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that the strength of local CP-violation in QCD with physical quark masses is about an

order of magnitude smaller than a model prediction based on nearly massless quarks in

domains of constant gluon backgrounds with topological charge. We also show numerical

evidence that the observed local CP-violation correlates with spatially extended electric

dipole structures in the QCD vacuum.
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1 Introduction

Quantum Chromodynamics (QCD) is the theory of the strong interactions. At low tem-

peratures QCD is confining, implying that the elementary particles of the theory — quarks

and gluons — only exist as components of bound states (hadrons). The asymptotic freedom

property of QCD ensures that at high temperatures the interaction between quarks and

gluons weakens, and a transition to the quark-gluon plasma (QGP) phase occurs, where

the dominant degrees of freedom are no longer colorless bound states but colored objects.

According to lattice simulations, this transition is no real phase transition but an analytic

crossover [1] and takes place at around Tc ∼ 150 MeV, see e.g. refs. [2, 3].

The high-temperature QGP phase is routinely produced in contemporary high energy

heavy-ion collisions, for example at the Relativistic Heavy Ion Collider (RHIC), where

temperatures exceeding Tc can be reached [4]. Besides extreme temperatures, another

interesting feature of such a heavy-ion collision is the presence of strong magnetic fields

generated by the spectator particles in non-central events. This magnetic field is perpen-

dicular to the reaction plane and may reach values up to
√
eB ∼ 0.1 GeV for RHIC and√

eB ∼ 0.5 GeV for the Large Hadron Collider (LHC) [5], depending on the beam energy

and centrality. Even though the generated magnetic field has a very short lifetime, of

the order of 1 fm/c, this magnetic ‘pulse’ coincides with the formation of the quark-gluon

plasma and thus may play an important role in the description of the collision. Strong mag-

netic fields also represent an important concept for cosmology [6] and for the description
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of dense neutron stars called magnetars [7]. Therefore, a clear theoretical understanding

of the response of QCD matter to external magnetic fields is desirable.

An important characteristic of the QCD vacuum is its transformation property under

parity (P) and charge conjugation (C). In the absence of a θ-parameter, the theory prohibits

violation of both the P- and CP-symmetries. Indeed, experimental bounds — mostly

coming from measurements of the electric dipole moment of the neutron — on the degree

of this violation turn out to be extremely tiny. Nevertheless, CP-violation could still be

realized in the local sense, through fluctuations of CP-odd observables. One manifestation

of this in the QGP phase created in heavy-ion collisions might be through the presence

of domains with a non-trivial topological structure of the gluon fields (see, e.g., ref. [8]).

Such a nonzero topology is indicated by the non-vanishing value of the topological charge

Qtop (defined below) within that particular domain. Since the magnetic field is odd under

CP transformation, it is natural to expect that it can be used to effectively probe the

CP-odd domains of the quark-gluon plasma and, thus, the CP-violating fluctuations in the

QCD vacuum.

A possible realization of the coupling between the strong magnetic field and the non-

trivial topological structure of the QGP is the so-called chiral magnetic effect (CME) [9,

10]. For close to massless quarks, helicity is an approximately conserved quantity, and in

strong magnetic fields the quark spins tend to align themselves either parallel (for positive

charges) or antiparallel (for negative charges) to the external field. Therefore, right-handed,

positively charged quarks and left handed, negatively charged quarks will tend to have

their momenta parallel to the direction of the magnetic field. In a domain of the quark-

gluon plasma with nonzero topological charge density, there is an imbalance between the

number of left- and right-handed quarks, due to the Atiyah-Singer index theorem. As

a consequence, a net current of quarks can be produced (anti)parallel to the external

magnetic field, or, equivalently, the domain in question will be electrically polarized in the

direction of the magnetic field. An alternative formulation of the effect is in terms of a

chiral chemical potential [10], which couples to the anomalous axial current and creates a

chiral imbalance by preferring right-handed over left-handed quarks.

The effects of the electric polarization of the plasma domains may persist at later stages

of the collision. After hadronization takes place, this can result in a preferential emission of

charged particles above and below the reaction plane [11, 12]. Indications for such a charge

asymmetry were observed in the STAR experiment at RHIC [13, 14] and in the ALICE

experiment at the LHC [15]. However, to access observables related to the CME, certain

parity-even experimental backgrounds have to be taken into account, which complicates

the interpretation of the observed data. Thus, the exact meaning of these results is still

debated, see, e.g., refs. [16–19]. For recent reviews on the subject see, e.g., refs. [20, 21].

The CME and topology-induced CP-violation have been studied in various approaches,

ranging from effective theory/model calculations to Euclidean lattice simulations. The for-

mer include among others settings like the Nambu-Jona-Lasinio model with an additional

coupling to the Polyakov loop (PNJL model) [22], the holographic approach [23, 24], hy-

drodynamics (see, e.g., refs. [25, 26]) or using a chiral effective action [27]. On the lattice,

the CME was first studied by measuring current- and chirality fluctuations in quenched

SU(2) [28] and quenched SU(3) gauge theory [29]. Surprisingly, around the transition
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Figure 1. Illustration of the chiral magnetic effect on a single instanton configuration (left panel)

and in the QCD vacuum through local fluctuations of the topological charge (right panel).

temperature, the fluctuations of the current parallel to the magnetic field were found to

decrease with growing B in the small magnetic field region [28], a result which still lacks a

qualitative understanding. Another approach to investigate the CME on the lattice is us-

ing the chiral chemical potential, see refs. [30, 31]. Finally, the interplay between magnetic

fields and topology was also studied by discretizing a continuum instanton configuration,

and measuring the electric polarization in the presence of the magnetic field [32], see the

illustration in the left panel of figure 1.

In the present paper, we pursue a different approach and measure the extent to which

the topological charge and the electric polarization of the quarks correlate locally, when

exposed to external magnetic fields. Instead of having to consider classical instanton config-

urations, this approach enables us to use real QCD gauge backgrounds and to consider the

local fluctuations of the topological charge on them, see the right panel of figure 1. More-

over, while there is no need to introduce any anomalous current or chemical potential, the

method still gives a handle on relating the topological and the electromagnetic properties

of the QCD vacuum in a Lorentz invariant manner. This approach is similar to that of

ref. [33], where chirality-electric polarization correlators were measured in quenched SU(2)

gauge theory to detect the induced electric dipole moment of valence quarks. However,

in our case the quarks and the external magnetic field are introduced dynamically, which

allows us to observe spatially extended electric dipole structures in the QCD vacuum.

We indeed find that in local domains with nonzero topological charge density, an

electric dipole moment is induced parallel to the external field. The strength of this effect

is determined for various magnetic fields and temperatures around Tc for several different

lattice spacings. A scheme for defining the continuum limit of the results, utilizing the

gradient flow [34] of the fields, is also introduced and used to perform the continuum

extrapolation. Finally we compare the lattice results to a model calculation that employs

nearly massless quarks and constant (anti)selfdual gluon backgrounds — a setting in which

the problem can be treated analytically [35]. This comparison reveals that the numerical

result found for full non-perturbative QCD with physical quark masses is by an order of

magnitude smaller than the model prediction.
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2 Formulation

In our setup, we consider the local correlation of the quark electric dipole moment with

the topological charge density,

qtop(x) =
1

32π2
εµναβ trGµν(x)Gαβ(x), (2.1)

where Gµν(x) is the SU(3) field strength at the point x, and tr denotes the trace in color

space. The space-time integral of qtop gives the total topological charge Qtop. In order to

define the local electric dipole moment operator, let us consider the spin polarization of

the quark of flavor f (represented by the field ψf ),

Σf
µν(x) ≡ ψ̄fσµνψf (x), σµν =

1

2i
[γµ, γν ], (2.2)

where γµ are the Euclidean Dirac matrices. In the presence of a constant Abelian external

field Fµν , the spin polarization develops a nonzero expectation value [36],〈
Σf
µν(x)

〉
= qfFµν · τf , (2.3)

where qf is the charge of the quark of flavor f , and the factor of proportionality τf is

conventionally written as the product τf =
〈
ψ̄fψf

〉
χf of the quark condensate and the

magnetic susceptibility. Note that the expectation value in eq. (2.3) involves an integral

over space-time and a normalization by the four-volume, to exploit translational invariance.

The xy component of eq. (2.3) is induced by an external magnetic field Fxy = Bz,

whereas the zt component by an external (Euclidean) electric field Fzt = Ez. Accordingly,

the polarizations correspond to a magnetic and an electric dipole moment of the quark,

respectively.1 The electric dipole moment is a parity-odd quantity, just as the topological

charge density of eq. (2.1); their product is therefore parity-even, and can have a nonzero

expectation value in the presence of the external magnetic field. We consider this product

locally and write it, similarly to eq. (2.3), as〈
qtop(x) · Σf

zt(x)
〉

√〈
q2top(x)

〉 = qfBz · τ̂f , (2.4)

where we factored out the magnitude of the topological fluctuations to define the correlator

of the two quantities. A similar combination was studied in ref. [33]. Since 〈qtop〉 = 0 we

use the square root of the expectation value of q2top for the normalization. In this way,

similarly to eq. (2.3), we obtain an observable with mass dimension 3, and introduce the

proportionality factor τ̂f . We emphasize that we consider the product of the two densities

on the left hand side locally, in order to see the local correlation of topology and the

polarization (this local product contains contact terms which need to be removed by an

1Note that this definition of the electric dipole moment is normalized with respect to the quark charge

qf . To compare to, e.g. ref. [9], one should consider qf · Σfzt.
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adequate renormalization prescription, see section 3 below). Eq. (2.4) expresses the fact

that there is a local correlation between the topological charge density of the non-Abelian

vacuum and the induced electric dipole moment, and that this correlation is proportional

to the external magnetic field.2

Consider now the ratio of eq. (2.4) and the xy component of eq. (2.3). Here the external

field cancels to leading order, giving directly the ratio τ̂f/τf ,

Cf ≡
τ̂f
τf

=

〈
qtop(x) · Σf

zt(x)
〉

√〈
q2top(x)

〉〈
Σf
xy(x)

〉 , (2.5)

which has dimension zero, and is particularly suited for the lattice determination. Note

that in this ratio all multiplicative renormalization factors cancel.

3 Observables and renormalization

We calculate the expectation values appearing in eq. (2.5) on the lattice with an external

magnetic field in the positive z direction, Bz ≡ B. The lattice geometry is N3
s ×Nt, and

the lattice spacing is denoted by a, such that the spatial volume of the system is given by

V ≡ (aNs)
3 and the temperature by T = (aNt)

−1. We consider the three lightest quark

flavors u, d and s, for which the charges are qu/2 = −qd = −qs = e/3 (here e > 0 is the

elementary charge). We derive our observables from the QCD partition function, which,

in the staggered discretization of the fermionic action reads

Z =

∫
DUe−βSg

∏
f=u,d,s

detM
1/4
f , (3.1)

where β = 6/g2 is the inverse gauge coupling, Sg the gauge action and Mf =

Mf (U, qfB,mf ) = /D(U, qfB) + mf1 the fermion matrix, for which we apply two steps

of stout smearing on the gluonic links U . The quark masses are tuned along the line

of constant physics (LCP) as mu = md < ms, ensuring that the isospin averaged zero-

temperature hadron masses equal their experimental values [38] (for the present action the

most precise LCP can be read off from figure 1 of ref. [39]). Further details of the action

and the simulation setup can be found in refs. [38, 40, 41]. Since the external field couples

directly only to quarks, B enters only through the fermion determinants. Note that the

dependence on B is always of the form of the renormalization group invariant combination

qfB ∼ eB.

For the gauge action Sg, we use the tree-level improved Symanzik action, which con-

tains the product of links along closed loops of size 1× 1 (the plaquettes Pµν) and of size

2×1. The topological charge (2.1) at the space-time point x can be calculated via the field

strength Gµν(x), which can be discretized as the sum of the antihermitian part of the four

2This mechanism may be compared to the Witten-effect, through which a magnetic monopole develops

an electric charge via interacting with a (CP-odd) axion field [37].
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plaquettes touching the site x,

Gµν(x) =
1

2

[
Wµν(x)−W †µν(x)

]
, Wµν(x) =

1

4

∑
x∈Pµν

Pµν , (3.2)

and the product in the four plaquettes starts at point x and advances counter-clockwise. To

suppress the noise originating from short-range fluctuations, the links used in eq. (3.2) are

the twice stout smeared links that we also use in fermionic observables. We find that this

choice for the definition of Gµν — and, thus, of qtop — reduces the noise in the correlation

between qtop and the electric dipole moment, necessary for the coefficient Cf of eq. (2.5).

Note that the continuum limit of Cf is unaffected by this choice. Let us add here that it is

customary to use improved definitions of qtop (see, e.g., ref. [42]) or much more extensive

smearing of the gluonic links in order to obtain an integer value for the total topological

charge Qtop. Here we do not aim to determine the total charge, or its susceptibility, but

concentrate on local fluctuations in qtop and its correlation with fluctuations of the electric

dipole moment, for which we carefully checked that our setup is appropriate.

The expectation value of the spin polarization with respect to the partition func-

tion (3.1) reads 〈
Σf
µν(x)

〉
=
T

V
· 1

4

〈
Tr(σµνM

−1
f )
〉
, (3.3)

where the trace (in color and coordinate space) is determined using noisy estimators ηi,

such that the polarization at point x is (color indices are suppressed here)

Σf
µν(x) ≈ 1

Nv

Nv∑
i=1

∑
y

ηi†x [σµνM
−1
f ]xy η

i
y, (3.4)

with no summation over x. Here, Nv is the number of estimators, which we set, depend-

ing on the ensemble, in the range 40 . . . 80. Furthermore, σµν stands for the staggered

representation of the tensor operator, see ref. [43] for the implementation we use.

Using the expressions (2.1), (3.2), (3.3) and (3.4), the expectation values appearing in

the ratio Cf of eq. (2.5) are determined. The so obtained Cf is yet to be renormalized,

since both its numerator and denominator contain divergent terms. The magnetic dipole

moment, for example, contains a logarithmic additive divergence, which may be eliminated

using the operator mf∂/∂mf , see ref. [43]. The square of qtop is also subject to renor-

malization, as it contains the contact term, see, e.g., ref. [44]. Similarly, one expects the

numerator to contain terms that are infinite in the continuum limit. These divergences

are related to the fact that two densities are multiplied at the same space-time point. To

remove these unphysical contributions, we use the gradient flow [34] for the fields con-

tained in qtop and in Σf
µν . The gradient flow was shown to eliminate additive divergences

in fermionic observables like the condensate or the pseudoscalar correlator [45]. Likewise,

we find that evolving the fields up to a fixed physical flow time tph — or, equivalently,

applying a nonzero smearing range Rs =
√

8 tph — renormalizes the observable Cf and, at

the same time, suppresses noise considerably. Our implementation of the gradient flow is

detailed in appendix A.
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Figure 2. Upper left panel: the magnetic dipole moment (red triangles) and the correlator of

the topological charge density with the electric dipole moment (blue squares) in lattice units, with

linear fits. Lower left panel: the ratio of the above two quantities, with a constant (dashed line) and

a quadratic fit (dotted line). The data correspond to a temperature T = 113 MeV, as measured on

the 243× 8 lattice ensemble. Right panel: change in the local fluctuations of the topological charge

density due to the magnetic field for a few temperatures below and around the transition region,

as measured on the 243 × 6 ensemble.

Finally, the operator Σf
µν is also subject to multiplicative renormalization by the tensor

renormalization constant ZT, which was calculated in perturbation theory for the present

action in ref. [43]. However, this factor cancels in the ratio Cf . Altogether, Cf is ultraviolet

finite, if the continuum limit is approached along a fixed nonzero smearing range Rs. On the

lattice, this corresponds to taking the limit Nt → ∞ at a fixed temperature T = (Nta)−1

and tuning the smearing range in lattice units as Rlat
s = Rs/a. We repeat the continuum

extrapolation for several ranges Rs > 0 and subsequently extrapolate the results to Rs = 0.

Let us point out that in the present study smearing is applied in two different con-

texts. First, stout link smearing is employed in the fermionic action in order to suppress

lattice discretization errors and, thus, to improve the convergence towards the continuum

limit. Second, the fields in certain observables are evolved according to the gradient flow,

which is equivalent to performing infinitesimal smearing steps. The latter reduces unphys-

ical ultraviolet contributions in some observables, allowing for a clean definition of the

continuum limit.

4 Results

We first analyze the response of
〈
qtop(x) ·Σf

zt(x)
〉

to the external magnetic field. Together

with the results for
〈
Σf
xy(x)

〉
, this is plotted for the down quark in the upper left panel

of figure 2. The ratio of the two expectation values is expected to be independent of

the magnetic field, up to corrections of O((qfB)2), in accordance with Lorentz invariance.

Within the range of the applied magnetic fields, these corrections are found to be small,

and thus the ratio is to a good approximation constant, see the lower left panel of figure 2.

In order to determine the leading order B-dependence of the ratio, in the following we fit

the data either to a constant, or consider corrections of O((qfB)2). Our strategy for the

determination of the systematic error of the result will be discussed below.

– 7 –
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Figure 3. The coefficient Cu as a function of the squared smearing range R2
s = 8 tph, introduced

by the gradient flow, using four lattice spacings Nt = 6, 8, 10 and 12 at T = 113 MeV (left panel)

and three lattice spacings Nt = 6, 8 and 10 at T = 163 MeV (right panel). The dotted lines are

to guide the eye. The continuum limit is performed at each Rs (open yellow circles), followed by

an extrapolation to Rs = 0 (filled yellow circle). The error bars represent statistical errors and the

gray region indicates the central value and total error of the final result obtained from a weighted

histogram of many fits, see details in the text.

The next step to obtain the coefficient Cf of eq. (2.5) is to measure the local fluctu-

ations3 in qtop. We find that
〈
q2top(x)

〉
depends quadratically on eB (again in accordance

with Lorentz invariance), however, with a coefficient that changes sign as the tempera-

ture is increased across the transition temperature Tc. This behavior is reminiscent of

that of the chiral condensate [41, 46, 47] as well as of the gluonic action [48], which

undergo magnetic catalysis at low temperatures and inverse catalysis in the transition

region. The change in the local fluctuations due to the magnetic field, ∆
√〈

q2top(x)
〉

=√〈
q2top(x)

〉∣∣∣
B
−
√〈

q2top(x)
〉∣∣∣

0
is shown in the right panel of figure 2 for different tem-

peratures. We note that although this change is significant, its magnitude is negligible

compared to
√〈

q2top(x)
〉

at B = 0 for the magnetic fields under study, in accordance with

the findings for the two-point function of the topological charge density in ref. [48].

We proceed with the renormalization, and investigate the effect of the gradient flow on

the coefficient Cf . According to our expectations, Cf is unphysical for a→ 0 at vanishing

flow time (vanishing smearing range), whereas for any nonzero tph ∝ R2
s, it has a finite

continuum limit. We demonstrate this in figure 3, where Cu(R2
s) is shown for four lattice

spacings at a fixed temperature T = 113 MeV. While a power-type divergence is clearly

absent from the Rs = 0 data points, a logarithmic divergence cannot be excluded. At finite

smearing ranges, we observe the convergence of the results to improve drastically — at

R2
s ≈ 0.5 fm2, the data points for all lattice spacings lie essentially on top of each other.

Moreover, we also observe that the signal to noise ratio improves by up to an order of

magnitude as the smearing range is increased beyond 1 fm.

For each Rs > 0 dataset, we extrapolate the results to the continuum limit by a

3Note that
〈
q2top(x)

〉
measures the extent of local fluctuations, in contrast to the topological susceptibility〈

Q2
top

〉
∼ χtop, which quantifies the global fluctuations.
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T Cu Cd Cs

113 MeV 0.132(10) 0.130(14) 0.096(7)

163 MeV 0.14(2) 0.12(3) 0.09(2)

Table 1. Continuum extrapolated results for the coefficient Cf in the limit Rs → 0 at two values

of the temperature.

quadratic fit in the lattice spacing (motivated by the O(a2) scaling properties of the action

we use). For this extrapolation we use the three finest lattices and only include Nt = 6 in

the fit to estimate the systematic error. We find that the so obtained extrapolations are

very well described by a linear function in R2
s (i.e., linear in the physical flow time tph),

which we use to extrapolate to Rs = 0, see the left panel of figure 3 for the results for

the up quark at T = 113 MeV. We also consider a quadratic dependence on R2
s, which

we do not find to improve the fit qualities. Altogether, we take into account 2× 3× 2× 2

different fits (constant or quadratic fit in eB; including or excluding the point with the

largest or the smallest eB; continuum extrapolation including or excluding Nt = 6; linear

or quadratic extrapolation in R2
s to Rs = 0). The a→ 0, Rs → 0 limits are used to build a

weighted histogram, and the average value and systematic error is estimated — following

refs. [49, 50] — by the mean and width of the obtained distribution, respectively. (figure 3

shows one representative fit out of the many.) The central values and the total (systematic

and statistical) errors obtained from this procedure are given in table 1 and indicated by

the gray regions at Rs = 0 in figure 3.

We perform a similar analysis in the deconfined phase, at T = 163 MeV using three

ensembles with Nt = 6, 8 and 10. The coefficient τf of the magnetic dipole moment quickly

approaches zero as the temperature is increased, see ref. [43]. At the same time, the

coefficient τ̂f of the topological charge density-electric dipole moment correlator is also

found to drop, which lowers the signal-to-noise ratio in Cf . Moreover, we also observe that

the continuum extrapolated data at Rs > 0 show a much less pronounced dependence on

R2
s, as compared to the case at T = 113 MeV, see the right panel of figure 3. Motivated

by this, in addition to the linear fits we also fit the data to a constant to extrapolate to

Rs = 0. The systematic error is again found by considering the width of the histogram

built from results obtained by the various fit procedures.

For the down quark — again as a consequence of the qfB-independence to leading

order — the results are within errors consistent with those obtained for the up quark. We

find Cs to be somewhat suppressed compared to the light quark coefficients, due to the

larger mass of the strange quark. Our final results in the continuum limit at Rs = 0, for

the two temperatures under consideration, are shown in table 1. Note that the values for

the two temperatures agree within errors for all flavors. Finally we remark that within our

range of magnetic fields (eB < 0.5 GeV2), the behavior shown in the left panel of figure 2

persists also at nonzero smearing ranges Rs > 0 in the gradient flow, and the ratio of

polarizations
〈
qtop(x) · Σzt(x)

〉
/
〈
Σxy(x)

〉
shows no significant dependence on B.

Interpreting Σf
µν as the electric dipole moment of the quark, it might seem that the

– 9 –
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induced polarization is point-like and is not related to spatial charge separation. However,

due to the fluctuations in qtop(x) and their interaction with dynamical sea quarks, the local

electric dipole moment correlates with spatially extended dipole structures and, thus, with

the spatial separation of the electric charge. To show that these extended structures exist,

let us consider the electric current operator

Jfν (x) = ψ̄fγνψf (x) (4.1)

and compose the observable4

Df (∆) =

〈
qtop(x) · Jft (x+ ∆)

〉
√〈

q2top(x)
〉〈

Σf
xy(x)

〉 , (4.2)

where we employed the same normalization as in the definition (2.5) of Cf . The ratio

Df (∆) represents the correlation between the topological charge density and the electric

charge density at two distinct points separated by a four-vector ∆. We remark that in

our Euclidean setting, the correlator in the numerator of eq. (4.2) is imaginary. Since

the observable contains no dependence on the (imaginary) time, its analytic continuation

simply amounts to a multiplication by i, giving a real observable in Minkowski space-time.5

In the left panel of figure 4 we show this correlator for the up quark in the xz plane. The

figure reveals an excess of positive charge above (∆z > 0) the topological ‘source’ and an

excess of negative charge below (∆z < 0) it. Thus, we indeed observe an electric dipole

structure aligned with the magnetic field.

To show that this spatially separated electric charge is not a lattice artefact, in the

right panel of figure 4 we plot Du(∆) for ∆ = (0, 0,∆z, 0). To approach the continuum

limit in a well-defined manner, we again make use of the gradient flow and consider a

nonzero smearing range. The results using three lattice spacings Nt = 6, 8 and 10 lie

almost perfectly on top of each other, showing small discretization errors and a fast scaling

towards a → 0 — similarly as we observed for Cf , compare figure 3. For the strange

quark (which exhibits a better signal to noise ratio) we also considered the dependence of

the spatial integral
∫

d3∆Ds(∆) ∆z — corresponding to the electric dipole moment of the

configuration — on the smearing range. The results indicate that this integral remains

nonzero even in the limit Rs → 0. Altogether, we conclude that the spatial separation of

the electric charge remains a well-defined concept in the continuum limit.

4Note that in accordance with Lorentz-symmetry — namely that Df should be antisymmetric in the

two indices appearing in its definition — the correlator involving Jft along ∆z equals minus the correlator

involving Jfz along ∆t.
5To see this, note that the density of topological charge qtop(x) receives a factor of i via the continuation.

Furthermore, the Minkowskian Dirac matrices are given by γM
0 = γt, γ

M
i = iγi, such that the charge operator

is the same in both space-times. Altogether, the observable Df gets multiplied by i. The same continuation

for the observable Cf gives no imaginary factor, since the spin operator in Minkowski space-time is defined

as σM
µν = i/2 · [γM

µ , γ
M
ν ], such that σM

xy = σxy and σM
z0 = −iσzt.
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Figure 4. Left panel: extended dipole structure in the spatial electric charge density-topological

charge density correlator in the xz plane. The data was obtained on our Nt = 6 ensemble at

T = 113 MeV without any applied smearing. Right panel: spatial correlation along the z direction

for three lattice spacings at T = 113 MeV using a fixed smearing range R2
s ≈ 0.27 fm2.

5 Comparison to a model

Let us now interpret our result for Cf in a model and in the context of heavy-ion collisions.

It is instructive to think of the quark-gluon plasma as depicted in the right panel of figure 1,

with small independent domains containing gluon backgrounds of topological charge Qtop.

In each domain an electric polarization Σzt is induced by the magnetic field and by the

local Qtop. This can be compared to the magnetic polarization Σxy, which is uniform

in the whole volume. Let us further assume that the topological charge in each domain

is created by constant selfdual or antiselfdual non-Abelian fields of strength G, such that

Qtop ∼ ±G2. This is a generalization of the approach in ref. [35] that allows to describe the

case B > G as well as B < G. Like in ref. [35], both polarizations in the local domain can

be calculated analytically, when other gluonic interactions are neglected. The calculation

(for technical details, see appendix B) simplifies tremendously in the lowest-Landau-level

(LLL) approximation, which amounts to neglecting the quark masses compared to the field

strengths. The magnetic field-dependence of the polarizations then reads

LLL, m2 � G, |B −G|, |B +G|:
Σzt = − 1

2π2m
· sign(Qtop)

{
G2 for G < B

BG for G > B
,

Σxy = − 1
2π2m

·BG ,
(5.1)

where an identical proportionality factor has been neglected. This result is valid for one

quark flavor (whose electric charge is set to unity) and gauge group SU(2) for spatially

aligned Abelian and non-Abelian fields, and agrees with the calculation of ref. [35]. (Note

that eq. (5.1) does not hold for G = 0 where the LLL approximation is invalid. In fact, in

this limit Σzt vanishes but Σxy remains finite.) In appendix B we also discuss the case of

non-aligned fields and gauge group SU(3) resulting in similar formulae.

Based on our lattice results, we can make two important statements about this model.

First, the ratio 〈qtop(x) · Σzt(x)〉 / 〈Σxy(x)〉 is found to be B-independent for QCD with

physical quark masses in the relevant range of magnetic fields, cf. the left panel of figure 2.
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The equivalent of this quantity in one domain in the model treatment is Qtop · Σzt/Σxy,

which is independent of B — and, thus, reproduces the lattice findings — only if the non-

Abelian scale G exceeds the external field B. Second, in this regime (B < G), we may

compare the model prediction to the lattice results quantitatively. In order to compute

the coefficient Cf in the model, we need to assume a distribution of the topological charge

among the local domains. A reasonable approximation is a Gaussian average6 over Qtop.

In addition, we also consider an arbitrary angle ϑ between the non-Abelian and Abelian

fields and integrate over ϑ. This averaging over Qtop and over ϑ is denoted by 〈〈. . .〉〉. Using

eq. (5.1) for B < G and its generalization to non-aligned fields, eq. (B.24) — which we

derived for B � G — we obtain

LLL, m2 � B � G : Cf =

〈〈
Qtop · Σzt

〉〉√〈〈
Q2

top

〉〉 〈〈
Σxy

〉〉 =

〈〈
|Qtop|3/2 g(ϑ)

〉〉√〈〈
Q2

top

〉〉 〈〈
|Qtop|1/2 g(ϑ)

〉〉 = 1.046,

(5.2)

where g(ϑ) is a Qtop-independent factor describing the dependence of the polarizations on

the angle. Its average over ϑ cancels in the ratio Cf . In fact, the above obtained number

is independent of the width of the Gaussian distribution of Qtop (due to the matching

powers of Qtop in the numerator and the denominator). However, it differs from our lattice

determination Cf ∼ 0.1 by an order of magnitude. Put differently, the strong interaction

between quarks prevents their full polarization predicted by such a model.

The above comparison reveals that an effective description of QCD with magnetic fields

has to take the strong interaction into account non-perturbatively and beyond the simple

assumptions of this model. In the same spirit one can question the lowest-Landau-level

approximation used in the model setting. It corresponds to the idealized situation where

the quark mass vanishes, and all quarks which are spin polarized by the magnetic field

interact with the gluonic background and contribute to the electric polarization. However,

heavier quarks are less sensitive to topology, and, accordingly, we expect the ratio Σzt/Σxy

to decrease as m grows. This is consistent with our results Cu,d > Cs.

6 Summary

Using first principles lattice calculations, we have studied local CP violation in the QCD

vacuum and its relation to the chiral magnetic effect, and determined the correlation co-

efficient between the electric polarization and the topological charge density, induced by

an external magnetic field. We have considered 2 + 1 flavor QCD with physical quark

masses, and extrapolated the results to the continuum limit. Our main result is a steady

linear dependence of this correlation on eB (without an indication of saturation) for mag-

netic fields eB . 0.5 GeV2, covering the maximal magnetic fields estimated to be present

in heavy-ion collisions. The coefficient of proportionality — after a normalization by the

magnetic polarization, see eq. (2.5) — is obtained to be Cf ∼ 0.1. The results for the three

flavors f = u, d, s, at two different temperatures are listed in table 1.

6A possible improvement of the model is to take into account correlations between the topological

domains, similarly as in phenomenological instanton approaches, see, e.g., ref. [51]. This might distort the

Gaussian distribution of Qtop.
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We also estimated this coefficient using a model calculation employing nearly massless

quarks, the lowest-Landau-level approximation and constant selfdual gluon backgrounds.

This model was found to overestimate Cf by an order of magnitude. In other words,

there is a substantial quantitative difference of the strength of local CP-violation for quasi-

free quarks used in model approaches and fully interacting quarks in realistic physical

situations. Whether the electric current in the formulation of the CME with a chiral

chemical potential [10] is also subject to a similar suppression due to non-perturbative

QCD effects (first lattice results indicate a suppression by a factor of 3-4 [30]), does not

follow directly from our results. However, we take the results as a hint that effects due to

local CP-violation in general contain similar suppression factors.

Let us finally add that we employed the staggered discretization of the QCD quark

action in the lattice simulation, which in some topology-related aspects gives rise to large

systematic/discretization errors. The topological susceptibility,
〈
Q2

top

〉
/V , for example,

shows a rather slow scaling towards the continuum limit, see, e.g., ref. [52]. We find that

for our particular observable, Cf , the continuum extrapolation is much flatter. This may

have to do with the fact that Cf is a local observable whereas the susceptibility is not.

Nevertheless, it would be desirable to confirm our numerical findings with chiral fermions

that have nicer topological properties.
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A Details of the gradient flow

The smearing of the gluonic and fermionic fields is performed by evolving these fields in

flow time t (tph = t · a2 is the physical flow time). The evolution in flow time amounts to

finding the solution of the flow equations for the gluonic links [34],

∂tU
t = Z(U t)U t, U t=0 = U, (A.1)

and for the quark fields [45],

∂tψ
t
f = ∆ψtf , ψt=0

f = ψf , (A.2)

and the corresponding equation for ψ̄tf . Here, Z(U t) is the (algebra-valued) derivative of

the plaquette action with respect to the link variable, and ∆ is the lattice discretization of

the Laplace operator (see below). The solution of the flow equations can be found by nu-

merical integration, which is done using the third-order Runge-Kutta integrator described

in refs. [34, 45] (a stepsize of ∆t = 0.02 was found to be optimal here, see also ref. [53]).

Integrating the flow equations up to a fixed physical time tph = t · a2 corresponds to a

smearing of the fields over a range of Rs =
√

8 tph [34].
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The definition of the quark condensate — or, of the fermionic bilinears appearing

in eq. (2.5) — at nonzero flow time requires the use of the adjoint flow for the noisy

estimators ηi of eq. (3.4) from flow time t back to flow time 0, see ref. [45]. For this, an

optimal scheme for the storage of the evolved links U t
′

for 0 ≤ t′ < t is implemented.

The evolution along the gradient flow is started from our original gauge action, thus with

unsmeared links. The stout smearing is then applied only for the measurement of the

operators, see eqs. (3.2)–(3.4).

We remark that there is a peculiar issue that arises if one applies the fermionic gradi-

ent flow for staggered quarks in a naive way. In the staggered fermionic discretization, the

Dirac components of the quark field ψ at site x are distributed over vertices of the four-

dimensional hypercube touching x. This distribution of the components is devised in a

manner such that the staggered action becomes diagonal in Dirac space, and the only rem-

nant of the original Dirac structure is through space-dependent real numbers, the so-called

staggered phases. In particular, the mass term ψ̄ψ and the Dirac operator ψ̄ /Dψ are diago-

nal in Dirac space, therefore they can be represented in terms of the staggered quark fields

χ in the same form, e.g. χ̄χ. However, the naive discretization of the Laplace operator is

not diagonal after the staggered transformation, giving no straightforward correspondence

between the representation with the original fields and that with the staggered fields.

To construct the Laplacian, let us define the forward and backward covariant differ-

ence operators,

∇µψ(x) = Uµ(x)uµ(x)ψ(x+ µ̂)− ψ(x),

∇†µψ(x) = ψ(x)− U †µ(x− µ̂)u∗µ(x− µ̂)ψ(x− µ̂). (A.3)

where Uµ ∈ SU(3) are the gluonic links and uµ ∈ U(1) the phases corresponding to the

magnetic field. The naive one-step discretization of the Laplace operator, ∆naive = ∇†µ∇µ
indeed becomes off-diagonal as it mixes the tastes distributed over the hypercube in a

non-trivial way. One possibility to avoid this mixing of the tastes is to use the two-step

discretization of the covariant differences,

∇(2)
µ ψ(x) =

Uµ(x)uµ(x)Uµ(x+ µ̂)uµ(x+ µ̂)ψ(x+ 2 · µ̂)− ψ(x)

2
,

∇(2)†
µ ψ(x) =

ψ(x)− U †µ(x− µ̂)u∗µ(x− µ̂)U †µ(x− 2 · µ̂)u∗µ(x− 2 · µ̂)ψ(x− 2 · µ̂)

2
.

(A.4)

to define the Laplacian ∆diag = ∇(2)†
µ ∇(2)

µ . This two-step discretization was used in the

flow equation eq. (A.2). The non-diagonal nature of ∆naive results in an explicit Lorentz-

symmetry breaking of the evolved fermionic fields, even at B = 0. This is indicated

by asymmetric expectation values of the bilinear structures ψ̄γµψ. Using the two-step

Laplacian ∆diag, (the lattice discretized version of) Lorentz-symmetry is maintained, and〈
ψ̄γµψ

〉
= 0 for all µ.

Finally we remark that we also attempted to use the square of the staggered Dirac

operator in place of the Laplacian for the evolution of the fermionic fields in eq. (A.2). The

results obtained for the coefficient Cf after the flow with /D
2
, however, showed an inferior
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scaling towards a→ 0, as compared to the case with ∆diag. Performing the extrapolation

to the continuum limit was only feasible for the latter choice.

B Polarizations in topological backgrounds

In order to evaluate Cf in a topological background, we consider one quark flavor in con-

stant commuting selfdual or antiselfdual non-Abelian fields, which exist in a finite Euclidean

box with quantized fluxes [54] (they can also be thought of as fields deep inside instantons

or antiinstantons [35]) plus an Abelian magnetic field B. In these backgrounds, both the

topological charge Qtop and the polarizations Σzt and Σxy are constant in space. The

quark mass is denoted by m and the electric charge is set to unity for simplicity. More-

over, our notation is such that the QCD coupling does not enter the covariant derivative.

We follow two equivalent approaches to determine the electric and magnetic polarizations

in this model setting. First we employ a spectral representation of the observables using

Landau-levels. Second we write down the polarizations using the exact quark propagator

in the specific background.

B.1 Polarizations using the spectral representation

Let us first consider the case where the non-Abelian field G is (anti)parallel to the Abelian

one B. Without loss of generality we can assume that B points in the z direction. Taking

SU(2) for the non-Abelian group, the xy and zt components of the total field strength

f read

fxy =

(
B +G 0

0 B −G

)
, fzt =

(
sign(Qtop)G 0

0 −sign(Qtop)G

)
, (B.1)

where we diagonalized the field strengths via a gauge transformation (for constant field

strengths this is always possible). We also inserted the sign of the topological charge

Qtop = ±G2/(2π2) in the electric components to account for both the selfdual and the

anti-selfdual cases. Let us first discuss the upper color component and denote b ≡ B + G

and e ≡ sign(Qtop)G. The Dirac eigenvalues of this system are obtained through two

independent Landau-level problems in the (x, y)- and (z, t)-planes (the arrows indicate the

eigenvalues of the corresponding operators),

− /D
2

= −DµDµ+
1

2
σµνfµν , −DµDµ → |b|(2nb+1)+ |e|(2ne+1) ,

1

2
σµνfµν → sbb+see,

(B.2)

with nb, ne = 0, 1, . . . and sb, se = ±1. The spin polarizations read [43]

Σxy,zt = m tr
σxy,zt

− /D2
+m2

= m
|b||e|
4π2

∑
nb,sb
ne,se

sb,e
|b|(2nb + 1 + sbsign(b)) + |e|(2ne + 1 + sesign(e)) +m2

, (B.3)
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where |b||e|/(4π2) is the degeneracy of all Landau-levels. The spin-dependence is such that

only the corresponding lowest Landau-levels contribute: {nb = 0, sb = −sign(b)} for Σxy,

whereas {ne = 0, se = −sign(e)} for Σzt, cf. appendix B in ref. [43], giving

Σzt = −me

4π2
h(b) , Σxy = −mb

4π2
h(e) , h(f) ≡ |f |

∑
n,s

1

|f |(2n+ 1 + s) +m2
. (B.4)

Note that the polarizations change sign when their corresponding field strengths e or b are

reversed, as they should. The sum in h contains an m- and |f |-independent divergence,

h(f) = − |f |
m2

+
∞∑
k=0

1

k +m2/2|f |
= − |f |

m2
+lim
z→1

[
1

z − 1
−Ψ(0)(m2/2|f |) +O(z − 1)

]
, (B.5)

which we separated using zeta function regularization (here, Ψ(0) is the polygamma function

of order 0). The corresponding divergent contributions in the polarizations are linear in

the field and can be absorbed into the renormalization of the electric charge.7 After this

subtraction, the leading term of the second contribution in eq. (B.5) in the limit m2 � 2|f |
equals 2|f |/m2. It flips the sign of the first term in eq. (B.5) and, thus, for small masses

h = |f |/m2 indeed coincides with the lowest-Landau-level contribution, obtained by simply

putting n = 0, s = −1 in (B.4). Hence,

(−4π2m) · Σzt = e|b| , (−4π2m) · Σxy = b|e| . (B.6)

To calculate the full polarizations, we add the contributions of all color components in

eq. (B.1),

sign(Qtop) · (−4π2m) · Σzt = G|G+B|+ (−G)| −G+B| = 2

G
2 |G| < B ,

B|G| |G| > B ,

(−4π2m) · Σxy = (G+B)|G|+ (−G+B)| −G| = 2B|G|,

(B.7)

arriving at eq. (5.1) used in section 5. The first and third lines agree with eqs. (81) and (82)

of ref. [35], while the second line can also be obtained from the number of zero modes,

eq. (47) of that reference. Note that at |G| = B, where Σzt would have a cusp, the lowest-

Landau-level approximation breaks down in the color sector with field strength −|G|+B.

We now turn to the gauge group SU(3). One can again diagonalize the field strength,

now it has two independent amplitudes in the fields (G1, G2,−G1 − G2) in three color

sectors, and |Qtop| ∼ [G2
1 + G2

2 + (G1 + G2)
2]. This slightly complicates the calculations.

For the simplest case of space-parallel fields in the lowest Landau-level approximation one

gets, in analogy to (B.6)–(B.7)

(−4π2m) · Σzt = sign(Qtop)
[
G1|G1 +B|+G2|G2 +B|+ (−G1 −G2)| −G1 −G2 +B|

]
,

(−4π2m) · Σxy =
[
(G1 +B)|G1|+ (G2 +B)|G2|+ (−G1 −G2 +B)|G1 +G2|

]
.

(B.8)

7Note that this is unnecessary for Σzt since the divergence linear in e = sign(Qtop)G cancels against the

contribution of the second color sector, where e = −sign(Qtop)G, see eq. (B.1). For Σxy no such cancellation

takes place since the magnetic field contains an Abelian component which is not traceless.
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We have found that the ratio Σzt/Σxy is B-independent and equals sign(Qtop) when all

three fields |G1|, |G2| and |G1 + G2| are large compared to B, and that it is smaller and

becomes B-dependent if one of them is not.

B.2 Polarizations using the exact propagator

We proceed by generalizing the above calculation and allow for an arbitrary polar angle ϑ

between the non-Abelian and Abelian fields,

fxy =

(
B +G cosϑ 0

0 B −G cosϑ

)
,

fxz =

(
G sinϑ 0

0 −G sinϑ

)
,

fzt =

(
sign(Qtop)G cosϑ 0

0 −sign(Qtop)G cosϑ

)
,

fyt =

(
−sign(Qtop)G sinϑ 0

0 sign(Qtop)G sinϑ

)
.

(B.9)

This case should be equally relevant for estimating Cf in realistic QCD configurations.

We again considered the selfdual and the antiselfdual cases simultaneously by inserting

sign(Qtop) in the electric fields.

It is now advantageous to represent the polarizations (first we discuss a single color

sector) by

Σxy,zt = trS(x, x)σxy,zt, (B.10)

where S is the Green’s function of the Dirac operator in the presence of a constant Abelian

field fµν and the trace contains a sum over spinor indices and an average over space-time.

The latter is trivial since the field strength and also the polarizations are constant. For the

Green’s function we employ the proper time representation [55],

S(x, x) =
1

16π2

∫ ∞
0

dt

t2
[
m+O(γµ)] exp

[
−m2t− L(−it)− σµνfµνt/2

]
, (B.11)

where we have moved the integration contour from (just below) the real axis to the negative

imaginary axis parameterizing the original integration variable as s = −it ∈ [0,∞). Here,

O(γµ) indicates terms that vanish under the Dirac trace in eq. (B.10), and the sign of

the term containing σµν is chosen such that it conforms to the definition (2.2). Moreover,

we introduced

exp[−L(−it)] =

[
det

sinh(−ift)
−ift

]−1/2
, (B.12)

viewing f as an antisymmetric tensor in Lorentz indices (having purely imaginary

eigenvalues).
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Let us denote the invariants of f (proportional to ‘action’ and ‘topological charge’

density) as

u =
f2µν
4
, v =

fµν f̃µν
4

, f̃µν =
1

2
εµναβfαβ , u > v. (B.13)

Then the eigenvalues are given by [55]

is1

√
u+ s2

√
u2 − v2 = i s1

(√
u+ v + s2

√
u− v

)
/
√

2, (B.14)

with s1 = ±1 and s2 = ±1. The determinant of f is simply v2. The eigenvalues come in

pairs with opposite signs, in accordance with the tracelessness of f , and the arguments of

the square roots in them are all positive. Using this we obtain

exp[−L(−it)] =
t2|v|

sinh(
√
u+
√
u2 − v2 t) sinh(

√
u−
√
u2 − v2 t)

. (B.15)

By explicit comparison we found that the other factor appearing in S(x, x)σαβ can be

represented as

tr
[
e−σµνfµνt/2σαβ

]
= −
√

2

[
sinh(

√
2(u− v) t)√
u− v

(f − f̃)αβ +
sinh(

√
2(u+ v) t)√
u+ v

(f + f̃)αβ

]
.

(B.16)

For our situation these quantities read

u = G2 +BG cosϑ+
B2

2
,

v = sign(Qtop)G (G+B cosϑ) , (B.17)

2(u+ sign(Qtop)v) = 4G2 + 4GB cosϑ+B2 ,

2(u− sign(Qtop)v) = B2, (B.18)

and in terms of

w =
√

2(u+ sign(Qtop)v) =
√

4G2 + 4GB cosϑ+B2 , z =
2G cosϑ+B

w
, (B.19)

the projections become

tr
[
e−σµνfµνt/2σxy

]
= −2

[
z sinh(wt) + sinh(Bt)

]
,

tr
[
e−σµνfµνt/2σzt

]
= −2

[
z sinh(wt)− sinh(Bt)

]
sign(Qtop).

(B.20)

The second line confirms that Σzt changes sign if the topological charge does so.

Plugging all this into the proper time integral (B.11) shows that the integral diverges

as t→ 0. This is the same divergence that we encountered in eq. (B.5). Here we eliminate

it by dividing the observable by m and differentiating it with respect to m2, cf. eq. (B.4).

This indeed renders the integral finite and also reveals that the divergence is independent
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of m and of the fields. Setting ϑ = 0 (and consequently z = ±1 etc.) reproduces the finite

part of eq. (B.5).

For ϑ 6= 0, two hyperbolic sine functions are left in the denominator of eq. (B.15), such

that the proper time integral cannot be performed easily. Since we argued that the region

|G| > B (i.e. |G| > B cosϑ for all ϑ) is the relevant one for comparison with the lattice

data, we now specialize to this case. Then w > B and the proper time integral reads8

∂Σxy/m

∂m2
=
|v|
8π2

∫ ∞
0
dt exp

(
−m2t) t

z sinh(wt) + sinh(Bt)

sinh
(
w+B
2 t
)

sinh
(
w−B
2 t
) . (B.21)

Similarly as in eq. (B.6), we now resort to the approximation m2 � |G|, B. Moreover, in

order to simplify the integral, we also assume B � |G|. Expanding the fraction in B/|G|
and m2/|G|, we can perform the t-integral to arrive at

∂Σxy/m

∂m2
=
|v|
8π2
·
[

2z

m4
+O

(
1

G2

)
+O

(
B

G3
,
Bz

G3
,
m2

G3

)]
. (B.22)

Notice that the term sinh(Bt) in eq. (B.21) does not contribute at this order, which, using

eq. (B.20), implies that Σxy = Σzt sign(Qtop). Using the expansion z = sign(G)(cosϑ +

B/(2G) · sin2 ϑ+O(1/G2)) and |v| = G(G+B cosϑ) gives

∂Σxy/m

∂m2
=

1

4π2
|G|
m4

(
G cosϑ+B · g(ϑ)

)
+O(G0) +O

(
B

G
,
m2

G

)
, (B.23)

g(ϑ) = cos2 ϑ+
sin2 ϑ

2
.

Here the leading term ∼ |G|G vanishes upon adding the second color sector of SU(2),

which amounts to the same expression with G→ −G, cf. eq. (B.7). Adding the contribu-

tions of both sectors and integrating in m2 we finally get

(−4π2m) · Σxy = 2B|G| · g(ϑ), (−4π2m) · Σzt = sign(Qtop) · 2B|G| · g(ϑ), (B.24)

which, at ϑ = 0, reproduces eq. (B.7) for the case B < G. This expression was inserted in

eq. (5.2). Note that the average over the polar angle factorizes and gives

1

2

∫ π

0
dϑ sinϑ g(ϑ) =

2

3
. (B.25)
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[39] S. Borsányi et al., Full result for the QCD equation of state with 2+1 flavors, Phys. Lett. B

730 (2014) 99 [arXiv:1309.5258] [INSPIRE].

– 21 –

http://dx.doi.org/10.1007/978-3-642-37305-3_9
http://arxiv.org/abs/1209.5064
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.5064
http://dx.doi.org/10.1016/j.ppnp.2014.01.002
http://dx.doi.org/10.1016/j.ppnp.2014.01.002
http://arxiv.org/abs/1312.3348
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3348
http://dx.doi.org/10.1103/PhysRevD.81.114031
http://dx.doi.org/10.1103/PhysRevD.81.114031
http://arxiv.org/abs/1003.0047
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.0047
http://dx.doi.org/10.1088/1126-6708/2009/11/085
http://arxiv.org/abs/0908.4189
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4189
http://dx.doi.org/10.1007/JHEP01(2010)026
http://arxiv.org/abs/0909.4782
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4782
http://dx.doi.org/10.1007/978-3-642-37305-3_11
http://dx.doi.org/10.1007/978-3-642-37305-3_11
http://arxiv.org/abs/1210.2186
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.2186
http://dx.doi.org/10.1016/j.nuclphysa.2013.06.009
http://dx.doi.org/10.1016/j.nuclphysa.2013.06.009
http://arxiv.org/abs/1208.0012
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0012
http://arxiv.org/abs/1307.0138
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.0138
http://dx.doi.org/10.1103/PhysRevD.80.054503
http://arxiv.org/abs/0907.0494
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.0494
http://dx.doi.org/10.1134/S1063778812030052
http://dx.doi.org/10.1134/S1063778812030052
http://arxiv.org/abs/1011.3795
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3795
http://dx.doi.org/10.1103/PhysRevLett.107.031601
http://dx.doi.org/10.1103/PhysRevLett.107.031601
http://arxiv.org/abs/1105.0385
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0385
http://dx.doi.org/10.1016/j.nuclphysa.2014.02.022
http://arxiv.org/abs/1312.1843
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.1843
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LAT2009)181
http://arxiv.org/abs/0911.1348
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.1348
http://dx.doi.org/10.1103/PhysRevD.81.036007
http://arxiv.org/abs/0909.2350
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.2350
http://dx.doi.org/10.1007/JHEP08(2010)071
http://arxiv.org/abs/1006.4518
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4518
http://dx.doi.org/10.1103/PhysRevD.85.045026
http://arxiv.org/abs/1112.0532
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.0532
http://dx.doi.org/10.1016/0550-3213(84)90364-X
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B232,109
http://dx.doi.org/10.1016/0370-2693(79)90838-4
http://inspirehep.net/search?p=find+J+Phys.Lett.,B86,283
http://dx.doi.org/10.1007/JHEP11(2010)077
http://arxiv.org/abs/1007.2580
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2580
http://dx.doi.org/10.1016/j.physletb.2014.01.007
http://dx.doi.org/10.1016/j.physletb.2014.01.007
http://arxiv.org/abs/1309.5258
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5258


J
H
E
P
0
4
(
2
0
1
4
)
1
2
9
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