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1 Introduction

A phase transition takes place when the free energy of a system has a nonanalyticity as
a function of another thermodynamic variable of the system, such as the temperature or
the pressure. Phase transitions can be classified by the way the free energy changes at
the transition, distinguishing discontinuous (first-order) and continuous (second or higher-
order) phase transitions. During a first-order phase transition, the derivative of the free
energy is discontinuous, and the variable describing the amount of order in the system, the



order parameter, jumps from a zero to a nonzero value. In contrast, during a continuous
phase transition the order parameter becomes nonzero in a continuous manner. In the
latter case, precisely at this so-called critical point the system has a diverging correlation
length. This implies that the correlations in the system look the same at all scales.

Consider, for instance, a system of fermions and bosons in the vicinity of such a
continuous phase transition. This is a generic situation in experimental and theoretical
condensed-matter physics, see for example ref. [1] and references therein. The bosons
represent fluctuations in a collective field, the expectation value of which is the order
parameter introduced above. As mentioned previously, there exists a control parameter p
which can be tuned to a critical value p., at which the phase transition occurs. There, the
correlation length of the bosonic fluctuations becomes infinite and the bosonic degree of
freedom obtains a nonzero expectation value at one side of the transition. Then the system
is said to be in the ordered phase. Examples of such an ordered phase are a superfluid,
an (anti)ferromagnet or a charge-density wave. When the system is still in the disordered
phase, but close to the critical point, the expectation value of the order parameter is zero
but there are critical bosonic fluctuations which have an increasing importance as p — p..

A phase transition occurring at zero temperature is known as a quantum phase tran-
sition [2-4], since the nature of the fluctuations of the order parameter is purely quantum.
As suggested above, in the absence of a temperature scale and in the case of an infinite
correlation length, the behavior of the order parameter fluctuations can become fully scale
invariant precisely at the transition. This can be the case both for weakly and strongly
coupled systems. A typical phase diagram containing a quantum critical point is shown
in the left panel of figure 1. In this figure, the quantum critical point is the end point at
T = 0 of a line of nonzero-temperature phase transitions to an ordered phase. Interest-
ingly, due to the absence of other scales, the quantum critical point dominates the behavior
of the system at p. even for temperatures 7" > 0, which is therefore called the quantum
critical region.

We can ask what the consequences of this criticality are for the fermions that are also
present in the system. In many cases, this can be studied using a field-theoretic description
where the order-parameter fluctuations give rise to an effective interaction for the fermions.
In the simplest approach, the bosonic system becomes scale invariant and can be modeled
by a conformal field theory.! This conformal field theory is coupled to fermions described
by the spinor field x and its conjugate . In this case, the total system is modeled by the

!Conformal invariance is more restrictive than scale invariance as it also includes symmetry under special
conformal transformations. What is most relevant for our purposes, is that the theory is scale invariant so
that a simple dimensional analysis can be applied. Throughout the paper we refer to some theories as a
“conformal field theory”, although we just need the property that it is scale invariant. While we are aware
of the fact that this name is not always entirely appropriate, we do so in order to keep the analogy with
the dual field theory in the AdS/CFT correspondence.
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The bosonic fluctuations are described by ®, an operator in the conformal field theory
described by the action S, whose expectation value is proportional to the order parameter.
The noninteracting fermionic action is denoted by Sy and g is the coupling constant between
the fermion and the conformal field theory.

When the bosonic excitations are free or weakly coupled, the full theory can be de-
scribed elegantly using perturbation theory. However, it is more challenging to study Seg
in the case of a strongly coupled system. An example of a strongly coupled system with
a continuous phase transition is a system of cold fermionic atoms at unitarity [5, 6]. At
unitarity the scattering length parameterizing the interaction strength between the atoms
becomes infinite, and there is no small parameter in which a perturbation expansion can
be made.? For a positive chemical potential j, this system exhibits a continuous phase
transition from a normal to a superfluid state at a nonzero temperature. The critical tem-
perature can be represented as a line in the (T, p)-plane, which is suppressed as p decreases
and ends in a quantum critical point at zero temperature [8], see the right panel of figure 1.

A possible approach to obtain properties of a conformal field theory in the strongly
coupled regime is derived from the holographic duality. Application of holographic methods
to condensed-matter physics has been dubbed Anti-de Sitter/Condensed-Matter Theory
(AdS/CMT) correspondence [9-11]. Essentially, it boils down to the fact that correlation
functions of operators in strongly coupled conformal field theories are provided by classical
computations in a gravity dual of one dimension higher. According to the discussion above,
these correlation functions can then be used to study the effective behavior of fermions in
the vicinity of a quantum critical point.

With this application in mind, we recently described a model for interacting Dirac
semimetals in the AdS/CMT set-up [12, 13]. This so-called dynamical-source model is
constructed analogously to the theory in eq. (1.1) and is similar to the semiholographic
approach introduced in ref. [14]. It contains elementary Dirac fermions living in (3+1)-
dimensional Minkowski space that are coupled to a conformal field theory playing the role
of the critical system. Here, elementary means that the fermionic creation- and annihilation
operators satisfy the canonical equal-time anticommutation relations given by

{3(@,2°),31(7,2") } = 6* (7 - 7).

The conformal field theory they are coupled to, is in fact the dual (“boundary”) field
theory of classical Einstein gravity in a (“bulk”) (4+1)-dimensional asymptotically Anti-de
Sitter background with a planar Schwarzschild black hole. The main result is the retarded

2In our notation, the space-time arguments of the fields in the (341)-dimensional Lagrangian density
are always suppressed if the fields are evaluated at the same space-time point z*. Spinor indices are also
suppressed and a sum over them is always implied.

3This regime can however be accessed with renormalization-group techniques [7].
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Figure 1. Left panel: Phase diagram containing a quantum critical point at the 7" = 0 end
point of a line of phase transitions to an ordered phase. The dotted lines represent a cross-over
to the quantum critical region which is directly above the quantum critical point. Right panel:
Phase diagram of ultracold fermionic atoms at unitarity. Above the critical temperature T, the
system is in the disordered or normal state, denoted by “N”. For positive values of the chemical
potential p there is a line of second-order phase transitions to the ordered superfluid phase (“SF”).
These phase transitions can for T' > 0 be described using classical physics, but the line terminates
in a quantum critical point at zero temperature and zero chemical potential. The dotted lines
indicate the crossover from the classical regime to the quantum critical region, where the behavior
is dominated by the physics of the quantum critical point.

propagator of elementary Dirac fermions which contains a free part and a nontrivial self-
energy. This self-energy comes about from adding probe Dirac fermions to the theory
and integrating out the holographic dual conformal field theory part of the theory. This
is why a boundary interpretation of the dynamical-source model is closely related to the
system described in eq. (1.1). The boundary Dirac fermions are made dynamical by an
additional boundary term added to the fermionic action, which is an irrelevant perturbation
to the conformal field theory, and its role is to provide the correct UV dynamics. As a
consequence, the resulting retarded Green’s function of the elementary fermionic operators
defined by
e — ') = =6 («° - ) ({x(@). ¥} }),

satisfies the zeroth-order frequency sum rule, i.e.,

/OO 0 Gr(k,w®) = —m. (1.2)
o C
This is important in the light of condensed-matter applications, where this sum rule is re-
quired for the determination of experimentally accessible correlators. So these holographic
correlation functions can be directly compared to experimental data, e.g. from photoemis-
sion experiments or from radio-frequency spectroscopy for fermionic atoms at unitarity.

The dynamical-source model is an example from a bigger class of models called holo-
graphic bottom-up models. This is a phenomenological approach to the holographic dual-
ity, which is an alternative to the so-called top-down approach. In top-down holography,



the starting point is string theory in ten dimensions with a set of D-branes. The bench-
mark example is the duality between Type-IIB string theory in AdSsxS;, and N = 4
Super-Yang-Mills theory in (341)-dimensional Minkowski space. By taking certain limits,
consistent truncations to a lower-dimensional gravity theory can be made. If the string
theory has a dual conformal field theory, the truncated field theory on the boundary is
guaranteed to exist. However, the dimensional reduction usually leads to many technical
difficulties, for instance, a large amount of degrees of freedom that have to be kept track
of. It is usually not clear which of these degrees of freedom are important for the behavior
of the boundary field theory. Therefore, practical computations are often not feasible in
such a set-up. See, however, ref. [15] for a recent example of a top-down approach to a
condensed-matter problem.

In contrast, in bottom-up models, we start off on the gravity side with classical Einstein
gravity, such as an (asymptotically) Anti-de Sitter space-time. A few degrees of freedom
are then put in by hand, for instance, a scalar field, the aforementioned Dirac field, or a
Maxwell field. These represent the desired features of the strongly coupled field theory
of interest, and it is a working assumption that this field theory exists. It is an effective
low-energy theory, and there is no guarantee that these gravity theories can be embedded
in a higher-dimensional string theory, where the duality was originally conjectured. It is
for instance not clear that the Dirac fermions come from a certain limit of a string theory.
Bottom-up holography is therefore a phenomenological approach, usually the subject of
trial and error until successful, plausible or consistent results justify this approach. The
upshot is that computations are relatively simple, without the necessity to deal with the
many technicalities coming from string theory, but still manage to capture the universal
and effective properties of many systems. In fact, this simplicity is particularly appealing
for condensed-matter physics, where a description in terms of complicated supersymmetric
non-Abelian gauge theories seems a bit of an overkill. The relevance of this phenomeno-
logical approach for the study of the low-energy physics of condensed-matter systems, was
first stressed by the authors of ref. [16].

Most AdS/CMT models are bottom-up models. So for applications in condensed mat-
ter, bottom-up holography in the form of the AdS/CMT approach may be the preferred
way to go, compared to the top-down approach. Nevertheless, even in the bottom-up case,
the question remains whether the dual boundary theory in fact provides an adequate de-
scription of a specific condensed-matter system. The hope is that the dual strongly coupled
quantum field theory bears sufficient resemblance to realistic quantum critical points, such
as the ones in the examples above, and understanding this point is an ongoing challenge.
An important approach to comprehend bottom-up holography from the field-theory side,
is to investigate what are the minimal requirements for conformal field theories to have a
gravity dual. Examples are refs. [17-19], and more recently, refs. [20-22], and references
therein. These works are aimed at a better understanding of the so-called conformal boot-
strap constraints in general conformal field theories that have a large number of degrees of
freedom. This information can be used to analyze the bulk effective action, by comparing
the structure of correlation functions computed directly in the conformal field theory and
in bottom-up holography using Witten diagrams. Nevertheless, the difficulty remains, that



in the bottom-up approach, the AdS/CMT correspondence just provides the correlation
functions of the effective excitations in the boundary, without providing information about
their microscopic nature. So the microscopic Hamiltonian of the actual boundary system
remains hidden. That problem is the topic of this work. We investigate possible micro-
scopic mechanisms in which AdS/CMT results at zero charge density, such as the fermionic
self-energy in the dynamical-source model can come about. To this end, we construct field
theories of fermions coupled to a (strongly interacting) conformal field theory which mimic
the bottom-up dynamical-source model mentioned above, as well as the theory in eq. (1.1).
The precise form of these simple field theories is motivated by making analogies to known
holographic dualities. By making certain choices, it is possible to reproduce the result
for the fermionic self-energy and electrical conductivity obtained in the dynamical-source
model and elsewhere in the literature. In this manner we aim at a better understanding
of how holographic bottom-up results can originate from condensed-matter field theories.
Our approach is different from that in refs. [17-22] in the sense that we have in mind to
find a possible microscopic theory of elementary fields of the conformal field theory, and
only indirectly consider the structure of the conformal field theory operators and their
correlators. Hopefully this paves the way for a more established bottom-up holographic
dictionary, where the relation between microscopic field theories suitable for condensed-
matter, and holographic bottom-up model building becomes more precise. This might
enhance the potential applicability of holographic results e.g. in condensed-matter theory
and experiment.

The content of this paper is as follows. In section 2, we first review the results of
a different bottom-up computation, namely of the electrical conductivity of a strongly
coupled conformal field theory [23]. Next, we review the dynamical-source model for the
electrical conductivity of Dirac fermions coupled to a strongly interacting conformal field
theory. In section 3 we depart from holography and construct a purely field-theoretic model.
This is referred to as the probe-fermion model, because it contains a conformal field theory
coupled to a fermion in the spirit of eq. (1.1). In addition, it contains a certain large-N limit
and a suitably defined strong-coupling limit analogous to what happens on the field-theory
side of the holographic duality. For both literature results in section 2, we show that this
purely field-theoretic model reproduces the holographic results, thus providing a possible
microscopic interpretation. Finally, in section 4 we realise that this possible interpretation
has some disadvantages, and construct an alternative model that reproduces the AdS/CMT
results. This last, so-called Fock, model then offers the interpretation of the dynamical-
source model as a phenomenological way to incorporate finite-coupling corrections in the
bulk setup. We end with a conclusion in section 5. There are also a number of appendices
which contain more explanation and details of the calculations. In particular, our notation
and conventions can be found in appendix A.

2 Previous results

We start by briefly reviewing two literature results from the AdS/CMT correspondence.
Firstly, the authors of ref. [23] computed the electrical conductivity of the strongly coupled



boundary conformal field theory with a gravity dual. Secondly, in ref. [12] results were
presented for the self-energy of Dirac fermions coupled to a conformal field theory with
the same gravity dual, in the dynamical-source model. With this fermionic self-energy,
the contribution to the electrical conductivity of the dynamical-source fermions was also
computed [24]. In all three cases, the bottom-up gravity dual is classical Einstein gravity
with a negative cosmological constant, that has as a solution an asymptotically Anti-de
Sitter space-time with a planar Schwarzschild black hole. The corresponding line element
is in 4 + 1 dimensions given by

V2(r)r? 0 r?

Adt? + ——dr* +

2 _
ds” = 02 r2V2(r) 02

dz?, (2.1)
where (¢ is the characteristic length scale of the asymptotically AdS spacetime. On top of
this fixed background, extra fields are added, which are specified below.

2.1 Electrical conductivity of the boundary field theory

For the electrical conductivity of the boundary field theory, a Maxwell field is added to the
bulk system. Its action is in 441 dimensions and in natural units given by

Sem = —4;?)6 d° /=g F,, F"

where g% is the 5-dimensional gauge coupling constant, g is the determinant of the metric
corresponding to the line element in eq. (2.1), and F' is the electromagnetic field or Faraday
tensor. Compared to ref. [23] there is an additional factor ¢ so that g2 is dimensionless
here. The spatial components of the gauge field are fluctuating on top of the background in
eq. (2.1), and the linearized equation of motion for the gauge field in the curved background
is considered. According to the holographic dictionary, the local U(1) symmetry becomes a
global U(1) symmetry in the boundary field theory. The boundary value of the gauge field
couples to the boundary U(1) symmetry current, and from the bulk gauge-field fluctuations
the retarded two-point function of the boundary current is derived.

The boundary field is effectively charged by a rescaling of the global boundary current
Ju — egsJ,, so that it becomes the canonically normalized charge current. The conduc-
tivity is subsequently obtained via the Kubo formula and this results in 3+1 boundary

dimensions in
ezk‘BT
g =

wh2c '’

where T is the temperature. In eq. (2.2) we have reexpressed the result from ref. [23] in SI

(2.2)

units. For our purposes the most important feature of this result is that the conductivity
is linear in temperature. This is to be expected from dimensional analysis in the boundary
conformal field theory. Note that the conductivity in eq. (2.2) does not depend on ¢, which
is a consequence of the scale invariance of the system.

2.2 Semiholographic fermionic self-energy and fermionic conductivity

In the computation of the self-energy of Dirac fermions coupled to the boundary field
theory in the dynamical-source model [12, 13, 24], two species of uncoupled probe Dirac



fields ¥ with ¢ = 1,2 are added to the bulk instead of a Maxwell field. Special boundary
conditions are used, in particular, next to the usual Dirichlet boundary conditions, an
IR irrelevant kinetic boundary term for the Dirac fermions is taken into account. These
boundary terms are imposed at a UV slice r = rg, which is taken to the boundary at the
end of the computation. The total action is

2
S = ing/d%”\/g\iJ(i) <;F“ea“<ﬁ>u - MZ) @)
=1

— /d4x\/—g [igf\/g”’ (\T/g)\I/(Ll) — \Tl(Lz)\I/g)> + Z@]D@Iﬂ

r=rg

Here, \Il%) ;. are the chiral components of U with respect to the chiral Dirac matrix of the

boundary, and ¥ = \Ilg) + \I/(Lz) is the boundary Dirac spinor. Furthermore, g, and e,"
are respectively the components of the asymptotically Anti-de Sitter metric introduced in
eq. (2.1) and the corresponding vielbeins, D,, is the usual covariant derivative containing
the spin connection I§, = Za# Ie,'i0), is the boundary kinetic operator where I'* are
the bulk Dirac matrices, gy is a dimensionless coupling constant, and Z is a dimensionful
wavefunction-renormalization constant. Finally, M; = —Msy = M, are the dimensionless
bulk Dirac masses, which are in the interval —1/2 < M < 1/2. This number M becomes
a model parameter in the boundary field theory.

Again, the equation of motion is solved in the curved background and the action is
evaluated on shell. This implies that the boundary conformal field theory is integrated out,
and it takes on the role of an effective self-energy for the boundary Dirac spinor W. This self-
energy can be written as the solution of the Dirac equation in the curved background. As a
result of the Gaussian integration, half of the chiral components of both W) are eliminated,
namely \I/(Ll) and \I/g). So the chiral component of each bulk fermion species that is left,
provides one of the chiral components of ¥. Next, a field rescaling and the limit rg — oo
are carried out in a specific manner that keeps the boundary action finite. Together with
the kinetic boundary term, the result is the retarded Green’s function of Dirac fermions
in 34+1 dimensions, with the retarded self-energy coming from the interactions with the
strongly coupled conformal field theory. For zero temperature, the result is?

G™H(k) =k - S(k), (2:3)

with the self-energy
A T(z - M)

Y(k) = _22MCF(%+M)

fr2M-1 (2.4)

where ck® = w + i0 and the dimensionful quantity A = c¢*M (ry/0)272Mg;/7Z > 0 is the
square of the coupling between the conformal field theory and the fermion. The anomalous

4Note that in order to make the self-energy agree with our present conventions, we have, compared to
ref. [24], placed an additional minus sign in front of the action, and removed a factor c¢y° from the inverse
Green’s function to arrive at egs. (2.3) and (2.4). See also appendix A. Furthermore, the dimensionless
number C) in eq. (2.5) is equal to [2°MT(3 + M)/T(3 — M)]QS}E} in the notation of ref. [24].



dimension of the self-energy quantifies the difference from the linear relativistic scaling. So
we see that 2M — 1 is related to the anomalous dimension of the self-energy.

Next, the dynamical-source fermion can be minimally coupled to a background electric
field, and thus the contribution of the dynamical-source fermion to the electrical conductiv-
ity can be computed. In ref. [24] this computation was carried out and for w much smaller
than both frequency scales present, namely, w < kg7 /h and w < (\/c2M )1/ (1=2M) " the

result was - 5an
e“c kgT\°~
IX T 12rha2 ( he ) Cnt- (25)

Here, C)s is a dimensionless function of M. In contrast to the pure conformal field theory
contribution from eq. (2.2), this contribution scales as temperature to the power 3 — 4.
So, the conductivity obtains a linear scaling in temperature only in the limit M — 1/2.
The point M = 1/2 thus corresponds to a case with no anomalous dimension, as is also
visible in eq. (2.4). In fact, a different calculation has to be carried out in this case, which
results in logarithmic corrections to a linear power-law scaling.

3 Probe-fermion model

In an attempt to interpret the above results, we now construct a simple field theory, the
probe-fermion model. The total action of this model is®

Stot [0, ¥, 3 A, X, X] = Solep] + Sol), ¥; Al + Sg, [, ¥, ] + Solx: X3 A] + S, [, ¥, ¥ X, x].-
(3.1)
The notation indicates that the action is a functional of the sets of fields ¢;, and v; and
1, and of the sources A, and y and Y. These ingredients are specified in the following.
Firstly, the fields 1;, ¢; and ; together are referred to as the “conformal field theory”.
As discussed in the introduction, this name is not completely appropriate. It refers here
to the scale-invariant theory that takes over the role of the field theory dual in the actual
holographic model. The theory has a number of copies of fields i = 1, ..., N. Furthermore,
the coupling constants go and ¢ introduced below are normalized in a certain way, by ap-
propriate factors of 1/v/N. This normalization makes sure that a certain class of diagrams
dominates in the large-N limit. The ¢; are real scalars whose contribution is given by
the action

N
h N2
Sl =5 3 [ dlogi(-i0)* g
=1

The propagator of the ¢; has an anomalous dimension 7. Next, we have Dirac fermions ;
and their conjugates ; = 7,/}2 ~0. Writing @ = Y0, and A= y*A,, they are described by
the action

N .
Solbo i A = <in 3 [ da (8~ A)ws (32
=1

5For us, the inspiration to write down an action of this specific form came from the structure of super-
symmetric Yang-Mills theory. For the readers without a background in supersymmetry, we have included
appendix B, in which we review some properties of supersymmetric Yang-Mills theory that may motivate
the action in eq. (3.1).



The components of the spinors v; and v; are Grassmann fields. The Dirac fermions are
coupled to the real scalars through a local four-point interaction with coupling constant
g2/2N, described by the term

S [p, ¥ b Zth Z Z/d4117 Pi Uh Yir i (3.3)

i=114=1

There are also two “external” fields, i.e., not in the conformal field theory, which we
motivate now. Firstly, in section 3.2, we compute the electrical conductivity of the field
theory. To this end, the Dirac fermions 1); in eq. (3.2) are minimally coupled with coupling
e to a nondynamical U(1) gauge field A,. The scalar field ¢ is real and is not minimally
coupled. Secondly, in section 3.1, the fermionic self-energy is computed. To calculate it
in the probe-fermion model, we add a single Dirac fermionic source y to the theory with
noninteracting action

SolvxiA] = =i [ atox(9- A (3.4)

Analogously to the computation in the dynamical-source model discussed in section 2
this is the external Dirac fermion that is coupled to a conformal field theory and obtains a
nontrivial self-energy when the field theory is integrated out. In other words, this x fermion
is the probe fermion that mimics the dynamical source. For generality, it is also minimally
coupled to the U(1) gauge field. There is only a single species of this fermion because it
is not part of the conformal field theory in which there is a large-N limit. Instead, the
external source x is coupled to the field theory through a local three-point interaction with
coupling g1/ VN, described by the term

_ ih
Sg1[907¢7wa 77X =1 ng/d4 (@zxwz‘l‘d}z)(@z)

Thus, we aim at an interpretation of the dynamical-source model, in which the dynamical-
source fermion is a probe fermion coupled to a conformal field theory.
The real-time partition function is now

ziaxd = [ ddlals] [ digl exo (Sl bvs Azl )

Our notation for the path-integral measure is d[field] = [, d[field;]. To perform the large-
N limit we perform a Hubbard-Stratonovich transformation to a collective spinor field =
that decouples both interactions. To this end, the partition function is multiplied by

1 — /d[ﬂ]d[ﬂ’] exp [;/ < sz vi— hm) (1271];[)

X <7I' — ﬂ\?zzlqﬂl/gpl/ — \/%X>:|

(3.5)
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Then, the partition function becomes
_ i _
24,5 = [ il [ dig] [ dmdpr) exo (81 b mmAxd). (36)
with

_ - 2N
SE;%[‘PM%%TT’W;A:)_(,X] = SO[()D] + Sﬁ[wawvA] + /d4.’I) [ﬁ(m.%),ﬂ

‘ . . (3.7)
+ X [—iﬁ@ - %A) - 2zhg%] X+ 21\5?91 (xm + 7x) +iz (7_7901'%/% + 7]’1@177)]

92

7

Starting from eq. (3.7) our approach is the following. Now that the interactions are
decoupled, the only N-dependence of the effective actions of the y; and ; fields is an
overall species sum. This just leads to N copies of the corresponding single-species par-
tition functions. Furthermore, these actions are Gaussian, so we can integrate out the ;
and 1; fields exactly. This mimics the integrating out of the conformal field theory in
the semiholographic dynamical-source model. After this, we work in the random-phase
approximation, which becomes exact when the large-N limit is taken. Then the collective
field can be integrated out. The result is the generating functional in eq. (3.13) below,
from which the conductivity and the self-energy of the probe fermion can be obtained. We
will now derive eq. (3.13) in several steps.

Before we integrate out anything, it is convenient to introduce some new notation. We
first define the inverse noninteracting Green’s function corresponding to a single species of
the scalar fields ; as

G (w,2!) = —(—i0)* 6% (@ — o). (3.8)
The inverse noninteracting Green’s function for a single species of the fermion fields ; is
a functional of A, since

G Az, 7') = —i <a _ Z;A> Sz — o). (3.9)

It is also possible to write the Green’s function in their corresponding momentum-space
representation. However, it is more elegant to go to a basis-independent description, where
the Green’s functions matrices are written without indices. We also introduce a matrix
inner product, which is in the coordinate representation defined as:

(QS}G(;l}qb) = /d4x/d4x’ é(x) G;l(azjx/) (),

where ¢ denotes any of the fields with a suitably defined conjugate ¢, which should be clear
from the context. As before, a sum over spinor indices is always assumed if appropriate.
Furthermore, all Green’s functions are diagonal in species indices. With this definition,
the quadratic part of the actions can be written as a basis-independent inner product. For
example, the noninteracting fermion action from eq. (3.2) becomes

N
Solth, w5 Al = h ) _ (3]G Al ).

- 11 -



Now we integrate out the 1; fermions from eq. (3.7), after which the effective action for
the scalar fields is written in basis-independent notation as

S, 7, m; A] =

1\3\3*‘
Mz

%}G_ [7T,7T,AH(,DZ'),

=1
The scalars have an effective self-energy, which is in the coordinate representation given by

5,7, 7, A (2, ') = —%w( ) Gl A, 2) w(a).

Now it is straightforward to integrate out the scalar fields, which yields

/dm exp [ZEN: (s %G;l — Ew[ﬁ,ﬂ,AH%)] = exp [— %Trln ( -G+ Ev[ﬁ,w,A]ﬂ.

i=1
(3.10)
At this point we perform a fluctuation expansion of 7 around its expectation value (7).
Here we expand around (7) = 0 which is always a solution of the saddle-point equation. To
obtain a nonzero result we thus have to go one order beyond the mean-field approximation,
which is the random-phase approximation mentioned earlier. Because of the overall factor
N in the exponent above, the random-phase approximation becomes exact in the large-
N limit. Taking the large-N limit, we can therefore work up to first order in the scalar
self-energy and still obtain an exact result. Expanding the logarithm in eq. (3.10) to this
order yields

Trln(— G;l —i—Z(p) = Trln(—G;1> + Trln (1 _Gwzw) ~ Trln(—G;1> —TrGy,3,.

Here, X, is still a functional of 7 and 7, and this is used to obtain a self-energy term for
the 7 fluctuations. After these manipulations, the total partition function from eq. (3.6)
becomes

2= [ (- 1) - e ()|

< [ dimldfr] exp [m(ﬂcwnw) +ilxlo Al + 522 i) +i<w\x>}]-
Here, we have used the notation

() = [ dtax(e)mo).

and the noninteracting Green’s function of the probe fermion is given in coordinate
space by®

GV A)(z,2') = {—z(ﬁ— TA) 2191} Uz — o). (3.12)

5The symbol G, is reserved for the fully dressed probe-fermion Green’s function.

- 12 —



-1

~, which is a functional of

We have also defined the inverse collective-field propagator G
A, through G and is given in momentum space by

i 4
G AI) = G+ 3 [ s GulAl(h+ ) Golo)

Finally, we integrate out the collective-field fluctuations 7, which reduces eq. (3.11) to the
generating functional

Z[A, X, x] = exp [NTrln ( — G;l[A]) — %Trln ( — G;l) + Trln ( — NGﬂl[A])]

X exp [z'(x{ G '[A] + (,25;)2 Gr[A] \X)]~
(3.13)

This generating functional is the starting point for computing the self-energy of the probe
fermion and the electrical conductivity of the probe-fermion model.

3.1 Self-energy of the probe fermion

For the self-energy of the probe fermion we consider eq. (3.13) and set the field A4,, to zero.
Going to momentum space, the effective action for the probe fermion is identified as

4 Z 2 Z 2
s = b [ b [f- 20 20, )
where
4
I(k) = / %Gamq) Go(0). (3.15)

From eq. (3.14) we can read off the self-energy of x, which is

_ 2ig7 1 _ —igiI(k)
== 5 (- gmm) ~ T 310

92
Note in particular that all factors of N have dropped out from the self-energy. The result
in eq. (3.16) can be seen as a resummation of the bubble sum, where the bubble diagram
corresponds to I(k), the internal vertices come with a factor go and the exterior vertices
with g;. Namely, when we expand in powers of g9 it becomes a geometric series,

Sy (k) =~ —ig?I(k) (1 + %21(/-3) + gfﬂ(k) T > . (3.17)

This series is depicted in figure 2.
The loop integral I from eq. (3.15) is computed in appendix C. At zero temperature,
the result is given by

_ zk(k2)g 1 . 2
=" [0+ pe+ Y =#EY s,
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Figure 2. Probe-fermion self-energy from eq. (3.17) in a perturbation series in powers of gs,
denoted by the filled cicles. Empty circles represent the three-point vertex g;, where x can attach.
The solid line is the noninteracting Green’s function of a single species of v; fermions, while the
dashed line denotes the noninteracting scalar Green’s function. Together, they form the bubble
corresponding to the expression for I(k) from eq. (3.15).

where we defined the function f as

f(n) = [(47T)Qg (Hg) (2+g)}_1.

Inverting the matrix structure in eq. (3.16) leads to two contributions to the self-energy,

_ igt 1.2\ 92 2\149 ]
) =~ T e (KD E Fn) = Z (R f 1] (3.18)
We now define a strong-coupling limit as follows. The couplings g; and gs become
infinite, but the ratio g = g?/g2 remains finite. Writing g? = gg3, we see that this particular
limit amounts to ignoring the 1 in the denominators of eq. (3.18). Then, the probe-fermion
self-energy becomes
49

(k) = m%(kj)_g_l + 2iggo1.

The second term is independent of momentum and is a formally infinite mass term, gener-
ated in the Hubbard-Stratonovich transformation. We can get rid of this term by adding a
bare mass term for y from the start, which precisely cancels this term in the strong-coupling
limit. Then, the renormalized self-energy is just given by the first term, i.e.,

Bi(k) = k) (3.19)

It is proportional to the product of } and a power of k? related to the anomalous dimensions
of the scalar fields. This is precisely the form of the self-energy from eq. (2.4) found in
ref. [12], if we make the identifications

n=-2M -1,
AD (3= M) f(—2M —1) (3.20)
e (Lpmy

g:

The desired range —1/2 < M < 1/2 coincides with the interval —2 < n < 0.

We end with the remark that the case with no anomalous dimension, = 0, corresponds
to M = —1/2, and not to M = 1/2 as anticipated. Instead, the value M = 1/2 corresponds
to n = —2. Note that the holographic result from eq. (2.4) is obtained in the alternative
quantization. In the regular quantization, the self-energy from eq. (2.4) would be replaced
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by its inverse. This is equivalent to eq. (2.4) with the replacement of M by —M. So
in the regular quantization, 7 = 0 indeed corresponds to M = 1/2. Nonetheless, in the
probe-fermion model result from eq. (3.19), setting n = 0 still does not make the self-energy
proportional to ¥, which is the expected form without an anomalous dimension.

3.2 Electrical conductivity

In this section we consider the total conductivity in the probe-fermion model in linear-
response theory. This is formally achieved by making use of the fact that the total electric
current J* in the Lagrangian of the probe-fermion model couples to a nondynamical U(1)
gauge field A,. In practice, the total current consists of several contributions, which are
defined through minimal coupling of the various charged fields to A, for instance as in
egs. (3.2) and (3.4).

In linear response, the conductivity tensor ¢/ is defined as

3
<Ji(12,w)> =3 o (kW) B (k,w), (3.21)
j=1

where 4,5 = 1,2,3, and we choose the temporal gauge where Ay = 0. Furthermore,
FEJ = iwAl is a sufficiently small electric field. Because J* couples to A, in the functional
integral, we have from eq. (3.21) that

621n Z[A]
x o214
dAL0A,

ot

x <J“J”>.
A=0

So the generating functional eq. (3.13) is only needed up to second order in A,. For the
discussion in this section and in section 4.2 it is sufficient to consider only 6% In Z/§A4,0A, .
Obtaining the conductivity from this is straightforward and will not be discussed in detail
here. To consider the total contribution we start with the generating functional Z[A, x, x|
from eq. (3.13), and integrate out the fields x and x. The result is Z[A] where all matter
fields are integrated out. The A-dependent part is thus given by

In Z[A] = NTrIn ( - G;[A]) +Trin ( - NG;l[A]) +Trln ( - G;l[A]), (3.22)
where G/ 1is the full Green’s function of the probe fermion, given by the quadratic part
in x and x in eq. (3.13),

2
G A 2') = G (A, o) — (f_j;) GalAl(x, 7).

Next, every term in eq. (3.22) is expanded up to second order in A, to obtain the
total conductivity. This is described in more detail in appendix D and ultimately results
in eq. (D.4), a long expression for 62 In Z[A]/§ A*§A¥. This expression contains all contri-
butions to the total current-current correlation function, and is shown diagrammatically in
figure 3. We classify the various contributions to the conductivity by the types of currents
appearing inside the current-current correlation function. In the probe-fermion model,
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(1) (2) (3)
(4) (5) (6)
(7) (8)

Figure 3. All diagrams corresponding to eq. (D.4) in appendix D contributing to the total current-
current correlation function in the probe-fermion model. The Feynman rules are as follows. Small
wiggly lines denote the locations where external photons with vector indices p and v attach. The
single solid (green) line is G [0]. The green vertex is ey”/h. The double (red) line is G.[0]. The
red three-point vertex is 63, /8A,. The red four-poinvertex is 62X, /5A,,6A,. The double purple
line is G [0]. The purple circle is ey /h. The purple three-point vertex is 6%, /0A,, and finally the
purple four-point vertex is 623, /54,64, .

there are three contributions to the total conductivity. To see this, we recall that both the
fermions in the conformal field theory, and the external probe fermion x are coupled to a
U(1) gauge field, in egs. (3.2) and (3.4), respectively. So the total charge current is the
sum of these two contributions,

Jt = Jk + JY,

where J{ = —ecyy"x as can be seen from the free probe-fermion action in eq. (3.4). The

total current-current correlation function is in this case given by’
(3207) =+ ) G+ 1)
= (gt + (I ) +2(J0TR).

"The notation in the last term means we take the symmetric part of these cross terms, A®B*) =
1 (A"B” + AYB*).

(3.23)
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The expectation values in eq. (3.23) are taken with respect to the full theory in eq. (3.22),
i.e., including x, but with A, set to zero. Because x is dynamical, it gives a correction
proportional to G, to the propagator of 7 in the conformal field theory. Therefore, the
conformal field theory contribution <J§t C”ft> can be further split up into a contribution
where x is set to zero, denoted with a subscript “cft” as <J(/:th‘]cyft>cft plus an additional

piece that incorporates just the coupling of 7 to x. This last piece is denoted by

i), - (25
< cftcft oft? cftYcft oft

Here, the expectation value cft’ is taken with respect to the partition function Z.g given by

. 201\ 2
Do = /d[ﬂd[ﬂ] exp [;SC&[W,W] —iN (7;;) (W‘QX[OHW)] .
The second term in the exponent is a self-energy correction for 7, which arises if we first
integrate out the probe fermion y and its conjugate y. The conformal field theory action
is given by

Seqs[7, 7] = AN (|G [0]|7) — ihN'Tr In (-G;l[o]) + ihgTr In (-G,

We will interpret the separate contributions from eq. (3.23) in the following, starting
with the pure conformal field theory contribution in section 3.2.1 and considering the addi-
tional effect of the probe fermion in section 3.2.2. As it turns out, the various contributions
in eq. (3.23) may be distinguished physically by their different dependence on temperature
in the dc limit. Finally, in section 3.2.3 we turn to semiholography, by means of which our
model calculation of the current-current correlation function can be generalized to a probe
fermion coupled to any conformal field theory.

3.2.1 Conductivity of the conformal field theory

The conductivity of the conformal field theory is proportional to <J é‘ftJC”ft>Cft due to charg-

ing the ¢; fermions. The real scalar fields ; are neutral. This corresponds to taking into
account diagrams (1)-(3) of figure 3.

Ignoring the x-dependent contributions and the A,-independent determinant of the
scalar Green’s function, eq. (3.22) becomes

In Z[A] = NTrln ( _ G;l[A]) + Trln ( - NG;l[A]). (3.24)

The relative factor of N in front of the terms in eq. (3.24) is important. It indicates that
up to leading order in NN, the conductivity is given by the free fermion conductivity. This
is represented by diagram (1) in figure 3. Interaction corrections, which correspond to
diagrams (2) and (3), appear as O(1) corrections through G . The fermion self-energy
contributes only at O(1/N) so it does not appear here. This means that, to leading order,
the fermionic conductivity of the probe-fermion model is the conductivity of N species of
free Dirac fermions, which is at zero chemical potential and zero temperature given by [24]

_ Né?|w|

(@) = Torpe TOW-
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This is the leading fermionic contribution to the conductivity of the conformal field theory
at zero temperature.

In the nonzero-temperature case, the electrical conductivity is given by the T' > 0
conductivity of the free 1; fermions [24]. It is given by

Neé? [nkgT huw w hw
- 5 “ tanh 2
(@) = g { 3h (k:BT>+47r o <4k:BT>]’ (3:25)

The factor tanh(fiw/4kpgT) comes from the difference of two Fermi distributions. This term
is called the interband contribution and describes the contribution of particle-antiparticle

excitations to transport. The conductivity also has a delta-function peak with a weight
proportional to kg7 /h at the point hw/kpT = 0, which corresponds to intraband transport
of thermally excited degrees of freedom. This delta-function peak is a consequence of the
fact that in the probe-fermion model the conformal field theory is free at leading order in
N. It comes from the imaginary part of a pole at zero frequency.

However, for a conformal field theory such as the theory in ref. [23] that is strongly
interacting in the large- N limit, we expect a finite result for the dc conductivity. In general,
if the free result contains such a delta-function peak, interactions have the effect of smearing
it out, forming a Drude-like peak in terms of a more general dimensionless function f of
hw/kpT, which goes to a constant in the limit Aw/kpT — 0. Schematically,

kBT5 fuw interactions kBTf huw
h kBT h k BT '

So in the strongly coupled case, we expect such an intraband term to contribute a term
Ne?kgT f(0)/3h%c in the dc limit, where f(0) is a finite and nonzero universal constant.
See ref. [25] for an example of work where the universal coefficients of current-current
correlation functions of a certain conformal field theory are computed in a 1/N expansion.

In this way, the probe-fermion model reproduces the result in ref. [23], namely that the
dc conductivity of a conformal field theory in a thermal state is linear in temperature, in the
(3+1)-dimensional case. This is to be expected from dimensional analysis, as temperature
is the only scale present. Depending on whether the theory is interacting or free, the
prefactor can be finite, as in ref. [23], or infinite, when the linear scaling in temperature
comes from a delta-function peak.

3.2.2 Additional effects of the probe fermion

When the probe fermion is added to the conformal field theory, this gives rise to the rest
of the terms in eq. (3.23), namely,

v v _ v v)
() - (i) = () (02
* <Jélft é/ft>cft’ B <J£ft é/ft>cft '
All these terms contribute at O(1) to the total conductivity.

The first term on the right-hand side of eq. (3.26), i.e., <J>’é Jy >, is the current-current
correlation function of the probe fermion, and it is represented by diagram (4) of figure 3.

(3.26)
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Its contribution to the electrical conductivity is analogous to the conductivity of the inter-
acting Dirac fermion in semiholography, computed in ref. [24]. So as in eq. (2.5), the dc
conductivity of the probe fermion is proportional to T374M with —1/2 < M < 1/2. This
can be understood by dimensional analysis. In the strong-coupling limit of the conformal
field theory, the only dimensionful quantities present are the temperature and the coupling
between probe fermion and conformal field theory, called g in the probe-fermion model.
For fixed and finite g, every occurrence of the self-energy provides a power 2M of temper-
ature, while every propagator of y contributes the inverse power. This is because in the
dc limit, the self-energy dominates over the free part of the x propagator. So by counting
propagators and comparing it to the dimension of conductivity in 3+1 dimensions, we can
determine the scaling behavior of these diagrams in the dc limit.

The second term on the right-hand side of eq. (3.26), i.e., <J>(<”JV)

cft
term between the probe-fermion current and the current of the conformal field theory. This

>, is an interference

term gives rise to diagrams (5) and (6) of figure 3. Because the vertex function contains a
factor of X, , the above counting suggests that this term scales with temperature as T2-2M,

Thirdly, the combination <Jé‘ft é/ft>cft’ — <J§tJ&t>Cft represents the effect that the addi-
tion of the probe fermion has on the current-current correlation function of the conformal
field theory. This contribution is represented by diagrams (7) and (8). In this case, dimen-
sional analysis suggests that these terms scale again linearly with temperature.

Summarizing, based on the discussions above and in section 3.2.1, we conclude that
including all contributions in figure 3, i.e., up to subleading order in N, the total electrical
conductivity in the dc limit is of the form

oae~ (O(N)+ O M) )T +0 1) T>2M 4 0 (1) T5M 10 (L)
N

~ . .
conformal field theory interference probe fermion

It is interesting to note that in the probe-fermion model, the probe-fermion conductivity
and interference contribution can be identified from their anomalous scaling with temper-
ature, despite the fact that they are subleading in N.

We note one more thing on this classification of diagrams. The total action in eq. (3.1)
has a local U(1) symmetry associated with conservation of the total charge current J#. The
procedure to compute the current-current correlation function from appendix D leading to
the diagrams in figure 3 does not violate this gauge invariance. As a consequence, the Ward
identity for current conservation is satisfied and <J wJv > is automatically transversal, i.e.,?

Ou( 1" ) = 0.

It is interesting to consider how precisely the various contributions cancel when taking
the divergence of <J“J v > For instance, the divergence of diagram (1) vanishes by itself
because it contains only bare propagators and bare vertices. However, the probe-fermion
contribution, diagram (4), contains dressed propagators but bare vertices, and therefore we

8To be precise, the finite part of <J“J"> is transversal. There may be longitudinal divergent parts that
drop out after regularization.
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need additional contributions to satisfy the Ward identity. These additional contributions
are supplied by diagrams (5), (6) and (7). The divergence of diagrams (2), (3) and (8)
vanishes because of the conformal field theory Ward identity in the absence of .

In ref. [24], diagram (4) was computed numerically and its physical properties discussed
in details. According to the classification in section 3.2, diagram (4) is the only contribution
to the fermionic conductivity. The conductivity contributions due to the dependence of the
self-energy on the gauge field can be interpreted as interference with the conformal field
theory, and a correction to the conductivity of the conformal field theory.

3.2.3 Conductivity in semiholography

It is enlightening to reconsider the electrical conductivity of the boundary theory in the
context of semiholography. The boundary action of the dual conformal field theory coupled
to a fermionic dynamical source y resembles the action in eq. (1.1), namely, it is given by

S = 5:41[0, O] + So[%. ] + ig / d'z (YO + 0x). (3.27)

Here, O is a fermionic composite operator in the conformal field theory Scg. In general, in
the presence of a boundary gauge field A, which couples to both the conformal field theory
and to the dynamical source Y, this is modified to

S = Sexl0,0; Al + (x|nGyt — eA|x) +ig(x|0) +ig(O|x),

where

_ ~ 1
510,04 = 510,01+ 1. [ ate 7t 4,
and J 5& is again the current of the conformal field theory. The conformal field theory can
be integrated out, and for the dynamical source y, this gives rise to an effective self-energy,

£, 4](e.2') = —i (1) (06)0)

h >cft+A’

and the subscript cft+A indicates that this is the expectation value with respect to the
conformal field theory action in the presence of a current Jé‘ft sourced by the boundary
gauge field.

As before, the total electrical conductivity of the boundary theory is proportional to
the total current-current correlation function, which is in turn proportional to the expres-
sion 6%1n Z[A]/ 0A,0A,. It is convenient to integrate out the y and x fields as well and,
for taking these functional derivatives, to expand the generating functional In Z[A] up to
second order in the gauge field. The same procedure was carried out for the probe-fermion
model in appendix D. Besides the pure conformal field theory contribution, the resulting
expression contains the various purple diagrams in figure 3 built from the x propagators and
vertices present in the theory. In particular, there will be vertices of the form §3, /6 A, and
525, /6A,6A,. To investigate these, the self-energy of the dynamical source is expanded
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Figure 4. Witten diagrams for the correlators <OOJéLft>C and <OOJ§CtJ(§’ft>Cft.

ft

in powers of the gauge field. We have

(O0@o)) = (0@)0))

cft+A £t + }:C/d4y<0(x)0(x’)J§t(y)>

[¢ cft

| (h) [t [ d {0@0w) ) 7)), A A

cft

This leads to the following expression for the three-point and four-point vertices
0%y 1 /g\2 /=
2x — — (9 (o0 > ,
0A, ke <h) < oft / et

s =i (%) (00sm) .

respectively. Up to here this was just a field-theory calculation, but now we connect this

(3.28)

result to holography. The vertices on the left-hand side of eq. (3.28) contribute i.a. to
the interference terms needed to satisfy the Ward identity.” On the right-hand side we
find precisely the correlators of operators in a conformal field theory with a holographic
dual. So in a semiholographic theory, the full conductivity satisfying the Ward identity
can be computed with holography. This amounts to computing, besides the self-energy
that is proportional to <OO>Cft, the correlators <OOJ£ft>cft and <OOJ§tJé/ft>cft using the
holographic prescription [26]. These correlators can be represented by the Witten diagrams
in figure 4.

As a final remark, we note that the coupling in the action in eq. (1.1) is a special
case of the coupling in the semiholographic action in eq. (3.27), namely, in eq. (1.1), the
operator O is given by the product of the elementary fermion and a critical boson, O = x®.
Because the coupling in eq. (3.27) contains only one power of y, integrating out the critical
theory leads to an effective self-energy for y, i.e., a term in the action proportional to
3>Xx{00) . In contrast, integrating out the critical boson ® in eq. (1.1) yields a nonlocal

9We have shown this in the probe-fermion model in section 3.2.2, but it is not hard to see that this is a
general result.
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effective interaction for x of the form g2 (yx)? (®*®)cg.'0 This effective interaction can
lead, for instance in the Hartree-Fock approximation, to an effective self-energy for y. In a
semi-holographic setting, we need a bulk scalar field dual to the order parameter ® that is
sourced by the fermion bilinear xx on the boundary. This results in the required interaction
term for x where (®*®) g is related to the bulk-to-boundary propagator of the dual scalar
field. As eq. (1.1) just serves as a motivation for the problem discussed in this paper, a
detailed treatment of this case in semiholography is beyond the scope of this paper.

4 Fock model

In section 3 we have seen that the probe-fermion model offers an interpretation of the
dynamical-source model. Here the dynamical source is analogous to a probe fermion cou-
pled to a conformal field theory. A disadvantage of the probe-fermion model is the fact that
for n = 0, we do not recover the M = 1/2 behavior with logarithmic corrections seen in
the dynamical-source model. Furthermore, the conformal field theory of the probe-fermion
model is free in the large-N limit. As a consequence the dominant contribution to the
electrical conductivity comes from free 1; fermions, and it thus diverges in the dc limit.

These problems are addressed in the second field-theory model that we consider, the
Fock model. Here, there is no separate probe fermion. Instead, we consider fermions with
an effective interaction due to a propagator containing an anomalous dimension. This
effective interaction reduces to a Coulomb-like potential for n = 0, which is the desired
behavior in the M = 1/2 case of the dynamical-source model. A nontrivial self-energy, given
by the selfconsistent Fock diagram, comes about by introducing a bosonic and nonlocal
auxiliary field. In the strong-coupling limit, the fermionic propagator reduces to the inverse
of the self-energy, and this suggests that the kinetic term G in the propagator arises due to
finite-coupling corrections. Thus, we have a second interpretation of the dynamical-source
model, where the source fermion lives in the dual conformal field theory, and the dynamical
part of its propagator is an effective way to incorporate finite-coupling corrections.

In the Fock model, we have again N species of Dirac fermions. They are minimally
coupled to a gauge field A, and interact via a nonlocal, real interaction potential A. The
partition function is

2141 = [ atilaislesp |1 (sold v Al + 8l 1) (4.1
where the actions are given by
N .
Sold, s Al = ~in Y [ dtaidi (8- ) (12)
i=1

and

N
Saloil = 5% 3 [ ate [ d A — o) Gie) b (e) Bule)) ().
1

1=

10GQuch an effective four-point interaction is the starting point of the Fock model introduced in the next
section.
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As discussed before, the motivation for this form of Sa is that a nonlocal interaction for
the fermions is required to make their self-energy nontrivial in the large-N limit. For a
microscopic origin of this form of the interaction A(x —z’), we imagine that integrating out
other fields in a more complicated theory could lead to such a nonlocal effective interaction
term, as was already discussed at the end of section 3.2.3. Because of the nonlocality, this
interaction can carry momentum, and we choose it to have the momentum-dependence of
a relativistic scalar with an anomalous dimension 7,

k1 e
A(x—x')—/(ZW) — nek( ), (4.3)

We proceed by performing a Hubbard-Stratonovich transformation that decouples the in-
teraction, by multiplying the partition function by

1—/d exp[ /d4 /d4’ (pgaxl‘ Zj:]\f (2)i(2"))

< BB (st - iﬁzﬁi/,ﬁ<x’>wi/,a<x>)] .

(4.4)

We have written down the spin indices «, 8 explicitly. The auxiliary field p is a matrix in
these indices, is nonlocal, and its expectation value is proportional to the fermionic density
matrix. Defining the collective field p in this way is indicative of Fock theory, which explains
the name of this model. As in the probe-fermion model, the factors of N are chosen such
that certain diagrams survive in the large-N limit. We introduce new shorthand notation,

by means of which the expression in eq. (4.4) is written as

i hg - NA hg -
1= / d[p] exp [h Zl (p+ Fp vl g 1o + ) |-

Compared to the notation in section 3, the double lines now express the dependence on
two spacetime points of the field p and the product 7). After this transformation, the
action for the fermions is quadratic, and we can read off the inverse Green’s function for
a single fermion species. It is a functional of p and A,, and its matrix elements are in the
coordinate representation given by

Gy Lol o) = =i (B~ Aaple)) 00 = ) = sl )Mz — ),

From now on, the spinor indices are again suppressed in our notation. We can integrate
out the fermions, which results in the partition function

Z[A] = [ dlplexp |[NTrIn ( — G [A, o] —|—N(pH Hp) (4.5)
h 2hg

We do a fluctuation expansion of p around its expectation value by writing p = (p) + dp.
In the large-N limit, the approximation where we take only the leading term into account,
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becomes exact, because the path integral is dominated by this value. In this case, it is
the mean-field approximation where we replace p by (p). The field p is bosonic so its
expectation value can be nonzero. Setting the first-order terms in dp to zero leads to an
equation for (p). First, we expand the fermionic propagator to first order in Jp,

G 1A, Al ) = G A, ) ') = A — o )6p(a, ),

where we have defined the inverse fermion propagator in the mean-field approximation as

G A, ())(a,a) = —i (a - Z’,jm) o)~ 2ol )M 2. (46)

This is the Dyson equation for the dressed fermion propagator. The second term on the
right-hand side of eq. (4.6) is the self-energy of the fermions, which is proportional to (p)A.
Thus, the mean-field approximation to p leads to the Fock approximation to the fermion
self-energy, which becomes exact for large N. This is in contrast to the probe-fermion
model, which can be seen as a Hartree-like theory, in which the auxiliary field is local and
the self-energy of the 1); fields is 1/N suppressed.

To find the fermion self-energy in the Fock model, we first set A, = 0 so that (p)
depends only on the difference in coordinates. Then we expand the logarithm in eq. (4.5)
in fluctuations, and demanding the first-order terms in Jdp in the partition function to
vanish, leads to the following equation for (p),

gh
(pla =) = LGy 10, (p))(w — ). (47)
Together, eq. (4.6) and eq. (4.7) form a recursive equation for the dressed fermion propa-
gator, and thus for the fermionic self-energy. This recursive equation is elegantly expressed

in momentum space as
G (k) = K — Sy (k), (4.8)

with the self-energy

4
Bu(h) = —ig [ A= )Gyla)

Note that we have also suppressed the functional dependence on A, p and (p), so that

the dressed Green’s function is denoted just by G,. This Dyson equation for the fermion
propagator is shown diagrammatically in figure 5.

4.1 Fermionic Fock self-energy

Finding the fermionic self-energy requires solving the recursive equation eq. (4.8), which
cannot be solved analytically. However, we can solve it both in the free case and the very
strong-coupling limit. In the first, we just set g = 0 so that the self-energy piece drops out,
and obtain the trivial result Gy (k) = 1/f. We can depart from this trivial value of the
coupling by means of perturbation theory in g.
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Figure 5. Graphical representation of the Dyson equation from eq. (4.8). Double lines denote the
full Green’s function Gy, while single lines denote the free propagator 1/f. The wiggly line is the
interaction A. The Fock bubble comes with a factor g, or equivalently, two factors ,/g. The latter
can be associated with the solid dots.

The strong-coupling limit is the opposite limit, with the effect that the self-energy term
dominates over the £ term in eq. (4.8), so that we can ignore it, and eq. (4.8) becomes

L

4
<G = [ Ak - )Gula) (49)

(2m)

In this limit, the fermion propagator must depend on g, otherwise eq. (4.9) is inconsistent.
It has dimensions of length in our conventions. Furthermore, in the absence of scales such
as temperature, it must be a single power of k, it is fermionic so there is also a f involved,
and of course there can be a numerical prefactor. So we plug in the following Ansatz,

Gy (k) = g'k" ' kh(n),

where the function h(n) is dimensionless. Plugging this Ansatz into eq. (4.9) and equating
the powers of g on both sides of the equality, leads to y = —1/2, and consequently, z =
—1 —mn/2. Then, the Green’s function in the strong-coupling limit is given by

1 Fh(n)
Sy(k) Jgk*tE

Gy(k) = (4.10)
We can solve h(n) from eq. (4.9) by doing the momentum integral on the right-hand side,
which is described in more detail in appendix E, and results in

1 rA-9 [TA+PrD  4+9T(-1-DrE+3)

h*(m)  (4r)PT(1+3) [TA-PTE+1  2n TR+ DI(-3)

(4.11)

In the strong-coupling limit the Green’s function is minus the inverse of the self-energy.
The self-energy of the fermions is thus given by

g n

Yy(k) = —ikkz. (4.12)
v h(n)

Note that this result is proportional to ,/g, which expresses the nonperturbative nature

of the calculation. Switching to the retarded prescription amounts to setting ck® = w +

i0. Thus, in the strong-coupling limit G, coincides with the result from eq. (2.4) in the

dynamical-source model, if we make the following identifications,

n=4M —2,

Ji= AT(3 — M)

=2~ ph(4M —-2).
cAMT (3 + M) ( )
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We see that the range —2 < n < 0, where h(n) is real, covers only the positive-M part of
the self-energy in the dynamical-source model, as it corresponds to 0 < M < 1/2. However,
in this case the value n = 0 does correspond to M = 1/2.

4.2 Electrical conductivity

To compute the electrical conductivity of the fermions in the Fock model, we can start from
the generating functional In Z[A], which is, after making use of eq. (4.7) in the presence of
A, given by

an[A]zNTrln(—qul[AD—zN GylA H HGw ]).

In principle, the procedure is the same as for the probe-fermion model, i.e., taking two
functional derivatives of In Z[A] with respect to the gauge field. However, less work is
required if we make use of the fact that, in the Fock model, the total current density
operator is exactly known in terms of the fermionic fields. It is given by

= —eczw] Y (z

The current-current correlation function is therefore proportional to

o(JH(x)) [7,1 0Gy[A](x, 2')

= Nice lim tr
§AL(y) 6A,(y)

A=0 z'—x

A:J , (4.13)

where the expectation value is taken with respect to the interacting action in the presence
of A,, and the lowercase trace is just over spinor indices. Evaluation of eq. (4.13) requires
knowing Gy, up to first order in A,. This information is obtained from the mean-field
Dyson equation for G, which we found in section 4.1, and which we recall here,
_ _ e
Gwl[A] (z,2") = Gyt (z,2) — £64(:v — 2 A(z) — Sy[A](z,2"), (4.14)
with the inverse noninteracting fermion Green’s function Gy'(z,2') = —i@d*(z — 2') and

with the self-energy
SylA](z,2") = gGw[A](a:, ) A(x — 2),
1

which depends on A, through G,. It is not necessary to invert this Dyson equation.
Namely, using the definition of the matrix inverse in the coordinate representation, it is
easy to show that

0Gy[A](z, ")
6A,(y)

- / dty / a4y Gyl0) () T (4" y) G 0] " ).

A=0

We have introduced the three-point function I'V, which is just the functional derivative
with respect to A, of the inverse Green’s function, i.e.,

0G, Al ")
v /’ //; _ P ’
v\ v"y) A, ()

A=0
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Figure 6. Diagram of the current-current correlation function from eq. (4.15) containing the three-
point vertex. The filled triangle is I'*, the solid circle denotes the bare vertex proportional to ey*
and the double lines represent the dressed fermion propagator G[0].

Then, the current-current correlation function obtained from eq. (4.13) can be writ-
ten as

y he 5<J“ >
<JW@J(w>kﬂ_ iAW) |z
= —Neth/d4y'/d4y"tr [7“ Gyl0](z, ) TV (v, y"; y) Gw[()](y",x)].

(4.15)
The current-current correlation function is thus given by the fermion bubble diagram with

dressed propagators G[0], one bare vertex proportional to ey*, and one dressed vertex I'”,
as is also shown in figure 6. We can rewrite the Dyson equation as a recursive equation
for T, by taking the derivative §/dA, of eq. (4.14) and using the chain rule for functional
derivatives. This yields

I (z,2'sy) = WM( )&@—)
6%
/d4 /d4 /56;2 /d4 ’/d4y"Gw 2,V TV (Y v y) Gyl0)(y", ).

(4.16)
The recursive equation for I'V represents an infinite bubble sum, which is diagrammatically
depicted in figure 7. The zeroth-order term in eq. (4.16) is proportional to the bare vertex,
and the rest is interpreted as interaction corrections to this vertex. It is more elegant to
make the current-current correlation function explicitly symmetric in the indices p and v,
by means of a four-point vertex, as is shown diagrammatically in figure 8. This requires
knowledge of the dependence of the self-energy on the Green’s function, i.e., the object
03y (z,2")/6G (2, 2"). This four-point function is known in the Fock model, it is simply
given by

0%y (z,2") g . o
3Gy (o) — i = @0 =)0 = ), (4.17)

The required recursive equation for this four-point function is given diagrammatically in
figure 9.

We can compute the conductivity in the Fock model again in the GG-approximation
where vertex corrections are ignored. Since the fermion propagator and self-energy are the
same as the propagator in the dynamical-source model, the result is also the same, i.e.,
the dc conductivity scales with T34, The scaling becomes linear in the limit M — 1/2.
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Figure 7. The recursive relation for the three-point vertex I'* from eq. (4.16), where we also made
use of eq. (4.17). The notation is the same as in figure 6, and each wiggly line is an interaction gA.

Figure 8. Diagrams for the current-current correlation function in terms of the four-point vertex
in figure 9.

Figure 9. Recursive expression, corresponding to the Bethe-Salpeter equation for the four-point
vertex.

Moreover, in the Fock model vertex corrections can in principle be included because the
dependence of ¥, on A, is exactly known as we have seen.

4.3 Finite-coupling corrections

In section 4.1 the Dyson equation from eq. (4.8) was solved exactly in the strong-coupling
limit and at zero temperature, which lead to the result in eq. (4.12). Taking A, =0, k=0
and w > 0 for simplicity, the fermion Green’s function in the strong-coupling limit can thus
be written as Gy(w) = —1/5y(w) = ¢/7%Gw?™. Here, § has the dimensions of frequency
to the power 1 — 2M, and contains the numerical prefactor of the self-energy. We would
like to generalize this result to also reproduce the correct weak-coupling behavior by means
of a 1/g expansion. In the absence of other scales like temperature, the exact result for
Gy (w) can only depend on the ratio w/ Gw*M . So for general values of §, the solution to
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the selfconsistent Dyson equation for the Green’s function can be written as

Gl (w) = %fyongMf <g<;M> . (4.18)

Here, f is a dimensionless function, which reduces to the correct asymptotic behavior for
very small and very large ¢ if we write a linear Ansatz for f of the form

f(z) =1+azf'(c0) + d(z),

where d(z) is another dimensionless function that describes by construction the deviation
from the linear behavior at intermediate values of . To recover the strong coupling result
at x = 0, we have f(0) =1 and d(0) = 0. The free result is obtained if f(x) asymptotes to
—x for x > 1. So d(c0) = d'(00) = 0 and f'(c0) = —1. With this behavior of f, eq. (4.18)

becomes
1

Gl 20(_ 5™ 4 5,2M g w _
¥ c'y ( w+ gw™ + gw G2

In the approximation where the intermediate function d is ignored, we obtain

G;l(w) = —%70 (w— ngM) .

This Green’s function is exactly a solution to the Dyson equation for very large and very
small g. The kinetic term linear in w comes about from a 1/g expansion of the strong-
coupling result. The approximation here is that this 1/g term, which is exact for vanishing
g, is generalized to intermediate values of the coupling, by ignoring the deviation func-
tion d. It is therefore an asystematic approximation to a systematic 1/§ expansion, that
nevertheless recovers the exact ultraviolet and infrared behavior of the propagator.

This form of the propagator coincides with the Green’s function of the dynamical-
source model from eq. (2.3). The ¢ denotes the prefactor of the self-energy in eq. (2.4).
This leads to a second interpretation of the dynamical-source model. The kinetic term
that makes the x fermion dynamical, can be seen as a phenomenological correction from
the infinite coupling limit.

5 Conclusion

The main motivation of this work is to obtain a more intuitive understanding of the results
of bottom-up holography and in particular the dynamical-source model. In this work we
have investigated two ways to interpret the holographic results, by means of the probe-
fermion model and of the Fock model. Both reproduce the fermionic self-energy in the
large-N limit. Firstly, the probe-fermion model gives a semiholographic interpretation of
the dynamical-source model, where a dynamical probe fermion is coupled to a “conformal
field theory”, i.e., for our purposes, a theory that is scale invariant in the large-/N limit. The
conductivity then consists of three contributions, i.e., contributions of the probe fermion,
the conformal field theory and an interference term. The conformal field theory contribu-
tion consists of an O(N) and an O(1) part, the other two contributions are O(1). These
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contributions scale all three with a different power in temperature in the dc limit, which
in particular makes the probe-fermion contribution experimentally distinguishable, even
though it is subleading with respect to the conformal field theory. Unfavorable properties
of the probe-fermion model are that the conformal field theory becomes free in the large-N
limit, and that removing the anomalous dimension does not reproduce the M = 1/2 result
as anticipated. In contrast, in the Fock model, the fermionic field is itself part of the con-
formal field theory, and the noninteracting part of its propagator can be understood to be a
phenomenological way to incorporate finite-coupling corrections. This latter interpretation
also suggests that the dynamical-source model can be effectively understood in a bottom-
up holographic sense. The conductivity corresponds to the result in the dynamical-source
model if vertex corrections are ignored. The latter can in principle be taken into account
in the Fock model.

This work can be extended in various ways. A simple generalization would be to turn
on temperature and chemical potential in the field theory, and to look at nonrelativistic
cases, e.g. by considering Galilean invariance or a dynamical exponent z unequal to 1. These
would be the first steps towards describing the system of cold atoms at unitarity mentioned
in the introduction. There are a myriad occurrences of bottom-up models with nonzero
temperature and chemical potential to compare with in the literature, see e.g. [16, 27—
31] for an incomplete list. The nonrelativistic case z # 1 can be studied by using a
Lifshitz geometry [32, 33]. It is possible to consider these cases also in semiholography, and
compare them to the field-theory model. The thought behind these generalizations is to see
if a simple field-theory analogy continues to hold in a more general case. The choices that
we have to make in order to retrieve the holographic or semiholographic results, provide
a means to interpret the latter in a more conventional, field-theoretic sense. Then, we
can have some confidence that such a field-theory construction also works the other way
around, by suggesting the appropriate way to construct a (semi)holographic bottom-up
model in cases where it is not immediately known or obvious. Eventually, we hope to
achieve a phenomenological bottom-up dictionary, in particular one which also works for
semiholography.
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A Notation and conventions
We work in SI units, unless stated otherwise. The metric tensor is given by
N = diag(—-1,1,1,1),

where Greek indices run over 0,1,2,3. Latin indices run over spatial directions 1,2, 3.
The spacetime position vector and four-derivative operator are respectively given by z# =
(ct,%) and 0, = (1/c 8;,V). The wave-four-vector is given by k* = (w/c, k). Fourier
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transformations to momentum space, and inverse Fourier transformations, are respectively
performed as follows,

4 ) ‘
f(z) :/(;17_‘_];4]0(:%)62]6%7 f(k) :/d4$f(:c)ezk'x,

where k - 2 = k,x# . The Dirac matrices obey the Clifford algebra
(72"} = 20"1,

where 1 denotes the 4x4 identity matrix, and we note explicitly that (7°)? = —1.

The notation for fermionic Green’s functions is as follows. The noninteracting Green’s
functions of the v; and x fermions at A, = 0, appearing in sections 3 and 4 are time-
ordered connected Green’s functions associated with the differential operator —i@. This
is done in order to keep the notation concise and Lorentz invariance manifest during the
manipulations in section 3 and 4. In contrast to this, in ref. [24], the noninteracting
Green’s function of the dynamical-source fermion at A, = 0 is the retarded Green’s function
corresponding to the differential operator —iv°@, so it includes the factor 7°, peeled off
from W. The reason for this definition in ref. [24] was that this gives immediately the
correct retarded Green’s function that satisfies the sum rule from eq. (1.2).

B Supersymmetric Yang-Mills theory

For the readers without a background in supersymmetry, we briefly review the basic prop-
erties of (supersymmetric) Yang-Mills theory [34]. Ordinary Yang-Mills theory is a non-
Abelian gauge theory with gauge group SU(N,.), which contains vector bosons Ay, called
gluons and transforming in the adjoint representation of this gauge group. In supersymmet-
ric Yang-Mills theory, the symmetry is extended by adding N extra fermionic supersymme-
try generators. These act as ladder operators on the gluon states, each time changing the
spin by +1/2; thus creating a supermultiplet of particle states. For example, in the case of
global N/ = 4 supersymmetry, the supermultiplet consists of a single vector boson (gluon),
two Dirac fermions (gluinos) and three complex scalars, denoted by X, which all transform
in the adjoint representation of SU(N.). Note that the number of bosonic and fermionic
degrees of freedom are both equal to 8, as required by supersymmetry. Supersymmetric
Yang-Mills theory is a conformal field theory in d = 34+ 1 dimensions, the symmetry being
the conformal group SO(4,2).

There is an additional global symmetry called R-symmetry, which says that the A/
supersymmetry generators can be interchanged without affecting the supersymmetry alge-
bra. In 3+1 dimensions and for N' = 4, the R-symmetry group is U(4). This corresponds
to global U(4) transformations in the supermultiplet that conserve helicity, i.e., the gluinos
or X scalars are interchanged among themselves. This is important for our discussion of
the electrical conductivity of supersymmetric Yang-Mills theory. When we speak about the
electrical conductivity of the dual field theory, we imagine to take a global U(1) subgroup
of this R-symmetry, which defines a charge e just like in ref. [23]. Unlike the gluinos and
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X scalars, the gluon is a singlet under R-symmetry, so the gluon is electrically neutral
according to this definition.

Bottom-up models containing for instance the Maxwell or Dirac field in an asymptoti-
cally Anti-de Sitter background, are usually by construction very similar to the theory that
is obtained from the benchmark duality between Type IIB string theory in AdSsxSs and
four-dimensional A/ = 4 supersymmetric Yang-Mills theory in certain limits. Our working
assumption is that the boundary conformal field theory dual to an asymptotically Anti-de
Sitter background has similar field content and interaction structure as N/ = 4 supersym-
metric Yang-Mills theory. Moreover, the boundary conformal field theory is supposed to
be in the large- N, limit, where N, is the number of colors. Secondly, it is supposedly in
the large ‘t Hooft coupling limit, where the ‘t Hooft coupling A\fy = g%, wmNe and gy is the
Yang-Mills coupling. It is also important to mention that supersymmetric Yang-Mills the-
ory is a conformal field theory without an anomalous dimension of its fundamental fields,
since the beta function of gy s is exactly zero. However, composite operators consisting of
traces over multiple fundamental fields can obtain an anomalous dimension. If these op-
erators are sourced, the theory is deformed away from supersymmetric Yang-Mills theory.
In the bottom-up models considered here, the boundary field theory can obtain anomalous
dimensions by adding extra bulk degrees of freedom that provide a source for these com-
posite operators. For example, as in ref. [12], a bulk Dirac field with mass M can be added
and it sources a composite chiral operator in the boundary with an anomalous dimension
depending on M. In addition, temperature introduces a scale to the boundary field theory.
In holographic models, the presence of a black brane in the bulk spacetime breaks conformal
invariance of the boundary by putting it in a thermal state with temperature T, coinciding
with the Hawking temperature. At nonzero temperature, supersymmetry is broken in the
boundary, but the superpartners of the gluons are still present in the theory. Moreover,
temperature does not cause anomalous dimensions. As is clear from figure 1, raising the
temperature of a conformal field theory will bring the system into the quantum critical
region. This does not affect the scaling dimensions of the operators in the critical theory.

The field content and properties of supersymmetric Yang-Mills theory were for us the
inspiration to write down the ingredients of the probe-fermion model corresponding to the
contributions in eq. (3.1). Firstly, to us, the fields 1, ¥; and ¢; together resemble the field
content of the fermionic sector of the conformal supersymmetric Yang-Mills theory. We
refer to this part of the model as the “conformal field theory”, despite the fact that it is not
conformal, but only scale-invariant, for some values of the coupling g». It has a number of
copies of fields ¢ = 1,..., N that roughly mimics the large number of colors of the SU(N,)
gauge theory. The real scalars ¢; are inspired by the gluons of supersymmetric Yang-
Mills theory. They are obviously not the actual gluons of a non-Abelian gauge theory.
Supersymmetric Yang-Mills theory has no anomalous dimension, but it is possible that
self-interactions of the gluons in a more general non-Abelian gauge theory, caused by loop
corrections, can effectively lead to an anomalous dimension. Motivated by this possibility,
we give the scalar propagator an anomalous dimension parameterized by n. The gluinos
of supersymmetric Yang-Mills theory were our inspiration for the Dirac fermions ;. We
consider for now only the fermionic sector, so there are no counterparts of the X scalars
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of supersymmetric Yang-Mills theory. The scalar field ¢; remains neutral in the probe-
fermion model. Our thought behind this is the fact that in supersymmetric Yang-Mills
theory, the gluon is a singlet under R-symmetry as discussed above.

In the probe-fermion action, the coupling between the probe fermion and the conformal
field theory is in the large- NV limit given by a term of the form y7 and its conjugate, where
T X Efi L %ii/N. This turns out to be similar to a composite operator of the form
O = Tr [¥®] in a typical boundary gauge theory, where the fields ¥ and ® are respectively
an elementary fermionic and bosonic field in the adjoint representation of the gauge group
SU(N.). This means they can be written as ® = )" _t*®?(z), where a indexes the adjoint
representation of SU(NV,), and ¢* denotes its generators. Working this out using the usual
normalization Tr[t*t*] = —§,;/2, we obtain O oc 3", We®® where a takes N2 — 1 values. In
the large- N, limit the 1 is negligible, so this suggests that /N in the probe-fermion model
corresponds to N2, and that m may be related to a composite operator of the single-trace
form Tr [U®], to which the dynamical source couples.

C Loop integral for the probe-fermion self-energy

In this section the loop integral in eq. (3.15) for the fermionic self-energy in the probe-
fermion model is computed at zero temperature. It is repeated here for clarity,

4
10) = [ iGull+ ) Golo)

The inverse propagators of the ¢; and v; fields are given in egs. (3.8) and (3.9), respectively.
In momentum-space, they are given by

1
G@(k) _kg_n )
and .
Gy(k) = 8

Tulk) = / @) (k + g

We first compute the integral Z,, for n # 0. After subtraction of ultraviolet divergences
for the real part, the integral is finite for n > 0. The result for 1 in the desired interval
—2 < 1 < 0is obtained by analytic continuation [35]. After shifting the integration variable
q to g—k, to handle the tensor structure, we write the integrand as a derivative with respect
to k. This yields

10 dq 1 dq 1 B
) == i / (@)t g2[(q - k)2] 2 +k“/ (@) 2[(q - k2] ¢ BEARI,

(C.1)
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We compute both terms separately, starting with the first term. We use the generalized
ua—l(l _ u)ﬁ—l

Feynman trick,
1 r !
(a+B) / du -
0 [ud + (1 —u)B]|

ABP ~ T(a)(B)
which allows us to rewrite the angular integrations in terms of an Euler integral. Another
appropriate shift in the integration variable removes the k - ¢ terms, after which we obtain

/ dq 1

(2m)t [? +u(l — u)k‘2]1
d*q 1
2m)" (> +u(l - u)k2]27g

_n
2

M

19 [!
7,/ (k) 28k“/0 duu

= (1) awnt it f

2

: (C.2)

The momentum integral results in
1 ' 1
= ! [u (1 —u) k?]

[
@' 2wl —wk2]?? (402 -3 (1-3)

With this result we can perform the u integral, which is finite for n > —4, leading to

! 1+2 1
/ du (1 —u) "2 =
0 2+

IS

Finally, the first term of the integral Z,, is obtained as

ik, (K22 1

IO (k) = R TEr)

For the second term I,(f) we apply the same steps. After Feynman’s trick combined with
appropriate shifts of the integration variable,

d*q 1
2m)* g2 [(q— k)?] 1-3

TPW) =k [ ¢

:ku(l—g)/olduu_

The momentum integral is again given by eq. (C.2). The u integral is finite for n > —2
and results in a factor 1/(1 + 7n/2). Finally, IHZ becomes

ik, (k2)7 1
L2 (k) = ?4&)2) —1(1+ 1)

/ dq 1
(2m)* [q2 +u(l - u)kQ}Q*% ‘

(SIS

Then, the total integral I is obtained by adding both terms, which gives
oy D
_ (7 ) = K ) 1
1) = =" (Z00) + 7P (1)) = =155
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for —2 < n < 0. This result was used to compute the self-energy of the probe fermion in
section 3.1.

For completeness, we also compute the integral I at n = 0. It has a logarithmic
divergence for n = 0. We show below how it can be regularized. We now have to deal with

d*
Tulk) = / (2754 qz(qqi k)?

To get rid of the tensor structure, a derivative is inconvenient because this leads to a

logarithm in the integrand. Instead, we shift ¢ — ¢+ k/2 so that the denominator becomes
even under ¢ — —¢g. Then, we can drop the odd term in the numerator. This is allowed
as long as we regularize the integral, so that the contributions at infinity drop out. Using
Feynman’s trick once more, this leads to

k ! d*q 1
Tulk) = ?# /0 a (2m)* (¢ 4+ u(l - u)kQ]Q'

The loop integral is logarithmically divergent in 3+1 dimensions, but can be computed by
analytical continuation to d dimensions by means of dimensional regularization,

dq 1 o _g L2 4
/(27T)d [q2+u(1—u)k2]2 - (47T)gr <2 2> [ (1 )k } .

Subsequently, the u integral yields for d > 2

/1duu32(1—u)§l_2 2dyalr (
0 INES

Plugging this into Z,,(k) and expanding around d = 4 — €, we obtain for the integral I,

vl\’)
\./

(dT) (C.3)

~ —Q(Zi)? [i—l—ln <kl ) +In (167) + (;ﬂ )

where 1(?)(2) is the digamma function, defined as ¥(?)(z) = I'(z)/I'(z). Our choice for
the renormalization condition for eq. (C.3) that introduces a scale into the logarithm is the
following. We subtract from eq. (C.3) I(k(y), that is, I(k) evaluated at a constant and
nonzero reference momentum scale k(). Thus we obtain the renormalized loop integral at

ik k2
I(k) = Wln <k%0)> .

So k(20) is the value of k? at which the loop integral vanishes, which remains undetermined

n =0,

here and should ultimately be determined from experiment.
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D Generating functional for current-current correlation function in the
probe-fermion model

Here we give in more detail the derivation of eq. (D.4), which was diagrammatically rep-
resented in figure 3. We start from the generating functional given in eq. (3.22), repeated
here for clarity,

In Z[A] = NTrIn ( - G;[A]) +Trln ( - NG;l[A]) +Trln ( - G;I[A]). (D.1)

In what follows, we first rearrange the terms inside the logarithms on the right-hand side so
that A-dependent terms are separated from A-independent terms. This includes explicitly
expanding all functionals of A up to second order. Next, we expand the logarithms up to
second order in A. Finally, we differentiate twice with respect to the gauge field, and write
the result in the coordinate basis, which gives us the desired eq. (D.4).
It is convenient to write the propagators in representation-independent notation. The
inverse 1; propagator is given in eq. (3.9), and we write it as
e
Gl A= Gy - T4,
Gal(:c, 2') = —idst(x — ).

The inverse of the full Green’s function G/ lis given by the quadratic part in eq. (3.13),
in basis-independent notation,

Gy[Al= Gy — s A= S, [4

2ig <2g1 ) ’
YA = —+ | = | G:[A]
X[ ] g2 th 7r[ ]
We split the inverse m propagator in an A-dependent and A-independent part,
G Al =07 —5.[4],
1 _ 2
" ih?go’

(]

GLGylA],

where Gg = Gy(2/,z) in the coordinate representation. At this point we can reexpress
eq. (D.1) as

In Z[A] = NTrIn (—G51+%A) +Trln (—Ng;l—kNEﬂ[A]) +Trln (—G51+%A+2X[A]>.

(D.2)
In the above expression, the capital trace Tr sums over both the spinor indices and the
infinite matrix (coordinate or momentum) indices of the propagators. We are going to
expand this expression up to second order in the vector potential. As an intermediate step,
we expand the self-energy terms which are functionals of A, as

%y 1 23,

5 [0], (D.3)
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and similar for $,[A]."? From now on, we suppress the notation [0] indicating the absence
of functional dependence on the gauge field. So it is implicit here that all propagators and
vertices are evaluated with A, set to zero. With this, the generating functional eq. (D.2)
becomes

In Z[A] = NTrin |-G (1 - %GO/A)]

—1 —1 —1 5271— 1 52271-
+Trln [—N(gﬁ ~ %) {11 — 61 - 5] (AA(% i

+ Trln (—Gil—}—z) ]l—[Gil—Z] A—|—A6——|— AAﬂ
0 X 0 T Ay AP sANA, ) [

We can simplify this even further by rewriting G, - Yy =Gy 1 the inverse y propagator
evaluated at A, = 0, and similarly for 7 we write G;' — X, = G;'. Then it is easy to
expand In Z up to second order in the gauge field. Using Trin(AB) = TrlnA + Trln B
we can separate the gauge-field-dependent parts in the logarithms above. The factors N
drop out everywhere, except in the first term, to which just the free v; fields contribute.
Performing the two derivatives explicitly, finally yields

521nZ[ ] B
Ap(2)6Au(2") | 4
( ) tr[Go ”Go(z',z)'y“}
+/ 4x/d4x//d4 "/d4 ’"tr (z x)éi;::(;; )Gﬂ(x",x'")éijj(zl’)x)
2y (2 x
+/d4x/d4x'tr[G (z, m’)éj()((%()z,)}
+ (%)Qtr[GX( VG (z’,z)v“} (D.4)

0%, (2, x)}
54,
Ay tr 2V Gy (2, x’)%]

e
h
e
h
0%, (!, 2") 0, (2" x)
4 ZS 4 N 4 1 /i n X )
—l—/d:v/d /d /d:ctr ’)5A()Gx(x’$)75z4y(z’)

528, (2, x)
dz /d4x/trG T, T 2xl }
/ ( )5Au(z)5Al,(z’)
The lowercase trace tr sums only over the spinor indices. All contributions to the right-

hand side of eq. (D.4) are of order O(1), except the first which is of O(N). The terms in
eq. (D.4) appear in the same order as the numbered diagrams in figure 3.

d4x/tr VG (2,2

HNote that upon reinstating all coordinate dependence, expression eq. (D.3) is given by

Sl Al(z, 2")

= o0 ) + [ oo e o g [ty [ @y aswan) g os s o
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E Loop integral for the Fock self-energy

This section provides some details for the computation of the loop integral in the expres-
sion for the Fock model self-energy, in the strong-coupling limit and at zero temperature.
Plugging in the result for G from eq. (4.10), we write eq. (4.9) as

i n
——kk2 ="K, (k E.1
h2 (n)k 2 f)/ ICM( )7 ( )
where IC,, is the loop integral that is the focus of this appendix, given by
d'q q
K.(k)= K’ i
n(F) / (2m)* [(q— k)2]1—3q2+g

The power of ¢? in the denominator is the only difference with the momentum integral 7, of
the probe-fermion model, computed in appendix C. The integral X, can be computed in the
same manner as Z,, and as before we obtain the result for n < 0 by analytic continuation.
As in eq. (C.1), the numerator g, can be written as a 0/0k* and a k, term, respectively,

Ku(k) = KO (k) + KO (k).
(1)

As an intermediate result, performing the same steps as for 7,
the first term

in appendix C yields for

10 d* 1
KW (k) = /
u (F) n okt | (2m)* (q2)1+% [(q _ k‘)Z]_g
Cikuk? A4+ T(-1-14
S (4n)? 2 T(+7

For the second term we find

diq 1 ik,k? T(1— D1+ Hr(-1)
K0 =k | - T res D

S

2m)4 3 [(q - k)Q]l—g (47r)2 (1 +
Adding these two results and solving eq. (E.1) for h(n) yields the required expression in
eq. (4.11). Again, the integral has a logarithmic divergence for n = 0. For a sensible result
with h(n) real, we must be certain that the result for 1/h?(n) is positive. This is the case
for -2 < n < 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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