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lous dimensions of low twist, non-BPS operators in four dimensionalN = 4 supersymmetric

Yang-Mills theories. The requirement of S-duality invariance imposes considerable restric-

tions on any such resummation. We introduce several prescriptions that produce interpo-

lating functions on the upper half plane that are compatible with a subgroup of the full

duality group. These lead to predictions for the anomalous dimensions at all points in

the fundamental domain of the complex gauge coupling, and in particular at the duality-

invariant values τ = i and τ = exp(iπ/3). For low-rank gauge groups, the predictions are

compatible with the bounds derived by conformal bootstrap methods for these anomalous

dimensions; within numerical errors, they are in good agreement with the conjecture that

said bounds are saturated at a duality-invariant point. We also find that the anomalous

dimensions of the lowest twist operators lie within an extremely narrow window around a

straight line as we vary the moduli of the theory over the two dimensional fundamental

domain.
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1 Introduction

The last fifteen years have brought forth enormous progress in our understanding of four-

dimensional N = 4 supersymmetric Yang-Mills (SYM) theories in the planar limit. Al-

though many of these developments were stimulated by the discovery of AdS/CFT duality,

there are by now a large number of computational techniques available directly in field

theory. Nevertheless, investigations of non-planar physics beyond perturbation theory or

supersymmetric observables remain in their infancy.

Recently, a new class of results for these theories has been obtained in [1] via conformal

bootstrap methods, as pioneered in [2, 3]. Rigorous bounds were derived for the anomalous

dimensions of leading twist operators of various spins appearing in the operator product

expansion (OPE) of a single four-point function. The bounds depend solely on the central

charge of the theory — they are independent of the complexified gauge coupling — and

they constitute truly non-perturbative results for the theory. No planar approximation

is required.

The generality of the results of [1] obfuscates more detailed properties of the observ-

ables in question, namely the variation of the anomalous dimensions over the conformal

manifold parametrized by the coupling τ = θ
2π + 4π i

g2YM
. At weak coupling the answer is

known perturbatively, and by S-duality the result at strong coupling is also known. The

problem of interest is to understand what happens at finite coupling. In this paper, we pur-

sue an approximate answer to this question by looking for simple functions that smoothly

interpolate between weak and strong coupling limites. A similar approach has been imple-

mented recently to study the mass of the stable, non-BPS state in heterotic/type I string

theory [4].

We make use of several different interpolating functions, which we review in section 2.

We describe their application to the anomalous dimensions of local operators in N = 4

SYM in section 3. This ultimately leaves us with several interpolating functions of the

Yang-Mills coupling and theta angle that are guaranteed to reproduce the correct per-

turbative results in the weak-coupling limit. In general, we find good agreement between

– 1 –



J
H
E
P
0
4
(
2
0
1
4
)
1
2
2

Konishi Spin 2

SU(2) SU(3) SU(4) SU(2) SU(3) SU(4)

τ = i 2.83+0.12
−0.09 3.07+0.22

−0.09 3.24+0.34
−0.06 5.16+0.16

−0.14 5.50+0.28
−0.15 5.73+0.46

−0.11

τ = eiπ/3 2.76+0.12
−0.17 2.98+0.20

−0.18 3.15+0.29
−0.19 5.06+0.15

−0.24 5.36+0.27
−0.26 5.59+0.40

−0.26

Bound 3.05 3.38 3.59 5.32 5.66 5.80

Corner 2.93 3.24 3.47 5.28 5.60 5.75

Table 1. Interpolated values for spin zero and spin two operators at τ = i and τ = exp(iπ/3), along

with the bounds and estimates for the same operators obtained from the conformal bootstrap.

these different interpolating functions in their domains of mutual validity; this includes

interpolations defined to match the perturbative answer to different orders. For example,

for the Konishi anomalous dimension in the SU(2) theory we find that with θ = 0 the

variation between methods amounts to less than 15% of the mean. When accounting for

the tree-level contribution, this amounts to about 5% error in the actual scaling dimen-

sion. For θ = 1/2, the variation is slightly larger — 20% of the mean for the anomalous

dimension, corresponding to 7.5% for the full scaling dimension. It is natural to expect

the results to become worse for gauge groups of larger dimension. The effective coupling

g2YMN then takes larger values around the duality symmetric point (gYM ∼ 3.5), so it is

less likely that perturbative results together with duality will be sufficient to accurately

determine the behavior of the function.

A consistency check for our results is that, subject to the aforementioned uncertainties,

they are compatible with the bounds derived in [1]. In this context, the relevant question

is: are the bounds saturated at some point on the conformal manifold? In [1] this was

conjectured to be the case at one of the orbifold points, τ = i or τ = exp(iπ/3). For the

benefit of the reader, we reproduce here the results of our resummations for these values

of τ , along with the upper bound and a ‘corner’ value derived for these quantities in [1].

As we explain further in section 5, the corner value is a natural best estimate for these

operator dimensions based on numerical bootstrap results.

The uncertainty attached to these results is large enough to prevent us from making

a definitive statement, but the values of the anomalous dimension at τ = i and τ =

exp(iπ/3) are sufficiently close to the bounds to be suggestive of bound saturation at one

of these points (see table 1). This is especially so given that the bounds are expected

to lower somewhat upon improving the numerics used in the methods of [1]. We have

used perturbative results up to four loops to arrive at this result. The error estimates are

conservative; we observe that the four loop results for all of the interpolating functions lie

between two and three loop results, and hence take the mean two loop result and the mean

three loop results as the allowed range for any given quantity. A five loop result (including

non-planar corrections) would be likely to improve the situation.

Another interesting point to explore is the image of the conformal manifold in the

space of dimensions of the lowest twist operators. Since the conformal manifold is two

dimensional, we expect that the allowed values of the anomalous dimensions will trace

out a two dimensional submanifold in the space of anomalous dimensions as we vary τ

– 2 –



J
H
E
P
0
4
(
2
0
1
4
)
1
2
2

over the fundamental domain. The projection of this submanifold to any two dimensional

space labelled by a pair of anomalous dimensions is also expected to be two dimensional.

We use our interpolating functions to identify this submanifold in the space of anomalous

dimensions of lowest twist spin zero and spin two operators, and encounter a surprise:

within the accuracy of our plots, the submanifold is a one dimensional straight line instead

of a two dimensional subspace. This result appears in figure 9. Of course we do not expect

this to be an exact result — a constant slope is inconsistent with perturbation theory,

and we know that the subspace must acquire a finite width from the non-perturbative θ

dependence — but what our analysis shows is that the allowed values of the anomalous

dimensions lie within a very narrow band around this straight line. The maximum deviation

of our interpolating function from this straight line is about 0.6% over the entire range.

Furthermore, different approximations and different loop orders all lead to the same result,

suggesting that this result is much more robust and accurate compared to the actual value

of the anomalous dimension at a given value of τ .

We present all of these results in section 4, and make some final comments in section 5.

Appendix A contains the interpolation formulæ that we use for our analysis.

2 Symmetric interpolating functions

Before defining our interpolating functions, let us briefly provide some context for the

approach employed in the present note. There exist a variety of sophisticated techniques

for resumming perturbative expansions in quantum mechanics and quantum field theory

(see, e.g., chapter 16 of [5]). In particular, when the series in question is Borel summable,

powerful techniques can be brought to bear upon the problem. Interestingly, it has recently

been argued that extended supersymmetric quantum field theories in four dimensions are

always Borel summable [6]. Then, with some additional knowledge of the large order

behavior of perturbation theory, one can gain a great deal of insight into the behavior of

the function in question at finite values of the coupling.

Despite the utility of integral transformations such as the Borel transform in resumma-

tion procedures, they make it difficult to impose upon the function of interest symmetries

such as those implied by duality in N = 4 SYM. It would be interesting to find appro-

priate integral transforms that tame the asymptotic behavior of perturbation theory while

being compatible with duality, so as to combine the resulting symmetry constraints with

a more detailed consideration of the analytic properties of the anomalous dimensions. For

the present purposes, though, these dualities represent one of the most powerful pieces

of information available to us, so we perform our interpolations directly at the level of

the anomalous dimensions. The underlying assumption driving the present work is the

following:

For low rank gauge groups, the effective coupling at the most strongly coupled

points on the conformal manifold is not very large. Furthermore, the strength

of non-perturbative corrections is controlled by the factor exp(−2π Im τ), which

takes values of .002 and .004 at τ = i and τ = exp(iπ/3), respectively. Con-

sequently, the anomalous dimensions should be well approximated by simple

functions with the correct duality properties and perturbative expansions.
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Roughly speaking, our strategy is to construct interpolating functions that are as

simple as possible while being invariant under some symmetries imposed by S-duality of

N = 4 SYM. The actual anomalous dimensions will be invariant under the action of the full

PSL(2,Z) modular group, so it may seem that we should search for interpolating functions

that are modular invariant. However, such functions generally suffer from a certain amount

of ambiguity: it is not clear how to define the “simplest” modular-invariant functions, and

the results may depend substantially on the choices that are made.

We instead choose to impose a lesser degree of symmetry on the problem by finding

interpolating functions that are invariant under a finite-order subgroup of the full modular

group. By construction, these interpolating functions are most accurate at weak coupling

where their series expansions are matched. In the strongly coupled region — say near a

fixed point of one of these finite order subgroups — we expect the most accurate result to

come from the interpolating function which is invariant under the corresponding symmetry.

As we move away from this fixed point, other symmetries that have not been taken into

account will become relevant and the results should become worse. As we discuss in

section 4, this means that we must exercise some care in interpreting our results. First,

though, we describe our prescriptions for creating interpolating functions that are invariant

under finite-order symmetry groups acting on the coupling.

Symmetric Padé approximants. Consider a general situation in which a theory has

a weak coupling expansion in some variable g.1 The theory may contain several other

parameters, e.g., the theta angle, but we assume that the coefficients of the Taylor series

do not depend on them. The [n/m] Padé approximant to such a function is the rational

function

P[n/m](g) =
a0 + a1 g + a2 g

2 + · · ·+ an g
n

b0 + b1 g + b2 g2 + · · ·+ bm gm
, (2.1)

where the coefficients {ak, bk} are chosen so that the Taylor series around g = 0 matches

the known perturbative expansion to order gm+n+1. In general, one has an assortment of

choices for the integers n and m that all allow for matching the same number of coefficients

in the Taylor series.

We are concerned with the situation in which the function in question obeys a symme-

try of the form f(g) = f(h ·g) where h is a transformation of order d. As we will see below,

h ·g will generally depend not only on g, but on the other parameters of the theory as well.

Those other parameters will also transform under h into functions of themselves and g. It

is straightforward to build such a symmetry into the Padé approximant by summing each

monomial over images. Introducing the convenient notation

gnh =

d−1∑
k=0

(
hk · g

)n
, (2.2)

1In section 3 we will identify g with essentially the square of the Yang-Mills coupling constant, see

eq. (3.3). The discussion here is more general, and g can represent an arbitrary parameter.

– 4 –



J
H
E
P
0
4
(
2
0
1
4
)
1
2
2

the symmetric Padé approximant can be defined as2

P h
[n/m](g) =

a0 g
−n
h + a1 g

−n+1
h + · · ·+ an−1 g

−1
h + d an

b0 g
−m
h + b1 g

−m+1
h + · · ·+ bm−1 g

−1
h + d bm

, (2.3)

where {ak, bk} are again determined by requiring that the Taylor series expansion of (2.1)

in g matches the known weak coupling expansion. For the symmetries used in this paper,

h` · g will always diverge as C/g for some constant C as g → 0, so P h
[n/m] ' a0g

m−n/b0 for

small g. In this scenario, n and m must be chosen to reproduce the correct weak coupling

behavior; our expansion will always begin at order g, which then requires that we take

n = m − 1. After accounting for the freedom to simultaneously rescale all coefficients,

there will be m + n + 1 = 2m independent coefficients {ak, bk} that should be fixed by

demanding that (2.1) correctly reproduce the known perturbative expansion up to and

including terms of order g2m.

There is a subtlety related to the prescription outlined above. Because hk · g may

depend on additional parameters, the coefficients {ak, bk} determined using this procedure

can acquire a parameter-dependence. Since these parameters transform non-trivially under

duality, eq. (2.3) will no longer necessarily be duality invariant. If the dependence of hk · g
on these additional parameters arises at order g`, then the coefficients of the Taylor series

expansion of (2.3) will depend on them starting at order gm+`. For all the cases investigated

in this paper we have one additional parameter, namely the theta angle, and (h · g)−1 will

depend on θ starting at order g3. Thus the first coefficient of the expansion of (2.3) that

will depend on θ will arise at order gm+3. This is a higher order than g2m for m ≤ 2, so if

we restrict ourselves to m ≤ 2 (corresponding to matching perturbation theory to at most

order g4) then the coefficients {ak, bk} will be independent of θ and we shall be free of this

issue. Since at present the anomalous dimensions we study are only available to four loops,

our analysis will be unaffected.3

If instead of working in the full parameter space we choose to work on a one dimen-

sional subspace that is invariant under h, e.g. the imaginary axis in the upper half plane

parameterized by τ for the choice h · τ = −1/τ , then on this line h takes g to a function

of g only. In this case the difficulties mentioned above are absent and we can apply this

procedure without concern. The price we pay is that the resulting interpolation will only

be a plausible approximation of the desired function on this subspace.

We can also define an interpolating function that is related to an odd-degree Padé

approximant,

P̃ h
[n/m](g) =

ã0 g
−n− 1

2
h + · · · + ãn g

− 1
2

h

b̃0 g
−m− 1

2
h + · · · + b̃m g

− 1
2

h

. (2.4)

Again, the cases of interest will require n = m − 1, leaving 2m independent parameters

that are fixed by matching Taylor series to order g2m. It can easily be seen that if the

2Despite the degenerate notation, the coefficients in eq. (2.1) and eq. (2.3) will not be the same for a

given function.
3The curious reader may note that the requirement of perturbative θ-independence is precisely the reason

for the somewhat nonstandard negative exponents in the interpolations (2.3)–(2.6).
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symmetry in question is order two and acts as h · g = k/g for constant k, then P h
[n/m](g)

and P̃ h
[n/m](g) are identical functions. Nevertheless we have introduced them separately

here because in the general case, they will be inequivalent.

Fractional power of a polynomial. Another resummation procedure that can be tai-

lored for compatibility with S-duality was introduced in [4]. For the sort of duality invariant

function discussed above, we define the interpolation

Fn(g) =

(
f1 g

− 2n−1
2

h + f2 g
− 2n−3

2
h + · · · + fn g

− 1
2

h

)− 2
2n−1

, (2.5)

where the coefficients {fk} are again fixed by matching Taylor series around g = 0 to order

gn. We refer to this as the fractional power of polynomial (FPP) approximation. We can

also define an analogous integral-power version of this interpolation,

F̃n(g) =
(
f̃1 g

−(n−1)
h + f̃2 g

−(n−2)
h + · · · + f̃n−1 g

−1
h + f̃n

)− 1
n−1

. (2.6)

In all the cases we consider, |h` · g| > C/g as g → 0 with C a positive constant. Con-

sequently, the Taylor series expansion coefficients of Fn(g) or F̃n(g) up to order gn are

unchanged if we replace g−kh by g−k in the original expression. As a result, the coeffi-

cients {fk} and
{
f̃k

}
, determined by matching the Taylor series expansion to order gn,

are independent of the choice of h, and hence of any other parameters in the theory. For

this reason, in contrast to the symmetric Padé approximant, there is no obstruction to

using these interpolating functions to arbitrarily high order approximation. Another ad-

vantage enjoyed by FPP over the symmetric Padé approximants is that FPP can be used

to match a perturbative series to any loop order, even or odd, by appropriate choice of n.

The Padé approximants are limited to matching results at even loops orders. Unlike Padé

approximant, the two versions of FPP differ even for the case h · g = k/g.

3 Application to anomalous dimensions in N = 4 SYM

The anomalous dimensions of local operators in N = 4 SYM are real functions of the

complex coupling constant

τ =
θ

2π
+

4πi

g2YM

, (3.1)

where gYM is the Yang-Mills coupling and θ is the theta angle. Under an S-duality trans-

formation corresponding to an element h ∈ PSL(2,Z), the coupling transforms as

h · τ =
aτ + b

cτ + d
, (3.2)

with a, b, c, d ∈ Z satisfying ad− bc = 1. For later convenience of notation, we define

g :=
g2YM

4π
, y :=

θ

2π
, (3.3)
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and denote the corresponding transformations of g and y as h · g and h · y. The anomalous

dimensions have perturbative expansions of the form

γpert(g) =
∞∑
n=1

γng
n , (3.4)

where the coefficient γn can be computed, e.g., from Feynman diagrams with n loops. Al-

though there is no y dependence at any order in perturbation theory, the non-perturbative

functions γ(g, y) will in general depend on y. In our interpolations, y dependence will be

introduced automatically by the requirement of duality invariance.

We should note that a priori there could be an ambiguity in the definition of the cou-

pling constant gYM, rendering the coupling that appears in the perturbative calculation of

anomalous dimensions different from the one that transforms in the standard way under

duality transformation.4 While such an ambiguity is certainly present in theories which are

not conformally invariant and supersymmetric, we believe that in the conformally invariant

N = 4 theory such an ambiguity will be absent provided one computes anomalous dimen-

sions using a supersymmetric regularization scheme. Below we outline several observations

that suggest such an independence of regularization scheme.

1. The coupling g2YM/4π that appears in (3.1) can be defined as the ratio of the W-boson

mass to the monopole mass in the presence of an infinitesimal vacuum expectation

value for the adjoint scalar fields. At leading order this coupling coincides with the

loop expansion parameter. Furthermore, a supersymmetric regularization scheme

(e.g., dimensional reduction, which is used in the calculations of [7–16]) is expected

to not renormalize the masses of BPS states. Thus even after inclusion of higher

order corrections the ratio of W-boson mass and monopole mass will be given by the

loop expansion parameter. Hence the coupling appearing in (3.1) should coincide

with the coupling that controls perturbation expansion.

2. The exact expectation value for the circular half BPS Wilson loop [17] is expressed

as a function of the loop expansion parameter. This parameter is identified directly

with the coupling constant g2YM/4π appearing in (3.1) and not a nontrivial function

of the latter. This can be confirmed by noting the agreement of the ’t Hooft loop

expectation value [18, 19] with the Wilson loop under the substitution g2YM/4π →
4π/g2YM. The details of the regularization/renormalization scheme were unimportant

in this analysis, though it was assumed that any such regularization would preserve

supersymmetry.

3. The topologically twisted partition function of [20] gives a manifestly S-duality co-

variant partition function without any need for redefinition of the coupling. Again the

details of the ultraviolet regularization was unimportant so long as supersymmetry

was preserved.

4We wish to thank the anonymous referee for raising this issue.
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4. There has been spectacular agreement in the computation of anomalous dimensions

at strong and weak ’t Hooft coupling in the planar limit, without having to redefine

coupling constant at either end, where again the calculations are performed with

supersymmetric regularization.

5. Finally, we note that the perturbative anomalous dimensions computed in [7–16] are

consistent with the principle of maximal transcendentality, while a redefinition of

g2YM will lead to a violation of this principle.5

We now apply the prescriptions of the previous section to define interpolating functions

that match γpert(g) to a given order in perturbation theory around a weak-coupling limit

of τ , and that are invariant under finite-order subgroups of PSL(2,Z). Up to conjugation,

there are two such subgroups, each of which fixes a single point on the upper half plane.

Without loss of generality, we can restrict our attention to the canonical fundamental

domain of the modular group, within which these fixed points occur at

τ2 = i , τ3 = exp(iπ/3) . (3.5)

The point τ2 is invariant under the order-two electric/magnetic duality transformation,

S · τ = −1

τ
, (3.6)

while the point τ3 is invariant under the order three transformation

(T · S) · τ =
τ − 1

τ
. (3.7)

Some consideration is necessary to decide in what regions of the upper half plane the cor-

responding interpolations have the potential to be good approximations to the anomalous

dimensions. The true anomalous dimensions will be modular functions, and so will obey

many relations on the upper half plane. Because our approximations only take into account

a finite number of these relations, we have no right to expect any accuracy in a generic

region of the upper half plane. They should, however, be best suited for approximating

the values of anomalous dimensions at the corresponding fixed point, as well as within the

copies of the fundamental domain to which the fixed point belongs (see figures 1 and 2).

Z2 invariant interpolation. The basic S-duality operation of eq. (3.6) acts on the

upper half plane as a reflection through the unit semi-circle along with a reflection through

the imaginary axis y ↔ −y. The induced actions on the Yang-Mills coupling and theta

angle are

S · g =
1 + y2g2

g
, S · y = − y g2

1 + y2g2
. (3.8)

In particular, this transformation sends the line at θ = 0 to itself via a reflection through

the fixed point τ = τ2.

5We thank Vitaly Velizhanin and Lance Dixon for drawing our attention to this.
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Figure 1. The upper half plane is tessellated by images of the fundamental domain of PSL(2,Z).

The Z2-invariant interpolating functions defined here are well-suited to describe anomalous dimen-

sions in two copies of the fundamental domain, shown as shaded in the figure. The solid line is

θ = 0, and represents the best case for the Z2-invariant interpolating function.

For the order two subgroup generated by S, the sum over images (2.2) becomes

gkS = gk +

(
1 + y2g2

g

)k
. (3.9)

The resulting interpolating functions are manifestly invariant under (3.6), and after fixing

the coefficients appropriately they will have the correct perturbative expansions about

τ = 0 and τ = 0 + i∞. In addition, from eq. (3.9) it is clear that the resulting function will

be invariant under y ↔ −y, which is required by CP invariance of the operators involved.

In the most optimistic scenario, these interpolating functions may give a good ap-

proximation to the anomalous dimensions in the shaded region of figure 1, with the best

case likely being the dark line at θ = 0. We will consequently use these interpolations

primarily to study the fixed point at τ = τ2, with the other fixed point at τ = τ3 being a

borderline case.

Z3 invariant interpolation. Up to conjugation, the unique Z3 subgroup of PSL(2,Z)

is generated by the transformation (3.7), which acts on (g, y) as

(T · S) · g =
1 + y2g2

g
, (T · S) · y = 1− g2y

1 + y2g2
. (3.10)

This symmetry permutes the three dark segments in figure 2, fixing the junction where

they intersect at τ = τ3.

In this case the interpolating functions are obtained from the corresponding building

block:

gkT·S = gk +

(
1 + y2g2

g

)k
+

(
1 + (1− y)2g2

g

)k
. (3.11)
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Figure 2. The Z3 invariant interpolation is particularly well suited to describe anomalous di-

mensions along the bold segments in the above figure. Because the method is not invariant under

y ↔ −y, its accuracy is sure to degenerate for, e.g., y < 0. The regions where the best behavior is

expected are again shaded.

After fixing the coefficients appropriately, the interpolating functions so-defined are guar-

anteed to have the correct perturbative expansions around τ = 0, τ = 1, and τ = 1
2 + i∞.

In addition, they have the correct symmetry structure at the fixed point τ = τ3, along with

the correct invariance under y ↔ 1− y. Such an interpolating function has the chance to

yield a good approximation to the true, modular invariant function in the shaded regions

of figure 2, with the most compelling loci being the dark purple lines. We will use this

resummation to estimate the values of anomalous dimensions primarily at τ = τ3, with the

value at τ2 also being of interest.

4 Results

We use the interpolations described above to approximate the anomalous dimensions of

operators of the form

OM = TrφIDMφI , M = 0, 2, 4, · · · , (4.1)

in N = 4 SYM with gauge group SU(N). These operators are SU(4)R singlets and su-

perconformal primary operators belonging to long representations of the superconformal

algebra. They have perturbative scaling dimensions ∆M = 2 + M + γM (g), where the

perturbative anomalous dimension γM (g) is independent of the theta angle. The anoma-

lous dimensions have been computed by a variety of methods to quite high orders in

perturbation theory. In what follows we will restrict ourselves to the gauge groups SU(2),

SU(3) and SU(4), where we expect the best performance from our interpolation methods

(cf. section 5).
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Figure 3. Interpolations of the Konishi anomalous dimensions for gauge group SU(2). The different

plots depict the results of the (left) Z2 invariant and (right) Z3 invariant resummation schemes,

evaluated as a function of g with (top) θ = 0 and (bottom) θ = π. We show interpolations defined

using (short-dashed) two loops, (long-dashed) three loops, and (solid) four loops in perturbation

theory. Red and orange lines correspond to Padé approximants with integral and half-integral

powers, respectively. Blue and green lines represent FPP interpolations with integral and half-

integral powers. As described at the end of appendix A, some of these graphs coincide. The two

horizontal lines correspond to the upper bound (top line) and the best estimate based on a corner

value (bottom line) obtained from the numerical bootstrap results of [1]. See section 5 for a more

detailed description of these bounds.

The Konishi operator. We begin with the result for M = 0, which corresponds to

the Konishi operator. In an impressive series of papers [7–15], the Konishi anomalous

dimension has been computed up to four loop order,

γ0(g) =
3Ng

π
−3N2g2

π2
+

21N3g3

4π3
+

(
−39 + 9 ζ(3)− 45 ζ(5)

(
1

2
+

6

N2

))
N4g4

4π4
+· · · , (4.2)

where we recall that g = g2YM/4π.

We have applied the interpolation techniques of section 3 to estimate the function

γ0(g, y) in various regions of the upper half plane. In figures 3–5, we present the resulting

functions evaluated along the interesting one-dimensional subspaces of the upper half-plane.

Of particular interest are the values at the fixed points τ2 and τ3, which are stationary

points of the anomalous dimensions, and so are the most likely candidates for saturating

the bounds of [1].
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Figure 4. Interpolations of the Konishi anomalous dimensions for gauge group SU(3). The different

plots depict the results of the (left) Z2 invariant and (right) Z3 invariant resummation schemes,

evaluated as a function of g with (top) θ = 0 and (bottom) θ = π.

Spin two operator. Next we consider the case of the M = 2 operator, whose perturba-

tive anomalous dimension is given by [7–11, 16]

γ2(g) =
25Ng

6π
− 925N2g2

216π2
+

241325N3g3

31104π3
+
(
γABA
2 + γwrap

2 + γnp2
) g4N4

(4π)4
+ · · · , (4.3)

with

γABA
2 = −304220675

69984
− 3250 ζ(3)

9
, (4.4)

γwrap
2 =

5196875

7776
+

143750 ζ(3)

81
− 25000 ζ(5)

9
, (4.5)

γnp2 =
8400 + 28000 ζ(3)− 100000 ζ(5)

3N2
. (4.6)

We can repeat the analysis of the previous subsection for this case; the results are shown

in figures 6–8.

Spin four operator. The anomalous dimension of the M = 4 operator is given by [7–11]

γ(g) =
49Ng

10π
− 45619N2g2

9000π2
+

300642097N3g3

32400000π3
+
(
γABA
4 + γwrap

4 + γnp4
) g4N4

(4π)4
+ · · · , (4.7)
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Figure 5. Interpolations of the Konishi anomalous dimensions for gauge group SU(4). The different

plots depict the results of the (left) Z2 invariant and (right) Z3 invariant resummation schemes,

evaluated as a function of g with (top) θ = 0 and (bottom) θ = π.

where

γABA
4 =−1916919629681

364500000
− 91238 ζ(3)

225
, γwrap

4 =
2526915643

2700000
+

4672346 ζ(3)

1875
− 19208 ζ(5)

5
.

(4.8)

To the best of our knowledge, the non-planar contribution γnp4 has not yet been calculated.

As a result, we cannot find the interpolating functions to four loops. The results up to three

loops are similar to those for spin zero and spin two operators, but we do not display them

here. Numerical results for the values of the spin four interpolating function at duality

fixed points are presented in table 3.

Comments on interpolations. A few immediate comments are in order regarding the

behavior of the interpolating functions.

Upon examination of figures 3–8, we see that for a given choice of duality subgroup,

loop order, and region of evaluation, there is very good agreement between the different

interpolating functions (two Padé and two FPP). For example, for the Konishi interpolation

with SU(2) gauge group, two prescriptions never differ from their mean by more than 2.5%

over the full range of values of g for θ = 0 or θ = π. This is encouraging, because

the interpolating functions have been chosen using the somewhat capricious criterion of

“simplicity”, rather than a specific physical motivation. It is a positive sign that the

results do not depend heavily upon exactly what function is used, at least within the small

family of functions we have tested.

– 13 –



J
H
E
P
0
4
(
2
0
1
4
)
1
2
2

0
Π

8

Π

4

3 Π

8

Π

2

Tan-1HgL

4.2

4.4

4.6

4.8

5.0

5.2

5.4

D2Hg,0L

0
Π

8

Π

4

3 Π

8

Π

2

Tan-1HgL

4.2

4.4

4.6

4.8

5.0

5.2

5.4

D2Hg,0L

0.0 0.2 0.4 0.6 0.8 1.0
4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

g

D
2
Hg
,1
�2
L

0.0 0.2 0.4 0.6 0.8 1.0
4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

g

D
2
Hg
,1
�2
L

Figure 6. Interpolations of the spin two anomalous dimensions for gauge group SU(2). The

different plots depict the results of the (left) Z2 invariant and (right) Z3 invariant resummation

schemes, evaluated as a function of g with (top) θ = 0 and (bottom) θ = π.

On the other hand, there is a decent amount of variation between the different loop

orders — especially between the two loop and three loop results. This is not unexpected,

but the size of the variation makes it clear that one should expect the next correction to

still be nontrivial. An optimist may note that the four loop result lies between the two and

three loop results, and this may be the start of an alternating progression that converges

towards the actual anomalous dimension.

Finally, there is a distinction to be drawn between the cases in which the interpolating

function is evaluated at the boundary of its domain of conjectured validity (plots appearing

in the bottom-left and top-right corners of the respective figures) and the cases for which

the function is evaluated along its optimal locus (top-left and bottom-right corners). In

particular, the evaluation of a Z2 invariant resummation at τ = τ3 is likely to yield an

overestimate: the actual anomalous dimension at τ3 should be at a stationary point, while

in the interpolation it is only stationary along the radial direction, and is still increasing in

the g and y directions. The situation is somewhat better in the case of extrapolating the Z3

invariant resummations to τ2. In this case, the combination of Z3 symmetry with invariance

under y ↔ 1 − y guarantees that at y = 0, the interpolating function is invariant under

g ↔ 1/g, making the result stationary along the g axis at τ2. However, the interpolation

does not account for y ↔ −y invariance, which enforces stationarity in the y direction at τ2.

Indeed, the superior accuracy on the optimal locus can be checked explicitly by applying

these interpolations to known modular invariant functions, such as the real Eisenstein series.
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Figure 7. Interpolations of the spin two anomalous dimensions for gauge group SU(3). The

different plots depict the results of the (left) Z2 invariant and (right) Z3 invariant resummation

schemes, evaluated as a function of g with (top) θ = 0 and (bottom) θ = π.

Konishi Spin 2

SU(2) SU(3) SU(4) SU(2) SU(3) SU(4)

τ = i 2.83+0.12
−0.09 3.07+0.22

−0.09 3.24+0.34
−0.06 5.16+0.16

−0.14 5.50+0.28
−0.15 5.73+0.46

−0.11

τ = eiπ/3 2.76+0.12
−0.17 2.98+0.20

−0.18 3.15+0.29
−0.19 5.06+0.15

−0.24 5.36+0.27
−0.26 5.59+0.40

−0.26

Bound 3.05 3.38 3.59 5.32 5.66 5.80

Corner 2.93 3.24 3.47 5.28 5.60 5.75

Table 2. Interpolated values for spin zero and spin two operators at τ = i and τ = exp(iπ/3), along

with the bounds and estimates for the same operators obtained from the conformal bootstrap.

For the purpose of comparing our resummations to the results of [1], we focus on the

values taken by the interpolated anomalous dimensions at the fixed points τ = τ2,3. The

results for spin zero and spin two are summarized in table 2. In order to assign a single

value — with error bar — to a fixed point requires some artistry. We have chosen to

draw the values for τ2 from the Z2-invariant resummations, and the τ3 values from the

Z3-invariant resummations. In particular, we take the mean of the two loop results as the

lower end of the error bar, and the mean of the three loop results as the upper end. For

a central value, we take a weighted average of the mean values for each loop order. The

weights are given by the inverse of the spread in values at that order. With this choice of

– 15 –



J
H
E
P
0
4
(
2
0
1
4
)
1
2
2

0
Π

8

Π

4

3 Π

8

Π

2

Tan-1HgL

4.5

5.0

5.5

6.0

6.5
D2Hg,0L

0
Π

8

Π

4

3 Π

8

Π

2

Tan-1HgL

4.5

5.0

5.5

6.0

6.5
D2Hg,0L

0.0 0.2 0.4 0.6 0.8 1.0
4.0

4.5

5.0

5.5

6.0

6.5

g

D
2
Hg
,1
�2
L

0.0 0.2 0.4 0.6 0.8 1.0
4.0

4.5

5.0

5.5

6.0

6.5

g

D
2
Hg
,1
�2
L

Figure 8. Interpolations of the spin two anomalous dimensions for gauge group SU(4). The

different plots depict the results of the (left) Z2 invariant and (right) Z3 invariant resummation

schemes, evaluated as a function of g with (top) θ = 0 and (bottom) θ = π.

Spin 4

SU(2) SU(3) SU(4)

τ = i 7.20− 7.55 7.59− 8.09 7.89− 8.57

τ = eiπ/3 6.96− 7.43 7.29− 7.92 7.56− 8.34

Bound 7.55 7.80 7.89

Corner 7.53 7.79 7.88

Table 3. Interpolated values for the spin four operator at τ = i and τ = exp(iπ/3). The numbers

shown represent the mean of the two-loop (lower) and the mean of the three-loop (upper) resum-

mations, along with the bounds and estimates for the same operator obtained from the conformal

bootstrap.

the error bar, we find that at τ = τ2, all the four loop results from Z2 and Z3 invariant

interpolating functions lie within the error bars. At τ = τ3 all the four loop results from

Z3 invariant interpolating functions lie within the error bar. The four loop Z2 invariant

interpolating functions at τ3 lie near the top of the range and occasionally overshoots the

upper limit, but even the maximum violation is quite small (∼ .05). Table 3 gives the

corresponding results for spin four operators. However, in the absence of the four loop

results, we can only give the range in which the anomalous dimension is expected to lie,

the lower and upper limits being the average two and three loop results respectively.
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Figure 9. This figure shows the image of the conformal manifold in the (∆0,∆2) plane. The left

graph is for SU(2), the middle graph is for SU(3), and the right graph is for SU(4). The red curve

is the image of the θ = 0 line, the purple curve is the image of the θ = π line and the blue curve

is the image of the circle at |τ | = 1. However the red curve is practically invisible as it is hidden

below the purple and the blue curves.

For every point τ on the conformal manifold, there is a set of numbers (∆0,∆2,∆4, · · · )
describing the dimensions of the lowest twist operators of spin zero, two, and four. We

expect that under this map, the fundamental domain of the conformal manifold will trace

out a two dimensional subspace in (∆0,∆2,∆4, · · · ) space. Using our interpolation formula,

we can try to identify the projection of this subspace to the (∆0,∆2) plane. Due to

y → −y symmetry, we can focus on the region bounded by the curves y = 0, y = 1/2 and

y2 + g−2 = 1. To keep the analysis simple we use a weighted average of the interpolating

functions,

1

6
(two loop average + 2 × three loop average + 3 × four loop average) . (4.9)

On the y = 0 axis we use the Z2 invariant interpolation formula, on the y = 1/2 axis we

use the Z3 invariant interpolation function and on the circle y2 + g−2 = 1 we use a linear

combination of these two which varies from being the Z2 invariant function at τ = i to

Z3 invariant function at τ = exp(iπ/3). By tracing out the images of these boundaries

in the (∆0,∆2) plane we encounter a surprise: instead of forming the boundary of a two

dimensional region they appear to lie along a one dimensional curve — in fact a straight

line with slope 25/18 determined by the one loop anomalous dimension. This is shown

in figure 9. Furthermore, this result seems to be quite robust; if we use the Z2 (or Z3)

invariant interpolation for all the boundaries, we get essentially the same result with the

same straight line; the only difference being that the line extends a little further (or less

far) at the upper end. This result is also quite robust under the change in the averaging

procedure; if we had used only the average two, three, or four loop results, we would get

more or less the same curve except for a tiny deviation at the top. Thus this result seems

to be much less uncertain compared to the actual values of the anomalous dimensions at

τ2 and τ3. We have also checked that all points in the interior of the fundamental domain

and not just on the boundary lie on the same straight line.
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We are, of course, not suggesting the (∆2 − 4)/(∆0 − 2) = 25/18 will hold as an

exact relation — this would be inconsistent with perturbation theory. Moreover the non-

perturbative θ-dependence will introduce a finite width.6 However, we have checked that

throughout the fundamental region the ratio stays very close to 25/18 — the maximum

deviation being of the order of 0.6%. Thus what our result indicates is that the whole

conformal manifold maps to a very narrow band in the (∆0,∆2) plane. We believe similar

results will continue to hold for other ∆m’s as well, indicating that the conformal manifold

maps to a very narrow strip around a straight line in ∆m space. Amusingly, for SU(2)

gauge group, the ratios of the corner values of the anomalous dimensions of spin zero and

spin two operators (cf. table 2) is 1.28/.93, which lies within 1% of the ratio 25/18. This

suggests that this may actually represent a physically realizable point. For SU(3) and

SU(4), the agreement is not so good, which may indicate that the interpolation method is

not reliable for higher rank gauge groups.

5 Discussion

We have seen that one may obtain reasonable, self-consistent results by performing simple,

duality-invariant resummations of perturbative anomalous dimensions in N = 4 SU(N)

SYM. Probably the most interesting aspect of these interpolations is their relation to the

results of the conformal bootstrap program forN = 4 SYM [1]. We recall that in that work,

absolute bounds were derived for the anomalous dimensions of the first operator of spin

zero, two, and four appearing in the OPE of a certain four point function. These are the

bounds that are displayed under the heading ‘Bound’ in tables 2 and 3. However, a more

subtle result was obtained by tracing out the boundary between operator spectra that

could be excluded by the conformal bootstrap and those that could not, parameterized

by the values of those anomalous dimensions. In the three-dimensional octant spanned

by the dimensions of the spin zero, two, and four operators, this boundary was found to

be approximately cube-shaped, leading to the natural conjecture that the actual operator

dimensions at a self-dual point can be obtained from the point at the corner. By estimating

the location of the corner, which due to the numerical methods sits a little bit below the

actual bounds, we obtain an improved estimate of the value of the anomalous dimensions

at one of the S-duality fixed points on the N = 4 SYM conformal manifold (there is no

way to tell which one). Representative values of these estimates are displayed under the

heading ‘Corner’ in the tables.

In figure 10, we show the results of our interpolations relative to the boundary sep-

arating admissible spectra from inadmissible ones in the space of spin zero and spin two

anomalous dimensions. For a given gauge group, spectra outside the approximately square

regions are excluded. We see that for low N , the interpolations are in good agreement

with the conjecture that the bounds are saturated at one of the duality fixed points. The

quality of the agreement diminishes with increased N , but this comes as no surprise; as

N increases the effective coupling constant gN takes larger values at the self dual point

g = 1, rendering perturbation theory and S-duality insufficient to control the behavior

6While the two-point function of the Konishi operator is known to not receive instanton corrections [21],

we still expect the anomalous dimension of the correct eigenstate to be θ-dependent in the full

quantum theory.
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Figure 10. These figures juxtapose the results of the (left) Z2 invariant resummations evaluated

at τ2 and (right) Z3 invariant interpolations evaluated at τ3 with the bounds obtained in [1] for

dimensions of spin zero and spin two operators. The interpolation results are all compatible with

the bounds, and moreover can be interpreted as supporting the conjecture that the optimal version

of such bounds is saturated at one of these points.

of the function everywhere. Moreover, for large enough N we expect the anomalous di-

mensions of the studied operators to grow large for there to be substantial mixing with

other operators, e.g., the Konishi operator will mix with a double-trace operator of tree

level dimension four. This should lead to new features in the behavior of the anomalous

dimensions as a function of the coupling that do not follow from naive extrapolation of

the behavior at weak coupling. For these reasons, if there are general lessons to be learned

that hold for all gauge groups, we are most likely to discover them by studying the results

for the SU(2) gauge group.
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A Explicit interpolation formulæ

In this appendix, we provide the explicit interpolation formulæ we have used in this pa-

per. Suppose the perturbative expansion of the anomalous dimension of an operator takes

the form

γ(g) = a g
(
1 + b g2 + c g3 + d g4 +O

(
g5
))
. (A.1)

Then the various interpolations are given below.
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Z2 invariant interpolation for FPP with half-integral powers.

Two loops : a

[{
1

g3/2
− 3b

2
√
g

}
+

{
g →

(
1 + y2g2

)
g

}]−2/3
(A.2)

Three loops : a

[{
1

g5/2
− 5b

2g3/2
+

35b2

8 −
5c
2√

g

}
+

{
g →

(
1 + y2g2

)
g

}]−2/5

Four loops : a

[{
1

g7/2
− 7b

2g5/2
+

63b2

8 −
7c
2

g3/2
−

7
(
33b3−36bc+8d

)
16
√
g

}
+

{
g→

(
1+y2g2

)
g

}]−2/7
.

Z2 invariant interpolation for FPP with integral powers.

Two loops : a

[{
1

g

}
+

{
g →

(
1 + y2g2

)
g

}
− b

]−1
(A.3)

Three loops : a

[{
1

g2
− 2b

g

}
+

{
g →

(
1 + y2g2

)
g

}
+ 3b2 − 2c

]−1/2

Four loops : a

[{
1

g3
− 3b

g2
+

6b2−3c

g

}
+

{
g →

(
1+y2g2

)
g

}
+
(
−10b3+12bc−3d

) ]−1/3
.

Z2 invariant interpolation for Padé with half-integral powers.

Two loops : a

[{
1

g1/2

}
+

{
g →

(
1 + y2g2

)
g

}]
[{

1

g3/2
− b− 1
√
g

}
+

{
g →

(
1 + y2g2

)
g

}]−1

Four loops : a

[{
b3 + b2 − 2bc− c+ d− 1

√
g (b2 − c− 1)

+
1

g3/2

}
+

{
g →

(
1 + y2g2

)
g

}]
[{

1

g5/2
+
b2 − bc+ b− c+ d− 1

g3/2 (b2 − c− 1)
+
−bc− bd+ b+ c2 + d− 1

√
g (b2 − c− 1)

}

+

{
g →

(
1 + y2g2

)
g

}]−1
. (A.4)

Z2 invariant interpolation for Padé with integral powers.

Two loops : a

[{
1

g

}
+

{
g →

(
1 + y2g2

)
g

}
− b

]−1

Four loops : a

[{
1

g

}
+

{
g →

(
1 + y2g2

)
g

}
+
b3 − 2bc+ d

b2 − c− 1

]
[{

1

g2
+

b− bc+ d

g (b2 − c− 1)

}
+

{
g →

(
1 + y2g2

)
g

}
+
c2 − bd− 1

b2 − c− 1

]−1
. (A.5)
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Z3 invariant interpolation for FPP with half-integral powers.

Two loops : a

[{
1

g3/2
− 3b

2
√
g

}
+

{
g →

(
1 + y2g2

)
g

}
+

{
g →

(
1 + (1− y)2g2

)
g

}]−2/3

Three loops : a

[{
1

g5/2
− 5b

2g3/2
+

35b2

8 −
5c
2√

g

}
+

{
g →

(
1+y2g2

)
g

}
+

{
g →

(
1+(1−y)2g2

)
g

}]−2/5

Four loops : a

[{
1

g7/2
− 7b

2g5/2
+

63b2

8 −
7c
2

g3/2
−

7
(
33b3 − 36bc+ 8d

)
16
√
g

}

+

{
g →

(
1 + y2g2

)
g

}
+

{
g →

(
1 + (1− y)2g2

)
g

}]−2/7

. (A.6)

Z3 invariant interpolation for FPP with integral powers.

Two loops : a

[{
1

g

}
+

{
g →

(
1 + y2g2

)
g

}
+

{
g →

(
1 + (1− y)2g2

)
g

}
− b

]−1

Three loops : a

[{
1

g2
− 2b

g

}
+

{
g →

(
1+y2g2

)
g

}
+

{
g →

(
1+(1−y)2g2

)
g

}
+3b2−2c

]−1/2

Four loops : a

[{
1

g3
− 3b

g2
+

6b2 − 3c

g

}
+

{
g →

(
1 + y2g2

)
g

}
+

{
g →

(
1 + (1− y)2g2

)
g

}

+
(
−10b3 + 12bc− 3d

) ]−1/3
. (A.7)

Z3 invariant interpolation for Padé with half-integral powers.

Two loops : a

[{
1

g1/2

}
+

{
g →

(
1 + y2g2

)
g

}
+

{
g →

(
1 + (1− y)2g2

)
g

}]
[{

1

g3/2
− b− 2
√
g

}
+

{
g →

(
1 + y2g2

)
g

}
+

{
g →

(
1 + (1− y)2g2

)
g

}]−1

Four loops : a

[{
b3 + 2b2 − 2bc− 2c+ d− 2

√
g (b2 − c− 4)

+
1

g3/2

}
+

{
g →

(
1 + y2g2

)
g

}

+

{
g →

(
1 + (1− y)2g2

)
g

}]
[{

1

g5/2
+

2b2 − bc+ 4b− 2c+ d− 2

g3/2 (b2 − c− 4)
+
−2bc− bd+ 2b+ c2 + 2d− 4

√
g (b2 − c− 4)

}

+

{
g →

(
1 + y2g2

)
g

}
+

{
g →

(
1 + (1− y)2g2

)
g

}]−1
. (A.8)
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Z3 invariant interpolation for Padé with integral powers.

Two loops : a

[{
1

g

}
+

{
g →

(
1 + y2g2

)
g

}
+

{
g →

(
1 + (1− y)2g2

)
g

}
− b

]−1

Four loops : a

[{
1

g

}
+

{
g →

(
1 + y2g2

)
g

}
+

{
g →

(
1 + (1− y)2g2

)
g

}
+
b3 − 2bc+ d

b2 − c− 2

]
[{

1

g2
+

2b− bc+ d

g (b2 − c− 2)

}
+

{
g →

(
1 + y2g2

)
g

}
+

{
g →

(
1 + (1− y)2g2

)
g

}

+
c2 − bd− 4

b2 − c− 2

]−1
. (A.9)

Note that at the two loop order FPP with integral powers and Padé approximant with

integral powers coincide both for Z2 and Z3 invariant interpolation. With a little bit of

work one can also verify that on the y = 0 line Z2 invariant Padé with integral and half-

integral powers coincide both for two and four loops. The latter coincidence has already

been discussed in the main text.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C. Beem, L. Rastelli and B.C. van Rees, The N = 4 Superconformal Bootstrap, Phys. Rev.

Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].

[2] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in

4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

[3] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving

the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D 86 (2012) 025022

[arXiv:1203.6064] [INSPIRE].

[4] A. Sen, S-duality Improved Superstring Perturbation Theory, JHEP 11 (2013) 029

[arXiv:1304.0458] [INSPIRE].

[5] H. Kleinert and V. Schulte-Frohlinde, Critical properties of φ4-theories, World Scientific,

River Edge, U.S.A., (2001), pg. 489.
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