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1 Introduction

Black branes in gauged supergravity are of particular interest due to their ability to pos-

sess AdS asymptotics and they have numerous applications to holography. Somewhat

recently [1] an exact analytic solution for static quarter-BPS black holes was found as well

as an analytic quarter-BPS rotating black hole in [2]. This work was performed in an N = 2

truncation of the four dimensional N = 8 gauged supergravity theory of de Wit-Nicolai [3]

and as such these black holes can be lifted to M-theory. Generalizing these solutions to

new analytic families of supersymmetric AdS4 black holes is the focus of our current work.

The static black holes of [1] can be understood within the context of the far-reaching

work of Maldacena and Nunez [4]; in M-theory they correspond to a stack of M2-branes

wrapped on a Riemann surface Σg of genus g ≥ 0. The initial work [4] found AdSp × Σg

geometries in (p+2)-dimensional gauged supergravity only when g > 1 and p = 1, 3 but the

method was clearly universal and there has since been much work establishing the phase

space of solutions for arbitrary genus and various p.1 The work of CK should be singled

out for special mention since this is the only example with non-trivial scalar field profiles

where the entire black-brane geometry is known analytically.2 In addition, from a purely

1See for example [1, 5–11] and some aspects are nicely reviews in [12].
2We should mention the constant scalar black branes which exist for p = 2, 3 and g > 1 [13, 14].
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general relativistic point of view, four dimensional black holes with spherical horizons are

traditionally of substantial interest as compared to black branes in higher dimensions.

In this work we apply a tried and true method of generating solutions in supergravity

theories: the awful power of the Geroch group [15]. In section 2 we find by explicit

computation that the bosonic sector of our gauged STU model has a G = U(1)3 invariance

and one can use this group to act on any solution of the theory. We denote the diagonal

U(1) subgroup of G by U(1)g and find reason to conjecture that G/U(1)g is in addition a

symmetry of the fermionic sector of the theory.

In section 3 we look at the CK solutions. They depend on three charges; there are

initially four charges but one BPS condition enforces a Dirac quantization condition and

reduces this to a three dimensional parameter space. We act on the CK solutions with

the two generators of G/U(1)g and generate static BPS black holes with two additional

charges. In the symplectic frame adapted to the M-theory lift, the CK solution has purely

magnetic charges whereas our two additional parameters are electric charges. Another

point of comparison is that our new solutions have non-trivial axions whereas in the CK

solutions the axions are trivial. Acting on the CK solutions with U(1)g ⊂ G breaks

the supersymmetry of the solutions and also appears to violate the Dirac quantization

condition, as a result we focus on the generators of G/U(1)g. We also act on the CK

solutions with equal magnetic charges and generate a new parameter.

In section 4 we perform a similar action of G/U(1)g on the BPS rotating black holes

of [2]. The solutions of [2] have equal magnetic charges which are inversely proportional

to the gauge coupling and they depend on two parameters. One parameter corresponds to

angular momentum the other represents a deformation of the boundary M2-brane theory.

The static limit is a solution from [1] with a single parameter corresponding to a deforma-

tion of the boundary M2-brane theory. Another limit sets the deformation parameter to

zero and corresponds to the constant scalar black hole with rotation. While this constant

scalar black hole is a fixed point of our duality group, from the solutions of [2] we gener-

ate one additional parameter. The full solution space of BPS rotating black holes now has

three parameters; angular momentum, one deformation parameter and our new parameter.

When lifted to M-theory the charges of the CK solutions correspond to twists of the

S7 bundle over Σg [4]. From another point of view one can view these solutions as the near

horizon limit of a stack of M2-branes wrapping a Riemann surface inside a local Calabi-Yau

fivefold X5 which is the product of four line bundle over Σg. The magnetic charges of the

CK solution are proportional to the Chern numbers of these four line bundles. In this same

duality frame, the electric charges we find correspond to the spin of the M2-branes along

a pair of circles: U(1)2 ⊂ S7.

2 STU-model of gauged supergravity from M-theory

We start in the symplectic duality frame where the STU-model of four dimensional super-

gravity has the prepotential

F = −X1X2X3

X0
. (2.1)
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Using the notation of appendix A this implies that d123 = 1
6 and d̂123 = 32

3 . This model

has the vector-multiplet scalar manifold

Mv =
(SL(2,R)

U(1)

)3
(2.2)

and thus the global symmetry
[
SL(2,R)

]3
. We include a very specific dyonic gauging,

namely we take

G =

(
gΛ

gΛ

)
, gΛ =




0

g1

g2

g3


 , gΛ =




g0
0

0

0


 (2.3)

and using a duality symmetry from appendix B with

β = log

[
g0
g

]
, Bi

i = − log

[
− gi(g0)

1/3

g4/3

]
,

ai = bj = 0 , Bi
j = 0 , for i 6= j (2.4)

we set the magnitudes of the gauge couplings equal

gΛ = −




0

g

g

g


 , gΛ =




g

0

0

0


 . (2.5)

There is a simple reason for choosing this seemingly obscure gauging: this model is

known to be a truncation of N = 8, de Wit-Nicolai theory [16–18] with nv = 3 and

can thus be uplifted to M-theory.3 The model given by (2.1) and (2.5) is related by a

symplectic transformation

S =

(
A B

C D

)
, A = D = diag{1, 0, 0, 0} , B = −C = diag{0, 1, 1, 1} (2.6)

to the perhaps more familiar model with prepotential, gaugings and sections given by

F̆ = −2i
√
X̆0X̆1X̆2X̆3 , ğΛ = 0 , ğΛ = g , (2.7)

X̆Λ =




1

−z2z3

−z3z1

−z1z2


 , F̆Λ =




z1z2z3

−z1

−z2

−z3


 (2.8)

but we are particularly fond of the frame (2.1) because it makes the action of the symplectic

group Sp(2nv + 2,R) manifest and thus is the natural frame to understand the unbroken

symmetries. Of course both frames are physically indistinguishable.

3There has been recent work [19] refining the explicit uplift [20] of thisN = 8 theory to eleven dimensional

supergravity and thus proving that it is a consistent truncation.
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With dyonic gaugings such as (2.5) it is convenient to use the formalism of [21] which is

a natural symplectic completion of the electrically gauged theory. In particular the scalar

potential is

Vg = giDiLDL − 3|L|2 (2.9)

where we have defined the symplectic invariant quantities

L = 〈G,V〉 , Li = 〈G, DiV〉 (2.10)

and 〈., .〉 is the symplectic product of two symplectic vectors. For the STU model with

gaugings given by (2.5), the scalar potential has the following explicit form:

Vg = −g2
3∑

i=1

[
1

yi
+ yi +

(xi)2

yi

]
. (2.11)

Our first goal is to analyze the subgroup of
[
SL(2,R)

]3
which remains unbroken in the

bosonic sector of the gauged theory to do so it is sufficient to analyze the invariances of Vg.

2.1 The basics of SL(2,R)/U(1)

This section contains some details about the coset SL(2,R)/U(1). We are aware that this

material is quite elementary but see no reason not to spell out our steps in modest detail.

Indeed, the symmetries of this particularly interesting STU-model of gauged supergravity

are remarkably straightforward, nonetheless to the best of our knowledge have never been

worked out or utilized.

The coset representative is

V = eH
φ

2 eE χ (2.12)

where the generators of sl(2,R) are

H =

(
1 0

0 −1

)
, E =

(
0 1

0 0

)
, F =

(
0 0

1 0

)
. (2.13)

To construct the metric on the coset, one takes

M = V TV (2.14)

and under the right action of Λ ∈ SL(2,R) these transform as

V → V Λ , M → ΛTMΛ . (2.15)

The transformation (2.15) ruins the parametrization (2.12) but one uses a compensating,

local, left acting SO(2) transformation to bring V back to the form (2.12). From (2.15)

we see that TrM is invariant under Λ ∈ SO(2). The kinetic terms for the coset are then

given by

Lkin = −1

4
Tr(∂µM∂µM−1) (2.16)

and are invariant under (2.15) for Λ ∈ SL(2,R).
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Explicitly, using (2.12) and (2.14) we have

M =

(
eφ eφχ

eφχ e−φ + eφχ2

)
(2.17)

and using the standard co-ordinate redefinition

z = x+ iy = χ+ ie−φ (2.18)

we find that

TrM =
1

y
+ y +

x2

y
. (2.19)

So we see that the scalar potential of our gauged supergravity theory (2.11) is given by

canonical objects from the coset:

Vg = −g2
3∑

i=1

TrMi (2.20)

where Mi is (2.14) for the i-th SL(2,R)/U(1) coset. Thus we have demonstrated that the

scalar potential and thus the bosonic sector of the STU model of section 2 is invariant under

SO(2)3 ⊂ SL(2,R)3 . (2.21)

2.2 Embedding SO(2)3 into Sp(2nv + 2,R)

We now embed this symmetry group SO(2)3 into Sp(8,R) using the work of [22, 23], key

aspects of this work are summarized in appendix B. The three rotations corresponding

to (2.21) are given by the exponentiation of the elements S ∈ sp(8,R) from (B.3) with

β = Bi
j = 0 , ai = −bi . (2.22)

We find that these are given by

Oi(α) =

(
Qi(α) Ri(α)

Si(α) Ti(α)

)
(2.23)

where

Q1(α) = T1(α) =




cα sα 0 0

−sα cα 0 0

0 0 cα 0

0 0 0 cα


 , R1(α) = −S1(α) =




0 0 0 0

0 0 0 0

0 0 0 −sα
0 0 −sα 0


 ,

Q2(α) = T2(α) =




cα 0 sα 0

0 cα 0 0

−sα 0 cα 0

0 0 0 cα


 , R2(α) = −S2(α) =




0 0 0 0

0 0 0 −sα
0 0 0 0

0 −sα 0 0


 ,

Q3(α) = T3(α) =




cα 0 0 sα
0 cα 0 0

0 0 cα 0

−sα 0 0 cα


 , R3(α) = −S3(α) =




0 0 0 0

0 0 −sα 0

0 −sα 0 0

0 0 0 0




and we use the notation sα = sinα and cα = cosα.
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We know from section 2.1 that simultaneously acting with Oi on both the sections V
and the vector fields is a symmetry of the Lagrangian. Now by construction the theory

is invariant under the simultaneous action of any symplectic matrix T on the gaugings G,
charges Q and the sections V :

(G,Q,V) → (T G, T Q, T V) , T ∈ Sp(2nv + 2,R) (2.24)

and so we can surmise that for our particular theory we could equally well just act on

the gaugings

G → Oi(α)G (2.25)

and this should be a symmetry of the Lagrangian. Indeed explicit calculation shows this

to be true.

2.3 Two simple generators

For two of these transformations we can see this quite explicitly since for the particular

gaugings (2.5) something even stronger is true, the gaugings themselves are invariant:

O12(α)G = G , O23(α)G = G (2.26)

where

Oij(α) = Oi(α)O−1
j (α) . (2.27)

This leads us to conclude that the generators O12(α) and O23(α) commute with the gauge

group. In particular this means that solutions generated using O12 and O23 from a super-

symmetric seed solution will preserve the same amount of supersymmetry.

2.4 The third generator

The final generator can be taken to be

Og(α) = O1(α/3)O2(α/3)O3(α/3) (2.28)

and we find that the gaugings are not invariant:

gΛ → −g




sα
cα
cα
cα


 , gΛ → −g




−cα
sα
sα
sα


 . (2.29)

Nonetheless the whole bosonic Lagrangian is invariant; the kinetic terms are invariant

because this transformation is a duality transformation of the underlying ungauged super-

gravity theory and we have shown explicitly that the scalar potential is invariant. Note

however that the two terms in (2.9) are not separately invariant, only the sum is. As a

result we can freely generate solutions to the bosonic equations using O123.

In [21] a comment was made regarding a particular SO(2) ⊂ SL(2,R)3 which is identi-

fied with the gauging of the graviphoton and thus what we referred to in the introduction

– 6 –
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as U(1)g. We understand this generator to be Og. In fact we find it difficult to make the

Dirac quantization condition (3.2) compatible with this generator, it is the generators O12

and O23 which are particularly useful for our purposes. In a different context [24], it was

emphasized to great utility that the duality group of a gauged theory is the commutant of

the gauge group inside the duality group of the ungauged theory. In our particular example

we understand that the gauge group is identified with the SO(2) generated by4 Og and

the commutant of the gauge group to be the SO(2)2 generated by O12 and O23. Solutions

generated with Og will typically break the supersymmetry of the seed solution and Og will

not appear in the following sections.

3 BPS static black holes

We now analyze the action of Oi(α) on the supersymmetric static black holes of [1], which

we will first review. The metric ansatz is

ds2BH = −e2Udt2 + e−2Udr2 + e2(V−U)dΣ2
g (3.1)

where dΣ2
g is the constant curvature metric on (S2,R2,H2) and the scalar fields depend

only on the radial co-ordinate. The BPS equations can be found in [21] but we will not

utilize them here. It is however worth mentioning in general there is a Dirac quantization

condition 〈G,Q〉 ∈ Z which for supersymmetric solutions is strengthened to

〈G,Q〉 = −κ , (3.2)

where κ = (1, 0,−1) for Σg = (S2,R2,H2) respectively.

3.1 The supersymmetric static black holes

The black holes of [1] require the charges

Q =

(
pΛ

qΛ

)
, pΛ =




p0

0

0

0


 , qΛ =




0

q1
q2
q3


 (3.3)

and we define some rescaled sections

L̃Λ = eV−ULΛ , M̃Λ = eV−UMΛ . (3.4)

In the duality frame given by (2.8) the charges would be purely magnetic:

(p̆Λ)T = (p0, q1, q2, q3) , q̆Λ = 0 . (3.5)

4One should note however that before gauging, the scalar fields are neutral under the global U(1) which

is gauged. In the gauged theory the scalars are not minimally coupled to any gauge fields.
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The solution is mildly cumbersome but completely explicit, it has recently been extended

in [25] to a large class of N = 2 U(1)-gauged supergravity theories and a covariant form of

the solution is presented there. It is given by

eV =
r2

R
− v0 , (3.6)

L̃0 =
r

4gR
+ β0 , (3.7)

M̃i =
r

4gR
+ βi , (3.8)

where R is the AdS4 radius

R =
1√
2 g

(3.9)

and5

β0 =
ǫ

2
√
2 g

√
v0
2R

− gp0 , (3.10)

βi = − ǫ

2
√
2 g

√
v0
2R

− gqi , (3.11)

v0 = 2R

[
gp0 +

27(dijkg
iΠjΠk)2

32dΠ

]
, (3.12)

where ǫ = ±1 and Πi is a certain function of the charges:

Πi = − 4

3g
(2qi + p0 − q1 − q2 − q3) . (3.13)

From these expressions one obtains the other metric function eU and the scalars yi

from (3.6)–(3.8) and (3.10)–(3.12):

e4U =
1

64

e4V

L̃0M̃1M̃2M̃3

, yi =
3

64

d̂ijkM̃jM̃k√
L̃0M̃1M̃2M̃3

, i = 1, 2, 3 . (3.14)

This CK solution has vanishing axions and is specified by three independent charges;

there are four charges (3.3) with one constraint (3.2). One would typically not refer to the

CK solutions as dyonic since in the symplectic frame (2.8) the gaugings are electric and

the charges are purely magnetic. There are regular CK black holes for horizons Σg for all

g ≥ 0 but still regularity places bounds on the values of the magnetic charges.

3.1.1 Equal charges

When the charges are all equal then from the above analysis we arrive at the well known

flow with constant scalar fields for which κ = −1 as well as

Πi = 0 , v0 = 2Rgp , β0 = βi = 0 . (3.15)

5To maintain covariance in the expression for v0 we have left gi which should be set gi = −g.
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Taking into account the Dirac quantization condition (3.2) the charges are fixed (they do

not give an independent parameter)

p0 = qi =
1

4g
(3.16)

and the horizon is at

r = rh =
R√
2

(3.17)

which is positive and thus the black hole is regular.

There is a whole family of solutions which satisfy (3.16) and are missed by the above

analysis because of some degeneracy in the BPS equations, this solution has a free param-

eter β corresponding. The metric and sections have

v0 =
R

2
+ 16Rg2β2 , (3.18)

β0 = β1 = β , (3.19)

β2 = β3 = −β (3.20)

and the resulting scalar fields are purely imaginary (the axions vanish)

z1 = i
r +∆

r −∆
, z2 = z3 = i , (3.21)

where with a view towards the next section we have defined a new parameter

∆ = 4gRβ = 2
√
2β . (3.22)

This solution was originally found in [1] from the model with F̂ = −iX̂0X̂1 and we elaborate

in the next section on how this is related to the STU model. This gives the metric

ds2BH = −
(
r2 − R2

2 −∆2
)2

R2(r2 −∆2)
dt2 +

R2(r2 −∆2)
(
r2 − R2

2 −∆2
)2dr

2 +
(
r2 −∆2

)
dΣ2

g (3.23)

where the metric on Σg = H
2/Γ is

dΣ2
g = dθ2 + sinh2 θdφ2 . (3.24)

The horizon is at

rh =

√
R2

2
+ ∆2 , (3.25)

while the scalar field z1 is singular when

r = rs ≡ ∆ . (3.26)

but rh > rs so the singularity is cloaked by a horizon and the black hole is regular. The

conserved charges are independent of ∆ but the metric and scalar field depend nontrivially

on ∆. The ∆ → 0 limit gives the constant scalar black hole.
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The UV behaviour of the ∆ dependence scales as O(1r ) and in principle there is a

choice of quantization schemes [26] which allows us to interpret this as a source or a vev

in the boundary M2-brane theory. To clarify this it is instructive to study the horizon

geometry. We find the radius of the horizon to be independent of ∆

R2
Σg

=
R2

2
(3.27)

which is comforting since the Bekenstein-Hawking entropy should not depend on continuous

parameters. However the AdS2 radius does depend on ∆:

R2
AdS2

=
R2

4
(
1 + 2∆2

R2

) . (3.28)

By general principles of holography the effective AdS2 radius is a measure of the degrees of

freedom in boundary superconformal quantum mechanics. This should not depend on the

expectation value of any operator and as such we interpret the ∆ dependence to represent

an explicit deformation of the boundary M2-brane theory by a dimension one operator.

This is on top of the mass terms induced from the curvature of Σg when twisting of the

world-volume M2-brane theory [4].

3.2 Duality transformations on the CK black holes

Our new solutions with non-trivial axions and genuinely dyonic charges are given by

eV = eV |CK

eU = eU |CK

Vα = O12(α1)O23(α2)VCK (3.29)

Qα = O12(α1)O23(α2)QCK

Gα = G ,

where QCK refers to (3.3) and G refers to (2.5). The scalar fields transform by fractional

linear transformations:

z1α =
cα1

z1 − sα1

sα1
z1 + cα1

, (3.30)

z2α =
cα21

z2 − sα21

sα21
z2 + cα21

, (3.31)

z3α =
cα2

z3 + sα2

−sα2
z3 + cα2

, (3.32)

where α21 = α2−α1 and one can observe that non-trivial axions are generated. Importantly,

one can check that the Dirac quantization condition is invariant:

〈G,O12(α1)O23(α2)QCK〉 = 〈G,QCK〉 . (3.33)

This space of supersymmetric static black holes now depends on five charges; three

initial charges from the CK solutions and the parameters (α1, α2) generate two new charges.
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As such there is no duality frame where the charges of the entire family are purely magnetic;

they are genuinely dyonic black holes. In [27] a complete solution was found for BPS horizon

geometries of the form AdS2 ×Σg in FI-gauged supergravity. It was found in [27] that the

space of BPS horizon geometries should be 2nv-dimensional. The counting works as follows:

the gaugings G define the theory and therefore are fixed. There are nv + 1 electric charges

and nv + 1 magnetic charges. Then there is the Dirac quantization condition (3.2) and

in [27] one additional constraint was found leaving 2nv parameters. For the model at hand

nv = 3 and this space is six dimensional. Assuming that every BPS solution of the form

AdS2 ×Σg can be completed in the UV to a genuine AdS4 black hole, it would seem there

is still one dimension of the black hole solution space missing. We will comment on this

further in the conclusions.

For equal charge solutions with (3.16), there is an additional branch of solutions. The

charges are invariant under (3.29) but with ∆ 6= 0 the scalar fields (z2, z3) are invariant

while z1 transforms according to (3.30):

z1α =
2r∆s2α + i(r2 −∆2)

r2 +∆2 − 2r∆c2α
, (3.34)

z2α = z3α = i . (3.35)

The metric is invariant and given by (3.23). When ∆ = 0 the whole solution is invariant.

The regularity of the black hole can be easily analyzed, when α = 0 the scalar z1 diverges

at r = ∆ while for α 6= 0 the imaginary part Im(z1) vanishes at r = ∆. Nonetheless

this is still shielded by the horizon whose position is independent of α. So for the fixed

charges (3.16) the full solution space is now a family of solutions with two parameters

(∆, α). Since the metric does not depend on α the effective AdS2 radius does not depend

on α and we interpret this mode as an expectation value.

4 Rotating black holes

We now apply our duality transformations to rotating black holes. We focus on the BPS

rotating black holes in AdS4 are those of [2], these solutions were originally found in the

gauged supergravity model with prepotential and sections given by6

F̂ = −iX̂0X̂1 , X̂Λ =

(
1

τ

)
, F̂Λ =

(
−iτ

−i

)
, τ = x+ iy . (4.1)

This model does not have a frame where it is given by a cubic prepotential but one can

embed it into the STU-model in the frame (2.7) and (2.8). We now describe this embedding

in some detail and then the resulting action of the duality group. To do so we take the

scalar fields

z1 = iτ , (4.2)

z2 = z3 = i (4.3)

6To be clear, the hatted variables refer to the model of (4.1), the variables with a breve “˘” refer to

the STU-model in the frame given by (2.7) and (2.8) while the un-hatted, un-breved variables refer to STU

model obtained from the cubic prepotential (2.1). The duality rotations (2.23) act in the frame of (2.1).
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and sections

X̆0 = X̆1 = X̂0 , X̆2 = X̆3 = X̂1 , F̆0 = F̆1 = F̂0 , F̆2 = F̆3 = F̂1 . (4.4)

The scalar potential of this model is

V̂g = − ĝ2

2

[
4 +

1

x
+ x+

y2

x

]
. (4.5)

The gauge fields and couplings between the models are related by ĝΛ = ğΛ = 0 and

1√
2
ĝ0 = ğ0 = ğ1 ,

1√
2
ĝ1 = ğ2 = ğ3 , Ă0 = Ă1 =

1√
2
Â0 , Ă2 = Ă3 =

1√
2
Â1 .

For this embedding the dual sections are M̂0 = −iL̂1 and M̂1 = −iL̂0 so that in total we

have the following symplectic vector of sections

V̆T =
1√
2
(L̂0, L̂0, L̂1, L̂1,−iL̂1,−iL̂1,−iL̂0,−iL̂0) . (4.6)

The duality transformation O23(α) acts trivially while O12(α) acts on the sections

as follows:

V̆α = S O12(α)S−1V̆ (4.7)

where S is given in (2.6). From (4.7) one can work out that after the transformation

we retain the identity z2 = z3 = i but this is also clear since they are fixed points of

the fractional linear transformations (3.30)–(3.32). The scalar field z1 transforms by a

fractional linear transformation

z1α =
cαz

1 − sα
sαz1 + cα

. (4.8)

The new gauge field strengths are obtained from

(
F̆Λ

ĞΛ

)

α

= S O12(α)S−1

(
F̆Λ

ĞΛ

)

where we have used the dual field strength defined in (A.8) and one finds that this too is

invariant. As a result O12 acts directly on the model of (4.1).

Now we can act on a particular solution such as the black hole of [2] in a straightforward

manner. This seed solution can be found explicitly in [2, 28] which we briefly review and

add a few comments regarding the parameter space of this solution.

The space-time metric for this rotating solution is given by

ds2 =
ρ2 −∆2

∆r
dr2 +

ρ2 −∆2

∆θ
dθ2 +

∆θ sinh
2 θ

ρ2 −∆2

(
jdt− (r2 + j2 −∆2)dφ

)2

− ∆r

ρ2 −∆2

(
dt+ j sinh2 θdφ

)2
(4.9)
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and the complex scalar fields are

z1 = − 2j∆cosh θ

j2 cosh2 θ + (r −∆)2
+ i

j2 cosh2 θ + r2 −∆2

j2 cosh2 θ + (r −∆)2
, (4.10)

z2 = z3 = i (4.11)

where

ρ2 = r2 + j2 cosh2 θ , ∆r =
1

R2

(
r2 +

j2 −R2

2
−∆2

)2

, ∆θ = 1 +
j2

R2
cosh2 θ .

The gauge field is given by

ĂΛ =
1

8ğ

cosh θ

(ρ2 −∆2)

(
jdt− (r2 + j2 −∆2)dφ

)
, Λ = 0, 1, 2, 3 . (4.12)

This is a rotating generalization of the solution in section (3.1.1). The parameter Ξ which

appears in [2] is unphysical and in our expression has been absorbed by a rescaling of the co-

ordinates which appear there. As with the static solution in section (3.1.1) all charges are

equal as in (3.16). The parameter j is the rotation parameter, ∆ represents a deformation

of the boundary theory by a source.

After setting up these pieces, it is completely straightforward to utilize a non-trivial

action of O12(α) on this solution under which the metric, gauge fields and (z2, z3) are

invariant while z1 transforms exactly as (4.8):

z1 → cα
[
− 2j∆cosh θ + i(j2 cosh2 θ + r2 −∆2)

]
− sα

[
j2 cosh2 θ + (r −∆)2

]

sα
[
− 2j∆cosh θ + i(j2 cosh2 θ + r2 −∆2)

]
+ cα

[
j2 cosh2 θ + (r −∆)2

] . (4.13)

This results in a family of rotating solutions with rotation parameter j and two additional

parameters (∆, α). The discussion below (3.34) is equally valid for this black hole. When

∆ = α = 0 we recover the constant scalar rotating solution of [13].

5 Conclusions

We have demonstrated that a well-known and simple STU-model of four dimensional

gauged supergravity has a powerful and previously un-utilized duality group. The duality

group is a property of the theory itself and as such can be used to act on any given solution,

we have used this group to generate new classes of supersymmetric AdS4 black holes.

When acting on the generic supersymmetric static black holes of [1] we have generated

two additional directions in the solution space, both supersymmetric. In the symplectic

duality frame in which this directly embeds into the de Wit-Nicolai N = 8 theory, these

new directions include two additional electric charges and have non-trivial profiles for the

axions. One particular representative of our new solutions had been previously constructed

numerically in [27]. Using the results of [27] for the static BPS horizon geometries in N = 2

U(1)-gauged supergravity theories, we have conjectured that with the new results of this

paper in hand, the known solution space of supersymmetric static black holes in the STU-

model is now co-dimension one within the full space of solutions. The sixth and final
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dimension of the solution space remains undiscovered and we predict that it should involve

a non-trivial profile for the phase of the supersymmetry parameter, much like the quite

complicated supersymmetric static black holes with hypermulitplets found in [29]. We have

not presented a strategy by which one could use duality to generate this final branch but

one could surely use numerics to confirm its existence.

When acting on the black holes of [1] with equal charges, we have generated a new

parameter in the solution space. This black hole now has two free parameters, one is dual

to an explicit mass term in the world-volume M2-brane theory, this is in addition to the

mass terms induced from twisting of the theory and the curvature couplings [4]. The new

parameter we have generated must then correspond to a vev.

We have also used the duality group to generate supersymmetric rotating black holes

by using the rotating black hole of Klemm [2] as a seed solution. This family remains

within the F̂ = −iX̂0X̂1 model but to generate this family we had to first embed this

model into the STU-model. Our new solutions have one additional parameter with respect

to the Klemm black hole. In the recent work [30] a new family of rotating AdS4 black

holes was found by explicitly solving the second order field equations, generalizing the

work of [31, 32]. The Killing spinor conditions were not checked in that work and they do

not reference [2] but it would certainly be interesting to establish whether there is overlap

between our results in section 4 and the results of [30]. The supersymmetric black hole

of [31] and its generalizations have a lower bound on the angular momentum whereas the

rotating black holes of section 4 have a regular static limit. There is clearly more work to

be done regarding supersymmetric AdS4 black holes even in the STU model; there remains

the open problem of constructing a supersymmetric rotating black hole which has a regular

CK black hole with S2 horizon as its zero-rotation limit.

There has been much recent work developing non-BPS black holes in gauged super-

gravity [28, 30, 33–38] and one can straightforwardly use our duality group on these as well.

For non-BPS black holes which are finite temperature generalizations of the CK black holes,

one would expect to find qualitatively similar results to ours. The space of static non-BPS

solutions discussed in [30] has no overlap with our solution space of supersymmetric black

holes in section 3 but it would appear that our duality transformations would not generate

new solutions in the class of static black holes found in [30] since in that class all charges

are already accounted for. Nonetheless it would be interesting to check this in detail.

Our solution generating technique is reminiscent of the TST duality [39] used in the

study of AdS solutions of IIB and eleven-dimensional supergravity. In that work, families

of AdS solutions were generated which correspond to the gravity dual of the deformation of

the superconformal field theory by exactly marginal operators. This is clearly not directly

related to our duality group since the de Wit-Nicolai theory (of which our STU-model is a

truncation) contains the AdS4 scalars dual to relevant operators, nonetheless we find it an

interesting point of comparison. While Lunin-Maldacena focused on BPS solutions, using

the techniques of [39] one can find additional non-BPS directions in the solution space [40].

Like the generator Og(θ) in section 2.4, these resulted from dualizing along directions

where the bosonic fields are neutral but the Killing spinor is charged. For solutions of

IIB supergravity which are topologically of the form AdS5 × S5, the solution space is
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conjectured to admit an additional direction7 [42] than that found in [39]. This is the dual

of the so-called cubic deformation of N = 4 SYM and cannot be obtained in any known

way through duality. If finding the exact supergravity solution for the final direction of our

conjectured solution space of static BPS black holes is a problem of comparable difficulty,

one should note that this would be quite a formidable problem.

Duality in gauged supergravity has rarely been employed in the literature. An attempt

to use the Geroch group in reductions to three dimensions was carried out in [43] but such a

method has not yet proved as useful for generating rotating black holes as it is for ungauged

supergravity. It is possible that our results for these N = 2 U(1)-gauged supergravity

theories could help in this regard, certainly it should be possibly to understand duality

for black holes with hyeprmultiplets [29]. More generally we hope and expect that the

synthesis of our new duality techniques with the numerous recents works on black holes

in gauged supergravity will result in much further progress in the study of asymptotically

AdS black holes.
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A Special geometry

This material is all standard but we include it to make our conventions clear and in partic-

ular to be straight with our numerical factors. We essentially use the N = 2 supergravity

conventions of [44] except we use the mostly plus signature (− + ++). The supergravity

action is given by

S4d =

∫
d4x

√−g

(
1

2
R− gij∂µz

i∂µzj + IΛΣFΛ
µνF

Σµν +RΛΣF
Λ
µν

(
1

2
ǫµνρσFΣ

ρσ

)
− Vg

)

(A.1)

The prepotential we use is

F = −dijk
XiXjXk

X0
(A.2)

and special co-ordinates are

XΛ =

(
1

zi

)
, zi = xi + iyi . (A.3)

From this we obtain that the dual sections FΛ = ∂ΛF are

FΛ =

(
dijkz

izjzk

−3dz,i

)
(A.4)

7This search for the resulting supergravity solution remains a long-standing open problem, the state of

the art in perturbation theory can be found in [41].
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and the Kähler potential and metric are

e−K = 8dy , gi = ∂i∂K . (A.5)

As usual the rescaled sections are defined as

V =

(
LΛ

MΛ

)
= eK/2

(
XΛ

FΛ

)
. (A.6)

The kinetic and topological terms for the vector fields in (A.1) come from the tensor

NΛΣ = RΛΣ + i IΛΣ = FΛΣ + 2i
ImFΛ∆ImFΣΥX

∆XΥ

ImF∆ΥX∆XΥ
(A.7)

where FΛΣ = ∂Λ∂ΣF . The dual gauge-field strength is

GΛ = RΛΣF
Σ − IΛΣ ∗ FΣ . (A.8)

We will also use the following tensor8

d̂ijk =
gilgjmgkndijk

d2y
(A.9)

which has the crucial property that it is constant whenever Mv is a homogeneous space.

We use the following shorthand for contraction of objects with the symmetric tensors dijk
and d̂ijk:

dg = dijkg
igjgk , dg,i = dijkg

jgk , d g,ij = dijkg
k ,

d̂g = d̂ijkgigjgk , d̂ig = d̂ijkgjgk , d̂ijg = d̂ijkgk . (A.10)

At various points in the text we have used different symplectic frames. For example

we have four different sections LΛ

LΛ : sections in the STU model with cubic prepotential, see eq. (2.1)

L̆Λ : sections of STU model in frame with F̆ = −2i
√
X̆0X̆1X̆2X̆3 , see eq. (2.7)

L̃Λ : sections LΛ rescaled by a metric factor, see eq. (3.4)

L̂Λ : sections in the model with F̂ = −iX̂0X̂1 , see eq. (4.1)

B Duality symmetries and very special Kähler geometry

We now summarize some key aspects of duality symmetries for very special Kähler geometry

following [22, 23, 45]. Under the action of Sp(2nv + 2,R), the prepotential transforms

according to

S =

(
A B

C D

)
∈ Sp(2nv + 2,R) , (B.1)

F̃ (X̃) = F (X) +XΛ(CtB) Σ
Λ FΣ +

1

2
XΛ(CtA)ΛΣX

Σ +
1

2
FΛ(D

tB)ΛΣFΣ . (B.2)

8The hat index here does not refer to any particular duality frame, hopefully this does not cause confusion

on the part of the reader.
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The elements of Sp(2nv + 2,R) which leave the prepotential invariant correspond to

isometries of Mv and these have been classified by de Wit and Van-Proeyen. Working at

the level of the Lie algebra we have an element

S =

(
Q R

S T

)
∈ sp(2nv + 2,R) (B.3)

with components

Q = −T t =

(
β ai
bj Bi

j +
1
3βδ

i
j

)
, (B.4)

R =

(
0 0

0 − 3
32 d̂

ijkak

)
, (B.5)

S =

(
0 0

0 −6dijkb
k

)
. (B.6)

The scalar fields transform infinitesimally as

δzi = bi − 2

3
βzi +Bi

jz
j − 1

2
Ri l

jkz
jzkal . (B.7)

where Ri l
jk is the Riemann tensor on Mv:

Ri l
jk = 2δi(jδ

l
k) −

9

16
d̂ilmdmjk . (B.8)

In general these symmetries are constrained

Bi
(jdkl)i = 0 , (B.9)

aiE
i
jklm = 0 (B.10)

where the E-tensor is given by

Ei
jklm = d̂inpdn(jkdlm)p −

64

27
δi(jdklm) . (B.11)

When Mv is a homogeneous space, the case of most interest to us, Ei
jklm vanishes and

thus the constraint (B.10) is identically zero. As a consqequence the ai and bj parameters

are unconstrained.

To get a feeling for these symmetries, consider the fractional linear transformation

of zi under SL(2,R). To work out the infinitesimal tranformation we take the standard

generators of sl(2,R)

E =

(
0 1

0 0

)
, F =

(
0 0

1 0

)
, H =

(
1 0

0 −1

)
(B.12)

then we have

δEz
i → α , δF z

i → −α(zi)2 , δHzi → 2αzi . (B.13)

So one can interpret the matrix S in (B.4)–(B.6) with bi 6= 0 as raising operators and when

Mv is a homogeneous space, the Riemann tensor is constant and one can interpret the

matrix with ai 6= 0 as lowering operators. The (β,Bi
j) are then the Cartan elements. The

full commutation relations can be easily worked out or found in [22, 23, 45].
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