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1 Introduction

The Universe known and observed nowadays is a consequence of a long process where the

primordial seeds were amplified due to Inflation, a stage of the Universe where its size

grew exponentially and left all the observable scales out of the horizon. At re-entry after

Inflation termination, the seeds of these scales began to accrete matter and formed the

observable astrophysical structures. One of the advantages of the standard cosmological

scenario is that it is capable of addressing the whole process since the beginning until the

late formation of complex structures.

The first seeds are widely supposed to be quantum fluctuations, amplified during the

primordial inflationary era. Working in the fourier space, the component responsible for

conducting the early exponential expansion of the Universe develops an inhomogeneous

perturbation with a certain length and amplitude that gets frozen when the horizon scale

becomes smaller than this length. Such a perturbation is then transmitted to the other

components of the Universy by gravity. Furthermore, the amplitude of this perturbation is

nearly the same for every component of the Universe, once one assumes that perturbations

are adiabatic, as experiments seem to confirm.

Inflation is commonly assumed to be followed by a radiation era once pressure becomes

important against gravity. Due to this effect, seeds are unable to attract matter and

therefore form structures. As a consequence, the gravitational potential for scales entering

the horizon throughout this radiation dominated epoch vanishes, a feature exhibited by

the power spectrum for such scales getting suppressed by a factor 1
k3

.

Since the energy density of radiation is diluted with the expansion of the Universe

more rapidly than the energy density of matter, pressure becomes insignificant after the

matter-radiation equality point and structures can be formed by matter accretion. At this

matter dominated stage, perturbations that enter the horizon start to grow linearly with the
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Figure 1. Evolution of the Hubble horizon in a non standard history of the Universe as a function

of the scale factor. Scales factors in black (bottom of the plot) correspond to the convention used

in this work where a = 1 signals the beginning of matter domination. Scale factors in red (top of

the plot) correspond to the convention where a = 1 is set to today. This double labelling can be

used as a “dictionary” for the following plots.

scale, attracting more matter until they become non linear and collapse into the observed

structures. This effect can be seen in the power spectrum profile of the perturbations, that

grows as k. One peculiarity of this whole process is that as a consequence of the coupling

between baryons and photons, observable matter starts to fall into the gravitational wells

at zdec ≈ 1100, much later than dark matter which, as being weakly interacting, starts to

grow and form structures right after the matter-radiation equality time zeq ≈ 3400. This is

why first and older objects are searched in the form of halos or mini-halos of dark matter.

Needless to say, this is the cartoon picture of structure formation assuming the standard

thermal history of the Universe. However, as far as the Universe is radiation dominated

by BBN, TBBN ' 1 MeV, and matter-radiation equality takes places at Teq ' 1 eV, one is

free to modify the thermal history at will. For instance, thermal inflation [1] introduces a

very short inflationary epoch to get rid of unwanted particles such as moduli. Another case

would be to consider that a very heavy particle, with a large thermal abundance, came to

dominate the energy density of the Universe at its early stages. This early domination can

be healthy for erasing unwanted particles and relaxing the conditions for producing the

baryon asymmetry at the electroweak scale [2, 3]. An example of this latter modification

in the standard history of the Universe can be seen in figure 1, that shows the evolution

of the comoving Hubble radius through different eras. Within this sort of picture, an early

matter domination era (coloured in red) driven by a heavy particle commences shortly

after inflation ends, contrary to the standard picture where inflation and dark matter

domination epochs are connected by a long period of radiation domination. One of the

most remarkable changes when including such a modification is that scales entering the

horizon during this new era can now grow linearly with the scale until their amplitudes

become non linear and begin to form substructures, which in principle are to survive up to

now. In this work, we study the conditions under which such a scenario can be realised and

explore the consequences of such an early structure formation period in a thermal history

of the Universe such as the one depicted in figure 1.

Our paper will be organised as follows: in section 2, we introduce the setup of the

Universe, i.e, its components, interactions and magnitudes. Once the setup for such an
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Universe is given, the history that follows is automatically known. Furthermore, the details

of the construction and motivation for such a scenario are also introduced. In section 3, the

features of the structure formation picture are explained. We finally conclude in section 4.

2 Scenario details

In [4], a multifluid Universe where a heavy matter particle dominates the thermal history of

the Universe until it decays away into radiation and matter was considered. The equation

of motions for this case are

dρmm

dt
+ 3Hρmm = −Γmmρmm , (2.1)

dρr
dt

+ 4Hρr = (1− fb)Γmmρmm , (2.2)

dρdm
dt

+ 3Hρdm = fbΓmmρmm , (2.3)

H2 =
8π

3M2
Pl

(ρmm + ρr + ρdm) , (2.4)

where the subscript “mm” stands for mother matter, the component responsible for the

early period of matter domination of the Universe, “dm” for daughter matter and fb is the

fraction of mother matter decaying into daughter matter.

Within this kind of Universe, one can reconstruct the history of the Universe by taking

suitable values for both Γmm and fb. These two parameters are not independent of each

other but can be related as follows

fb '
Teq
TRH

, (2.5)

TRH ' 0.55g
−1/4
∗

√
MPlΓmm , (2.6)

where TRH is the reheating temperature, i.e., the temperature at which the mother particle

releases all its energy and Teq is the temperature when the energy density of radiation and

matter are equal, with Teq ' 1 eV to get the right amount of dark matter today.

Therefore, if we require that the mother particle has completely decayed away prior

to BBN, one may obtain a lower bound on Γmm & 2.0 × 10−24 GeV or likewise an upper

bound on fb . 10−6. Such small values of the branching fraction might be dangerous for

the formation of mini-halos. As it was demonstrated by Cen [5], the density of mini-halos

ρmini-halo decreases by a factor (fb)
4 when a sizeable portion of the main component of such

substructures decays into radiation

ρmini-halo|f = (fb)
4ρmini-halo|i , (2.7)

where the subscript “i” referes to values before the decay and “f” after the decay is com-

pleted. Hence, for the mini-halos not to puff up by a large factor, the branching ratio fb
to non-relativistic particles (i.e. to the daughter particles) cannot be very small. Conse-

quently, one would need fb to be not far from unity in order for the substructure to survive.

However, as in this scenario the daughter particle is the only dark matter component, then
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Figure 2. Evolution of the energy densities for the different components of our Universe. The

transition between the early matter domination epoch and the standard radiation one is depicted

amplified

such large values for the branching fraction fb are forbidden by current observations, as

they would lead to an overabundance of dark matter today. Therefore we need to add new

channels of entropy production.

Owing to the mentioned argument, our setup will be the same as exposed earlier

but including now a channel of annihilation for the daughter matter into radiation. The

equations of motion for the energy densities can be then written as follows

dρmm

dt
+ 3Hρmm = −Γmmρmm , (2.8)

dρr
dt

+ 4Hρr = (1− fb)Γmmρmm + Υanh , (2.9)

dρdm
dt

+ 3Hρdm = fbΓmmρmm −Υanh , (2.10)

H2 =
8π

3M2
Pl

(ρmm + ρr + ρdm) , (2.11)

where

Υanh(t) = γ
(
ρ2dm(t)− ρ2eq(t)

)
is the operator for the annihilation of daughter matter into radiation. ρeq(t) is the equilib-

rium density. Given the fact that our daughter matter density is not a thermal relic, we

have set this density to 0.

The motivation for including such a term is clear. As it was showed before, mini-halos

formation throughout a period of matter domination decaying into radiation are suppressed

by the fourth power of fb. Therefore, any substructure formed would be erased given the

upper bound from eq. (2.5) unless we include this new channel that alleviates this effect,
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letting more production of daughter matter and allowing us to have fb as large as needed.

Particularly, one might take fb equal to 1, a situation in which the annihilation would be

the only source of all the radiation in the Universe.1

In addition to the conditions explained above, one must not only care about the fraction

of matter produced during this period, but also about the velocity at which they are

expelled after being formed since perturbations might be washed out by great velocities

through free streaming. For such an analisis we need to define a scale λfs [6]

λfs(t) =

∫ t

treh

< vdm >

a
dt (2.12)

below which perturbations get erased away.

If one assumes that the velocity after reheating is diluted linearly by the expansion

of the Universe and that the free streaming scales barely change after matter-radiation

equality, one finds that [7]

λfs(a) =
< vRH > aRH

H0

√
Ωrad

∫ a

areh

1

a′
√

1 + aeq/a′
da′

=
2 < vRH > aRH

H0

√
Ωrad

(
arcsinh

√
aeq
aRH

− arcsinh

√
aeq
a

)
, (2.13)

where < vRH >≡< vdm(aRH) > is the average velocity of the daughter particle at the re-

heating moment (within the instantaneous decay approximation), H0 is the current Hubble

constant and Ωrad the observed current abundance of radiation.

Regarding the velocity of the daughter particle and assuming that one mother produces

a pair of daughters, it can be then easily demonstrated by kinematics that

v2dm =

(
1−

4m2
dm

M2

)
, (2.14)

where vdm is given in units of c, M is the mass of the mother particle and mdm the mass of

the daughter matter. Consequently, one can see that in order for the daughter particle to

have low velocities when created, so that to avoid free streaming washout effects, it needs

to be nearly half of the mass of the mother particle.

On the other hand, we still need the daughter particle to give rise to the right amount

of observed dark matter. Once the mother matter decays away completely at TRH, the

density of daughter matter can be written as ρdm ' fbρrad. At this point, the annihilation

term dominates over the expansion term in the equation for ρdm, making it decay abruptly

until both terms balance. This effect takes place shortly after the reheating time, where

ρdm ' H(aRH)
γ . From that point onwards, the remaining density dilutes in the standard

way with the expansion of the Universe to provide the observed amount of matter. This

allows us to constrain the size of the annihilation coupling to be

γ ' 5× 10−1
1

(MPl TRH Teq)
= 5, 5× 10−8

(
1 MeV

TRH

)
GeV−3 . (2.15)

1This particular case however would require a reheating temperature of several hundred GeVs or higher.

As we will see, as the size of the objects formed during this early matter domination era obviosuly depends

on the length of this era, this extremal case with fb ∼ 1 is clearly not favoured.
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In summary, the conditions/ingredients any model leaving traces of an earlier epoch

of matter domination should have, are the following

1. A heavy particle, that we have called “mother”, dominates the energy density of

the Universe up to its decay into radiation and matter. The latter one is labeled as

“daughter”.

2. The daughter particle would be the candidate for WIMP dark matter.

3. The heavy mother particle forms mini-halos during the first matter dominated era

before it decays. In order for those structures not to evaporate completely, the

daughter particles must be borned non- relativistic, i.e., their masses must be nearly

degenerate with that of the mother (m ≈ M
2 ).

4. For the mini-halos not to puff up by a large factor, the branching ratio fb to non-

relativistic particles (i.e., to the daughter particle) cannot be very small since the

density of the mini-halo decreases by a factor (fb)
4.

5. On the other hand, in order to have a radiation dominated universe by the time of

BBN and until the usual epoch of matter domination, fb cannot be extremely large

if it is the only source of entropy production.

6. It is impossible to simultaneously satisfy the last two conditions unless one includes

a annihilation term, whose size is constrained by equation (2.15).

3 Perturbations and structure formation

From the previous section, we have seen that it is plausible to have an Universe domi-

nated by a very heavy particle which finally decayed into radiation and common matter.

Moreover, as it was also pointed out, density perturbations entering the horizon during

that epoch, can grow significantly until the non-linear regime is reached and form sub-

structures. These substructures are very sensitive to the production of entropy, so high

abundances of radiation during this epoch may delete any substructure formed. Therefore,

we added an annihilation term for the daughter matter, which will mainly act after the

heavy particle decayed away allowing to have less amount of radiation during this early

matter domination epoch.
The equations for the density perturbations read as follows

a2E(a)δ′mm(a) + θ̃mm(a) + 3a2E(a)Φ′(a) = aΓ̃mmΦ(a) , (3.1a)

a2E(a)θ̃′mm(a) + aE(a)θ̃mm + k̃2Φ(a) = 0 , (3.1b)

a2E(a)δ′r(a) +
4

3
θ̃r(a) + 4a2E(a)Φ′(a) = (1− f)

ρ̃0mm(a)

ρ̃0r(a)
aΓ̃mm [δmm(a)− δr(a)− Φ(a)]

+
a

H1

γ

ρr

[(
ρ2dm − ρ2eq

)
(δr + Φ)− 2δdmρ

2
dm

]
, (3.1c)

a2E(a)θ̃′r(a) + k̃2Φ(a)− k̃2 δr(a)

4
= (1− f)

ρ̃0mm(a)

ρ̃0r(a)
aΓ̃mm

[
3

4
θ̃mm(a)− θr(a)

]
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Figure 3. Evolution in scale factor of the density contrast of the daughter particle, our would

be dark matter candidate, for two different scales in units of the initial perturbation. Red line

corresponds to k = 104kRH and green line to k = 100kRH. Structures become non linear for

(δdm/δdm0) ∼ 105 corresponding to δdm0 ∼ 10−5 as seen by CMB measurements. The arbitrary

initial value for the scale factor has been taken equal to 1 when solving the equations of motion.

+
a

H1

γ
(
ρ2dm − ρ2eq

)
ρ0r

[
−3

4
θdm + θr

]
, (3.1d)

a2E(a)δ′dm(a) + θ̃dm(a) + 3a2E(a)Φ′(a) = f
ρ̃0mm(a)

ρ̃0dm(a)
aΓ̃mm [δmm(a)− δdm(a)− Φ(a)]

+
a

H1

(
− γ

ρdm

)[(
ρ2dm − ρ2eq

)
(δdm + Φ)− 2δdmρ

2
dm

]
,

(3.1e)

a2E(a)θ̃′dm(a) + aE(a)θ̃dm + k̃2Φ(a) = f
ρ̃0mm(a)

ρ̃0dm(a)
aΓ̃mm

[
θ̃mm(a)− θ̃dm(a)

]
, (3.1f)

k̃2Φ + 3aE2(a)
[
a2Φ′(a) + aΦ(a)

]
=

3

2
a2
[
ρ̃0mm(a)δmm(a) + ρ̃0r(a)δr(a) + ρ̃0dmδdm(a)

]
,

(3.1g)

where E(a) ≡ H(a)
H0

, k̃ ≡ k
H0
, θ̃{mm,dm,r} ≡

θ{mm,dm,r}
H0

and ρ̃{mm,dm,r} ≡
ρ{mm,dm,r}

ρ0
with H0

and ρ0 being the initial Hubble rate and total energy density of the Universe respectively.

The details about the derivation of these equations are given in appendix B.

The equations given above reproduce the ones in [4], once the annihilation terms are set

to zero. It can be seen that these terms source the equations for the density perturbations

and velocities of the daughter and radiation component respectively (eqs. (3.1c)–(3.1f)),

playing a fundamental role when the mother component is on the verge of decaying and

allowing the daughter particle to release part of its energy into radiation. This entropy

production can be seen in figure 3, where perturbations in the energy density of the daughter

particle, i.e. what would be our dark matter candidate, are depicted and we can see that

they tend to decrease several orders of magnitude when the mother particle decays away

completely. Fortunately, as it was already mentioned, this decrease takes place near the

reheating point, so it is expected that any density perturbations which have already entered

in the non-linear regime will survive although their size can slightly decrease. In addition,

one should notice that in both figures, what is plotted is the density contrast, i.e. the size of

the perturbations in terms of its initial size. Such a quantity is determined by Inflation but

anisotropy measurements in the CMB map set it to be δdm0 ≈ 10−5, which in the standard

– 7 –
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Figure 4. Evolution in scale factor of the density contrast of the mother particle for two different

scales in units of the initial perturbation. Red line corresponds to k = 104kRH and green line to

k = 100kRH. Structures become non linear for (δmm/δmm0) ∼ 105 corresponding to δmm0 ∼ 10−5 as

seen by CMB measurements. The arbitrary initial value for the scale factor has been taken equal

to 1 when solving the equations of motion.

case of adiabatic perturbations, takes this value for all the components of the Universe.2

Therefore, the non-linear regime would be reached in our figures when δdm times the size

of the seeds is of order one.

Likewise, it is important to clarify that even the smallest scales which enter the horizon

during this early matter domination epoch and do not have enough time to reach the non-

linear regime (the example in figure 3 with k = 100kRH), will still experience a remarkable

growth, which will lead to the formation of structures and substructures much earlier than

in the standard picture once the Universe becomes matter dominated again. In particular,

this feature may be important for a Dark Matter Halo to collapse shortly after matter-

radiation equality forming an ultracompact minihalo, which are excellent indirect detection

targets [8, 9] and attractive for lensing prospects [10].

In figure 4 the evolution of the density perturbations of the mother particle is shown.

As it can be seen, such an evolution, behaving as matter, is very similar to that of the

daughter except for the effect coming from the annihilation channel, which is absent in this

component.

Finally, the evolution of the radiation perturbations are plotted in figure 5. As we can

see, the amplitude is amplified during the early matter domination epoch until it decreases

completely and begins to oscillate with a negligible value when the mother particle releases

all the energy. Such behaviour is very similar to the one given in [4], a fact which exhibits

that the annihilation channel has a minor effect on radiation perturbations.

Regarding the density perturbations and structure formation, a variable to study is

σ, the variance of the density perturbations smoothed at a certain scale, normally used to

analise, within the Press-Schechter formalism [11], the abundance and evolution of halos

and sub-halos at relevant scales and with a certain size, which is given by

σ2RH(R) =

∫ ∞
0

dk

k

(
k

aRHH(aRH)

)4

W 2(kR)T 2(k)δ2H(k) , (3.2)

2We are assuming that the nearly scale invariance of primordial perturbations from Inflation still holds

for such small scales.
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Figure 5. Evolution in scale factor of the density constrast of radiation for two different scales.

Red line corresponds to k = 104kRH and green line to k = 100kRH. The initial contrast value

corresponds to δrad0 ' 10−5 as seen by CMB experiments. The arbitrary initial value for the scale

factor has been taken equal to 1 when solving the equations of motion.

Figure 6. The variance of the daughter density perturbations σ in terms of the mass M contained

in a sphere R. σ0 is the normalization factor accounting for the several constants appearing in the

equation (3.2). The scale in both axes is logarithmic.

where the subscript RH means that this quantity is evaluated at the reheating time when

the mother particle releases all the energy.

Let us briefly explain the formula (3.2). As it was already mentioned, σ2 is the density

perturbations smoothed for a certain scale R. This role is played by the function W (kR),

which is responsible for filtering out those modes with kR ≥ 1 and therefore allow us to

study the relevant scales. In order to do this, we have used the following filter function

W (kR) = exp

(
−1

2
k2(αR)2

)
×Wtop−hat(kR) , (3.3)

where Wtop−hat(kR) = 3
(kR)3

[sin(kR)− (kR) cos(kR)] is the usual top-hat window func-

tion. For our purposes, however, we wish to focus upon the scales that enter the horizon

during the early matter domination epoch and this is not achieved with the usual top-hat

window function. Owing to this, we introduced an exponential function to suppress modes

with k < kRH.

On the other hand, T (k) is the well known transfer function which for the scales that

we are taking into account, is scale invariant [4] and δh(k) is the amplitude of the primordial

– 9 –
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density perturbations originated during inflation, which can be written as

δh(k) = 1.87× 10−5
(

k

kpivot

) (ns−1)
2

, (3.4)

where kpivot = 0.002 Mpc−1 and ns is the spectral index ns = 0.9603± 0.0073 [12].

Finally, the factor
(

k
aRHH(aRH)

)4
takes into account the scale factor growth of modes

entering during matter domination.

In figure 6, we show the normalised σ2 (in arbitrary units) evaluated at the reheating

epoch for different mass objects, related to their size by ρ = M
4π
3
R3 , where ρ is the total

energy density at that moment. As it can be seen, this quantity is a mass decreasing

function, meaning that the population of heavier objects is lower since they correspond to

scales that entered later in the horizon and thus had less time to become non linear and

begin to accrete matter.

The size of the dark matter objects formed is very model dependent, however to get a

flavour of it, it is worth remembering that the equivalent horizon mass scale at the QCD

epoch ( T ∼ 100 MeV) is around the mass of Jupiter. Moreover, one can easily work out

the comoving Hubble size at the reheating time in terms of current parameters as

k−1RH ∼ 10−6
√

Ωr

Ωm

(
1 MeV

TRH

)
k−10 . (3.5)

Plugging the today known parameters, one can find that if the first matter domination

era ends before BBN, a scale size which corresponds to roughly a parsec, then the significant

power enhancement (i.e. formation of non-linear structure with perturbation amplitude

of unity during the first matter domination era) would be on somewhat smaller scales

than that, presumably corresponding to the milliparsec regime or even planets and stellar

masses.

4 Conclusions

In this work, we have shown that the formation of observational objects can be very

sensitive to changes in the thermal history of the Universe. In particular, an early period of

matter domination could amplify the primordial inflationary seeds leading to the formation

of halos or mini-halos, objects which can be in principle observable and detectable [8, 9, 13–

15].

Since at some point by BBN one needs to recover the usual picture of a radiation

dominated Universe, one needs to care about the transition between both phases due to

the production of entropy. Such production may erase or at least reduce any structure

formed during the early period of matter. In particular, the density of primordial objects

is suppressed by the fourth power of the branching fraction into radiation of the leading

component during the matter epoch. As one needs to connect this scenario with the usual

picture, i.e. radiation domination by BBN and right amount of dark matter abundance,

one is forced to using values of the branching ratio which dilutes any primordial objects.

– 10 –
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In order to solve this, we have introduced a new channel for the annihilation of the

daughter matter into radiation. This allows us to have less amount of radiation during the

period of structure formation and thus, larger values of the branching function. Further-

more, as it was showed in the profile of figure 2, this new channel only plays an important

role when all the energy of the mother particle is totally released, connecting the end of the

early matter domination era with the usual picture, and therefore any dilution can only

take place when perturbations have already entered in the non-linear regime. We have also

showed that this will only happen for modes that entered the horizon early enough to fall

into the non-linear regime. In terms of the scale factor, it will happen for (aRH/a) & 106

or (k/kRH) & 103. Modes with 1000kRH > k > kRH, i.e. that don’t reach the non-linear

regime before the decay of the mother particle, enter the non-linear regime in the second

matter domination epoch, but may start to collapse into potential wells much earlier than

within the standard thermal history picture due to the earlier growth.

We have also estimated that the new objects beginning to form during this first matter

dominated epoch correspond to the milliparsec regime. Can such small scales have any ob-

servational relevance for the CMB?. In principle, it is hard to tell since one needs to evolve

the perturbations after they entered in the non-linear regime all the way throughout the

radiation dominated epoch. Certainly, there are many intriguing features and potentially

interesting signatures for models with a (long enough) early period of matter domination

able to leave potentially observable substructures. Of course a complete analysis needs to

be performed by making use of non-linear methods such as N-Body simulations and falls

beyond the scope of this manuscript. Hopefully, our work will trigger such an analysis and

above all will let the reader judge himself the grade of apprehension that is appropiate

when examining the phenomenology of these theories that take us away from the standard

thermal history of the Universe.

To make this picture complete, one may argue that the today existing dark matter

abundance does not come primarily from the decay of the daughter particle but from

the freeze-out of non relativisitic matter from thermal equilibrium. This would require

smaller branching fractions fb, with the consequent creation of even more entropy which

would erase more easily the substructures formed. Moreover, given the features of many

proposed candidates for dark matter in the freeze-out scenario (specially neutralino), one

would need larger reheating temperatures which would then lead to a less prolonged period

of matter domination. As it is at this epoch when perturbations can grow until they enter

in the non-linear regime, a dark matter relic density coming only from the decay of a heavy

particle appears to be the most favourable scenario regarding an early structure formation

in the Universe.

Finally, one may wonder how the observed baryon asymmetry is generated in a scenario

like this. At first sight, it seems that it can only come from the decay of the mother particle,

imposing more restrictions on its properties. A mechanism viable with having such a heavy

particle could be a net baryon number production by means of a derivative coupling of the

mother particle to the lepton/baryon current. Such an operator yields an effective chemical

potential for baryons and anti-baryones when CPT is violated, allowing the velocity of the

heavy particle to develop a non-zero vacuum expectation value [16–18]. Alternatively, one
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could also resort to the electroweak phase transition to produce the baryon asymmetry

by changing the underlying thermal history of the Universe to being matter dominated

during the EWPT, which requires an efficient baryogenesis mechanism due to the entropy

production [2].
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A Pertubation equations without annhiliation

In this section, we derive the perturbation equations when an operator for the decaying of

the mother particle is added.

In general, the energy conservation equation can be written in a covariant way as

follows

∇µ
(
(i)Tµν

)
= Qν . (A.1)

For the case of decaying matter we have the following

Q(φ)
ν = (φ)Tµνu

µ
φΓφ , (A.2)

Q(r)
ν = −(1− f)Q(φ)

ν , (A.3)

Q(dm)
ν = −fQ(φ)

ν , (A.4)

where fb is the branching fraction, Γφ is the decay operator, uµφ =
(

1− ψ, ~V
)

is the

perturbed 4-velocity and Tµν is the stress energy-momentum tensor, which in the perfect

fluid case reads

Tµν = (ρ+ P )uµuν + Pgµν . (A.5)

We shall work in the Newtonian gauge of the perturbed FRW metric, which reads as

ds2 = −(1 + 2Ψ)dt2 + a2(t)δij(1 + 2Φ)dxidxj . (A.6)

With the above ingredients, one is able to derive the perturbation equations [4]

a2E(a)δ′mm(a) + θ̃mm(a) + 3a2E(a)Φ′(a) = aΓ̃mmΦ(a), (A.7)

a2E(a)θ̃′mm(a) + aE(a)θ̃mm + k̃2Φ(a) = 0, (A.8)

a2E(a)δ′r(a) +
4

3
θ̃r(a) + 4a2E(a)Φ′(a) = (1− f)

ρ̃0mm(a)

ρ̃0r(a)
aΓ̃mm [δmm(a)− δr(a)− Φ(a)] ,

(A.9)

a2E(a)θ̃′r(a) + k̃2Φ(a)− k̃2 δr(a)

4
= (1− f)

ρ̃0mm(a)

ρ̃0r(a)
aΓ̃mm

[
3

4
θ̃mm(a)− θr(a)

]
, (A.10)
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a2E(a)δ′dm(a) + θ̃dm(a) + 3a2E(a)Φ′(a) = f
ρ̃0mm(a)

ρ̃0dm(a)
aΓ̃mm [δmm(a)− δdm(a)− Φ(a)] , (A.11)

a2E(a)θ̃′dm(a) + aE(a)θ̃dm + k̃2Φ(a) = f
ρ̃0mm(a)

ρ̃0dm(a)
aΓ̃mm

[
θ̃mm(a)− θ̃dm(a)

]
, (A.12)

k̃2Φ + 3aE2(a)
[
a2Φ′(a) + aΦ(a)

]
=

3

2
a2
[
ρ̃0mm(a)δmm(a) + ρ̃0r(a)δr(a) + ρ̃0dmδdm(a)

]
,

(A.13)

where E(a) ≡ H(a)
H0

, k̃ ≡ k
H0
, θ̃{mm,dm,r} ≡

θ{mm,dm,r}
H0

and ρ̃{mm,dm,r} ≡
ρ{mm,dm,r}

ρ0
with H0

and ρ0 being the initial Hubble rate and total energy density of the Universe respectively.

B Pertubation equations with annhiliation

We will now focus on the modification of the density perturbation equations when including

an annihilation term.

If we now add a source term accounting for the annhiliation of matter into radiation,

these equations would be given as

Q(φ)
ν =(φ) Tµνu

µ
φΓφ , (B.1)

Q(r)
ν = −(1− f)Q(φ)

ν +Qanh
ν , (B.2)

Q(dm)
ν = −fQ(φ)

ν −Qanh
ν . (B.3)

So our ansatz for the annihilation source could be the following

Qanh
ν = −γ

(
(dm)T r

ν
(dm)Trµ − ρ2eq gνµ

)
uµ . (B.4)

It can be seen that the zero component at zero order gives rise to the right operator

Qanh
0 = −γ

(
g0λ

(dm)T λrgrsgµw
(dm)T sw − ρ2eq g0µ

)
uµ

= −γ
(
g0λ ρ

dmuλurgrsgµwρ
dmusuw − ρ2eq g0µ

)
uµ

= −γ
(
g0λ ρ

2,dm(us · us)uλ(uµ · uµ)− ρ2eq g0µuµ
)

= −γ g00
(
ρ2,dm − ρ2eq

)
u0

= +γ
(
ρ2,dm − ρ2eq

)
, (B.5)

where the relations (us · us) = −1, g00 = −1 y u0 = 1 have been used.

A first order in perturbations Qinh
ν takes then the following form

Qinh
0 = γ

[(
ρ2,dm − ρ2eq

)
(1 + Ψ) + 2δdmρ2,dm

]
, (B.6)

Qinh
i = −a2γVi

(
ρ2,dm − ρ2eq

)
. (B.7)
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Figure 7. Evolution in scale factor of the velocity components of the mother particle, radiation

and daughter particle perturbations for two different scales. Red line corresponds to k = 104kRH

and green line to k = 100kRH. On the bottom it is pictured the evolution of the gravitational

potential for the same pair of scales

Working out the energy conservation equation for each component with the perturbed
metric in the Newtonian gauge, one can derive the perturbation equations but including
now the annihilation terms. These equations read as follows

a2E(a)δ′mm(a) + θ̃mm(a) + 3a2E(a)Φ′(a) = aΓ̃mmΦ(a) , (B.8)

a2E(a)θ̃′mm(a) + aE(a)θ̃mm + k̃2Φ(a) = 0 , (B.9)

a2E(a)δ′r(a) +
4

3
θ̃r(a) + 4a2E(a)Φ′(a) = · · ·+ a

H1

1

ρ0r

[
Q

anh,(0)
0 δr −Qanh,(1)

0

]
, (B.10)

a2E(a)θ̃′r(a) + k̃2Φ(a)− k̃2 δr(a)

4
= · · ·+ a

H1

1

ρ0r

[
∂iQ

anh
i

a(1 + wrad)
+Q

anh,(0)
0 θr

]
, (B.11)
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a2E(a)δ′dm(a) + θ̃dm(a) + 3a2E(a)Φ′(a) = · · · − a

H1

1

ρ0dm

[
Q

anh,(0)
0 δdm −Qanh,(1)

0

]
, (B.12)

a2E(a)θ̃′dm(a) + aE(a)θ̃dm + k̃2Φ(a) = · · ·+ 0 (B.13)

k̃2Φ + 3aE2(a)
[
a2Φ′(a) + aΦ(a)

]
=

3

2
a2
[
ρ̃0mm(a)δmm(a) + ρ̃0r(a)δr(a) + ρ̃0dmδdm(a)

]
,

(B.14)

where (. . . ) contains the terms without annihilation. If we show them explicitly, the equa-
tions of motions are written as follows

a2E(a)δ′mm(a) + θ̃mm(a) + 3a2E(a)Φ′(a) = aΓ̃mmΦ(a) , (B.15)

a2E(a)θ̃′mm(a) + aE(a)θ̃mm + k̃2Φ(a) = 0 , (B.16)

a2E(a)δ′r(a) +
4

3
θ̃r(a) + 4a2E(a)Φ′(a) = (1− f)

ρ̃0mm(a)

ρ̃0r(a)
aΓ̃mm [δmm(a)− δr(a)− Φ(a)]

+
a

H1

γ

ρr

[(
ρ2dm − ρ2eq

)
(δr + Φ)− 2δdmρ

2
dm

]
, (B.17)

a2E(a)θ̃′r(a) + k̃2Φ(a)− k̃2 δr(a)

4
= (1− f)

ρ̃0mm(a)

ρ̃0r(a)
aΓ̃mm

[
3

4
θ̃mm(a)− θr(a)

]
+

a

H1

γ
(
ρ2dm − ρ2eq

)
ρ0r

[
−3

4
θdm + θr

]
, (B.18)

a2E(a)δ′dm(a) + θ̃dm(a) + 3a2E(a)Φ′(a) = f
ρ̃0mm(a)

ρ̃0dm(a)
aΓ̃mm [δmm(a)− δdm(a)− Φ(a)]

+
a

H1

(
− γ

ρdm

)[(
ρ2dm − ρ2eq

)
(δdm + Φ)− 2δdmρ

2
dm

]
,

(B.19)

a2E(a)θ̃′dm(a) + aE(a)θ̃dm + k̃2Φ(a) = f
ρ̃0mm(a)

ρ̃0dm(a)
aΓ̃mm

[
θ̃mm(a)− θ̃dm(a)

]
, (B.20)

k̃2Φ + 3aE2(a)
[
a2Φ′(a) + aΦ(a)

]
=

3

2
a2
[
ρ̃0mm(a)δmm(a) + ρ̃0r(a)δr(a) + ρ̃0dmδdm(a)

]
,

(B.21)
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