directions for further research. It would be very important to

understand precisely the freedom of choosing a particular solution to the SFT axioms. In

particular, even in the pp-wave limit, what are the features of the solution incorporating

the correct prefactor. Of course, the solution to the SFT axioms remains an outstanding

problem, which is not even solved for the ordinary form factor case i.e. in the L→ 0 limit.

It would be furthermore important to understand the general relation between the

SFT vertex and OPE coefficients away from the pp-wave limit (cf. [18, 19, 63]).

Let us emphasize once more that our approach would ultimately provide formulas for

the SFT vertex, which are valid for any value of the ’t Hooft coupling neglecting wrapping

effects. But, even these exponentially small finite size effects are expected to be described

in terms of the asymptotic SFT vertex and the scattering matrix of the theory. Their

systematic study should also be a direction of future research.
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A The decompactified vertex formulation and solution

The elementary exponential modes for the three strings in the decompactified vertex shown

in figure 20 are

φ(1)
n (x) =

2π

L
ei

2πnx
L x ∈ (−L/2, L/2)

φ
(2)
k (x) = eik(x+L

2 ) x ∈ (−∞,−L/2)

= eik(x−
L
2 ) x ∈ (L/2,+∞)

φ
(3)
k (x) = eikx x ∈ (−∞,+∞) . (A.1)

The ‘exponential’ overlap matrices are defined through

X̃r
pk =

1

2π

∫ ∞
−∞

e−ipxφ
(r)
k (x)dx . (A.2)

For the case at hand, we obtain

X̃1
pn =

2

L

(−1)n sin pL
2

p− 2πn
L

(A.3)

X̃2
pk = cos

pL

2
δ(p− k)− 1

π
sin

pL

2
P 1
p−k

(A.4)

X̃3
pk = δ(p− k) . (A.5)

The overlap element for string #2 was obtained using appropriate e∓εx regularization on

the two half-lines and the use of

1

x± iε
= ∓iπδ(x) + P 1

x
(A.6)

where P stands for the principle value. Since there exist nice factorization properties of the

Neumann coefficients when expressed in terms of cosine and sine modes, it is convenient

to define (for cosine modes)

Xr
pk ≡

1

2

(
X̃r
pk + X̃r

−pk + X̃r
p−k + X̃r

−p−k

)
(A.7)

for positive p and k. As reviewed in section 5.1, the Neumann coefficients for negative

modes (sine-modes) can be directly obtained from the cosine mode answer. So below we

will concentrate exclusively on the positive modes only. Using such modes it has been

shown in [59] that the Neumann coefficients can be expressed as

N̄ rs
nm = − mnα

1− 4µαK

N̄ r
mN̄

s
n

αsωrn + αrωsm
. (A.8)

In order to provide formulas for K and N̄ r
m it is customary to introduce quite a lot of

notation. We would like to adopt similar notation in the present decompactified case as

in the standard finite volume case as used in [59], since we would like to make use of the

factorizability proof of [59] which is purely algebraic. To this end let us introduce

C = mδmn or C = p δ(p− k) . (A.9)
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Figure 20. The decompactified string field theory vertex.

Note that in this appendix the meaning of µ and αr will be different from the usage in

the pp-wave case. However all algebraic relations employed in the factorizability proof will

still hold. We will use23

µ ≡M α1 =
L

2π
α2 = 1 α3 = −1 α = α1α2α3 = − L

2π
(A.10)

and

Arpk ≡

√
k

p
Xr
pk Cr =

√
C2 + µ2α2

r (A.11)

U(r) = C−1(Cr − µαr Id) U−1
(r) = C−1(Cr + µαr Id) (A.12)

The key object neccessary for finding the Neuman vectors is the infinite matrix

Γ+ =

3∑
r=1

ArU(r)A
rT (A.13)

and an infinite vector B (to be defined below). Then we have

N̄ r
m = −

[
(C−1Cr)

1/2U−1
(r)A

rTY
]
m

Y ≡ Γ−1
+ B (A.14)

K =
1

4
BTΓ−1

+ B (A.15)

The proof of factorizability uses the following properties of the overlap matrices defined

above

ArTC−1As = −αr
α3
C−1δrs r, s = 1, 2 (A.16)

3∑
r=1

αrA
rC−1ArT =

α

2
BBT (A.17)

23Note that in this appendix α1 + α2 + α3 6= 0.
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The last equation defines for us the vector B (which is related to overlaps with a constant

mode). These formulas seem at first glance to be quite convoluted but essentially reflect

just the joint completness and mutual orthogonality of modes of strings #1 and #2.

The matrices Arpk in the decompactified case are given by

A1
pn =

4

L

√
n

p

(−1)np sin pL
2

p2 − 4π2n2

L2

(A.18)

A2
pk =

√
k

p

(
cos

pL

2
δ(p− k)− 1

π
sin

pL

2
P 2p

p2−k2

)
(A.19)

A3
pk = δ(p− k) . (A.20)

One can check that indeed these matrices satisfy (A.16) although this is quite involved and

we performed some checks for parts of the formulas only numerically. The equation (A.17)

provides for us the expression for the vector B (which in the decompactified case is in fact

a function on the positive real line):

Bp =
4

L
p−

3
2 sin

pL

2
. (A.21)

In the decompactified case that we are considering here, the infinite matrix Γ+ becomes

an integral kernel and the vector(function) Y is defined through the integral equation∫ ∞
0

Γ+(p, p′)Y (p′) dp′ =
4

L
p−

3
2 sin

pL

2
. (A.22)

It turns out, however, that even getting an explicit form for the kernel Γ+(p, p′) is quite

involved.

Using the definition (A.13) and (A.17) we get

Γ+ =

3∑
r=1

ArC−1CrA
rT − αµ

2
BBT =

=
3∑
r=1

ArC−1CrA
rT +

4M

πL

(
p−

3
2 sin

pL

2

)(
p′
− 3

2 sin
p′L

2

)
. (A.23)

Let us now give the contributions of the three strings to the above formula:

A3C−1C3A
3T =

1

p

√
p2 +M2 δ(p− p′) . (A.24)

For string #2 the result is quite messy:∫ ∞
0

A2
pk

1

k

√
k2 +M2A2

p′kdk =

=
1√
pp′

[√
p2 +M2 δ(p− p′) + Junk(p, p′) +

4

π2
sin

pL

2
sin

p′L

2

pF (p′)− p′F (p)

p2 − p′2

]
(A.25)

where

F (p) =
√
p2 +M2 arctanh

p√
p2 +M2

(A.26)
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and

Junk(p, p′) = − 1

π

√
p2 +M2 cos

pL

2
sin

p′L

2
P 2p′

p′2−p2
+
(
p←→ p′

)
. (A.27)

The contribution of string #1 involves a nontrivial infinite sum which can be handled using

the techniques of appendix E in [53].

∞∑
n=1

A1
pn

1

n

√
n2 +

M2L2

4π2
A1
p′n =

1√
pp′

16

L2

∞∑
n=1

pp′ sin pL
2 sin p′L

2

√
n2 + M2L2

4π2(
p2 − 4n2 π2

L2

)(
p′2 − 4n2 π2

L2

)
=

1√
pp′

[
−Junk(p, p′) +

1

π2
sin

pL

2
sin

p′L

2
GL(p, p′)−

4M sin pL
2 sin p′L

2

πLpp′

]
(A.28)

where

GL(p, p′) = −4pp′
∫ ∞
M

√
κ2 −M2 coth κL

2 dκ

(p2 + κ2)(p′2 + κ2)
. (A.29)

When we add all the above ingredients into the formula for Γ+, we see that the terms

which involve cos pL2 cancel out as well as the BBT term in (A.23). The final formula for

Γ+ is thus

Γ+(p, p′) =
2

p

√
p2 +M2δ(p− p′) +

1

π2
√
pp′

sin
pL

2
sin

p′L

2

[
GL(p, p′) +G∞(p, p′)

]
(A.30)

and G∞(p, p′) can be evaluated to be24

G∞(p, p′) = 4
pF (p′)− p′F (p)

p2 − p′2
. (A.31)

The Neumann vectors are now determined by the equation (A.22).

Some comments are in order here. We see here the sin pL
2 factors which eventually

make their appearance in the Neumann coefficients even in the infinite L limit. These

terms thus arise directly from the decompactified string vertex and are not associated to

some subtlety in finite volume reduction. These factors are also quite surprising in that

they have a highly oscillatory L behaviour. This leads also to the fact that the large L

limit of the equation (A.22) is quite subtle. Indeed we cannot directly take the large L

limit of (A.22) but write

2

p

√
p2 +M2Y∞(p) +

2

π2√p
sin

pL

2

∫ ∞
0

G∞(p, p′) sin
p′L

2
Y∞(p′)

dp′√
p′

=
4

L
p−

3
2 sin

pL

2
.

(A.32)

In the large L limit, a consistent solution will have a sin pL
2 factor. After extracting this

factor and taking into account that under the integral we may substitute sin2 p′L
2 by 1

2 up

to e−ML corrections, we can obtain an integral equation with no explicit L dependence. It

is also convenient to pass to rapidity variables. Indeed writing

Y∞(θ) =
2

LM
3
2

sin
pL

2
· 1√

sinh θ cosh θ
h(θ) (A.33)

24It is obtained fromGL(p, p′) by replacing the coth by 1 and thus differs by exponential mutliple wrapping

terms e−nML.
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we get the following integral equation

h(θ) +
2

π2
sinh θ

∫ ∞
0

θ′ sinh θ cosh θ′ − θ cosh θ sinh θ′

sinh2 θ − sinh2 θ′
h(θ′)dθ′

sinh θ′
= 1 . (A.34)

One can check numerically that this is solved by h(θ) = 1√
2

√
1 + cosh θ. Thus the large

L solution becomes

Y∞(θ) =

√
2

LM
3
2

sin
pL

2

√
1 + cosh θ

cosh θ
√

sinh θ
(A.35)

which coincides25 with the large L limit of the decompactified LSNS solution f (3)(θ) fol-

lowing from (4.3) in [52]. Indeed we also verified numerically that its finite L version solves

the exact finite L version of the integral equation (A.22). We also checked numerically that

the f (2)(θ) vector is also reproduced. The point of the above exercise was to ascertain that

we have full control over the decompactified string vertex solution and make sure that the

puzzling sin pL
2 factors indeed arise already for the decompactified vertex and do not come

from some complications in subsequent finite volume reduction.

B Properties of the Γ̃µ(θ) functions

In this appendix we summarize the properties of the deformed Γ functions. We recall the

original definition from [52] and renormalize them in order to simplify the formulas for the

Neumann coefficients and to have simpler asymptotic behaviour.

Following [52] we define the Γµ(z) functions as

Γµ(z) =
e−γωz

z

∞∏
n=1

n

ωn + ωz
e
ωz
n ; ωz =

√
z2 + µ2 (B.1)

where γ is the Euler constant. The authors choose the finite branch cut for the square root

ω−z = −ωz such that Γµ(z) satisfies the functional equation:

Γµ(z)Γµ(−z) = − π

z sinπz
. (B.2)

The large z asymptotic has been calculated to be

log Γµ(z) = ωz log
µ

2e
+ z log

ωz + z

µ
+ log

√
2π
√
ωz + µ

z
+O(e−µ) (B.3)

or alternatively

Γµ(z) =

√
2π
√
ωz + µ

z

( µ
2e

)ωz (ωz + z

µ

)z
+ . . . . (B.4)

The above equations apply only for |arg z| < π. For our purposes we renormalize this

functions as

Γ̂µ(z) = e−ωz log µ
2eΓµ(z) . (B.5)

25Upto a (−1)m sign factor.
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In order to resolve the branch cut it is convenient do introduce the rapidity parametrization

z = µ sinh θ ; ωz = µ cosh θ (B.6)

and consider Γ̂µ as a functions of θ and µ

Γ̂µ(z) ≡ Γ̃µ(θ) . (B.7)

In the θ variable the two sides of the branch cut are mapped to θ and θ + iπ and the

function satisfies

Γ̃µ(θ) = −Γ̃µ(−θ) ; Γ̃µ(θ)Γ̃µ(θ + iπ) = − π

µ sinh θ sin(πµ sinh θ)
. (B.8)

Consequently, it is 2πi periodic:

Γ̃µ(θ + 2πi) = Γ̃µ(θ) . (B.9)

Moreover, it has the large µ asymptotical behaviour:

Γ̃µ(θ) =

√
π

µ

eθµ sinh θ

sinh θ
2

+ . . . (B.10)

where |=m(θ)| < π.

C Details on the su(1|1) and su(2) OPE coefficients

In this appendix we check how the kinematical singularity axiom is satisfied at weak cou-

pling directly for the OPE coefficients. We investigate the 3-point coefficients in the su(1|1)

and su(2) sectors up to 1-loop based on the available explicit results obtained from direct

gauge theory calculations in [57, 58].

As we explained in the main text we have to extract carefully the infinite volume

limit of the OPE coefficient from the available finite volume 3-point functions. As we do

not know the exact relation between the OPE coeffcients and the SFT vertex we do not

bother with the correct normalization of the infinite volume 3-point functions and check

the axiom (8.1) only up to proportionality. We start with the simpler su(1|1) sector first

and proceed with the more complicated su(2) sector afterwards.

C.1 The su(1|1) sector

In [57] the authors calculated the 3-point function in the su(1|1) sector up to 1-loop. They

parametrized the operators as closed spin chain Bethe states satisfying the BA equation26

eip
(r)
j Lr

Nr∏
k:k 6=j

S(p
(r)
j , p

(r)
k ) = 1 (C.1)

26Here we write the BA equation into our convention. In the AdS convention the BA equation takes

usually the form eipjL =
∏
k 6=j Ssu(1|1)(pj , pk). In [57] Ssu(1|1) was denoted by S. Strictly speeking there

is also a phase factor difference between Ssu(1|1) and our S, Ssu(1|1)(p, k) = ei(p−k)/2S(p, k)−1, but as it

basically shifts the volume we do not keep track of it.
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where the scattering matrix in our notation is

S(p1, p2) = −Ssu(1|1)(p2, p1)−1 = 1 + 8ig2 sin
p1

2
sin

p2

2
sin

p1 − p2

2
+O(g4) . (C.2)

The OPE coefficients (here we write the complex conjugate of the expression from [57]) up

to 1-loop can be written as

C123 =
C

√
ρN1ρN2ρN3

∏3
r=1

∏Nr
i<j f(p

(r)
i , p

(r)
j )∏N3

i

∏N2
j f(p

(3)
i , p

(2)
j )

N3∏
k

(
1− e−ip

(3)
k L2

N2∏
i

S(p
(2)
i , p

(3)
k )

)
(C.3)

where

f(p1, p2) = (eip1 − eip2)
[
1− g2 (1 + cos(p1 − p2)− cos p1 − cos p2)

]
+O(g4) (C.4)

and the normalization factor C will not be relevant for our discussion. The original ex-

pression in [57] contained factors of the form
(

1− eip
(3)
k L2

∏
i S(p

(3)
k , p

(2)
i )
)

, i.e. the complex

conjugate of the expression we wrote. As three point functions seem to be real we could just

take the complex conjugate of their result. In any case this does not modify the physics.

Let us also note that the appearance of the complex conjugate expression might be related

to the conjugate process in which two smaller strings join into a bigger one.

Recalling the general remarks in the main text we can observe that the would be pole

of C123 at p
(3)
i = p

(2)
j is absent due to the zero coming from the BA quantization condition

of p
(2)
j . As this OPE coefficient does not have a direct L2 → ∞ limit we use the BA

equations for p
(3)
k to reformulate it following

e−ip
(3)
k L2

N2∏
i

S(p
(2)
i , p

(3)
k ) −→ eip

(3)
k L1

N2∏
i

S(p
(2)
i , p

(3)
k )

N3∏
j

S(p
(3)
k , p

(3)
j ) . (C.5)

We now can safely take the L3, L2 → ∞ limit and obtain the infinite volume 3-point

function

C123({p}) ∝
∏2
r=1

∏Nr
i<j f(p

(r)
i , p

(r)
j )∏N3

i

∏N2
j f(p

(3)
i , p

(2)
j )

N3∏
k

1− eip
(3)
k L1

N2∏
i

S(p
(2)
i , p

(3)
k )

N3∏
j

S(p
(3)
k , p

(3)
j )


(C.6)

where the momenta p(3) and p(2) no longer satisfy any quantization condition.

In order to check the kinematical residue axiom we calculate

−iRes
p
(3)
k =p

(2)
j

C123({p})

C123({p} \ {p(3)
k , p

(2)
j })

. (C.7)

Using the unitarity of the scattering matrix we obtain the required factor

1− eip
(3)
k L1

N2∏
i

S(p
(2)
i , p

(3)
k )

N3∏
j

S(p
(3)
k , p

(3)
j ) . (C.8)
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C.2 The su(2) sector

Let us recall the 1-loop structure constant from the literature [58], written in to our con-

ventions when L3 = L1 +L2. The operators are again parametrized by the momenta (more

precisely by the spin chain rapidities) of the closed BA states satisfying:

eip(u
(r)
k )Lr

Nr∏
j:j 6=k

S(u
(r)
k − u

(r)
j ) = 1 ; S(u) = Ssu(2)(u) =

u− i
u+ i

. (C.9)

The momenta and the rapidities are related via

eip(u) =
x(u+ i

2)

x(u− i
2)

; x(u) +
1

x(u)
=
u

g
. (C.10)

The OPE coefficient up to 1-loop takes the form

C123({u}) =
C(1− g2(Γ1 + Γ2

32 − α32))
√
ρ1ρ2ρ3

P23S23A1 (C.11)

where the index refers to the set of rapidities u
(r)
i the various terms depend on. More

explicitly

Γi =

Ni∑
j=1

1

(u
(i)
j )2 + 1

4

; Γij =
1

2
(Γi − Γj) (C.12)

and

α32 =

Ni∑
j=1

u
(3)
j

(u
(3)
j )2 + 1

4

−
Ni∑
j=1

u
(2)
j

(u
(2)
j )2 + 1

4

. (C.13)

Introducing Baxter’s Q functions and the transfer matrices

Q(i)(u) =

Ni∏
j=1

(u− u(i)
j ) ; T (i)(u) =

Q(i)(u− i)
Q(i)(u)

+ e−ipLi
Q(i)(u+ i)

Q(i)(u)
(C.14)

the next term can be written as

P23 =

∏N2
j=1

Q(3)(u
(2)
j )

(gx(u
(2)
j −

i
2

))N1

∏N3
j=1(gx(u

(3)
j −

i
2))N1∏N3

j<k(u
(3)
j − u

(3)
k + i)

∏N2
j<k(u

(2)
j − u

(2)
k + i)

. (C.15)

Finally the most complicated term can be compactly written in terms of a sum of N3 ×
(N1 +N2) determinants

S23 = D[0,1] + g2
(

(N1 + 1)D[0,3] + (N1 − 1)D[1,2] − 2α32D
[0,2]
)

(C.16)

in which the upper index shows, how the argument of the last two columns are shifted

D[i,j] =

∣∣∣∣∣∣∣∣∣
∂
u
(3)
1

T (3)(u
(2)
1 ) . . . ∂

u
(3)
1

T (3)(u
(2)
N2

) q2(u
(3)
1 ) . . . qN1+i(u

(3)
1 ) qN1+j(u

(3)
1 )

...
...

...
...

...
...

...

∂
u
(3)
N3

T (3)(u
(2)
1 ) . . . ∂

u
(3)
N3

T (3)(u
(2)
N2

) q2(uN1) . . . qN1+i(u
(3)
N3

) qN1+j(u
(3)
N3

)

∣∣∣∣∣∣∣∣∣ (C.17)
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and

qn(u) =
1

(u+ i
2)n−1

− 1

(u− i
2)n−1

. (C.18)

The index of q in the N2 + i’th column is i + 1 except the last two columns which are

shifted. The expression for A1 is quite involved, however, we do not need its explicit form

to check the kinematical singularity axiom.

To prepare for the infinite volume limit we rewrite the transfer matrix in terms of the

scattering matrix as

T (j)(u) = e−ipLj
Q(j)(u+ i)

Q(j)(u)

(
1 + eipLj

Q(j)(u− i)
Q(j)(u+ i)

)

= e−ipLj
Q(j)(u+ i)

Q(j)(u)

1 + eipLj
Nj∏
k=1

S(u− u(j)
k )

 . (C.19)

The derivative of the transfer matrix appears in the matrix element of the determinant as:

∂
u
(3)
k

T (3)(u
(2)
j ) =

e−ip(u
(2)
j )L3

u
(2)
j − u

(3)
k

i

u
(2)
j − u

(3)
k + i

Q(3)(u
(2)
j + i)

Q(3)(u
(2)
j )

×1− eip(u
(2)
j )L3

∏
k:k 6=j

S(u
(2)
j , u

(3)
k )

 . (C.20)

Clearly the u
(2)
j = u

(3)
k would be pole is annihilated by the zero which manifests the BA

equation. In order to have a well defined L3, L2 →∞ limit we use the BA of u
(2)
j to rewrite

this expression as

∂
u
(3)
k

T (3)(u
(2)
j ) =

e−ip(u
(2)
j )L3

u
(2)
j − u

(3)
k

i

u
(2)
j − u

(3)
k + i

Q(3)(u
(2)
j + i)

Q(3)(u
(2)
j )

×1− eip(u
(2)
j )L3

∏
m:m 6=j

S(u(2)
m , u

(2)
j )

∏
k:k 6=j

S(u
(2)
j , u

(3)
k )

 . (C.21)

Now it is legitimate to send L3 and L2 to infinity and keep L1 = L3 − L2 finite. This

procedure, together with the renormalization of the BA states to the infinite volume scat-

tering basis, result in the infinite volume ‘OPE coefficient’, where the rapidities no longer

satisfy the BA equation, i.e. they are off-shell. As a consequence, the expression is singular

for u
(2)
j = u

(3)
k and we can calculate its residue to check the kinematical singularity axiom.

One non-trivial requirement is that the result should be proportional to a similar decom-

pactified OPE coefficient with two particles less, when u
(2)
j = u

(3)
k were removed. Clearly

the overall factors, which depend only on the particles u
(1)
j factor out. Additionally Γ32

and α32 reduces to the analogous expression with two particles less. The only singularity

at u
(2)
j = u

(3)
k comes from the common matrix element ∂

u
(3)
k

T (3)(u
(2)
j ) of all determinants.

When we expand the determinants w.r.t. this element the subdeterminant is nothing but
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the determinant, which appears in the reduced OPE coefficient and the prefactor is exactly

the required one:

−iRes
u
(2)
j =u

(3)
k

C123({u})

C123({u} \ {u(2)
j , u

(3)
k })

∝

1− eip(u
(2)
j )L1

∏
m:m6=j

S(u(2)
m , u

(2)
j )

∏
l:l 6=k

S(u
(2)
j , u

(3)
l )

 . (C.22)
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