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at larger µ. The two regimes are separated by a tricritical point. The dependence of ther-
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1 Introduction

The phase diagram of QCD, as a function of temperature T and chemical potential µ,

corresponding to baryon density or some other conserved charge like isospin, displays a

rich structure [1]. Particularly interesting and important features of the phase diagram are

the nature of the chiral phase transition, the location of the chiral critical point and its

properties. All these have been extensively studied both with effective chiral models [2, 3]

and other approaches reviewed e.g. in [4], and holography [5–7]. Since first principle lattice

methods [8–10] are currently still limited to small values of µ/T , the model studies provide

important complement. However, the location of the critical point is very dependent on

the details of the models [4].

In addition to temperature and density, typically also external perturbations of the

chiral symmetry, i.e. finite quark masses, are present and provide further dimensions to the

phase diagrams. For example, in the limit of vanishing quark masses, the finite temper-

ature phase transition of two flavor QCD at zero chemical potential is expected to be of

second order. At low temperatures, the chiral transition at finite µ is expected to be of first

order [2]. At intermediate temperatures and densities the first and second order transition

lines were conjectured to meet at a tricritical point. The finite quark mass softens the sin-

gularity at the second order phase transition which becomes a smooth crossover. The line

of first order transitions is unaffected in the presence of small external perturbation, and

the tricritical point becomes the critical endpoint for this line. The fate of the existence

of the critical point of QCD in the (µ, T )-plane at the physical value of quark masses is

ultimately determined by the form of the critical manifold in the multidimensional space of

parameters µ, T,mq [11]. One can imagine several possibilities to occur. Indeed, it can be

that the existence of a critical point near the chiral limit implies that the critical point does

not exist at physical masses. Depending on the shape of the critical manifold, a variety of

other possibilities can be imagined.

Effective field theories utilizing holographic methods, motivated by the AdS/CFT cor-

respondence [12–14], have become a major tool in the analysis of strongly coupled theories

both in elementary particle and condensed matter physics [15, 16]. A class of bottom up

models for QCD-like theories, which captures the entire renormalization group evolution of

the corresponding quantum field theory from weak to strong coupling has been developed

in [17–19]. A particular application of this framework is the determination of the vacuum

and finite temperature phase diagrams of the associated quantum gauge theories [18, 20–

26]. The framework has been extended to account for the dynamics of chiral symmetry
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breaking in the presence of flavors [27–32]. In order to consider effects coming from the

backreaction of flavor to color, holographic models with dynamics close to that of QCD in

the Veneziano limit were explored and developed [32–35]. In this work we consider adding

finite chemical potential1 in order to determine the phase diagram in the (T, µ)-plane by

computing the pressure p(T, µ;mq = 0) in the phases where chiral symmetry is intact or

spontaneously broken.

Concretely, we consider the holographic model for equilibrium QCD with Nf massless

quarks at the limit Nf → ∞, Nc → ∞ and fixed ratio xf = Nf/Nc. For a thorough dis-

cussion of the fundamentals of this type of bottom-up holographic model for QCD in the

Veneziano limit (V-QCD) at zero or finite T but zero density, we refer to [33, 34]. Here we

only outline the features arising when we allow also finite density and chemical potential

in V-QCD. According to the holographic dictums to add baryon density we must turn

on a source for the five-dimensional gauge field Aa. The dynamics of the baryon number

gauge field Aa is determined by its appearance in the tachyon DBI action, which can be

schematically written as √
−det (gab + κ ∂aτ∂bτ + wFab). (1.1)

Here κ and w are couplings, Fab = ∂aAb−∂bAa, and τ is the tachyon, sourcing q̄q. To turn

on a uniform constant density, the Ansatz Aa = Φ(z)δa0 should be made, where z is the

coordinate of the 5th dimension and the only non-zero component of Fab is Fz0 = ∂zΦ(z).

The action contains only the derivative of Φ and the finite density arises as the integration

constant ñ of the equation of motion of the cyclic configuration space coordinate Φ.

The three bulk fields λ,Φ, τ correspond to the three arguments in p(T, µ;mq), and we

will consider only the case mq = 0 in this paper and denote the pressure simply by p(T, µ).

As in [34] we find that there are two types of mq = 0 solutions: those with vanishing

tachyon (chirally symmetric) and those with nonzero tachyon (breaking chiral symmetry

spontaneously). To determine the pressure, the strategy is therefore to find black hole

solutions with one or two scalar hair (corresponding to the dilaton and tachyon scalars)

and a non-trivial charge density. Such solutions, when they exist, compete also with finite

temperature but zero charge solutions without a black hole. The reason is that these

zero charge solutions always have a constant Φ = µ and therefore correspond to saddle

points with finite chemical potential but zero charge density. Such solutions are expected

to dominate at small enough temperature and chemical potential, and we identify them

with the “hadron gas” vacuum phase with zero pressure. Increasing the charge density, we

have the possibility of a trivial or non-trivial tachyon field. The latter possibility describes

a “deconfined” but chirality breaking plasma, while the former corresponds to chirally

symmetric plasma. To determine which of these two dominates, one solves numerically

for the coupled equations of motion of the fields, and finds pressures ps(T, µ) and pb(T, µ)

corresponding, respectively, to the solutions with intact or spontaneously broken chiral

symmetry. Equality of pressures, temperatures and chemical potentials then defines the

phase boundary on the T, µ plane.

1For a different effort in that direction, see [36].
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Figure 1. Chemical potential dependence of transition temperatures of the deconfining (Th(µ))

and chiral (Tχ(µ)) transitions at mq = 0. The dashed line corresponds to a second order phase

transition while the solid lines to first order ones. The critical point shown in the figure is tricritical.

If finite quark mass is turned on, the second order transitions become smooth crossovers and the

tricritical point becomes a critical endpoint of the line of first order transitions. The T = 0 lines

in the χSB plasma phase as well as the chirally symmetric phase correspond to a new quantum

critical semilocal phase at finite density.

The main outcome of this work is the phase diagram shown in figure 1 which was

obtained for the theory with xf =
Nf
Nf

= 1, namely for the same number of massless flavors

and colors. The chiral transition is of second order for small µ and of first order for larger

µ down to T = 0 with a tricritical point in between. There is also a tentative deconfining

transition at Th(µ) between the chirality breaking plasma and the “hadron gas” phase

discussed above. This phase boundary is determined by the condition pb(T, µ) = plow = 0.2

To motivate this in the field theory, note that the degrees of freedom of the low tem-

perature phase are the Goldstone bosons of the spontaneously broken chiral symmetry,

and their number is ∼ N2
f . On the other hand, the number of degrees of freedom in the

high-temperature phase is ∼ 2N2
c + 7

2 NcNf . As we consider only the case xf = 1 we obtain

plow/phigh ∼ 2/11 ∼ 0. The relative weight of the low-temperature degrees of freedom grows

with xf , and ultimately at some xc ' 4, in terms of the free energy, they become indis-

tinguishable from the high temperature ones. This signifies the quantum phase transition

from a confining gauge theory to the one whose long-distance behavior at zero temperature

is governed by a nontrivial and stable infrared fixed point. We leave the study of the finite

temperature and density phases in the limit xf → 4 for a further investigation.

All these features of this phase diagram agree on the general expectations. However,

for the phase diagram of QCD at low temperatures there is a surprise: there exists a new

quantum critical regime at T = 0, with exotic properties which realize the symmetries of

2It is well known that in the presence of flavor there is no order parameter for deconfinement: confined

phases can be continuously connected to Coulomb and Higgs phases. However, at large Nc the pressure

itself can be considered as an order parameter for deconfinement. The confined phase has p ∼ O(1),

while deconfinde phase has p ∼ O(N2
c ). When we talk about confined and deconfined phases we have this

definition in mind.
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the associated geometry, that is AdS2 ×R3. The presence of the AdS2 ×R3 geometry in

the holographic solution indicates that there is a scaling symmetry of the time direction

which does not act in the spatial directions. Such symmetries have been called semilo-

cal. While this is an unexpected symmetry in a field theory at finite density, it is natural

and generic in the holographic context [37], and appears even in simple black holes as the

Reissner-Nordström black hole [38]. This new scaling region exists on the T = 0 segment

of the chirality breaking plasma as well as on the T = 0 line of the chirally symmetric

plasma. The physics in this critical regime is similar to that of a theory with zero speed

of light: all spatial points decouple in the IR.

It is well known that such AdS2 solutions are highly unstable as AdS2 has a rather

restrictive Breitenlohner-Freedman bound. The instabilities associated to the fields we

consider can be understood in terms of the physics of the phase diagram and we describe

them in detail in section 3.4. However, there can be further instabilities associated with

other operators which we have not included here. It is possible that such quantum critical

points play an important role in the appearance of color superconductivity and color flavor

locking at high density.

There are many technical obstacles one has to cross before obtaining the final numer-

ical results for the phase diagram: first, to find the relevant charged black-hole solutions

one has to guarantee that the metric function f(z) vanishes at the horizon z = zh. As the

horizon is a singular point of the equations, the numerical evolution must start close to

the horizon with the appropriate boundary conditions. Second, the UV quark mass will

be fixed to zero in order to have exact chiral symmetry. To implement this, we must solve

the entire coupled set of equations of motion and tune the boundary conditions so that

the leading term of the tachyon field at small z (near the boundary) is ∼ z3, instead of a

linear one corresponding to a finite quark mass. This requires high numerical precision in

the solution of the non-linear equations of motion. The third difficulty is that the quantity

to be computed is a function of two variables, p(T, µ). The numerics is correspondingly

parametrised by two parameters, the value of the dilaton at the horizon λh and the inte-

gration constant ñ. These parameters cannot be continuous ones, but one can determine,

say, T (λh, ñ) as a function of λh for fixed values of ñ, and vice versa. Proceeding in this

way one obtains p(T, µ) on two grids on the T, µ plane (see figure 21). Fourth and final

issue is that one has to guarantee, using scaling properties of the equations of motion, that

all the physically dimensionful quantities are expressed in the same units.

All of these considerations make the numerical problem at hand challenging. In this

paper we focus on the details of introducing the chemical potential to the model, limit

ourselves to one set of potentials chosen from [34] and to one value xf = 1. This allows us

to show that the method works, produces interesting results and motivates further studies.

We have released the numerical code which has been used to compute the results presented

in this paper [39].

In section 2 we specify the model and give the equations of motion and their scaling

properties. In section 3 we find all solutions with constant scalars as they are critical end

points of flows. They correspond to AdS5 and AdS2 geometries and we analyze their RG

stability. In section 4 we discuss the horizon expansion required for initialising numerical
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solution and the physical values of the parameters λh, ñ of numerical integration. The main

numerical results for the pressures, the transition temperatures Th(µ), Tχ(µ) and sound

velocity are shown and discussed in section 5.1. The appendices contain a detailed discus-

sion of the numerical solutions, examples of the computed values of T and µ and a detailed

presentation of the chiral phase transition line on the plane of numerical parameters λh, ñ.

2 Action and the equations of motion

2.1 Definition of the action

The action of the model for vanishing chemical potential has been discussed thoroughly

in [33–35]. We focus here on the additional terms needed to describe the finite baryon

density. The action of the model is, in standard notation [34],

S =
1

16πG5

∫
d5xL, (2.1)

where the Lagrangian is

√
−g
[
R+

[
−4

3
gµν∂µφ∂νφ+ Vg(λ)

]
− Vf (λ, τ)

√
−det [gab + κ(λ)∂aτ∂bτ + w(λ)Fab]

]
=b5

[
− f
b2

(
8
b̈

b
+ 4

ḃ2

b2
+ 8

ḃ

b

ḟ

f
+
f̈

f
+

4

3
φ̇2

)
+ Vg(λ)− Vf (λ, τ)

√
1 +

fκ

b2
τ̇2 − w2

b4
Φ̇2

]
.(2.2)

The metric Ansatz is

ds2 = b2(z)

[
−f(z)dt2 + dx2 +

dz2

f(z)

]
, b(z) = eA(z) −→

z→0

LUV

z
, f(0) = 1. (2.3)

The functions b and f of the metric, the dilaton λ = eφ, the tachyon τ and the bulk density

Φ depend only on the extra dimensional coordinate z. The Gibbons-Hawking counterterm

is implied.

The Lagrangian (2.2) is parametrized in terms of the potentials Vg(λ), Vf (λ, τ), κ(λ)

and w(λ) which are chosen to satisfy two basic requirements. First, in the ultraviolet, i.e.

in the weak coupling limit, the model should reproduce the known perturbative behaviors

of the corresponding field theory. Second, in the deep infrared the model should lead to

the generation of a dynamical wall shielding the singular behavior as λ → ∞, which is

responsible for confinement in the absence of the tachyon.

In the numerical study in this article we will take the gauge coupling constant function

w in the DBI action to be proportional to the other model function κ as3

w(λ) = L2
Aκ(λ). (2.4)

Here the scale LA ∼ LUV appears in order to match the dimensions correctly. It can be

formally eliminated from the Lagrangian (2.2) by rescaling Φ. In appendix F we shall find

3This choice is at the boundary of allowed choices as indicated in [35].
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that LA ≈ LUV(xf = 0) = 1. Note that if one expands the Lagrangian (2.2) in Fab and

writes it in the form − 1
4e2

F 2, one can identify a dimensionless coupling

γ2 = e2LUV
2 =
LUV

2

Vfw2
=
LUV

2

VfL4
Aκ

2
. (2.5)

Explicitly, the potentials are [34]

Vg(λ) =
12

L2
0

[
1 +

88λ

27
+

4619λ2

729

√
1 + ln(1 + λ)

(1 + λ)2/3

]
, Vf (λ, τ) = xfVf0(λ)e−

3
2
τ2/L2

UV , (2.6)

where the function Vf0(λ) is given by

Vf0 =
12

L2
UVxf

[
L2

UV

L2
0

− 1 +
8

27

(
11
L2

UV

L2
0

− 11 + 2xf

)
λ

+
1

729

(
4619

L2
UV

L2
0

− 4619 + 1714xf − 92x2
f

)
λ2

]
≡W0 +W1λ+W2λ

2. (2.7)

The scale LUV has a nontrivial dependence on xf , LUV = L0(1 + 7
4 xf )1/3, which is deter-

mined by matching the pressure to the Stefan-Boltzmann limit at µ = 0 [34]. The function

κ(λ) is given by

κ(λ) =
[1 + ln(1 + λ)]µ̄

[1 + 3
4 (

115−16xf
27 + µ̄)λ]4/3

. (2.8)

The numerical factors appearing in (2.6) and (2.7) simply provide the equivalence with

the known perturbative behavior in the weak coupling limit. This matching is obtained

via the definition

β(λ) =
dλ

db/b
, (2.9)

and recalling that the 2-loop beta function for the coupling λ = Ncg
2(µ)/(8π2) of the

boundary theory is

β(λ) =
dλ(µ)

d lnµ
= −b0λ2 − b1λ3, b0 =

1

3
(11− 2xf ), b1 =

1

6
(34− 13xf ) (2.10)

in the Veneziano limit. Analogously, the numerical factors appearing in κ(λ) in eq. (2.8)

are obtained by first defining

γ(λ) =
d ln τ

d ln b
+ 1, (2.11)

and then relating to the quark mass anomalous dimension with the scheme independent

coefficient γ0 defined by

γ(λ) =
d lnm

d lnµ
= −γ0λ+ · · · , γ0 =

3

2
=

9b0
2(11− 2xf )

. (2.12)

The actual numerical value of the quark mass (and the condensate 〈q̄q〉) is fixed by the UV

expansion of the tachyon (remembering that the energy dimension of τ is −1):

τ(z)/LUV = mqz (− ln Λz)
− γ0
b0 + 〈q̄q〉z3 (− ln Λz)

γ0
b0 . (2.13)
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To have exact chiral symmetry one must find solutions for whichmq = 0, and achieving this,

is one of the technically most demanding tasks of this model (for details, see appendix B).

The behavior of the potentials at large values of the fields λ and τ is determined by

requirements of a confining spectrum and breaking of the chiral symmetry in the deep

infrared [18, 20, 22, 33]. To fix the last remaining parameter we choose µ̄ = −1
2 . This

choice, according to [34], leads to regular thermodynamics at zero chemical potential.

With these definitions, the numerical results in this paper are given for the poten-

tials (2.6)–(2.8) and for xf = 1 case only. Of course the above choice for the potentials

and κ is not unique but other possibilities exist as discussed in [33, 35]. The definitions

presented above are taken in this paper to provide for a benchmark study of this model,

and focused analyses of other potentials and other values of xf , in particular approaching

the conformal region at xf ≈ 4, are left for future studies.

As a final remark here, we emphasize that the duality between classical gravity and field

theory can be derived in the string theory framework only in the strong coupling limit. In

our case, the matching to the scheme independent perturbative results in the weak coupling

limit has to be regarded as a model assumption, to be judged on the basis of its conse-

quences. Among these, an immediate and important one is that one can describe thermo-

dynamics up to arbitrarily high T and µ and identify solid known behaviors. Actually it is

quite nontrivial that this matching can be carried out and the correct running of the quark

mass and the condensate implemented using the DBI action. The model is then an effective

theory extending weakly coupled results at large T, µ to the strongly coupled domain.

2.2 Φ equation of motion

The fermionic part of the action, given by

Lf [τ, τ̇ , Φ̇] = Vf (λ, τ)b5
√

1 +
fκ

b2
τ̇2 − w2

b4
Φ̇2 , (2.14)

depends only on Φ̇ so that Φ is a cyclic coordinate. Since both Lf and Φ̇ have energy

dimension 2, we have a dimensionless constant of integration n̂:

∂Lf

∂Φ̇
=

−bVfw2Φ̇√
1 + fκ

b2
τ̇2 − w2

b4
Φ̇2

= n̂. (2.15)

From this one solves

Φ̇ = − n̂b
2

w

√(
1 +

fκ

b2
τ̇2

)
1

n̂2 + (b3wVf )2
≡ − n̂

bVfw2

√(
1 +

fκ

b2
τ̇2

)
1

1 +K
, (2.16)

where we have also introduced the dimensionless density factor

K(z) =
n̂2

b6w2V 2
f

=
n̂2

L4
Ab

6κ2V 2
f

. (2.17)

The factor K defined above contains the density effects in this holographic model and will

appear repeatedly in what follows.
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After the bulk fields λ and τ have been determined from their equations of motion and

the Einstein’s equations, Φ(z) can be computed by integrating eq. (2.16):

Φ(z) = µ+

∫ z

0
dz Φ̇(z) (2.18)

with the constraint that the field Φ vanishes at the horizon z = zh,

Φ(zh) = 0 = µ+

∫ zh

0
dz Φ̇(z), (2.19)

from which µ is determined.

2.3 Equations of motion for other bulk fields

Using the previous results for Φ, differential equations for b, λ, f, τ can be derived. They

are for b(z)

3
b̈

b
+ 6

ḃ2

b2
+ 3

ḃ

b

ḟ

f
− b2

f
Vg +

b2

f
Vf

(
1 +

1

2

fκ

b2
τ̇2

)√
1 +K

1 + fκ
b2
τ̇2

= 0, (2.20)

for λ(z)

λ̈

λ
− λ̇2

λ2
+ 3

ḃ

b

λ̇

λ
+
ḟ

f

λ̇

λ
+

3

8

b2

f
λ
∂Vg
∂λ

−3

8

1√
1+K

{
Vf√

1+ fκ
b2
τ̇2
λκ′
[

1

2
τ̇2(1−K)− b2

fκ
K

]
+
b2

f

√
1+

fκ

b2
τ̇2 λ∂λVf

}
=0, (2.21)

for f(z)

f̈ +
3ḃ

b
ḟ − n̂2

bw

√√√√ 1 + fκ
b2
τ̇2

n̂2 + b6w2V 2
f

= 0, (2.22)

and for τ(z)

(1 +K) τ̈ −
(
b2

fκ
+ τ̇2

)
∂ lnVf
∂τ

+
fκ

2b2

[
d ln b8fκ

dz
+ 2λ̇

∂ lnVf
∂λ

+K

(
d ln(b2f/κ)

dz

)]
τ̇3

+

[
d ln b3fκ

dz
+ λ̇

∂ lnVf
∂λ

+K

(
d ln f

dz

)]
τ̇ = 0. (2.23)

For λ we also have the first order equation

12
ḃ2

b2
+ 3

ḃ

b

ḟ

f
− 4

3

λ̇2

λ2
=
b2

f

(
Vg − Vf

√
1 +K

1 + fκ
b2
τ̇2

)
. (2.24)

It turns out useful to define the quantity

Veff(λ, τ) = Vg(λ)− Vf (λ, τ)

√
1 +

n̂2

b6w2V 2
f

. (2.25)
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Using this in τ = 0 case the equations can be written in more compact form as follows:

first we have from the above definition

Veff(λ, τ = 0) = Vg(λ)−

√
V 2
f (λ, 0) +

n̂2

b6w(λ)2
. (2.26)

Treating this as a function of λ and b, the three remaining equations of motion are then

b̈

b
− 2

ḃ2

b2
+

4

9

λ̇2

λ2
= 0, (2.27)

λ̈

λ
− λ̇2

λ2
+ 3

ḃ

b

λ̇

λ
+
ḟ

f

λ̇

λ
+

3b2

8f
λ∂λVeff = 0, (2.28)

f̈ +
3ḃ

b
ḟ − 1

3
b3∂bVeff = 0. (2.29)

The energy unit of the solutions is determined by fixing the small-z behavior of the

dilaton to the perturbatively known field theory behavior, i.e. b0λ(z) = −1/ ln(Λ0z) with

Λ0 = 1. To do this accurately enough, one has to go to extremely small values of z and

it is better to use ln(z) or actually ln b as the coordinate. For numerics we thus write the

equations in the A = ln b basis changing z to A via the relation

q(A) = eA
dz

dA
, e−A

dA

dz
=

ḃ

b2
. (2.30)

Then we have for q(A), primes denoting derivatives with respect to A,

12− 6
q′

q
+

4

3

λ′2

λ2
+ 3

f ′

f
=
q2

f

(
Vg − Vf

√
1 +

fκτ ′2

q2

√
1 +K

)
. (2.31)

The remaining equations of motion are for λ(A)

λ′′

λ
− λ′2

λ2
+

(
4− q′

q

)
λ′

λ
+
f ′

f

λ′

λ
+

3

8

q2

f
λ
∂Vg
∂λ

(2.32)

−3

8

λ√
1 +K

{
1√

1 + fκ
q2
τ ′2

κ′(λ)Vf

[
1

2
τ ′2(1−K)− q2

fκ
K

]
+
q2

f

√
1 +

fκ

q2
τ ′2 ∂λVf

}
= 0,

for f(A)

f ′′ + (4− q′

q
)f ′ = q2 n̂

2

w
e−3A

√
1 + fκτ ′2/q2

n̂2 + (e3AwVf )2
= −qn̂e−4AΦ′ (2.33)

and for τ(A)

(1 +K) τ ′′ −
(
q2

fκ
+ τ ′2

)
∂ lnVf
∂τ

+
fκ

2q2

[
8 +

d ln fκ

dA
+ 2λ′

∂ lnVf
∂λ

+K

(
2 +

d ln f/κ

dA

)]
τ ′3

+

[
4− q′

q
+
d ln fκ

dA
+ λ′

∂ lnVf
∂λ

+K

(
1− q′

q
+
f ′

f

)]
τ ′ = 0. (2.34)
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Here

K = K(A) =
n̂2

e6AV 2
f w

2
. (2.35)

This has the formally notable consequence that the A-equations are not autonomous; there

is explicit A dependence. The consequence of this will become explicit when we consider

the scaling properties of the solutions in the following section; see eq. (2.42).

The equation (2.22) for f can be integrated once:

ḟ(z) =
1

b3(z)

[
C1 +

∫ z

0
du
n̂2b2

w

√√√√ 1 + fκ
b2
τ̇2

n̂2 + b6w2V 2
f

]
=

1

b3
[C1 + n̂(µ− Φ(z))], (2.36)

using (2.16). Then f(z) is obtained by one more integration, with integration constants

determined by f(0) = 1, f(zh) = 0. Actually we are most interested in the charged black

hole temperature, for which one obtains

4πT = −ḟ(zh) =
1− n̂

∫ zh
0 du Φ(u)

b3(u)

b3(zh)
∫ zh

0
du
b3(u)

. (2.37)

2.4 Scaling properties of equations of motion

Numerical solutions have to be transformed to the required standard form by using scaling

properties of the equations. A thorough discussion is given in appendix B, and we summa-

rize the main points in the following. The quantities which are not mentioned will remain

unchanged and all bulk fields are taken to be either functions of z or A.

For the z equations (2.20)–(2.23) one performs the following scalings:

• The boundary value of f(z) must be set to 1 so that the boundary metric is pure

AdS, f(0) = 1. This is achieved by scaling

f → f

f0
, f0 ≡ f(0). (2.38)

In order to keep b2/f and K(z) in (2.17) invariant, this requires that further

b→ b√
f0
, n̂→ n̂

f
3/2
0

, Φ̇→ 1

f0
Φ̇. (2.39)

Note that also the integration constant n̂ is scaled.

• The unit of energy can be changed by z → Λz, together with

b→ b

Λ
, n̂→ n̂

Λ3
, Φ̇→ 1

Λ2
Φ̇, (2.40)

which leave the equations of motion invariant.

For the A equations (2.31)–(2.34) the corresponding scalings are:
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• Scaling of f to f0 = f(∞) = 1 requires that q2/f be constant, so that

f → f

f0
, q → q√

f0
. (2.41)

Note that the density factor K(A) in (2.35) is not affected by this scaling.

• The scaling corresponding to z → Λz is

A→ A− ln Λ, b = eA → b
1

Λ
. (2.42)

The invariance of the density factor K(A) and eq. (2.33) then demand that

n̂→ n̂

Λ3
, Φ′ → 1

Λ
Φ′. (2.43)

3 Constant scalar solutions and IR stability

To gain intuition on what to expect at zero temperature and finite chemical potential we

now consider some special solutions of the equations of motion derived in section 2. We

need to determine the fixed point solutions with translational symmetry since flows between

different such solutions categorize the various RG flows of the boundary theory. In general

the fixed point solutions with translational symmetry are AdSp solutions either with fixed

scalars or hyperscaling violating solutions when the scalars run off to infinity, [37, 40].

We have not found hyperscaling violating asymptotics in this theory. The other re-

maining scaling solutions must then have constant scalars. These solutions will be the

non-linear generalization of AdS5 Reissner-Nordström black hole (the so-called DBI black

hole), and solutions with scaling AdS2 regions in the IR, at extremality.

To search for these, we turn to the equations of motion and make the following re-

placements:

λ(z)→ λ0, τ(z)→ τ0 and Vf , Vg, κ, w → V 0
f , V

0
g , κ0, w0 (3.1)

where a zero sub- or superscript indicates the constant value of the appropriate quantity

in the fixed point and

V 0
f ≡ Vf (λ, τ)

∣∣∣
λ=λ0, τ=τ0

, ∂λV
0 ≡ ∂λVf (λ, τ)

∣∣∣
λ=λ0, τ=τ0

, etc. (3.2)

The two classes of solutions are distinguished by whether the scale factor A is constant

or not. If it is constant we obtain AdS2 type solutions while if it is non-trivial we obtain

AdS5 type solutions.

3.1 AdS5 and the DBI black-hole solution

For constant scalars many of the equations become quite simple, and often can be decou-

pled. For example, the equation governing the warp factor, A = log b is just

A′′(z)−A′(z)2
= 0, (3.3)
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which has two independent solutions, A(z) = − log z or A constant. The first matches the

AdS5 result in these coordinates. This is the solution one anticipates as a UV fixed point in

the dual theory. It will turn out to be the charged DBI black hole, which becomes the AdS5

Reissner-Nordström solution in the limit of small gauge coupling. We can systematically

insert this solution into the remaining equations of motion.

The Maxwell equation in this limit reads

Φ′(z) ≡ E(z) = − n̂ z

V 0
f w

2
0

√
1 + n̂2z6

V 0
f

2w2
0

(3.4)

and from this we obtain the behavior of the blackening function f in the uniform scalar

background. This function is described by the equation of motion

f ′′(z)− 3

z
f ′(z) =

n̂2

V 0
f w

2
0

√
1 + n̂2z6

V 0
f

2w2
0

z4. (3.5)

The solutions of the correponding homogeneous equation give the standard blackening for

the AdS black hole in five dimensions. The general solution of the inhomogeneous equation

therefore takes the form

f(z) = c0 −
z4

z4
0

+Q(z), (3.6)

familiar for charged black holes. Here c0 and z0 are integration constants. The function Q,

which carries the information about the electric source for the black hole, can be computed

by integrating (3.5) twice. It turns out to be (see also eq. (F.7))

Q(z) = − 1

12
V 0
f

√
1 +

n̂2z6

V 0
f

2w2
0

+
1

8

n̂2

V 0
f w

2
0

z6
2F1

(
1

3
,
1

2
,
4

3
;− n̂2z6

V 0
f

2w2
0

)
, (3.7)

where 2F1 is the hypergeometric function. For consistency, the blackening function must

be compatible with the constraint equation (2.24), given by

f ′(z)− 4

z
f(z) =

1

3z

(
V 0
f

√
1 +

n̂2z6

V 0
f

2w2
0

− V 0
g

)
. (3.8)

Note that this equation effectively governs the constant term in (3.6), or equivalently

the near boundary value of the blackening function. To leading order in n̂ the solution

consistent with the above constraint is4

f(z) =
1

12

(
V 0
g − V 0

f

)
− z4

z4
0

+O(n̂2) (3.9)

which is exactly the form one would anticipate in AdS5 with charged branes.

4Notice that when computing the full RG flow we have chosen to normalize f to one in the UV. We

have the freedom to do this if a constant term is also included in the UV solution for A.
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The remaining equations of motion, those for the dilaton and tachyon, contain algebraic

constraints for various parameters of the theory. Specifically, the dilaton equation implies

λ0 = 0 or ∂λV
0
g = ∂λV

0
f = ∂λw0 = 0 (3.10)

while the tachyon equation needs either

∂τV
0
f = ∂τw0 = 0 or V 0

f κ0 =∞ (3.11)

in order to be satisfied. These constraints have a simple interpretation. The set of equations

∂λV
0
g = ∂λV

0
f = ∂τV

0
f = 0 (3.12)

are simply the requirement that all the potentials are extremized at the appropriate value

of (λ0, τ0). Evidently, the same must be true for the gauge kinetic function w(λ, τ).

For the V-QCD potentials of interest, specifically those from section 2, it turns out

that the extremization condition in 3.10 can never be realized and the only possibility is

the vanishing dilaton, λ0 = 0. The gauge kinetic function w and the flavor potential Vf
are of the general form of eq. (2.4) and eq. (2.6), respectively:

Vf = xfvf (λ) e−a(λ)τ2 and w = w(λ) (3.13)

so ∂τw = 0 and the tachyon constraint reduces to

0 = ∂τV
0
f ∼ −2xfτ0 a(λ0)vf (λ0)e−a(λ0)τ20 . (3.14)

Therefore, the flavor potential is extremized in the τ direction for either τ0 = 0 or τ0 =∞.

Moreover, it can be explicitly checked that when the dilaton is zero there is no location in

the parameter space (xf , τ0) for which the combination V 0
f κ0 diverges. Accordingly, one

finds that in this V-QCD setup DBI black hole solutions exist at all xf so long as λ0 = 0

and τ0 = 0 or ∞.

3.2 AdS2 solution

There exists another simple solution to the constant scalar warp factor equation of mo-

tion (3.3). This is the constant solution A = A0. In this case, the Maxwell equation is

satisfied by a constant electric field of the form

E = − n̂ e−A0

w2
0V

0
f

√
1 + e−6A0 n̂2

V 0
f

2w2
0

(3.15)

giving a potential5

Φ(r) = µ+ E r (3.16)

5Note that we have anticipated the fact that the bulk geometry will be different from the DBI black

hole by employing a new radial variable r. For the solution of this section the IR limit is r → 0 and the

UV limit is r →∞.
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which is the correct form for a gauge field in AdS2. The equation for the blackening function

is

f ′′(r) =
e−4A0

w2
0V

0
f

n̂2√
1 + e−6A0 n̂2

V 0
f

2w2
0

(3.17)

and has the general solution

f(r) = C1 + C2r +
1

2

e−4A0

w2
0V

0
f

n̂2√
1 + e−6A0 n̂2

V 0
f

2w2
0

r2 (3.18)

The AdS2 solution is simply the one in which C1 = C2 = 0, and we identify the AdS2

radius, L2, as

L2
2 = 2e6A0w2

0 V
0
f

√
1 + e−6A0 n̂2

V 0
f

2w2
0

n̂2
(3.19)

All the rest of the equations simply give constraints that determine when this solution can

be realized. The “zero energy” constraint says that

0 = V 0
g − V 0

f

√
1 +

n̂2

(e3A0V 0
f w0)2

(3.20)

while the dilaton equation of motion requires

0 = ∂λV
0
g −

1√
1 + n̂2

(e3A0V 0
f w0)2

(
∂λV

0
f −

V 0
f

w0

n̂2

(e3A0V 0
f w0)2

∂λw0

)
(3.21)

and the tachyon equation forces

0 = ∂τV
0
f −

V 0
f

w0

n̂2

(e3A0V 0
f w0)2

∂τw0. (3.22)

In the following section we will investigate these constraints in more detail, to determine

whether or not they can be realized in V-QCD models of interest.

3.3 A closer look at the AdS2 solution

We can summarize the AdS2 requirements succinctly by recalling the definition of the

effective potential, eq. (2.25), in the language of this section:

Veff(λ, τ) = Vg(λ)− Vf (λ, τ)

√
1 +

n̂2

e6A Vf (λ, τ)2w(λ)2
(3.23)

in which case the AdS2 constraints are simply

V 0
eff = ∂λV

0
eff = ∂τV

0
eff = 0 . (3.24)
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Figure 2. Allowed (n̂, λ0) (left) and (x, λ0) (right) values for the AdS2 solution with vanishing

tachyon. At left, the black dots mark the location of xf = 1 along each branch, and correspond

precisely to the AdS2 solutions found numerically and shown in figure 7. The black dashed line

marks the Banks-Zaks limit at xf = 11/2. From the right plot we find that when xf & 2.865 the

constant dilaton solution becomes negative and is thus excluded as a fixed point candidate.

The zero energy constraint V 0
eff = 0 shows that the volume form on the R3 factor is just

VolR3 = e3A0 =
|n̂|
w0

1√
V 0
g

2 − V 0
f

2
(3.25)

so one can think of this condition as an expression describing the size of the R3, as de-

termined by the values of the potentials at the fixed point. For the class of potentials of

immediate interest, this relationship fixes the volume of R3 in terms of (λ0, τ0, xf , n̂).

Solving the zero energy constraint for n̂ allows one to rewrite the extremization con-

ditions like

0 = ∂λ log
[
w2

0

(
V 0
g

2 − V 0
f

2
) ]

(3.26)

0 = ∂τ log
[
w2

0

(
V 0
g

2 − V 0
f

2
) ]

(3.27)

Note that these expressions depend only on xf , λ0, and τ0, and that the notation asks one

to differentiate the potentials first, then evaluate the result at the constant scalar solution.

Finding simultaneous solutions to these equations provides the parameter space on a

two-parameter plane in which the AdS2 solution can be realized. For the class of potentials

used in V-QCD (3.13), this constraint is again trivially satisfied for τ0 = 0 or τ0 =∞. For

vanishing τ0, it is easy to find solutions to the constraint numerically for the V-QCD

potentials in section 2. They appear in figure 2. Interestingly, there is a region at low

xf where there are two solutions for constant (positive) dilaton. This behavior may be

an artifact of the parametrization of the potential w(λ). The second fixed point is not

expected, but we also find that it plays no role in the phase diagram.

In the case of the divergent tachyon, τ0 = ∞ it is clear that V 0
f = 0. One can carry

out the same analysis as in the τ0 = 0 case to search for allowed AdS2 solutions in V-QCD,

carefully navigating the somewhat subtle limits implied by this solution. For finite n̂ but
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Figure 3. Allowed (x, λ0) values for the AdS2 solution with divergent tachyon. The left plot shows

the small branch of solutions, which cease to exist for xf & 1.685. On the right are the large branch

solutions which extend to the Banks-Zaks limit at xf = 11/2.

vanishing V 0
f one finds that a divergent tachyon implies an electric field (3.15) and AdS2

radius of the form

E = − n̂

|n̂|
e2A0

w0
and L2

2 =
2w0

|n̂|
e3A0 (3.28)

The extremization condition (3.26) becomes

0 = ∂λ log(w0V
0
g ) (3.29)

and the numerical results for the potentials in section 2 are shown in figure 3. As before

there are two branches of solutions — the smaller of which terminates at some finite value

of xf within the Banks-Zaks limit at xf = 11/2.

3.4 Stability of the AdS2 region

The AdS2 solutions can be a priori endpoints or starting points of RG flows. To determine

exactly what happens we must do a scaling analysis of the perturbations around them.

We perturb the background AdS2 metric like

ds2 = −D(r)dt2 +B(r)dr2 + C(r)d~x2 (3.30)

where

D(r) =
r2

L2
2

(
1 +D1 r

d1
)

(3.31)

B(r) =
L2

2

r2

(
1 +B1 r

b1
)

(3.32)

C(r) = C0 + C1 r
c1 (3.33)

In this background, the IR is approached as r → 0 while the UV as r → ∞. Here L2 is

the AdS2 radius as given by (3.19), C0 controls the volume of the R3 factor, and the other

constants parametrize the fluctuations in the obvious way. Without loss of generality, we

set C0 = 1 in what follows. All fluctuation amplitudes are taken to be small.
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The background fields are perturbed as well,

λ(r) = λ0 + λ1 r
a1 (3.34)

τ(r) = τ0 + τ1 r
t1 (3.35)

Φ(r) = µ+ r
(
E + Φ1 r

f1
)

(3.36)

The program is to insert these perturbation Ansätze into the equations of motion, linearize

the equations about the fluctuations, and subsequently determine the scaling exponents

and the fluctuation amplitudes that describe a given perturbation.

Operationally, one first sets all the fluctuations above the background proportional to

the same power, which is to say

α = d1 = b1 = c1 = a1 = t1 = f1 (3.37)

The linearized fluctuation equations then reduce to a coupled set of homogeneous lin-

ear equations in the amplitudes of the fluctuations Fi = {D1, B1, C1, λ1, τ1,Φ1}. Impor-

tantly, the radial Ansätze under investigation leaves a residual gauge freedom related to

reparametrizations of r. Practically, this means that fixing B1 constitutes a gauge choice,

and the linear system consists of 5 independent equations. Requiring that the system

have a non-trivial solution is equivalent to requiring that the determinant of the matrix of

coefficients, M vanish for all r.

In this case, one finds that the determinant is of the form

detM = α2(α− 1)(α+ 1)2(α+ 2) g(α, λ0, E) (3.38)

which vanishes for α∗ = {0,−2,−1, 1} and for the α = α∗ such that g(α∗, λ0, E) = 0. The

former correspond to “universal” modes, while the latter are “non-universal” in the sense

that they depend on the details of the various potentials. Of the universal modes, we find

that there are two types of IR relevant (α < 0) modes in the fluctuation spectrum, with

exponents α∗ = {−2,−1}. That they correspond to relevant operators in the IR is clear

from the fact that when α∗ < 0 these modes grow as r → 0.

To better understand the non-universal modes, it is useful to write them in terms of

the effective potential (3.23). Note that n̂ can be easily related to the boundary value of

the electric field (E in this section) via (3.15). The effective potential also turns out to

govern the properties of two of the four non-universal exponents,

αλ± = −1

2

[
1±

√
1− 3

2
λ2

0 L
2
2 ∂

2
λV

0
eff

]
(3.39)

while the other two are

ατ± = −1

2

1±

√
1 + 2 E2w2

0

√
1− E2w2

0

κ0
L4

2 ∂
2
τV

0
f

 (3.40)

The superscripts signify the fact that these modes correspond to perturbations of the

appropriate scalars as we will see below.
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Figure 4. The numerical values of non-universal exponents αλ± from (3.39), for the solutions with

vanishing tachyon. Relevant operators have negative exponents in this analysis. The large λ0
branch of solutions is colored purple. The BF-like bound mentioned in the text is never exceeded.

The red dashed line indicates xf ≈ 2.865 , beyond which the small branch of constant dilaton AdS2

solutions vanishes. The domain of xf terminates at the Banks-Zaks limit xf = 11/2.
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Figure 5. The numerical values of non-universal exponents αλ± from (3.39), for the solutions with

divergent tachyon. Again, the large λ0 branch of solutions is colored purple and the BF-like bound

is never exceeded. The red dashed line indicates xf ≈ 1.685 , beyond which the small branch of

constant dilaton AdS2 solutions vanishes.

These exponents have a few noteworthy features. First, all of the exponents — uni-

versal or not — can be pairwise summed to give α+ + α− = −1, which is the correct

structure for modes in AdS2, in these coordinates. Moreover, we see from (3.39) that

there is a BF-like bound signaling the onset of an instability when ∂2
λV

0
eff > 2

3
1

L2
2λ

2
0
. For

the V-QCD potentials employed for numerical studies, these non-universal exponents are

plotted in figures 4, 5 and 6 as functions of xf for both branches of the AdS2 fixed point.

Evidently, while the BF-like bound is never exceeded in the fluctuations corresponding to

αλ, the fluctuation characterized by ατ realizes an analogous instability around xf ∼ 2.4

in the vanishing τ0 case. When the tachyon is divergent, the equations of motion require

E2w2
0 = 1 and thus ατ± saturates to {−1, 0}. It will turn out that the fluctuations described

by ατ are appropriately named, as they correspond to fluctuations of the tachyon alone.

The full description of the perturbation is given by the exponent α∗, which contains

information about the dimension of the dual IR operator, and the amplitudes of the various

modes that are activated by this fluctuation. The following cases are pertinent for the two
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Figure 6. The numerical values of non-universal exponents ατ± from (3.40), for the solutions

with vanishing tachyon. Relevant operators have negative exponents in this analysis. The large

λ0 branch of solutions is colored purple. Note that for xf larger than approximately 2.4 the dual

operator in the large branch fixed point has complex dimension, signaling an instability (marked

by green dashed line). The red dashed line indicates xf for these potentials beyond which the small

branch has λ0 < 0. Again, the domain of xf terminates at the Banks-Zaks limit xf = 11/2.

conjugate solutions:

• If the operator is UV relevant then both perturbations vanish in the UV boundary.

• If the operator is IR relevant then both perturbations blow-up in the IR regime.

• If the operator is UV irrelevant then one perturbation vanishes and one blows up in

the UV boundary.

• If the operator is IR irrelevant then one perturbation vanishes and one blows up in

the IR regime.

The amplitudes are easily obtained by solving the linear system provided by a given α∗,

and in general depend on one undetermined (but non-vanishing) amplitude and a choice

of radial gauge which can be fixed via B1. The results are listed in appendix A.

We conclude this section by assessing the RG stability of AdS2 solutions. The one that

appears at small values of λ, denoted by a blue line in figure 2 has dilaton and tachyon

perturbations that render it IR unstable. This explains the fact that it plays no role in the

phase diagram we describe in this work.

The other AdS2 solution that corresponds to the purple line in figure 2 has dilaton

and other perturbations that are IR irrelevant but the tachyon perturbation is IR relevant

in the non-tachyonic black-holes. This is as expected as we need to tune mq = 0 to reach

this solution in the IR. Once we turn on mq 6= 0 we will avoid it and end up in the

tachyonic black hole. On the other hand in the tachyonic case, the dilaton perturbation is

IR irrelevant and the tachyon one is marginal. However it does not correspond to an extra

parameter in the theory as τ =∞ is a singular point in field space.
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4 Numerical solution

4.1 Preliminaries

The equations of motion admit two types of solutions at finite temperature and chemical

potential, which we call black hole and thermal gas solutions. The thermal gas solutions

have no horizon in the IR. In this case the temperature is identified as the inverse of the

length of the compactified time coordinate, while Φ = const. = µ. The blackening factor

is trivial, f ≡ 1, and the z-dependence of the other fields is exactly the same as for the

solutions at T = 0 = µ, which were constructed in [33]. When 0 < xf < xc, the dominant

vacuum was found to have a nonzero tachyon field (and therefore broken chiral symmetry).

The thermodynamics of the corresponding thermal gas solution is trivial: the pressure is

independent of T and µ and will be normalized to zero here. Likewise, the condensate,

which signals chiral symmetry breaking, will be nonzero but T independent.

The nontrivial task on which we concentrate in this article is the construction of

the black hole solutions. The equations we have to solve numerically are the Einstein’s

equations (2.31) and (2.33), the equations of motion for λ, equation (2.32), and the equation

of motion for τ , equation (2.34). Their solution for n̂ = 0 has been discussed in detail in [34].

The numerical solving with given initial conditions as such is very simple using NDSolve

of Mathematica. The main issue is the correct initialization and subsequent processing of

the solutions via the scalings described in section 2.4.

An important general feature is that there are two types of black hole solutions:

• The solutions with τ = 0 which describe the hot and dense matter in a chirally

symmetric phase; these are expected to dominate the free energy at large T or µ.

• The solutions with τ(A) 6= 0. These will describe a chirally broken phase, expected

to dominate at small T or µ. These solutions are parametrized by the value of the

quark mass

mq = lim
A→∞

L−2
UV τ(A) eA(A− ln(ΛLUV))γ0/b0 . (4.1)

Since we are interested in solutions with exact chiral symmetry, we need to restrict to

mq = 0. This is a technically very demanding task (see appendix C) and necessitates going

to very small values of z ≈ e−A, up to A ∼ hundreds. This is one of the reasons for using A

as a coordinate. The details of the numerical solution and the associated scaling properties

are discussed in detail in appendix B.

In the numerical computations we choose the unit of number density so that LA = 1.

In section F we shall actually fit that LA ≈ 0.97.

4.2 Initialization: expansion around horizon

For thermodynamics one needs solutions with a black hole. To generate them numerically,

one has to start the integration at the horizon, which we place at A = Ah such that

f(Ah) = 0. Because of the singularities due to the 1/f terms in eqs. (2.31)–(2.34) one
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cannot start the integration precisely at the horizon. Instead, one first writes the values of

the fields at a small distance ε from the horizon by expanding in ε as

q = qh + εq′h +O(ε2), (4.2)

λ = λh + ελ′h +
1

2
ε2λ′′h +O(ε3), (4.3)

f = εf ′h +
1

2
ε2f ′′h +O(ε3), (4.4)

τ = τh + ετ ′h +
1

2
ε2τ ′′h +O(ε3), (4.5)

which are then inserted to the equations of motion. Here and in the following the subscript

h denotes quantities evaluated at the horizon. Then one expands in ε and demands that

the divergences and the constant term vanish. Note that the input here is that in (4.4)

fh = f(Ah) = 0.

Out of the leading terms in (4.2)–(4.5) one can choose f ′h = +1 as the magnitude

of f(A) will anyway be fixed by the scaling (2.41) to the boundary value f(A → ∞) =

1. The dilaton value at the horizon λh will remain as a parameter, closely associated

with temperature. The second parameter, closely related to the chemical potential, is n̂.

However, in the numerics it turns out to be more practical to use instead

ñ = e−3Ah n̂ =
n̂

b3h
(4.6)

which is invariant in the scaling of (2.42) and (2.43). The tachyon value at the horizon

will be fixed by the quark mass, τh = τh(λh, ñ;mq). Including the terms up to O(ε) for

q and up to O(ε2) for the other fields in (4.2)–(4.5) is sufficient to ensure that the values

of these parameters in the resulting numerical solution match with their input values to a

high precision.

The remaining first-order derivative terms will be fixed by demanding that the 1/A

(i.e. 1/ε) singularities cancel. Canceling the divergent 1/A term of (2.31) gives

qh = −
√

3f ′h√
Vg − Vf

√
1 +Kh

, Kh =
ñ2

w2V 2
f

. (4.7)

with the understanding that the potentials Vg, Vf , and w are evaluated at the horizon.

Canceling the divergent 1/A term of the λ equation (2.32) gives

λ′h = −
3λ2

hq
2
h

8f ′h
√

1 +Kh

(√
1 +Kh∂λVg − ∂λVf +KhVf

κ′h
κh

)
= −

3λ2
hq

2
h

8f ′h
∂λVeff(λh, τh, ñ) (4.8)

and canceling the 1/A term of the τ equation gives

τ ′h =
q2
h∂τ lnVf

f ′hκh(1 +Kh)
. (4.9)

– 21 –



J
H
E
P
0
4
(
2
0
1
4
)
1
2
4

In (4.7) and (4.8) we again have the important quantity,

Veff = Vg(λ)− Vf (λ, τ)

√
1 +

n̂2

b6w2V 2
f

= Vg(λ)− Vf (λ, τ)

√
1 +

ñ2b6h
b6w2V 2

f

, (4.10)

evaluated at the horizon.

This leaves us with the four quantities f ′′h , q
′
h, λ

′′
h, τ

′′
h to be determined by requiring

that the constant terms of the four equations vanish. The constant term of equation (2.33)

gives a simple relation between f ′′h , q
′
h:

f ′′h + f ′h

(
4−

q′h
qh

)
− Kh√

1 +Kh
q2
hVf = 0. (4.11)

The remaining expressions are too complicated to be reproduced here but can be found

in [39]. From the algebraic derivation of the initial conditions to the numerical integra-

tion of the system of differential equations (2.31)–(2.34), we treat the whole problem in

Mathematica.

4.3 Observables

It is thus easy to produce some numerical solutions for the functions q(A), λ(A), f(A),

and τ(A) with Mathematica, given λh and ñ, but an essential and nontrivial part of the

numerical work is to transform the solutions to a standard form satisfying in z coordinates

f(0) = 1 and that the scale of the UV expansions equals one (see appendix B). In A

coordinates these conditions become

lim
A→∞

f(A) = 1

lim
A→∞

(
1

b0λ(A)
+
b1
b20

ln(b0λ(A))−A
)

= − lnLUV. (4.12)

The former is implemented by scaling f as in (2.41), the latter by scaling A as in (2.42). To

achieve this one determines the scaling factor Λ(λh, ñ) so that the asymptotic limit (4.12)

holds. We start from a numerical solution having Ah = 0, then according to (2.42) the

value of b at the horizon in the scaled solutions is simply given in terms of the scaling

factor by bh = exp(Ah)/Λ = 1/Λ. From the standard configurations so obtained one

then computes the temperature as the black hole temperature and the chemical potential

using (2.16) and (2.19), otherwise the configurations as such are not of interest for this

calculation. The procedure is described in detail in appendix B.

Summarising, from the numerical integration of equations of motion, for given (λh, ñ),

one obtains the following quantities:

bh(λh, ñ), T (λh, ñ), µ(λh, ñ). (4.13)

From these we obtain the entropy density using the basic formula

s(λh, ñ) =
A

4G5
=

b3h
4G5

. (4.14)
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To obtain the 4d physical quark number density note first that, when deriving the Φ equa-

tion of motion from the fermionic part of the action, one has, for solutions of equations of

motion,

δSf =
1

16πG5

V

T

∫ zh

ε
dz

d

dz

(
∂Lf

∂Φ̇
δΦ

)
. (4.15)

At zh one has to keep the value Φ(zh) fixed to zero so that δΦ(zh) = 0 and the upper limit

does not contribute. Since S = −Ω/T and δΦ = dµ the fermionic contribution given by the

above integral is the ndµ term in the free energy, and therefore the correct normalization

of n is

n =
n̂

16πG5
=

ñ b3h
16πG5

=
ñ

4π

b3h
4G5

= s
ñ

4π
, (4.16)

where we used the definition (4.6). This expression also gives a physical interpretation of

the parameter ñ of the integration of the equations of motion:

ñ = 4π
n

s
. (4.17)

Next we discuss what values of (λh, ñ) are possible and how the pressure is integrated

from dp = s dT + ndµ. To compute the pressure we have to integrate over T and µ

and these one-dimensional integrals are most simply carried out by converting them into

integrals over λh at fixed ñ or vice versa, see section 5.1.

4.4 Physical region in the λh, ñ plane

For ñ = 0 one found (see, e.g., [34], figure 7) that chirally symmetric solutions, i.e. the

ones with zero tachyon, existed only for 0 < λh < λ∗, with λ∗ given by the extremum of

the effective potential in (4.10), and chirally broken solutions with nonzero tachyon existed

only for λh > λend with 0 < λend < λ∗. This is in harmony with the expectation that large

T and chiral symmetry are associated with small coupling, small λh, and strong coupling

leads to chirality breaking. The introduction of ñ extends this pattern in an interesting

and subtle way, exhibited in figure 7.

For small ñ the above pattern remains unchanged, only the curves λend(ñ) and λ∗(ñ)

slowly decrease. Also thermodynamically the situation is only slightly modified: as we

shall soon see along this curve the symmetric and broken phase pressures are equal and

there is a continuous chiral phase transition. At about ñ = 8 the λend(ñ) curve has a

discontinuity and breaks into two branches, λend ≡ λχb and λχs so that λχb is always the

lower limit of the broken phase while λχs exists within the symmetric phase. The branching

signals the onset of a first order chiral transition; the broken phase at λχb can be in thermal

equilibrium at λχs but so that the density jumps when crossing the phase boundary.

The computation of the curves in figure 7 is mostly numerical, but parts of the bound-

ary of the symmetric phase can be found analytically. Note first that (4.7) implies that

Veff(λh, τh) = Vg(λh)− Vf (λh, τh)
√

1 +K(Ah) = Vg(λh)−

√
V 2
f (λh, τh) +

ñ2

L4
Aκ

2
h

> 0,

(4.18)
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Figure 7. The physical region on the λh, ñ plane for chirally symmetric (red region) and chirally

broken (blue region, unbounded above) solutions. Chirally symmetric region is bounded from above

by the curve λ∗(ñ) along which T = 0 up to the point AdS2 at ñ = 12.295, λh = 1.108, then from

the right by a segment of the curve Veff = 0 up to the second AdS2 point at ñ = 10.223, λh = 0.0873

and finally by a segment to ñ = 10.457, λh = 0. Tachyonic chiral symmetry breaking solutions

exist only above the blue curve λend(ñ). This curve has a discontinuity at ñ = ñcr ≈ 8 at which

it breaks into two branches, λend ≡ λχb and λχs. Below ñcr the symmetric and broken phases are

in thermal equilibrium along λend, above ñcr the states on λχb and λχs are in equilibrium. The

deconfining transition line further in the IR is plotted in figure 22. The dashed lines are Veff = 0

and V ′eff(λh) = 0 at τ = 0 (see (4.10)).

where we used (4.6) and inserted w from (2.4). For the symmetric phase τh = 0 one can

solve from here the upper boundary for values of ñ:

ñ ≤ ñmax = L2
Aκh

√
V 2
g (λh)− V 2

f (λh, 0). (4.19)

This with LA = 1 is the curve Veff = 0 in figure 7. Further, due to the interpretation

β(λ) = λ′(A) one usually expects that λ(A) monotonically decreases from its value λh =

λ(Ah) towards λ(A =∞) = 0, and in particular that λ′h < 0. From (4.8) this would imply

∂λVeff(λh, τh(λh,mq), ñ) ≥ 0. (4.20)

However, deep in the IR the interpretation of λ′(A) as a negative beta function need not

be valid and solutions with signs opposite to those in (4.20) are also possible. This is con-

firmed by numerical computation and the real boundary is given by finding where T = 0

or where the scale factor Λ(λh, ñ) diverges. Requiring that both Veff and V ′eff vanish has

two solutions marked AdS2, since actually the geometry at these points is asymptotically

AdS2 ×R3 in the IR. The lower AdS2 point disappears at larger xf .
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The boundary of the broken phase marked λend in figure 7 is discussed in some detail

in appendix D. It is a lower limit for possible values of λh. For ñ there is an upper limit,

but there is no upper limit for λh.

The significance of various parts of the physical region is also described by plotting

curves of constant T and µ as in figure 8. Actually we show there the result only for the

discrete values of ñ used in the pressure integration. Particularly interesting is the behavior

of the µ = constant curves. Extrapolating them one sees that clearly asymptotically µ = 0

in the upper part of the T = 0 curve. States here have T = µ = 0 and thus represent

vacuum. In the vertical part of the T = 0 curve correspondingly µ =∞. This is also some

special state. All the µ = constant curves end at the AdS2 point, where thus all the exactly

T = 0, µ finite symmetric phase thermodynamics resides.

A third important quantity is the dimensionless scale factor Λ(λh, ñ). It varies a lot

as a function of λh. The main part of the variation is contained in Λ(λh, 0) which at the

boundaries of the phase space, λh → 0 and λh → λ∗(0), can be fitted by

Λ(λh, 0) = 0.714 e−1/(b0λh)(b0λh)b1/b
2
0 (1 + 2.42λh + · · · ) =

zh
LUV

, (as λh → 0)

=
1.3√

λ∗(0)− λh
+ 2 + · · · (as λh → λ∗(0)). (4.21)

Figure 9 shows curves of constant Λ(λh, ñ)/Λ(λh, 0). Since bh = 1/Λ, s ∼ b3h, n = sñ/(4π),

also curves of constant entropy and number density are contained in this figure. One sees

that the dependence on ñ is surprisingly weak except at the T = 0 boundaries. From the

figure one can extrapolate that

• On the upper T = 0 boundary from ñ = 0 to the AdS2 point: T = µ = s = n = 0,

Λ = ∞. So this really is the vacuum. All the T = 0, finite µ chirally symmetric

matter is exactly at the AdS2 point

• On the vertical T = 0 boundary between the two AdS2 points T = Λ = 0, µ =

∞, s =∞, n =∞, n/s = ñ/(4π), 10.223 < ñ < 12.295.

4.5 Constant parameter curves

A straightforward way to generate the data necessary for solving the thermodynamics would

be to compute black hole solutions in both the symmetric and non-symmetric branch of the

solutions on a sufficiently dense lattice in the physical region of the (ñ, λh) -plane. In order

to carry out the pressure integrals without accumulating large cumulative errors, a reason-

ably accurate continuum interpolation of the observables is needed. Since the observables

as a function of (ñ, λh) are mostly smooth but have lines of zeroes and divergences, detailed

in the following section, it would be necessary to use at least a somewhat sophisticated

interpolation algorithm with an adaptive local grid size in two dimensions, or alternatively

a very large amount of computing power for the brute force approach of simply a very

dense uniform lattice.

However, we have been able to avoid constructing a full 2D interpolation of the so-

lutions by considering a grid of 1D interpolations, for which well-established adaptive
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Figure 8. Constant values of T and µ on the ñ, λh plane for tachyonless solutions for the discrete

values of ñ used in the pressure integration, other boundary curves as in figure 7. Small λh
corresponds to large T as expected. The special role played by the red AdS2 point is seen: above

it along the boundary curve µ = 0, below it µ =∞. Thus effectively at the AdS2 point all positive

values of µ are obtained.

lh
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Figure 9. Constant values of the scale factor Λ, normalised to its value at ñ = 0, on the ñ, λh
plane for tachyonless solutions for the discrete values of ñ used in the pressure integration, other

boundary curves as in figure 7. Curves of constant s and n can be inferred from this (see text).

algorithms are readily available. The two primary interpolations are curves with ñ as a

constant and λh as the variable, and those with λh as a constant and ñ as the variable.

We compute the interpolations for a number of values of ñ and a number of values of
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λh. Figures 18 and 21 in appendix D show images of these curves of the (µ, T ) -plane.We

can then compute the pressure integrals along each of these, for both the symmetric and

non-symmetric branches, fixing the constants as described in the next section.

In the next section, we also describe some additional one-parameter curves which have

a thermodynamically interesting role that we have computed.

At least in the specific case handled in this paper, the constant parameter curve method

has allowed us to extract all the thermodynamic features of interest without resorting to

full 2D interpolation. However, in the case of a transition between two regions of the same

branch of solutions, such as happens at small xf for some of the potentials explored in [34],

a complete 2D interpolation may become necessary to extract the phase transition line.

5 Results on thermodynamics

5.1 Computation of pressure

According to the holographic dictionary, the pressure can in principle be computed by

evaluating the on-shell action. However, this is numerically very challenging in this kind

of model with corrections decaying only logarithmically near the boundary. Therefore, we

use instead the usual thermodynamic formulas.

We first review how the pressure is computed by integrating s(T ) = p′(T ) for ñ = 0

since this is how the constant of integration is fixed in [34] and will be fixed here, too. One

has, see figure 10,

4G5pb(T ) =

∫ ∞
λh(T )

dλh(−T ′b(λh)) b3hb(λh) + pb(∞), (5.1)

4G5ps(T ) =

∫ λ∗

λh(T )
dλh(−T ′s(λh)) b3hs(λh) + ps(λ∗), (5.2)

where the subscripts b and s denotes quantities in chirally broken and symmetric phases,

respectively. What matters for the phase structure is the difference of the integration con-

stants pb(∞) and ps(λ∗). This is simply fixed by requiring that pressure be the same for

the two phases at λh = λend [34]. The outcome is plotted in figure 10. At this temperature

there is a second order (both p and s ∼ p′ are continuous) chiral phase transition. The

broken phase pressure vanishes at λh = 3.19 at the temperature Th = Tb(3.19, 0) = 0.14.

This is the deconfining transition. At higher λh or smaller T the dominant phase is the

thermal gas phase with vanishing thermal pressure.

For quantitative correctly normalised results one will need both the energy unit Λ0,

which is implicit in formulas involving T and µ, and the constant 4G5. The former is fitted

by the value of the critical temperature Tχ(0) = 0.148Λ0. Taking Tχ = 0.15 GeV, we fix

Λ0 = 1 GeV. (5.3)

For 4G5 normalisation to the T 4 Stefan-Boltzmann term at T →∞ gives [34], see eq. (F.14),

1

4G5
=

4

45π

1 + 7
4 xf

L3
UV

N2
c =

4

45π
N2
c . (5.4)
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Figure 10. Left: the temperature as a function of λh for the symmetric tachyonless and broken

tachyonic solutions at ñ = 0. Right: the pressures computed from (5.1) and (5.2) near the chiral

transition region with relative normalisation fixed so that they are equal at λend. The broken phase

pressure vanishes outside the figure at λh = 3.19 at the temperature Tb(3.19, 0) = 0.14.

In general, we wish to obtain the pressure by integrating dp = sdT + ndµ. All the

quantities on the r.h.s. are numerically known as functions of λh, ñ, see appendix C. Note

that we can write dp as

dp =
b3h

4G5
dT +

b3h ñ

16πG5
dµ =

b3h
4G5

(
dT +

ñ

4π
dµ

)
, (5.5)

where all quantities are functions of λh, ñ.

The differential dp can now be integrated either over curves of constant ñ from λb to λt,

4G5pñ(λt) =

∫ λt

λb

dλh b
3
h(λh; ñ)

[
T ′(λh; ñ) +

ñ

4π
µ′(λh; ñ)

]
, (5.6)

or over curves of constant λh from ñb to ñt,

4G5pλh(ñt) =

∫ ñt

ñb

dñ b3h(ñ;λh)

[
T ′(ñ;λh) +

ñ

4π
µ′(ñ;λh)

]
. (5.7)

To test the path dependence of the integral, one can choose an arbitrary rectangle

within the physical region in figure 7 for either of the phases. This is mapped to a four-

sided region on the grid in figure 21. One now integrates numerically around it using

eqs. (5.6) and (5.7) and checks whether the integral is zero. This is indeed what we find

to a great accuracy.

This proof of path independence is a very impressive confirmation of the validity of

our numerical computations. All the quantities included in (5.6) and (5.7) are the results

of lengthy numerical solutions of Einstein’s equations and it is striking to see that when

they are put together as above, the outcome is path independent to a very good numerical

precision.

The pressures of the two phases ps(λh, ñ) and pb(λh, ñ) can now be computed by

fixing the relative integration constant by demanding that ps(λend, 0) = pb(λend, 0) and

integrating to the point (λh, ñ) along any convenient path. These can trivially be converted

to ps(T, µ) and pb(T, µ). Three-dimensional plots of pressure vs T, µ are numerically rather

noisy and we shall focus on the main question: phase structure and phase transition lines.
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5.2 Phase structure

We have discussed thoroughly the chirally symmetric and broken phases with pressures

ps(T, µ) and pb(T, µ). Furthermore, as a model for the low T system we shall use the

thermal gas phase, for which the metric Ansatz is like that in (2.3) but with f(z) = 1 and

T is introduced by compactifying the imaginary time region, otherwise the equations of

motion are as before. Note that from f = 1 and the equation of motion (2.22) it follows

that one must have ñ = 0 so that also n = 0. Thus also Φ̇ = 0 so that Φ = µ is constant.

The property n = 0 for a low T chirally broken phase is consistent with the fact that this

model contains no baryons in the spectrum of singlet states.

The pressure of the thermal gas phase is plow = 0. We identify this with the hadron

gas phase of the field theory. This is well justified in the case of pure SU(Nc) gauge theory,

for which the pressure of the plasma phase is ∼ N2
c . In the case here (V-QCD) the degrees

of freedom in the low temperature phase are the N2
f Goldstone bosons of the spontaneously

broken chiral symmetry, while the high energy degrees of freedom are the deconfined par-

tons, 2Nc + 7/2NfNc. The ratio of the number of degrees of freedom at low and high

temperature is then x2
f/(2 + 7/2xf ) which at xf = 1 is 0.18, and we expect that taking

plow = 0 provides still a useful guide towards the location of the deconfinement phase

boundary. However, as xf increases, the uncertainty associated with this approximation

grows. At xf ' 4 the ratio becomes unity signalling the transition to a different vacuum

phase as one enters the conformal window.

The stable phase has the smallest free energy or, equivalently, the largest pressure.

For phase equilibrium one needs both kinetic, thermal and chemical equilibrium, i.e., the

same pressure, temperature and chemical potential for the two phases. The outcome of

the analysis has already been shown in figure 1.

Consider first the most reliable prediction of the model: the chiral transition at Tχ(µ).

At µ = 0 of ñ = 0 this took place at the point λend in figure 10. This pattern continues

when ñ is increased up to the value ñ = ñcr ≈ 8, the chiral transition takes place along

λend(ñ) much as at ñ = 0.

At ñ = ñcr ≈ 8, called the critical point in figure 7, something novel happens. Note that

this is also the point where λend and the line V ′eff = 0 intersect. Suddenly the numerically

determined value λend, the lower limit of values of λh for which tachyonic solutions with

mq = 0 exist, has a derivative discontinuity. When ñ is increased, it even leaves the region

of the symmetric solutions. The question is what happens to the phase transition line.

At large ñ it is clear that the transition must be between disconnected points of the

(ñ, λh) -plane, since the symmetric and non-symmetric phases do not overlap there. A brute

force search of the transition would entail taking a point in both branches, say (ñs, λs) in

the symmetric phase and (ñb, λb) in the broken phase, and requiring

Ts(λs, ñb, ) = Tb(λb, ñb), µs(λs, ñs) = µb(λb, ñb) ps(λs, ñs) = pb(λb, ñb). (5.8)

There are four unknowns and three equations, which could be expected to yield a one-

parameter phase transition curve. This is somewhat non-trivial to implement in our nu-

merical scheme, where we have up to this point been able to avoid generating full 2D

interpolations in the space of solutions.
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Figure 11. Dependence of the chiral transition temperature on chemical potential or on quark

number density. Along the 1st order line there is a jump in n. The inset shows a closeup of the

T = 0 region with density jump. In the left panel pb > 0 between Tχ and Th and vanishes along

Th(µ). On it n jumps to zero.

After a visual inspection of the λh -constant and ñ -constant curves in the (T, µ, p)

-space, it however seems that the λend -curve comes very close to just touching the sym-

metric phase. This leads to the hypothesis that the λend -curve continues to be the phase

transition curve even at large ñ.

Testing this hypothesis requires computing the solutions and pressure along the λend

-curve, finding a curve of equal temperature and chemical potential from the symmetric

phase and verifying that the pressures are also the same. Parametrizing λend with ñb, the

equations to be solved are

Ts(λs, ñs) = Tb(λend(ñb), ñb), µs(λs, ñs) = µb(λend(ñb), ñb). (5.9)

Now we can take a fixed value of ñs for which a curve as a function of λh has been

computed. This reduces the problem to a 2D problem of finding ñb and λs such that (5.9)

holds, which is numerically tractable as we are now indexing solutions along fixed curves

where an interpolation of the observables has been pre-computed. For each fixed value of

ñs we obtain one point on the line of transitions, and using a large number of ñs values

gives an accurate representation of the whole transition line. Once this has been done, we

can compare the pressures between the two phases. They are equal to within numerical ac-

curacy, confirming our above hypothesis. We denote the curve of these equilibrium points

in the symmetric phase by λχs.

The transition is then between points on two curves, parametrized as

λχs(ñs) = (λs(ñs), ñs) and λχb(ñs) = (λend(ñs), ñb(ñs)). (5.10)

Symmetric phase states along λχs are in equilibrium with those on λχb for same values

of the parameter ñs. The splitting of the line simply implies that the transition is of first

order. This is again a striking manifestation of the ability of the holographic method to

describe subtle effects.
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The equations (5.9) give directly the transition temperature Tχ(µ). It is also of interest

to plot the temperature as a function of n, which splits the phase transition line in two

with a mixed phase in between. The ñ components in equation (5.10) express the change

in ñ; the change in physical density is

16πG5 ∆n = b3hs(λχs(ñs)) ñs − b3hb(λχb(ñs)) ñb(ñs). (5.11)

The outcome of the computation is shown in figure 11 which plots both Tχ(µ) and Tχ(n).

The discontinuity in λend at ñ = 8.0 corresponds to the critical values

µcr = 0.34, Tcr = 0.0804, ncr = 0.0103. (5.12)

Beyond these critical values in the 1st order region there is a density jump and the line

splits in two leaving in between a mixed phase. Concretely, choosing ñs = 12.2, very close

to the AdS2 point in figure 7, one finds that λs = 1.243 and ñb = 14.67, the physical den-

sities are ns = 0.0180, nb = 0.0172 and the common pressure value is 0.0015. A symmetric

phase point very close to the AdS2 point in figure 7 is thus in equilibrium with a broken

phase point within the bend of the curve λχb.

Below Tχ(µ) the chirally broken phase is the stable one. Its pressure is positive but

starts decreasing when T is further lowered, λh increased, just as happens in figure 10 at

µ = 0. Computing the pressure of the broken phase for arbitrary values of ñ, one finds

that it vanishes for the values of λh plotted in figure 22. The corresponding temperature

Th(µ) is plotted in figure 11, see also figure 1. We interpret this as a first order deconfining

transition between the chirally broken phase and the zero-pressure low T thermal gas

phase. The transition temperature Th(µ) decreases monotonically with increasing µ; our

numerical accuracy does not permit to make definite statements about the limit T → 0.

Note that this corresponds to very large values of λh, see figure 23.

One observes that at µ = 0 the temperatures Tχ(0) and Th(0) = 0.95Tχ(0) are

very close to each other. For reference, one may note that a very similar situation with

Th(0) = 0.94Tχ(0) was observed in [41] in a completely different Schwinger-Dyson equation

model for QCD thermodynamics. There the conclusion was that the chiral and deconfine-

ment transitions probably coincide. These behaviors are most transparently understood

on the basis of underlying exact and approximate symmetries and related order parame-

ters [42, 43].

From the computed pressure, we can determine the interaction measure ε− 3p = Ts+

µn−4p = (T∂T +µ∂µ−4)p, which is shown close to the chiral transition region in the sym-

metric phase in figure 12. Consider the curve for µ = 0, the structure of which is described

in figure 9 of [34]. The analogous curve for QCD is plotted, e.g., in figure 3 of [44]. The

V-QCD curve plotted in figure 12 starts by decreasing above T = Tχ(0) but then changes

direction and passes through a maximum at T ∼ 4Tχ(0) with a QCD-like decay above

that. This large T maximum can be interpreted [34] as a crossover transition. When xf is

increased into the conformal region at xf > xc ≈ 4, this crossover is the only structure in

p/T 4 which remains. It is now apparent that increasing µ does not change this overall pat-

tern qualitatively. In particular, the large T decay is independent of the chemical potential.
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Figure 12. The interaction measure ε− 3p = Ts+ µn− 4p scaled by the ideal gas pressure (F.1)

in the region T > Tχ(µ) as a function of T/Tχ(0) for a few values of µ. All curves refer to the

symmetric phase, i.e., for µ = 0, 0.4 they start at the value Tχ(µ) plotted in figure 1.

5.3 Order of transition

The chiral transition was above numerically observed to be of second order at µ = 0, for

the potentials used here. There are also potentials which lead to a 1st order transition,

as concretely shown in [34]. It is commonly accepted that the chiral QCD transition at

Nf ≥ 3 is of first order [45], even though this has not been conclusively established with

lattice Monte Carlo computations, say, for Nf = Nc = 3, xf = 1 [46]. It is useful to see

how our gauge/gravity duality model, valid, in principle, for Nc � 1 relates to the general

effective theory arguments.

The order parameter for the effective theory of the QCD chiral transition is a complex

Nf × Nf matrix Mij(x) = 〈qiLq̄
j
R〉, i, j = 1, . . . , Nf , x is the d = 3 dimensional spatial

coordinate. The potential term in the action is

V (M) = m2trM †M + g1 (trM †M)2 + g2 trM †MM †M. (5.13)

To study the phase transition one should compute the effective potential of the theory. In

the 1-loop approximation this was carried out, for m = 0, in [47]. Much information can

already be obtained from the beta functions of the couplings in d = 4 − ε dimensions: if

there is an infrared stable fixed point, zero of the beta function away from g1 = g2 = 0, the

transition probably is of second order. If the couplings run to infinity, the transition is of

first order. In the computation of [47], the color and hence the value of Nc is hidden in the

color contraction in 〈q̄q〉. Opening up these color interactions in the 1-loop computation

in full is an impossible task, but in the large Nc limit a single tr is always one quark loop

and thus suppressed by a factor 1/Nc. Thus we expect that in the above effective potential

g1 ∼ 1/N2
c and g2 ∼ 1/Nc.
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Figure 13. Left: a plot of the quark number density n(µ;T ) (without the normalisation factor

4/(45π) in (5.4)) for T = 0.1 (2nd order transition) and T = 0.05 (1st order transition). At large

µ the stable phase is always the symmetric phase (solid red) which can exist as a metastable phase

(dotted red) even below the transition. Below the chiral transition the broken phase is stable

(blue) and at the lowest µs the stable phase is the thermal gas phase with n = 0 (black, shown for

T = 0.1). At the first order chiral transition there is a jump in n, as in figure 11. There is also a

numerically hardly visible jump between the broken and the thermal gas phases. Above Tc = Tχ(0)

only the symmetric phase exists. Right: the quark number susceptibilities χ2 (continuous) and χ4

(dashed) per N2
c including the normalisation factor 4/(45π). The limit of χ2/T

2 at large µ is 1
3 ,

that of χ4 is 2/π2.

According to [47] the β-functions of the two couplings in (5.13) (scaled by a factor

π2/3) have a fixed point at

N2
c g
∗
1 =

3ε

x2
f

, g∗2 = 0 (5.14)

with the eigenvalues ε,−ε so that the fixed point is unstable, the flows are plotted in [47].

This is true also at large Nc, Nf , indicating a first order transition in this limit, too. How-

ever, one may argue that when Nc =∞, the term with g1 in (5.13) should be entirely ne-

glected. Then only the β function for g2 remains and it has an infrared stable fixed point at

Ncg
∗
2 =

3ε

2xf
. (5.15)

This indicates a 2nd order transition. The two arguments are compatible if the latent heat

of the 1st order transition is ∼ 1/Nc. Another way to say this is that as Nc → ∞ and

g1/g2 → 0, the Hermitian model becomes equivalent to the O(2N2
f ) model that is known

to have a second order phase transition.

One should also remember that the ε expansion cannot give any definite answer. A

good example of this is another standard model transition, the electroweak phase transition.

There the ε expansion method also leads to a first order transition [48] while a numerical

computation leads to a first order transition for small Higgs masses, mH . 75 GeV, while

at larger Higgs masses there is only a cross over [49].
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5.4 Quark number density

The quark number density as a function of µ is plotted in figure 13 for some values of T .

As can be seen from figure 1, T = 0.1 crosses the phase diagram at a 2nd order transition

and T = 0.05 at a 1st order one. The figure has the expected structure, the jump in n is

relatively small at Tχ and hardly visible at Th; the transitions are in this sense weakly first

order. When plotted for T > Tχ(0), the fixed-T curves contain just the symmetric phase

with monotonically increasing n(µ).

It is common to characterize the µ dependence by the susceptibilities at µ = 0:

χ2(T ) =
∂2p(µ, T )

∂µ2
|µ=0, χ4(T ) =

∂4p(µ, T )

∂µ4
|µ=0 (5.16)

In the ideal gas limit and for LA = 1, χ2 →
xf
3 N2

c T
2, χ4 →

2xf
π2 N

2
c . These (per N2

c ) are

also plotted in figure 13, now also including the normalisation term (see appendix F). One

is approaching the ideal gas limit but rather slowly.

It may also be useful to express critical quantities in physical units. We have, e.g.,

taking Nc = 3, from (5.12)

ncr = 0.0103→ 0.0103
4

45π
N2
c Λ3

0 ≈ 0.3
1

fm3 , (5.17)

a not totally unreasonable value.

5.5 Polyakov line

The basic difficulty in the study of thermodynamic deconfinement is that there is no symme-

try and thus no order parameter associated with deconfinement. For Nf = 0 the Polyakov

line, trace of path ordered exponential of A0 over the periodicity range 0, 1/T in imagi-

nary time, signals breaking of Z(Nc) symmetry and separates low and high T phases. Even

though it is not an order parameter for finite Nf , it is a gauge invariant measurable observ-

able, which in lattice Monte Carlo studies varies together with the chiral condensate 〈q̄q〉.
Constructing the gravity dual of the Polyakov line is very complicated, but we can

model it in a simple way following [50]. The idea is to start from a duality determination

of a string tension in a thermal ensemble, interpret this as dF/dz = dF/dT × dT/dz, com-

pute from here dF/dT , integrate F (T ) by choosing the integration constant by physical

arguments and finally plotting L = exp(−F (T )/T ). Here one can start from the deter-

mination of the spatial string tension σs [51], determined from Wilson loops with sides in

spatial directions,

σs =
1

2πα′
b2h
κh

=
dF

dzh
=
dT

dzh

dF

dT
. (5.18)

Apart from the string tension all quantities here are known and the evaluation, using (4.7),

gives

F ′(T, µ) = − 2

α′
1

κ(λh)Veff(λh, τh)c2
s(λh, τh)

. (5.19)
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Figure 14. The model Polyakov line plotted using (5.19) for µ = 0, 0.2, 0.4. The red curves are

for the symmetric and the blue ones (at smaller T ) for the broken phase. The dashed line indicates

the discontinuity at Th.

On the r.h.s. λh, τh are functions of T, µ on the l.h.s. , for the symmetric phase τh = 0. In

the symmetric phase at large T ,

F ′(T )→ −LUV
2

2α′
. (5.20)

In the symmetric phase we shall, somewhat arbitrarily, fix the integration constant in

the integration of F ′(T ) so that Fs(Tχ(µ)) = 0. Normalising 〈L〉 to 1 at large T (actually,

due to limitations of numerics, at T = 10Tc) one obtains the red large T curves in figure 14

for µ = 0, 0.2, 0.4. For the broken phase we shall enforce continuity at Tχ(µ) by demanding

that also Fb(Tχ(µ)) = 0. This is reasonable in the 2nd order range, but in the 1st order

range 〈L〉 should be discontinuous. However, in this simple model for the Polyakov line we

do not have the means of computing the discontinuity. A discontinuity for µ = 0 at Th is also

visible, a very small similar discontinuity exists also for µ = 0.2 which crosses Th in figure 1.

It would be very valuable to derive a theoretically better founded gravity dual for the

Polyakov line. There is no order parameter for deconfinement but this operator anyway is

and will be used in lattice Monte Carlo studies.

5.6 Sound speed

Now that we have two thermodynamic variables we have three second derivatives of p(T, µ).

Out of the standard quantities CV and Cp are complicated to compute in the present

framework, but it so happens that the formula for the sound speed squared

c2
s =

dp

dε
=
s dT + ndµ

T ds+ µdn
=
bh [T ′(λh) + ñ

4π µ
′(λh)]

3b′h(λh)(T + ñ
4π µ)

, (5.21)

where all quantities are to be taken at fixed ñ, can be directly evaluated. Rather fortu-

nately, our method of computation makes it trivial to take into account the extra condition

among the fluctuations of pressure and energy density in (5.21), they are to be taken at

fixed n/s and, due to (4.17) this is just fixed ñ. In particular, for ñ = 0 the derivative

should be taken in the direction of T , as is usually done, though in this direction the volume

density of entropy varies.
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Figure 15. Sound speed squared plotted vs T/Tc at fixed µ (left) or vs T (Tc = 0.148) at fixed

ñ in the broken phase (right). At small T and small µ (small ñ) sound velocity drops markedly,

the more the smaller µ is. At large T in the symmetric case c2s at large T approaches 1/3. In the

broken phase the curves continue to 0 in a supercooled phase.

The most interesting region is that near the phase transitions. Figure 15 shows c2
s

plotted vs T/Tχ(0) (numerically Tχ(0) = 0.1484) for fixed µ = 0.2, 0.4, 0.6, i.e. as one

moves vertically in the T direction in figure 11. At very large T , outside the figure, c2
s

approaches the conformal value 1/3. For µ = 0.6 one does not cross any phase transition

and c2
s approaches some fixed value at T = 0. For µ = 0.4 one hits the chiral transition

at T = 0.30Tχ(0) and c2
s jumps downwards and continues almost constant to T = 0. At

µ = 0.2 the jump corresponding to the chiral transition takes place at a higher temperature.

Note that it is consistent to have a jump in c2
s even at a 2nd order transition since c2

s is

a second derivative. The jump would be largest at µ = 0 (not shown), where the broken

phase only exists over a small range from Tχ(0) = 0.1484 to Th(0) = 0.1417.

For the broken phase figure 15 shows c2
s plotted vs T for fixed ñ. The range of variation

at each ñ corresponds to the region between the curves λend and λpb=0 in figure 22. Beyond

that there is a brief supercooled region and the system becomes unstable when c2
s goes to

zero. According to the phase diagram in figure 1 the temperatures are less than 0.15, which

is obtained for ñ = 0. One sees that the numerical value of c2
s is very small for the larger

temperatures. The largest value for each ñ is always obtained when λh is at λend. When λh
grows further into the broken symmetry region, c2

s decreases and ultimately reaches zero.

Even here the conformal value 1/3 will be reached in the limit T = 0 only when ñ→ 23.99.

In figure 15 the curve for ñ = 16 does not reach T = 0, only an extremely small value.

5.7 The T → 0 limit

The T → 0 limit is particularly interesting. The end point at T = 0 can be reached by

putting f = 1 in the metric Ansatz [32] or by imposing T ∼ f ′(zh) = 0 in the thermal

Ansatz. The flow properties of the latter case were studied in section 3. For full thermody-

namics one needs a numerical computation of p(T → 0, µ) in both symmetric and broken
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phases. The computations in the broken tachyonic phase are not yet complete, but the

essentials are as shown in figure 11 along the T = 0 axis.

At T = 0 a 1st order phase transition occurs at µ = 0.507. At this µ the symmetric and

broken phases are in equilibrium. The symmetric phase equilibrium point will approach the

AdS2 point at λh = 1.108, ñ = 12.295 in figure 7. According to figure 11 one has a T = 0

quantum phase transition at µ = 0.507 between a chirally symmetric phase at ns = 0.0184

to a chirally broken phase at nb = 0.0175. According to (4.17) this would correspond to

T = 0 values ss = 0.0188, sb = 0.0092: entropy density jumps by a factor 2. From sb = b3h
one computes 1/bh = 4.77, in agreement with figure 24. Thus s is finite even though T = 0.

The numerical value µ = 0.507 for the T = 0 phase transition follows concretely from

the broken side by plotting µ along λend as in figure 23. It thus corresponds in the physical

region to asymptotically large values of λh, τh and, depending on the potentials, also those

of ñ. In the symmetric phase, figure 8 shows that µ = 0.507 plays no special role among

all the constant µ curves approaching the AdS2 T = 0 point. Note also that the curves

marked T = 0 in figures 7 and 8 correspond to T arbitrarily close to 0, T = 0 is only at

the AdS2 points. How all values of µ in the full 5d computation are mapped to the single

AdS2 point is so far incompletely understood. We plan to return to this question as well

as to the full construction of the chirally broken tachyonic T = 0 states in a later paper.

6 Conclusions

We have analysed in this paper a non-fine-tuned gauge/gravity duality model for hot and

dense QCD in the limit of large number of colors and flavors. The model contains 5-

dimensional gravity with AdS5 symmetry on the boundary, a scalar dilaton for confine-

ment and asymptotic freedom, a scalar tachyon for quark mass and condensate and the

zeroth component of a bulk 4-vector for chemical potential and quark number density. The

potentials of the model are constructed so that one obtains the correct QCD beta function

and mass running in the weak coupling region and color confinement in the strong coupling

region.

Tuning the quark mass to zero, the main result of this paper is the phase diagram

and a description of dynamical chiral symmetry breaking when temperature or density

is decreased. Chiral symmetry corresponds to solutions with vanishing tachyon, which

automatically leads to the vanishing of both mq and the condensate. Spontaneous chiral

symmetry breaking corresponds to solutions with non-zero tachyon, which are constructed

such that mq = 0 but nevertheless the condensate is nonvanishing. By explicit calculation

of the pressures of chirally symmetric and broken phases we find that the broken one

dominates at small temperature and chemical potential, T < Tχ(µ). The transition in

between is of second order for µ . µcr = 0.34 and of first order for µ & µcr.

When T is further decreased below Tχ(µ), the system ultimately goes to another

phase at some Th(µ) with a non-zero tachyon but without black holes: the thermal gas

phase. We use this as a model for the low T hadron phase. In lattice Monte Carlo

simulations one normally finds that the chiral transition (as identified by variation of the

quark condensate) and deconfinement transition (as identified by the Polyakov line or
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energy density discontinuities) coincide; there is effectively just one transition line between a

quark-gluon plasma phase and a hadronic phase. Here we find that these lines are separated.

The numerical effort needed to obtain the results presented here is extensive and we

have thus limited ourselves to a quantitative study of one set of potentials and the case

Nf = Nc. With improved numerical techniques many further questions can be addressed.

A set of potentials which describes all T = 0 QCD physics in quantitative detail has been

identified [32, 35]. Computing also its thermodynamics with good accuracy would make

it possible to correlate zero and finite T properties reliably. For example, how does the

requirement of linear Regge trajectories in particle spectra affect the thermodynamics?

How does the quark condensate behave as a function of density? Further, the approach

to the conformal limit at xf = xc ≈ 4 has been computed for µ = 0 in [34] and it will be

interesting to study also the T, µ phase diagram in this limit.

There is a surprise in the phase diagram at low temperatures. Our analysis suggests

that there is a new quantum critical regime with exotic properties at T = 0 which realizes

the symmetries of the associated geometry, AdS2 × R3. This exists both on the T = 0

segment of the chirality breaking plasma as well as the T = 0 line of the chirally symmetric

plasma.

The presence of the AdS2 × R3 geometry in the holographic solution indicates that

there is a scaling symmetry of the time direction which does not act in the spatial di-

rections. Such symmetries have been called semilocal. This is an unexpected symmetry

in a theory at finite density, but it is natural and generic in the holographic context [37]

and appears even for simple black holes like the Reissner-Nordström black hole [38]. The

physics in this critical regime is similar to that of a theory with zero speed of light: all

spatial points decouple in the IR.

The local RG pattern of such AdS2 solutions is fully compatible with the phase diagram

we derived. It is an interesting question to determine physical implications of this scaling

regime as well as its potential experimental signatures.
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A Fluctuation modes around the AdS2 point

In this appendix we compute explicitly the amplitudes for the fluctuations of the AdS2

region discussed in section 3.4. The amplitudes are easily obtained by solving the linear

system provided by a given α∗, and in general depend on one undetermined (but non-

vanishing) amplitude and a choice of radial gauge which can be fixed via B1. For the

V-QCD AdS2 fixed point, the fluctuations are as follows:

α∗ = −2. This is a relevant perturbation that couples the metric and the gauge field like

D1 6= 0 Φ1 = −E
2

(D1 +B1) and λ1 = τ1 = C1 = 0 (A.1)

This mode corresponds to one sort of finite temperature perturbation to AdS2. It is the

AdS2 black hole studied in [38].

α∗ = −1. There exists another finite temperature perturbation, which is again charac-

terized by a relevant mode. In this case the perturbation has

Φ1, D1 6= 0 and B1 = −D1 and λ1 = τ1 = C1 = 0 (A.2)

which corresponds to a shift in the chemical potential

Φ(r) = µ+ r

(
E +

Φ1

r

)
(A.3)

and a metric of the familiar form

ds2 = − r
2

L2
2

(
1− D1

r

)
dt2 + L2

2

dr2

r2
(
1− D1

r

) + C0 d~x2 (A.4)

Again, this is a black hole in AdS2, related to the one obtained from the α∗ = −2 fluctuation

by a radial coordinate transformation.

More specifically, under the transformation

r → r′ =
1

2
(D1 + ρ) and t→ t′ = 2τ (A.5)

the metric (A.4) becomes

ds2 = − ρ
2

L2
2

(
1− D′1

ρ2

)
dτ2 + L2

2

dρ2

ρ2
(

1− D′1
ρ2

) + C0 d~x2 (A.6)

where D′1 = D1
2, which is the metric implied by the α∗ = −2 perturbation in the gauge

B′1 = −D′1. Note the rescaling of the time coordinate in the transformation (A.5). Because

black holes in AdS2 are coordinate equivalent to the vacuum AdS2 solution [52], the black

hole (A.6) obtained via this coordinate change lives at a different temperature T than its

parent solution (A.4), Tρ/Tr = 2.
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α∗ = 0. These are marginal modes corresponding to rescalings of space and time. They

are described by

C1, D1 6= 0 and Φ1 =
E
2
D1 and λ1 = τ1 = 0 (A.7)

When C1 6= 0, then the volume form on the R3 changes by a factor of

VolR3 ≈ Vol0R3

(
1 +

3

2

C1

C0

)
(A.8)

and when D1 6= 0 then one obtains a shift in the time coordinate

t→ t′ =
√

1 +D1 t so dt′ ≈
(

1 +
1

2
D1

)
dt (A.9)

These are the conjugate modes to the α∗ = −1 finite temperature fluctuation above.

α∗ = 1. The last universal mode is the irrelevant perturbation conjugate to the α∗ = −2

mode. This perturbation couples all of the fields except for the tachyon, and is partially

responsible for driving the system away from the AdS2 fixed point. The amplitudes are

somewhat complicated, but take the form

λ1 6= 0 C1 = Γ1 D1 = ∆1 Φ1 = (Γ1 + ∆1 −
1

2
B1)E τ1 = 0 (A.10)

where

Γ1 =
2λ1

(
16 + 3L2

2 λ
2
0 ∂

2
λV

0
eff

)
w0

9λ2
0

[
2(2− E2w2

0)∂λw0 + L2
2 E2w3

0

√
1− E2w2

0 ∂λV
0
f

] (A.11)

and

∆1 = B1 −
1

27

[
2

λ2
0

(
16 + 3L2

2 λ
2
0 ∂

2
λV

0
eff

) λ2
1

Γ1
+ 63Γ1

]
+ E2w2

0 Γ1 (A.12)

That this mode interpolates between the IR and UV solutions is suggested by the fact

that for λ1 6= 0 the spatial part of the metric acquires a non-trivial radial dependence as

per (A.11).

For the non-universal exponents, one finds a simple perturbation

α∗ = ατ .

τ1 6= 0 D1 =
2

E
Φ1 B1 = ατ

2

E
Φ1 and λ1 = C1 = 0 (A.13)

This is gauge equivalent to a mode consisting of only a tachyon fluctuation.

Finally, there exists a somewhat more complicated perturbation
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α∗ = αλ.

λ1 6= 0 Φ1 =
E
2

(
∆′1(1 + αλ)−B1

)
D1 = ∆′1 and τ1 = C1 = 0 (A.14)

where

∆′1 =
1

αλ
B1 − λ1

(4− 2E2w2
0)∂λw0 + L2

2 E2w3
0

√
1− E2w2

0 ∂λV
0
f

αλ(2 + αλ)w0
(A.15)

where αλ is given by (3.39). This is a perturbation which couples the dilaton fluctuations

to the metric fluctuations, leaving the spatial part of the metric unchanged.

Note that the above expressions for the perturbation amplitudes hold for generic values

of the constant scalars λ0 and τ0. In the special case of the divergent tachyon, many of the

amplitudes simplify as in this case E2w2
0 = 1. To wit, (A.11) becomes

Γ1 =
λ1

(
16 + 3L2

2 λ
2
0 ∂

2
λV

0
eff

)
w0

9λ2
0∂λw0

. (A.16)

B Numerical solution of the equations of motion

B.1 Definitions

The purpose of this appendix is to clarify the technical details of the numerical solutions to

the equations of motion, the scaling properties of the results, and their dimensional analysis

in the A = ln b -coordinates. This is essential for extracting the physics out of the numerics.

All the details are built in the numerical code SolveFiniteTTachyons deposited in [39].

In this treatment, the solutions in the A-coordinate system are considered primary,

and the z-system is just an auxiliary coordinate system used to relate the results to known

holographic formulae. The treatment extends [34], but we shall rewrite it explicitly in

the form that the actual numerical code [39] uses, and keep each stage of the equations

dimensionally consistent.

We first define the notation: the fields q1(A1), f1(A1), λ1(A1) and τ1(A1) are the fields

produced by numerical equation solving, expressed as a function of the coordinate A1.

These will be referred to as level 1 solutions. The level 1 coordinate A1 is the one in which

the numerics is defined, and the horizon sits at A1,h = 0. Level 2 solutions are obtained

after f -scaling (see next section) and level 3 solutions [34] are the final ones with the fields,

observables and the coordinate in the units corresponding to the desired UV boundary

conditions.

We shall consider at first only V-QCD at µ = 0, and then devote a separate section to

the µ 6= 0 case.

We define the coordinate z by

dA

dz
=

eA

q(A)
, (B.1)

with the boundary condition z(A =∞) = 0. Notice that this is defined with the final scaled

level 3 fields, and so we have precisely one system of z-coordinates, which we never scale.
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B.2 The f-scaling

We generally want the function f to asymptote to 1 in the UV (z → 0 or equivalently

A1 → ∞) in order to have the standard Minkowski coordinate system with c = 1 on the

boundary. When the boundary conditions are set at the horizon, this is not in general

guaranteed. Fortunately the equations of motion are invariant under a combined scaling

of f and q, such that if f1, q1 are solutions, then also the pair

f2 = f2
scalef1 (B.2)

q2 = fscaleq1, (B.3)

with no change to the other fields or the coordinate A1 = A2, is a solution for any value

of fscale, although with different boundary conditions. Choosing fscale = 1/
√
f(A1 =∞)

gives us the desired solution. From now on, fields and coordinates with the subscript 2

denote the numerical solutions scaled in such a way. We will call these the level 2 solutions.

In [39], this scale factor appears as fscale and is explicitly used in generating the

scaled solutions. The solutions produced by SolveFiniteTTachyons are level 1 in this

notation, whereas SolveAndScaleFiniteTTachyons produces functions that are level 2 in

this notation. The scaling itself is carried out in ScaleSolution, which can also be used

to convert the level 1 solutions produced by SolveFiniteTTachyons to level 2 solutions.

The solution produced by this scaling no longer corresponds to the initial conditions set

in the numerics. Specifically, if the original equation solver was started with the condition

q1(A1,h) = q1,h (B.4)

f ′1(A1,h) = f ′1,h (B.5)

then the new solution corresponds to

q2(A2,h) = q2,hfscale (B.6)

f ′2(A2,h) = f ′2,hf
2
scale, (B.7)

with the initial conditions for the other fields unchanged.

The code [39] sets the initial conditions6

f ′1,h = 1 (B.8)

q1,h = −
√

3√
Vg(λh)− Vf (λh, τh)

√
1 + ñ2

L4Aκ(λh)2Vf (λh,τh)2

, (B.9)

where the first is chosen arbitrarily, since the magnitude of f is anyway set by f -scaling,

and the second was derived in (4.7). The post scaling boundary condition then simply is

f ′2,h = f2
scale (B.10)

6We present here already the formula with the chemical potential included, for µ = 0 set ñ = 0. See

section B.5 for further explanation.
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q2,h = −
√

3fscale√
Vg(λh)− Vf (λh, τh)

√
1 + ñ2

L4Aκ(λh)2Vf (λh,τh)2

, (B.11)

with the rest of the fields unchanged.

B.3 The Λ-scaling

The UV -expansion (see (4.12) and appendix A in [34]) is

A2 = Â0 +
1

b0λ2(A2)
+
b1
b20

ln(b0λ2(A2)) +O(λ), (B.12)

λ2(z) = − 1

b0 ln(zΛ)
+O

(
ln(− ln(zΛ))

ln(zΛ)2

)
, (B.13)

A2(z) = − ln
z

LUV
+O

(
1

ln(zΛ)

)
, (B.14)

where Â0 is a constant of integration. Here LUV is the asymptotic value of −q2(A) at large

A (or equivalently A2). Using these, we find

Â0 = ln(LUVΛ) = lim
A2→∞

(A2 −
1

b0λ2(A2)
+
b1
b20

ln(b0λ2(A2))). (B.15)

Since we want to find a solution where Λ = Λ0, we write this in the form

Â = Â0 − lnLUVΛ0 = ln(Λ/Λ0) = lim
A2→∞

(A2 − ln(LUVΛ0)− 1

b0λ2(A2)
+
b1
b20

ln(b0λ2(A2)))

(B.16)

and observe that the solution with the shifted coordinate A = A2 − Â has the required

asymptotics. Since the equations of motion are invariant with respect to shifts in A, this

is also a solution of the equations, although with different boundary conditions. These

are the level 3 solutions. We further denote eÂ = Λ/Λ0 ≡ Λscale. This is the factor that

appears in [39] as Λscale, although in some places it is (inaccurately) denoted as simply

as Λ. This factor is dimensionless.

Using (B.16) converges somewhat slowly for practical purposes due to the O(λ) =

O(A−1) corrections. We speed up that convergence by considering Â as a function of Amax

as given by (B.16), where Amax is the limit up to which the numerical solution has been

computed. From the numerical process, we know the derivatives of the fields, so we can

compute Â′(Amax) and derive the formula

Â = Â(Amax)− Â′(Amax)
λ(Amax)

λ′(Amax)
, (B.17)

which cancels the O(λ) corrections. The value of Â computed by this method is returned by

SolveAndScaleFiniteTTachyons, which uses ScaleSolution to scale the level 1 solutions

to level 2 and to derive Λscale.

We now write the transformation equations explicitly:

A(A2) = A2 − Â, (B.18)
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A2(A) = A+ Â, (B.19)

Ah = A(A2,h) = −Â. (B.20)

Especially note that the horizon value of, for example, λ(Ah) = λ2(A2(Ah)) = λ2(Ah+Â) =

λ2(−Â+ Â) = λ2(0). In other words, the horizon value of any field h in the solution with

the correct asymptotics, is the same as the value of the original function h1 coming from

the numerics, evaluated at A1,h = 0.

The conformal factor of the metric appears in several physical observables. In level 3

coordinates it is simply

b(A) = eA = eA2−Â =
eA2

Λscale
. (B.21)

In addition, the derivatives of fields in the z-coordinate system often play a role, and we

observe that for example

d(f(z))

dz
=
dA

dz

df

dA

∣∣∣
A=A(z)

=
eA

q(A)

df

dA

∣∣∣
A=A(z)

=
eA2−Â

q2(A2)

df2

dA2

∣∣∣
A2=A2(A(z))

(B.22)

=
eA2

Λscaleq2(A2)

df

dA2

∣∣∣
A2=A(z)+Â

(B.23)

and especially at the horizon

d(f(z))

dz

∣∣∣
z=zh

=
1

Λscaleq2(0)

df

dA2

∣∣∣
A2=0

. (B.24)

An identical result holds for any field.

Since it is possible in this way to eliminate the need to explicitly shift the fields, and

thus the need to keep track of one extra variable, the actual numerical code [39] does

precisely this. In the code A always refers to A2 = A1, the horizon is always at A2 = 0,

and the fields used to compute the physical observables are level 2.

Since the equations of motion are invariant under shifts of A without any correspond-

ing change in the fields, the initial conditions for the fields themselves at horizon when

expressed in terms of the A -coordinates are not changed by this scaling. The relation

between A and z is what changes. Note however that once we introduce the gauge field

Φ corresponding to a chemical potential, this changes since Φ explicitly breaks this shift

invariance. We will return to that later.

B.4 Physical observables at µ = 0

Using the previous results, we can work out the formulas for physical quantities used in

the code. The temperature is

4πT = −df
dz

∣∣∣
z=zh

= − 1

Λscaleq2(A2)

df

dA2

∣∣∣
A2=0

= −
f ′2,h

Λscaleq2(0)

=
fscale√
3Λscale

√√√√Vg(λh)− Vf (λh, τh)

√
1 +

ñ2

L4
Aκ(λh)2Vf (λh, τh)2

, (B.25)
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where we used (B.24), (B.7) and (B.6) . In the code, T is returned by

TemperatureFromSols. Note that both fscale and Λscale are dimensionless, with the func-

tion q carrying one dimension of length, giving the correct unit of 1/length = energy.

Also note that from (B.6) one sees that the unit of length in q ultimately comes from

the potential, which is proportional to 1/LUV
2. This shows that Λscale is the dimensionless

factor which tells the relation between the 4D boundary units and the units of the potential.

The entropy density comes from

4G5s = b(Ah)3 = e3Ah = e−3Â =
1

Λ3
scale

. (B.26)

This is returned in the code by s4G5FromSols. Note that b(Ah) is dimensionless, so the

entropy density picks up its units from the gravitational constant G5.

The quark mass is expressed as

τ(z)/LUV = mq(− ln(Λ0z))
−γ0/b0z(1 +O(1/ ln z))

= −mq(A2 − ln(Λ0LUV))−γ0/b0q2(A2)Λscalee
−A2(1 +O(A−1))

⇒ mq = lim
A2→∞

L−2
UV τ(A2)eA2(A2 − ln(Λ0LUV))γ0/b0

1

Λscale

≈ L−2
UV τ(Amax)eAmax(Amax − ln(Λ0LUV))γ0/b0

1

Λscale
, (B.27)

where Amax is the maximum A to which the equations of motion have been solved. Except

for the appearance of Λscale, the shift between A and A2 is O(A−1) = O(A−1
2 ) for large A.

Similarly as with the determination of Â, the A−1 corrections to mq are rather large

at easily reachable values of Amax. As before, we can consider mq as a function of Amax

and take its value at another point Ab < Amax. Using from the above that mq(A) =

mq(1 + kA−1) for some unknown coefficient k, we can cancel the O(A−1) corrections:

mq =
mq(Amax)Amax −mq(Ab)Ab

Amax −Ab
(1 +O(A−2)). (B.28)

Since we know the derivatives of the fields from the numerical process, we can go further

and take the limit Ab → Amax, yielding

mq = mq(Amax) +m′q(Amax)Amax. (B.29)

In practice the finite difference method of (B.28) is slightly more stable and converges only

very slightly slower, and that method is therefore used in the code by default. The function

QuarkMass computes the mass from the solutions with this method.

B.5 Chemical potential

In (2.2), we introduce a zero component Φ of a gauge vector field in the bulk to model a

chemical potential in the boundary theory. It turns out that the UV asymptotics are not

affected by this addition, and so we will want to do similar scalings as in the zero chemical

potential case.
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However, the full structure of the solution with respect to scaling the UV-variables

does change, since there are new terms in the equations of motion, of the form

f ′′ +

(
4− q′

q

)
f ′ − Vf

L4
Aκ

2e−2AΦ′2√
1 + fκ

q2
τ ′2 − κ2

q2
e−2AL4

AΦ′2
= 0, (B.30)

where we have written (2.33) without substituting the solution of the Φ equation of motion.

If we have a solution with subscripts 1, including Φ1 which has as yet undefined

transformation properties, we have

0 = f ′′1 +

(
4− q′1

q1

)
f ′1 − Vf

L4
Aκ

2e−2A1Φ′21√
1 + f1κ

q21
τ ′21 − κ2

q21
e−2A1L4

AΦ′21

(B.31)

= f−2
scalef

′′
2 +

(
4− q′2

q2

)
f−2

scalef
′
2 − Vf

L4
Aκ

2e−2A2Φ′21√
1 + f2κ

q22
τ ′22 −

κ2f2scale
q22

e−2A2L4
AΦ′21

(B.32)

= f−2
scalef

′′ +

(
4− q′

q

)
f−2

scalef
′ − Vf

L4
Aκ

2e−2A−2ÂΦ′21√
1 + fκ

q2
τ ′2 − κ2f2scale

q2
e−2A−2ÂL4

AΦ′21

. (B.33)

From this we conclude that if f1, q1, λ1, τ1,Φ1 solve the equations of motion with UV

asymptotics corresponding to the level 1 fields, then the corresponding level 3 functions

solve the equations of motion with the correct UV asymptotics, if the function Φ1 is

replaced with Φ, such that

Φ(A) = e−ÂfscaleΦ1(A1) =
fscale

Λscale
Φ1(A1). (B.34)

It is apparent by inspection that the rest of the equations of motion are also invariant

under this substitution. We naturally call Φ(A) a level 3 gauge field.

The addition of a new field of course also adds a new pair of initial conditions. The

fundamental physical constraint (2.19) in A-coordinates requires that we set Φh = 0,

so the remaining initial condition is determined by the derivative of Φ at the horizon,

Φ′h. Now given a level 1 solution, corresponding to the initial condition Φ1,h, the scaled

solution clearly corresponds to the initial condition

Φh =
fscale

Λscale
Φ1,h. (B.35)

The field Φ is a cyclic coordinate: its equation of motion is

d

dA

∂Lf
∂Φ′

=
d

dA

−L4
A
e2A

q Vfκ
2Φ′√

1 + fκ
q2
τ ′2 − κ2

e2Aq2
L4
AΦ′2

= 0, (B.36)

which we can immediately integrate to the form (2.15):

−L4
Ae

2AVfκ
2Φ′

q
√

1 + fκ
q2
τ ′2 − κ2

e2Aq2
L4
AΦ′2

= n̂. (B.37)
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Different values of n̂ correspond to different initial conditions for the Φ field. Evaluating

this at the horizon for a given solution or a set of initial conditions gives us the value of

n̂ corresponding to that solution. Specifically, using the standard boundary conditions for

starting the numerics we have in terms of the level 1 solution

−L4
AVf,hκhΦ′1,h

q1,h

√
1− κ2h

q21,h
L4
AΦ′21,h

= n̂1. (B.38)

On the other hand, applying known scaling properties of the fields to the l.h.s. of the same

expression for the level 3 solution leads to

n̂ =
−L4

Ae
2AhVfκ

2Φ′h

qh

√
1− κ2h

e2Ahq2h
L4
AΦ′2h

(B.39)

=
−L4

AVf,hκh
1

Λ2
scale

fscale
Λscale

Φ′1,h

fscaleq1,h

√
1− κ2

f2scale
Λ2

scale
f2scale
Λ2
scale
L4
AΦ2

1,h

(B.40)

=
n̂1

Λ3
scale

. (B.41)

Since the level 3 solutions were the final ones, this gives us the scaling property of n̂.

We can solve (B.37) to yield an explicit expression for Φ′ in terms of n̂ and the other

fields (for Φ̇, see (2.16)):

L2
AΦ′(A) = −e

Aq

κ

√√√√√(1 +
fκ

q2
τ ′2
) n̂2

L4A
n̂2

L4A
+ e6AV 2

f κ
2

. (B.42)

Since Φ appears in the equations of motion always in the combination L2
AΦ′, we could

entirely eliminate the choice of LA at this stage by rescaling n̂→ n̂L2
A. Therefore we can set

LA = 1 without loss of generality in the numerics. Plugging the resulting formula into the

equations of motion gives us the equations (2.31)–(2.34) on which [39] is based on. Solving

the highest derivatives from those leads to the form in TachyonEquationsOfMotion. Since

A1,h = 0, n̂1 matches with the scale invariant quantity ñ of (4.6):

n̂1 = ñ = ñ1. (B.43)

With this substitution and using the scaling properties it is apparent that, once the

equations have been solved and subjected to the f -scaling to yield λ2, f2, τ2 and q2, we

can write Φ′ as

L2
AΦ′2(A2) = − eA2q2(A2)

Λscaleκ(λ2(A2))
(B.44)

×

√(
1 +

f2(A2)κ(λ2(A2))

q2(A2)2
τ ′22 (A2)

)[
ñ2

ñ2 + L4
Ae

6A2Vf (λ2(A2), τ2(A2))2κ(λ2(A2))2

]
.
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This function is returned in the code by APrimeFromSols. It is the fully scaled form, but

expressed as a function of the coordinate A2, which has not been shifted, i.e. it is in the same

coordinate system as all the other functions returned by the code. It is level 2 in the same

sense as the rest of the level 2 functions: the coordinate system is such that the horizon is

at zero, but the units are such that it needs no further factors of Λscale. It can be used fully

consistently with all the other output functions, but note that if for some reason the coor-

dinate system would be shifted again, Φ′ would then be scaled again according to (B.34).

B.6 Physical observables for µ 6= 0

When µ 6= 0 we immediately have two new physical observables. First there is the quark

number density,

n̂ =
ñ

Λ3
scale

, (B.45)

returned in the code by nFromSols. The relation to the physical quark number density n

is given in the text in eq. (4.16).

An interesting point is that the dependence on the actual numerical solution is

precisely the same as for the entropy density s in (B.26). Thus one has a physical

interpretation for the input parameter ñ, it is simply ñ = 4πn(λh; ñ)/s(λh; ñ), where one

also inserted the constants given in (4.17).

The other observable is of course the chemical potential itself. The holographic

formula for it is

µ = lim
A→∞

Φ(A), (B.46)

for which we need to integrate (B.37). The correct boundary condition is that Φ(Ah) = 0,

yielding

µ =

∫ ∞
Ah

Φ′(A)dA =

∫ ∞
0

Φ′2(A2)dA2 (B.47)

This, and also the function Φ(A2), is returned in the code by AAndMuFromSols, with ∞
replaced by the upper limit Amax of the range for which the equations have been solved.

In addition, the code uses LA = 1, but any other choice can be implemented by simply

scaling n and µ.

C Determination of τh(λh;mq)

The quark mass mq can be computed from the formulas presented in appendix B given the

initial conditions at horizon. However, for computing physical results, we are interested

rather in finding a class of solutions corresponding to a predetermined value of mq, in this

paper specifically mq = 0. This is in principle a simple problem of numerical function

inversion, but it is complicated by the fact that the inverse is multivalued and that com-

puting values of mq(λh, ñ, τh) takes a considerable amount of time (of the order of 1 second

per point on a single core of an Intel i7 level processor).

The main task involves determining τh(λh, ñ;mq), given a fixed pair (λh, ñ). We will

denote mq(τh) ≡ mq(λh, ñ, τh). As discussed in previous papers [33, 34], mq(τh) may have
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Figure 16. T = T (λh; ñ) and µ = µ(λh; ñ) for tachyonless solutions for the PotILogMod potential

with µ̄ = − 1
2 xf = 1 and for ñ = 0, 2, 4, 5, 6, 7, 8, 9, 9.6, 10, 10.2, 10.4, 11, 11.5, 12, 12.1, 12.2, 12.25.

For µ the smallest values of ñ are 0.001, 1. Note that T develops a minimum around λh = 0.3 for

ñ > 9.5. The T, µ derived from here is in figure 18.

0.050.1

0.2

0.25

0.3

1.8

0 2 4 6 8 10 12
ñ0.0

0.2

0.4

0.6

0.8

1.0

1.2

THñ;Λh L

0.05

0.1 0.2
0.25

0.3

1.4
1.6

0 2 4 6 8 10 12

ñ0

1

2

3

4

ΜHñ;Λh L

Figure 17. T = T (ñ;λh) and µ = µ(ñ;λh) for PotILogMod potential with µ̄ = − 1
2 xf = 1 and for

some values λh.

several zeroes, corresponding to different Efimov vacuums, of which the most stable is the

one with the largest τh. This means that it is not enough to find a zero, but rather we

have to be able to bracket an interval containing the last zero before the asymptotic rise of

mq(τh) at large τh, or alternatively deduce that no zero at finite τh exists. In addition, since

this needs to be done in at least tens of thousands of points on the (λh, ñ) -plane, the search

must be fully automated and reliable enough to not need manual checking of the solutions.

The function τhFromQuarkMass in [39] does this with a heuristic method that will be

briefly described here. We omit some details, for which we invite the interested reader to

look into the the code itself.

1. First we find a point where the solution exists and mq < 0, starting from an initial

guess, by default τh = 1. If the solution does not exist at all at the initial guess, τh is

multiplied by 2 to form a new guess. This is repeated until a point τh,exist where the

solution exists is found. After that, a point where mq(τh) < 0 is found by a binary

search between ]0, τh,exist]. We denote that point by τh,min. If this point is not found
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in a predetermined number of bisections (default is 80), we conclude that a chiral

symmetry breaking solution does not exist for this pair (λh, ñ).

2. We look for τh,max such that mq(τh,max) > 0 by progressively doubling τh until τh,max

is found.

3. We now have two points τh,min < τh,max such that at least one root of mq lies

between them. Starting a numerical root finder in this bracket with Brent’s method

would be guaranteed to find a root, but unfortunately there is no control over which

root. We need to start looking for zeros of mq in this interval. This is complicated

by the fact that the distances between the zeros in τh become exponentially larger

toward increasing τh. The heuristic we use determines an initial step length by the

formula ∆τh = τh,min((
τh,max

τh,min
)

1
N − 1) (default N = 104). Then mq(τh,i) is computed

at points τh,min + n∆τh,min, n = 0, 1, 2, and we form the unique parabola passing

through all of these points. The distance between its two roots is used to provide

a local estimate of the distances between zeroes, which is used to determine a new

step length ∆τh. We then compute mq at intervals of ∆τh until we find a zero, that

is, mq changes sign during a step.

4. Once a zero is found, we update ∆τh to be the distance between τh,min and the zero

divided by small safety factor (default = 5).

5. We continue to iterate with step length ∆τh, and whenever a new zero (a change

of sign in mq) is found, we update the step length ∆τh to the distance between the

two latest zeroes divided by the safety factor. This iteration is terminated, and we

take the last zero found, τh,last, as the correct root, when the following conditions

hold simultaneously:

(a) mq has not decreased from the last step, since we know that asymptotically mq

grows.

(b) mq > 0

(c) mq > kmax(mq(τh); τh < τh,last)), where k is a heuristically determined number,

typically a few hundred. This is the main condition used to ensure that the

search goes on for long enough to reach the region of asymptotic growth.

Once the iteration described above completes, we are reasonably confident that τh,last

and τh,last − ∆τh bracket the largest zero, and simply use a standard root finder imple-

menting Brent’s method to find the precise location of that root.

D Numerical results for T and µ

As everywhere in this paper, numerical results in this appendix are all computed for the

potentials (2.6)–(2.8) with µ̄ = −1
2 and for xf = 1.
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Figure 18. Formation of the symmetric phase grid on the T, µ plane. The curves marked

1.7, 1.5, . . . , 0.9 are those for constant λh, those marked 1, 2, . . . 11.5, 12 are those for constant ñ.
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Figure 19. Plots of T (λh; ñ) and µ(λh; ñ) in the broken phase as functions of λh for values of ñ

varying from 0 to 23.5 in steps of 0.5, see the physical region in figure 7. From these one derives

curves of constant ñ on the (T, µ) plane (rightmost panel) for the broken phase.

First, figure 16 plots T and µ as functions of λh for fixed values of ñ for the tachyonfree

chirally symmetric solutions. In figure 17 the roles of λh and ñ are interchanged. From

these one then determines the two families of curves

T = T (µ; ñ), T = T (µ;λh), (D.1)

which, when plotted on the T, µ plane, form a grid, see figure 18.

Further, figures 19 and 20 show the same for the solutions with a nonzero tachyon.

Several of the curves have numerical fluctuations. Note that there is a region near the

origin where broken phase solutions do not exist. Putting the symmetric phase and broken

phase grids together one obtains the grid in figure 21, on points of which the pressure

p(T, µ) is numerically computed as discussed in section 5.1.

E Thermodynamics along λend

The lower limit λend(ñ) of the physical region of the tachyonic solutions on the ñ, λh plane

plays an important role in the thermodynamics. We shall here analyse its properties.

The lower limit λend(ñ) arises when one tries to determine what values of τh are pos-

sible so that after integrating towards the boundary mq = 0 is obtained. One finds that

τh = τh(λh,mq = 0, ñ) is a monotonically growing function of λh (see, e.g., figure 5 of [34])
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Figure 20. Plots of T (λh; ñ) and µ(λh; ñ) in the broken phase as functions of ñ for values of

λh varying from 1.7 to 105, see the physical region in figure 7. From these one derives curves of

constant λh on the (T, µ) plane (rightmost panel) for the broken phase.
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Figure 21. The symmetric and broken phase grids.
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Figure 22. Left: behavior of τh(λh, ñ,mq = 0) for large ñ. Note the jump in the beginning of

the curve. Right: the physical region of tachyonic solutions λh > λend compared with the values

of λh at which the broken phase pressure vanishes. This is where the deconfining transition takes

place, the corresponding temperatures Th(µ) are plotted in figure 1. The chiral transition takes

place along λend (see section 5.1).
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Figure 24. The scale factor Λ = 1/bh and the pressure along λend(ñ). Note that s ∼ b3h varies

only very little along the curve and seems to have a finite limit at T = 0.

which starts at some λh = λend(ñ). As long as ñ . 8 one has the normal situation in which

τh(λend) = 0 but if ñ & 8 the value τh(λend) > 0, (see figure 22). An accurate plot of λend(ñ)

has been presented in figure 7, in figure 22 it is shown together with the location of the de-

confining transition. As discussed in section 5.1, the chiral transition takes place along λend.

The extreme situation is that when τh is so large that Vf decouples due to the e−aτ
2

factor. The large ñ limit of (4.19) is then simply

ñmax = Vg(λh)κ(λh). (E.1)

The upper limit of λh moves to infinity and the large λh limit of (E.1) is

ñmax = 23.99 +
12.34

λ
1/3
h

√
lnλh + 1

+O
(

1

λh

)
. (E.2)

In the T = 0 limit it seems that s ∼ b3h goes to a finite limit even though T = 0. In

fact, sb varies only very little along the chiral equilibrium curve.
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F Large scale behavior

Since our model has asymptotic freedom built in it, we can at large T fit the magnitude of

the pressure to the ideal gas limit

p = N2
c

[
π2

45

(
1 +

7

4
xf

)
T 4 +

1

6
xfµ

2T 2 +
1

12π2
xfµ

4

]
. (F.1)

Large T means small λh and we thus want to compute the pressure p(λh, ñ) at very

small λh and finite ñ in the approximation

b(z) =
L
z
,

1

zh
= e1/(b0λh)(b0λh)b1/b

2
0 . (F.2)

In this section, the limit λh → 0 is always implied and the argument λh (equivalent to zh) is

often omitted. Thus here Vg = 12, κ = 1 and, for xf = 1, L ≡ LUV = (1 + 7
4 xf )1/3 = 1.401

and

Vf = xfW0 = 12(1− 1/L2) = 5.886,
L2

Vf
=

1

2.999
,
√
V 2
g − V 2

f = 10.457. (F.3)

The pressure is obtained by first doing the pressure integral (5.6) along λh at ñ = 0

and then at fixed λh the pressure integral (5.7) from ñ = 0 to some ñ. The former is

simple and gives

pñ=0(λh) =
L3

16πG5

1

z4
h

. (F.4)

The latter becomes in the approximation (F.2)

4G5pλh(ñ) =
L3

z3
h

∫ ñ

0
dñ

[
T ′(ñ;λh) +

1

4π
ñ µ′(ñ;λh)

]
. (F.5)

To evaluate this we must work out A0(z) and µ = µ(zh, ñ) from (2.18) and T = T (zh, ñ)

from (2.37) in the approximation (F.2). Here zh is equivalent to λh due to (F.2) and the

order of arguments is irrelevant.

Noting that ∫ x2

0
du

1√
1 + y2 u3

= x2
2F1

(
1

3
,
1

2
,
4

3
,−x6y2

)
(F.6)

one finds

zh L4
Aµ =

L2

2Vf
2F1

(
1

3
,
1

2
,
4

3
,− ñ2

L4
AV

2
f

)
ñ =

L2

2Vf

(
ñ− ñ3

8L4
AV

2
f

+ · · ·
)

(F.7)

and

zh πT =
Veff(ñ)

Veff(0)
= 1−

L2Vf
12

(√
1 +

ñ2

L4
AV

2
f

− 1

)
= 1− L2

24L4
AVf

ñ2 +
L2

96L8
AV

3
f

ñ4 + · · · (F.8)
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This form of T shows explicitly that T vanishes at ñ = L2
A

√
V 2
g − V 2

f = 10.457L2
A, i.e.,

at the physical region boundary in figure 7 (where LA = 1). By taking the ratio one sees

that µ/(πT ) is essentially determined by ñ so that it grows monotonically from 0 to ∞ at

the physical region boundary.

Inserting these exact forms to (F.5) and integrating one finds that

4G5pλh(ñ) =
L3

4πz3
h

(
− 1

zh
+ πT +

1

4
ñ µ

)
(F.9)

so that the final total pressure in the limit of λh → 0, ñ finite becomes

p = pñ=0(λh) + pλh(ñ) =
L3

16G5z3
h

(
T +

ñ

4π
µ

)
=

1

4
s

(
T +

ñ

4π
µ

)
=

1

4
(Ts+ µn), (F.10)

where we also used (4.17). This further implies that ε = Ts − p + µn = 3p in this UV

corner of parameter space. Note the mixed notation, p = p(zh, ñ) is given directly by the

above equations, but if we want p(T, µ) we must solve zh = zh(T, µ) and ñ = ñ(T, µ) from

the exact expressions (F.7) and (F.8).

To compare with (F.1), consider first the limit T →∞, µ = constant. Taking the ratio

of (F.7) and (F.8), expanding in ñ and inverting the series one obtains

ñ =
2Vf
L2

L4
Aµ

πT

[
1 +

1

2L2

(
1− 1

3
L2Vf

)
L4
Aµ

2

π2T 2
+ · · ·

]
. (F.11)

and
1

z3
h

= π3T 3

[
1 +

Vf
2L2

L4
Aµ

2

π2T 2
+O

(
µ6

T 6

)]
(F.12)

Inserting this to (F.10) gives

p =
L3

16πG5

[
(πT )4 +

VfL4
A

L2
µ2(πT )2 +

1

6

(
VfL4

A

L2

)2(
1 +

3

2L2Vf

)
µ4 +O

(
µ6

T 2

)]
. (F.13)

The two parameters G5 and LA can be fixed by the magnitudes of the T 4 and µ2T 2

terms. Comparing the T 4 terms of (F.1) and (F.13) gives first [34]

L3

16πG5
= N2

c

1 + 7
4 xf

45π2
. (F.14)

Using this the µ2T 2 terms agree if, inserting (F.3) and xf = 1,

L4
A =

L2

Vf

15xf

2 + 7
2 xf

=
5xf (1 + 7

4 xf )1/3

8((1 + 7
4 xf )2/3 − 1)

≈ 0.9094 (xf = 1). (F.15)

The parameter γ then is

1

γ2
=
VfL4

A

L2
=

15xf

2 + 7
2 xf

=
30

11
(xf = 1). (F.16)
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Figure 25. Computed values of the ratio of the symmetric phase pressure integral (5.2) and the

ideal gas approximation (F.1) at T →∞ and µ/T = fixed. The dashed line shows the asymptotic

T � µ limit 0.572.

However, one can also determine LA requiring agreement with the µ4 term. The answer is

L4
A =

√
5xf (1 + 7

4 xf )5/3

32((1 + 7
4 xf )2/3 − 1)((1 + 7

4 xf )2/3 − 7
8 )
≈ 0.8973 (xf = 1). (F.17)

The values are automatically remarkably close also for other values of xf , for xf = 4 (F.15)

gives 1.667 and (F.17) 1.461. Thus both terms are reproduced almost correctly and without

further parameters, We thus have fitted that L2
A in (2.4) is very close to one.

For completeness, the µ6/T 2 term in (F.13) is

− 1

γ6

1

216

(
29− 54

L2Vf
+

81

L4V 2
f

)
µ6

π2T 2
= −2.34

µ6

π2T 2
. (F.18)

Thus p starts falling below pidea, the non-expanded result is in figure 25.

The comparison of (F.1) and (F.13) can also be carried out in the limit T →∞, µ/T

= constant. Fixing the normalisation at µ = 0 we simply have

p

pideal
=

1 + 1
4π ñ( µT ) µ

T

(1 + 30
11π2

µ2

T 2 + 15
11π4

µ4

T 4 )(Veff(ñ( µT ))/Veff(0))3
, (F.19)

where ñ( µT ) is to be determined by inverting the ratio of (F.7) and (F.8) numerically; the

small-µ/T terms were given in (F.11). The result is plotted in figure 25. The value of LA
was fixed so that the ideal gas µ2 term was correctly reproduced. Now one sees that the

good agreement extends to large values of µ, at µ = 4T the deviation is 3%. One can

work out analytically the asymptotic limit at µ � T which corresponds to ñ → ñmax =

L2
A

√
V 2
g − V 2

f . It depends on Vg = 12 and Vf and its numerical value is 0.572. There is no

obvious constraint leading to the value 1, but it is nevertheless rather close to this value.

It may be useful to compare holographic and perturbative QCD predictions for other

quantities, too. At T = 0 [32, 35] finds that the holographic and perturbative QCD results
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for the correlator of vector flavor currents agree in the UV if

L4
ALW0

16πG5
= N2

c

1

6π2
, (F.20)

see eq. (C.10) in [35] with w2 = L4
Aκ

2 = L4
A and W0 = Vf/xf . This matches exactly

with the combination of (F.14) and (F.15). Note that both the pressure at large T, µ and

the vector correlator at large momentum depend only on the combination L2
Aκ(λh = 0),

here we have assumed κ(0) = 1. These quantities can be fixed separately using the scalar

correlator. Combining the result in eq. (C.21) of [35] and (F.15) one finds that

κ(0) =
2L4

3L4
A

=
16(1 + 7

4 xf )

15xf

[(
1 +

7

4
xf

)2/3

− 1)

]
= 2.82, (xf = 1). (F.21)

This modified value of κ would affect the normalisation of τ and consequently that of the

chiral condensate, but not the results in this article. As another example of comparisons

of weak coupling and holographic computations one may also compare this result with an

analogous analysis of the finite temperature correlators of the energy momentum tensor in

the UV [53]. Using the thermal normalisation (F.14), the holographic result of the shear

correlator is too small by a factor 4/9 with respect to the perturbation theory one, for the

bulk correlator the results agree. This result illustrates the fact that this action cannot

describe all the phenomena in the weak coupling region at the same time, an action with

higher derivatives is needed.
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